|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Resource Director Technology (RDT) | 
|  | * | 
|  | * Pseudo-locking support built on top of Cache Allocation Technology (CAT) | 
|  | * | 
|  | * Copyright (C) 2018 Intel Corporation | 
|  | * | 
|  | * Author: Reinette Chatre <reinette.chatre@intel.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/cacheinfo.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pm_qos.h> | 
|  | #include <linux/resctrl.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Major number assigned to and shared by all devices exposing | 
|  | * pseudo-locked regions. | 
|  | */ | 
|  | static unsigned int pseudo_lock_major; | 
|  |  | 
|  | static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0); | 
|  |  | 
|  | static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode) | 
|  | { | 
|  | const struct rdtgroup *rdtgrp; | 
|  |  | 
|  | rdtgrp = dev_get_drvdata(dev); | 
|  | if (mode) | 
|  | *mode = 0600; | 
|  | guard(mutex)(&rdtgroup_mutex); | 
|  | return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdt_kn_name(rdtgrp->kn)); | 
|  | } | 
|  |  | 
|  | static const struct class pseudo_lock_class = { | 
|  | .name = "pseudo_lock", | 
|  | .devnode = pseudo_lock_devnode, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_minor_get - Obtain available minor number | 
|  | * @minor: Pointer to where new minor number will be stored | 
|  | * | 
|  | * A bitmask is used to track available minor numbers. Here the next free | 
|  | * minor number is marked as unavailable and returned. | 
|  | * | 
|  | * Return: 0 on success, <0 on failure. | 
|  | */ | 
|  | static int pseudo_lock_minor_get(unsigned int *minor) | 
|  | { | 
|  | unsigned long first_bit; | 
|  |  | 
|  | first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS); | 
|  |  | 
|  | if (first_bit == MINORBITS) | 
|  | return -ENOSPC; | 
|  |  | 
|  | __clear_bit(first_bit, &pseudo_lock_minor_avail); | 
|  | *minor = first_bit; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_minor_release - Return minor number to available | 
|  | * @minor: The minor number made available | 
|  | */ | 
|  | static void pseudo_lock_minor_release(unsigned int minor) | 
|  | { | 
|  | __set_bit(minor, &pseudo_lock_minor_avail); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * region_find_by_minor - Locate a pseudo-lock region by inode minor number | 
|  | * @minor: The minor number of the device representing pseudo-locked region | 
|  | * | 
|  | * When the character device is accessed we need to determine which | 
|  | * pseudo-locked region it belongs to. This is done by matching the minor | 
|  | * number of the device to the pseudo-locked region it belongs. | 
|  | * | 
|  | * Minor numbers are assigned at the time a pseudo-locked region is associated | 
|  | * with a cache instance. | 
|  | * | 
|  | * Return: On success return pointer to resource group owning the pseudo-locked | 
|  | *         region, NULL on failure. | 
|  | */ | 
|  | static struct rdtgroup *region_find_by_minor(unsigned int minor) | 
|  | { | 
|  | struct rdtgroup *rdtgrp, *rdtgrp_match = NULL; | 
|  |  | 
|  | list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { | 
|  | if (rdtgrp->plr && rdtgrp->plr->minor == minor) { | 
|  | rdtgrp_match = rdtgrp; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return rdtgrp_match; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * struct pseudo_lock_pm_req - A power management QoS request list entry | 
|  | * @list:	Entry within the @pm_reqs list for a pseudo-locked region | 
|  | * @req:	PM QoS request | 
|  | */ | 
|  | struct pseudo_lock_pm_req { | 
|  | struct list_head list; | 
|  | struct dev_pm_qos_request req; | 
|  | }; | 
|  |  | 
|  | static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr) | 
|  | { | 
|  | struct pseudo_lock_pm_req *pm_req, *next; | 
|  |  | 
|  | list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) { | 
|  | dev_pm_qos_remove_request(&pm_req->req); | 
|  | list_del(&pm_req->list); | 
|  | kfree(pm_req); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_cstates_constrain - Restrict cores from entering C6 | 
|  | * @plr: Pseudo-locked region | 
|  | * | 
|  | * To prevent the cache from being affected by power management entering | 
|  | * C6 has to be avoided. This is accomplished by requesting a latency | 
|  | * requirement lower than lowest C6 exit latency of all supported | 
|  | * platforms as found in the cpuidle state tables in the intel_idle driver. | 
|  | * At this time it is possible to do so with a single latency requirement | 
|  | * for all supported platforms. | 
|  | * | 
|  | * Since Goldmont is supported, which is affected by X86_BUG_MONITOR, | 
|  | * the ACPI latencies need to be considered while keeping in mind that C2 | 
|  | * may be set to map to deeper sleep states. In this case the latency | 
|  | * requirement needs to prevent entering C2 also. | 
|  | * | 
|  | * Return: 0 on success, <0 on failure | 
|  | */ | 
|  | static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) | 
|  | { | 
|  | struct pseudo_lock_pm_req *pm_req; | 
|  | int cpu; | 
|  | int ret; | 
|  |  | 
|  | for_each_cpu(cpu, &plr->d->hdr.cpu_mask) { | 
|  | pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL); | 
|  | if (!pm_req) { | 
|  | rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n"); | 
|  | ret = -ENOMEM; | 
|  | goto out_err; | 
|  | } | 
|  | ret = dev_pm_qos_add_request(get_cpu_device(cpu), | 
|  | &pm_req->req, | 
|  | DEV_PM_QOS_RESUME_LATENCY, | 
|  | 30); | 
|  | if (ret < 0) { | 
|  | rdt_last_cmd_printf("Failed to add latency req CPU%d\n", | 
|  | cpu); | 
|  | kfree(pm_req); | 
|  | ret = -1; | 
|  | goto out_err; | 
|  | } | 
|  | list_add(&pm_req->list, &plr->pm_reqs); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | pseudo_lock_cstates_relax(plr); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_region_clear - Reset pseudo-lock region data | 
|  | * @plr: pseudo-lock region | 
|  | * | 
|  | * All content of the pseudo-locked region is reset - any memory allocated | 
|  | * freed. | 
|  | * | 
|  | * Return: void | 
|  | */ | 
|  | static void pseudo_lock_region_clear(struct pseudo_lock_region *plr) | 
|  | { | 
|  | plr->size = 0; | 
|  | plr->line_size = 0; | 
|  | kfree(plr->kmem); | 
|  | plr->kmem = NULL; | 
|  | plr->s = NULL; | 
|  | if (plr->d) | 
|  | plr->d->plr = NULL; | 
|  | plr->d = NULL; | 
|  | plr->cbm = 0; | 
|  | plr->debugfs_dir = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_region_init - Initialize pseudo-lock region information | 
|  | * @plr: pseudo-lock region | 
|  | * | 
|  | * Called after user provided a schemata to be pseudo-locked. From the | 
|  | * schemata the &struct pseudo_lock_region is on entry already initialized | 
|  | * with the resource, domain, and capacity bitmask. Here the information | 
|  | * required for pseudo-locking is deduced from this data and &struct | 
|  | * pseudo_lock_region initialized further. This information includes: | 
|  | * - size in bytes of the region to be pseudo-locked | 
|  | * - cache line size to know the stride with which data needs to be accessed | 
|  | *   to be pseudo-locked | 
|  | * - a cpu associated with the cache instance on which the pseudo-locking | 
|  | *   flow can be executed | 
|  | * | 
|  | * Return: 0 on success, <0 on failure. Descriptive error will be written | 
|  | * to last_cmd_status buffer. | 
|  | */ | 
|  | static int pseudo_lock_region_init(struct pseudo_lock_region *plr) | 
|  | { | 
|  | enum resctrl_scope scope = plr->s->res->ctrl_scope; | 
|  | struct cacheinfo *ci; | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE)) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Pick the first cpu we find that is associated with the cache. */ | 
|  | plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask); | 
|  |  | 
|  | if (!cpu_online(plr->cpu)) { | 
|  | rdt_last_cmd_printf("CPU %u associated with cache not online\n", | 
|  | plr->cpu); | 
|  | ret = -ENODEV; | 
|  | goto out_region; | 
|  | } | 
|  |  | 
|  | ci = get_cpu_cacheinfo_level(plr->cpu, scope); | 
|  | if (ci) { | 
|  | plr->line_size = ci->coherency_line_size; | 
|  | plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = -1; | 
|  | rdt_last_cmd_puts("Unable to determine cache line size\n"); | 
|  | out_region: | 
|  | pseudo_lock_region_clear(plr); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_init - Initialize a pseudo-lock region | 
|  | * @rdtgrp: resource group to which new pseudo-locked region will belong | 
|  | * | 
|  | * A pseudo-locked region is associated with a resource group. When this | 
|  | * association is created the pseudo-locked region is initialized. The | 
|  | * details of the pseudo-locked region are not known at this time so only | 
|  | * allocation is done and association established. | 
|  | * | 
|  | * Return: 0 on success, <0 on failure | 
|  | */ | 
|  | static int pseudo_lock_init(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | struct pseudo_lock_region *plr; | 
|  |  | 
|  | plr = kzalloc(sizeof(*plr), GFP_KERNEL); | 
|  | if (!plr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | init_waitqueue_head(&plr->lock_thread_wq); | 
|  | INIT_LIST_HEAD(&plr->pm_reqs); | 
|  | rdtgrp->plr = plr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked | 
|  | * @plr: pseudo-lock region | 
|  | * | 
|  | * Initialize the details required to set up the pseudo-locked region and | 
|  | * allocate the contiguous memory that will be pseudo-locked to the cache. | 
|  | * | 
|  | * Return: 0 on success, <0 on failure.  Descriptive error will be written | 
|  | * to last_cmd_status buffer. | 
|  | */ | 
|  | static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = pseudo_lock_region_init(plr); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We do not yet support contiguous regions larger than | 
|  | * KMALLOC_MAX_SIZE. | 
|  | */ | 
|  | if (plr->size > KMALLOC_MAX_SIZE) { | 
|  | rdt_last_cmd_puts("Requested region exceeds maximum size\n"); | 
|  | ret = -E2BIG; | 
|  | goto out_region; | 
|  | } | 
|  |  | 
|  | plr->kmem = kzalloc(plr->size, GFP_KERNEL); | 
|  | if (!plr->kmem) { | 
|  | rdt_last_cmd_puts("Unable to allocate memory\n"); | 
|  | ret = -ENOMEM; | 
|  | goto out_region; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | goto out; | 
|  | out_region: | 
|  | pseudo_lock_region_clear(plr); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_free - Free a pseudo-locked region | 
|  | * @rdtgrp: resource group to which pseudo-locked region belonged | 
|  | * | 
|  | * The pseudo-locked region's resources have already been released, or not | 
|  | * yet created at this point. Now it can be freed and disassociated from the | 
|  | * resource group. | 
|  | * | 
|  | * Return: void | 
|  | */ | 
|  | static void pseudo_lock_free(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | pseudo_lock_region_clear(rdtgrp->plr); | 
|  | kfree(rdtgrp->plr); | 
|  | rdtgrp->plr = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_monitor_in_progress - Test if monitoring in progress | 
|  | * @rdtgrp: resource group being queried | 
|  | * | 
|  | * Return: 1 if monitor groups have been created for this resource | 
|  | * group, 0 otherwise. | 
|  | */ | 
|  | static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | return !list_empty(&rdtgrp->mon.crdtgrp_list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_locksetup_user_restrict - Restrict user access to group | 
|  | * @rdtgrp: resource group needing access restricted | 
|  | * | 
|  | * A resource group used for cache pseudo-locking cannot have cpus or tasks | 
|  | * assigned to it. This is communicated to the user by restricting access | 
|  | * to all the files that can be used to make such changes. | 
|  | * | 
|  | * Permissions restored with rdtgroup_locksetup_user_restore() | 
|  | * | 
|  | * Return: 0 on success, <0 on failure. If a failure occurs during the | 
|  | * restriction of access an attempt will be made to restore permissions but | 
|  | * the state of the mode of these files will be uncertain when a failure | 
|  | * occurs. | 
|  | */ | 
|  | static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); | 
|  | if (ret) | 
|  | goto err_tasks; | 
|  |  | 
|  | ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); | 
|  | if (ret) | 
|  | goto err_cpus; | 
|  |  | 
|  | if (resctrl_arch_mon_capable()) { | 
|  | ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups"); | 
|  | if (ret) | 
|  | goto err_cpus_list; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | goto out; | 
|  |  | 
|  | err_cpus_list: | 
|  | rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); | 
|  | err_cpus: | 
|  | rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); | 
|  | err_tasks: | 
|  | rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_locksetup_user_restore - Restore user access to group | 
|  | * @rdtgrp: resource group needing access restored | 
|  | * | 
|  | * Restore all file access previously removed using | 
|  | * rdtgroup_locksetup_user_restrict() | 
|  | * | 
|  | * Return: 0 on success, <0 on failure.  If a failure occurs during the | 
|  | * restoration of access an attempt will be made to restrict permissions | 
|  | * again but the state of the mode of these files will be uncertain when | 
|  | * a failure occurs. | 
|  | */ | 
|  | static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); | 
|  | if (ret) | 
|  | goto err_tasks; | 
|  |  | 
|  | ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); | 
|  | if (ret) | 
|  | goto err_cpus; | 
|  |  | 
|  | if (resctrl_arch_mon_capable()) { | 
|  | ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777); | 
|  | if (ret) | 
|  | goto err_cpus_list; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | goto out; | 
|  |  | 
|  | err_cpus_list: | 
|  | rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); | 
|  | err_cpus: | 
|  | rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); | 
|  | err_tasks: | 
|  | rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_locksetup_enter - Resource group enters locksetup mode | 
|  | * @rdtgrp: resource group requested to enter locksetup mode | 
|  | * | 
|  | * A resource group enters locksetup mode to reflect that it would be used | 
|  | * to represent a pseudo-locked region and is in the process of being set | 
|  | * up to do so. A resource group used for a pseudo-locked region would | 
|  | * lose the closid associated with it so we cannot allow it to have any | 
|  | * tasks or cpus assigned nor permit tasks or cpus to be assigned in the | 
|  | * future. Monitoring of a pseudo-locked region is not allowed either. | 
|  | * | 
|  | * The above and more restrictions on a pseudo-locked region are checked | 
|  | * for and enforced before the resource group enters the locksetup mode. | 
|  | * | 
|  | * Returns: 0 if the resource group successfully entered locksetup mode, <0 | 
|  | * on failure. On failure the last_cmd_status buffer is updated with text to | 
|  | * communicate details of failure to the user. | 
|  | */ | 
|  | int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * The default resource group can neither be removed nor lose the | 
|  | * default closid associated with it. | 
|  | */ | 
|  | if (rdtgrp == &rdtgroup_default) { | 
|  | rdt_last_cmd_puts("Cannot pseudo-lock default group\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cache Pseudo-locking not supported when CDP is enabled. | 
|  | * | 
|  | * Some things to consider if you would like to enable this | 
|  | * support (using L3 CDP as example): | 
|  | * - When CDP is enabled two separate resources are exposed, | 
|  | *   L3DATA and L3CODE, but they are actually on the same cache. | 
|  | *   The implication for pseudo-locking is that if a | 
|  | *   pseudo-locked region is created on a domain of one | 
|  | *   resource (eg. L3CODE), then a pseudo-locked region cannot | 
|  | *   be created on that same domain of the other resource | 
|  | *   (eg. L3DATA). This is because the creation of a | 
|  | *   pseudo-locked region involves a call to wbinvd that will | 
|  | *   affect all cache allocations on particular domain. | 
|  | * - Considering the previous, it may be possible to only | 
|  | *   expose one of the CDP resources to pseudo-locking and | 
|  | *   hide the other. For example, we could consider to only | 
|  | *   expose L3DATA and since the L3 cache is unified it is | 
|  | *   still possible to place instructions there are execute it. | 
|  | * - If only one region is exposed to pseudo-locking we should | 
|  | *   still keep in mind that availability of a portion of cache | 
|  | *   for pseudo-locking should take into account both resources. | 
|  | *   Similarly, if a pseudo-locked region is created in one | 
|  | *   resource, the portion of cache used by it should be made | 
|  | *   unavailable to all future allocations from both resources. | 
|  | */ | 
|  | if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) || | 
|  | resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) { | 
|  | rdt_last_cmd_puts("CDP enabled\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not knowing the bits to disable prefetching implies that this | 
|  | * platform does not support Cache Pseudo-Locking. | 
|  | */ | 
|  | if (resctrl_arch_get_prefetch_disable_bits() == 0) { | 
|  | rdt_last_cmd_puts("Pseudo-locking not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (rdtgroup_monitor_in_progress(rdtgrp)) { | 
|  | rdt_last_cmd_puts("Monitoring in progress\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (rdtgroup_tasks_assigned(rdtgrp)) { | 
|  | rdt_last_cmd_puts("Tasks assigned to resource group\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!cpumask_empty(&rdtgrp->cpu_mask)) { | 
|  | rdt_last_cmd_puts("CPUs assigned to resource group\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (rdtgroup_locksetup_user_restrict(rdtgrp)) { | 
|  | rdt_last_cmd_puts("Unable to modify resctrl permissions\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ret = pseudo_lock_init(rdtgrp); | 
|  | if (ret) { | 
|  | rdt_last_cmd_puts("Unable to init pseudo-lock region\n"); | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this system is capable of monitoring a rmid would have been | 
|  | * allocated when the control group was created. This is not needed | 
|  | * anymore when this group would be used for pseudo-locking. This | 
|  | * is safe to call on platforms not capable of monitoring. | 
|  | */ | 
|  | free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); | 
|  |  | 
|  | ret = 0; | 
|  | goto out; | 
|  |  | 
|  | out_release: | 
|  | rdtgroup_locksetup_user_restore(rdtgrp); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_locksetup_exit - resource group exist locksetup mode | 
|  | * @rdtgrp: resource group | 
|  | * | 
|  | * When a resource group exits locksetup mode the earlier restrictions are | 
|  | * lifted. | 
|  | * | 
|  | * Return: 0 on success, <0 on failure | 
|  | */ | 
|  | int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (resctrl_arch_mon_capable()) { | 
|  | ret = alloc_rmid(rdtgrp->closid); | 
|  | if (ret < 0) { | 
|  | rdt_last_cmd_puts("Out of RMIDs\n"); | 
|  | return ret; | 
|  | } | 
|  | rdtgrp->mon.rmid = ret; | 
|  | } | 
|  |  | 
|  | ret = rdtgroup_locksetup_user_restore(rdtgrp); | 
|  | if (ret) { | 
|  | free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pseudo_lock_free(rdtgrp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked | 
|  | * @d: RDT domain | 
|  | * @cbm: CBM to test | 
|  | * | 
|  | * @d represents a cache instance and @cbm a capacity bitmask that is | 
|  | * considered for it. Determine if @cbm overlaps with any existing | 
|  | * pseudo-locked region on @d. | 
|  | * | 
|  | * @cbm is unsigned long, even if only 32 bits are used, to make the | 
|  | * bitmap functions work correctly. | 
|  | * | 
|  | * Return: true if @cbm overlaps with pseudo-locked region on @d, false | 
|  | * otherwise. | 
|  | */ | 
|  | bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm) | 
|  | { | 
|  | unsigned int cbm_len; | 
|  | unsigned long cbm_b; | 
|  |  | 
|  | if (d->plr) { | 
|  | cbm_len = d->plr->s->res->cache.cbm_len; | 
|  | cbm_b = d->plr->cbm; | 
|  | if (bitmap_intersects(&cbm, &cbm_b, cbm_len)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy | 
|  | * @d: RDT domain under test | 
|  | * | 
|  | * The setup of a pseudo-locked region affects all cache instances within | 
|  | * the hierarchy of the region. It is thus essential to know if any | 
|  | * pseudo-locked regions exist within a cache hierarchy to prevent any | 
|  | * attempts to create new pseudo-locked regions in the same hierarchy. | 
|  | * | 
|  | * Return: true if a pseudo-locked region exists in the hierarchy of @d or | 
|  | *         if it is not possible to test due to memory allocation issue, | 
|  | *         false otherwise. | 
|  | */ | 
|  | bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d) | 
|  | { | 
|  | struct rdt_ctrl_domain *d_i; | 
|  | cpumask_var_t cpu_with_psl; | 
|  | struct rdt_resource *r; | 
|  | bool ret = false; | 
|  |  | 
|  | /* Walking r->domains, ensure it can't race with cpuhp */ | 
|  | lockdep_assert_cpus_held(); | 
|  |  | 
|  | if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * First determine which cpus have pseudo-locked regions | 
|  | * associated with them. | 
|  | */ | 
|  | for_each_alloc_capable_rdt_resource(r) { | 
|  | list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) { | 
|  | if (d_i->plr) | 
|  | cpumask_or(cpu_with_psl, cpu_with_psl, | 
|  | &d_i->hdr.cpu_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Next test if new pseudo-locked region would intersect with | 
|  | * existing region. | 
|  | */ | 
|  | if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl)) | 
|  | ret = true; | 
|  |  | 
|  | free_cpumask_var(cpu_with_psl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region | 
|  | * @rdtgrp: Resource group to which the pseudo-locked region belongs. | 
|  | * @sel: Selector of which measurement to perform on a pseudo-locked region. | 
|  | * | 
|  | * The measurement of latency to access a pseudo-locked region should be | 
|  | * done from a cpu that is associated with that pseudo-locked region. | 
|  | * Determine which cpu is associated with this region and start a thread on | 
|  | * that cpu to perform the measurement, wait for that thread to complete. | 
|  | * | 
|  | * Return: 0 on success, <0 on failure | 
|  | */ | 
|  | static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel) | 
|  | { | 
|  | struct pseudo_lock_region *plr = rdtgrp->plr; | 
|  | struct task_struct *thread; | 
|  | unsigned int cpu; | 
|  | int ret = -1; | 
|  |  | 
|  | cpus_read_lock(); | 
|  | mutex_lock(&rdtgroup_mutex); | 
|  |  | 
|  | if (rdtgrp->flags & RDT_DELETED) { | 
|  | ret = -ENODEV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!plr->d) { | 
|  | ret = -ENODEV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | plr->thread_done = 0; | 
|  | cpu = cpumask_first(&plr->d->hdr.cpu_mask); | 
|  | if (!cpu_online(cpu)) { | 
|  | ret = -ENODEV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | plr->cpu = cpu; | 
|  |  | 
|  | if (sel == 1) | 
|  | thread = kthread_run_on_cpu(resctrl_arch_measure_cycles_lat_fn, | 
|  | plr, cpu, "pseudo_lock_measure/%u"); | 
|  | else if (sel == 2) | 
|  | thread = kthread_run_on_cpu(resctrl_arch_measure_l2_residency, | 
|  | plr, cpu, "pseudo_lock_measure/%u"); | 
|  | else if (sel == 3) | 
|  | thread = kthread_run_on_cpu(resctrl_arch_measure_l3_residency, | 
|  | plr, cpu, "pseudo_lock_measure/%u"); | 
|  | else | 
|  | goto out; | 
|  |  | 
|  | if (IS_ERR(thread)) { | 
|  | ret = PTR_ERR(thread); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = wait_event_interruptible(plr->lock_thread_wq, | 
|  | plr->thread_done == 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | cpus_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t pseudo_lock_measure_trigger(struct file *file, | 
|  | const char __user *user_buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct rdtgroup *rdtgrp = file->private_data; | 
|  | size_t buf_size; | 
|  | char buf[32]; | 
|  | int ret; | 
|  | int sel; | 
|  |  | 
|  | buf_size = min(count, (sizeof(buf) - 1)); | 
|  | if (copy_from_user(buf, user_buf, buf_size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | buf[buf_size] = '\0'; | 
|  | ret = kstrtoint(buf, 10, &sel); | 
|  | if (ret == 0) { | 
|  | if (sel != 1 && sel != 2 && sel != 3) | 
|  | return -EINVAL; | 
|  | ret = pseudo_lock_measure_cycles(rdtgrp, sel); | 
|  | if (ret == 0) | 
|  | ret = count; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct file_operations pseudo_measure_fops = { | 
|  | .write = pseudo_lock_measure_trigger, | 
|  | .open = simple_open, | 
|  | .llseek = default_llseek, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * rdtgroup_pseudo_lock_create - Create a pseudo-locked region | 
|  | * @rdtgrp: resource group to which pseudo-lock region belongs | 
|  | * | 
|  | * Called when a resource group in the pseudo-locksetup mode receives a | 
|  | * valid schemata that should be pseudo-locked. Since the resource group is | 
|  | * in pseudo-locksetup mode the &struct pseudo_lock_region has already been | 
|  | * allocated and initialized with the essential information. If a failure | 
|  | * occurs the resource group remains in the pseudo-locksetup mode with the | 
|  | * &struct pseudo_lock_region associated with it, but cleared from all | 
|  | * information and ready for the user to re-attempt pseudo-locking by | 
|  | * writing the schemata again. | 
|  | * | 
|  | * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0 | 
|  | * on failure. Descriptive error will be written to last_cmd_status buffer. | 
|  | */ | 
|  | int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | struct pseudo_lock_region *plr = rdtgrp->plr; | 
|  | struct task_struct *thread; | 
|  | unsigned int new_minor; | 
|  | struct device *dev; | 
|  | char *kn_name __free(kfree) = NULL; | 
|  | int ret; | 
|  |  | 
|  | ret = pseudo_lock_region_alloc(plr); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = pseudo_lock_cstates_constrain(plr); | 
|  | if (ret < 0) { | 
|  | ret = -EINVAL; | 
|  | goto out_region; | 
|  | } | 
|  | kn_name = kstrdup(rdt_kn_name(rdtgrp->kn), GFP_KERNEL); | 
|  | if (!kn_name) { | 
|  | ret = -ENOMEM; | 
|  | goto out_cstates; | 
|  | } | 
|  |  | 
|  | plr->thread_done = 0; | 
|  |  | 
|  | thread = kthread_run_on_cpu(resctrl_arch_pseudo_lock_fn, plr, | 
|  | plr->cpu, "pseudo_lock/%u"); | 
|  | if (IS_ERR(thread)) { | 
|  | ret = PTR_ERR(thread); | 
|  | rdt_last_cmd_printf("Locking thread returned error %d\n", ret); | 
|  | goto out_cstates; | 
|  | } | 
|  |  | 
|  | ret = wait_event_interruptible(plr->lock_thread_wq, | 
|  | plr->thread_done == 1); | 
|  | if (ret < 0) { | 
|  | /* | 
|  | * If the thread does not get on the CPU for whatever | 
|  | * reason and the process which sets up the region is | 
|  | * interrupted then this will leave the thread in runnable | 
|  | * state and once it gets on the CPU it will dereference | 
|  | * the cleared, but not freed, plr struct resulting in an | 
|  | * empty pseudo-locking loop. | 
|  | */ | 
|  | rdt_last_cmd_puts("Locking thread interrupted\n"); | 
|  | goto out_cstates; | 
|  | } | 
|  |  | 
|  | ret = pseudo_lock_minor_get(&new_minor); | 
|  | if (ret < 0) { | 
|  | rdt_last_cmd_puts("Unable to obtain a new minor number\n"); | 
|  | goto out_cstates; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock access but do not release the reference. The | 
|  | * pseudo-locked region will still be here on return. | 
|  | * | 
|  | * The mutex has to be released temporarily to avoid a potential | 
|  | * deadlock with the mm->mmap_lock which is obtained in the | 
|  | * device_create() and debugfs_create_dir() callpath below as well as | 
|  | * before the mmap() callback is called. | 
|  | */ | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(debugfs_resctrl)) { | 
|  | plr->debugfs_dir = debugfs_create_dir(kn_name, debugfs_resctrl); | 
|  | if (!IS_ERR_OR_NULL(plr->debugfs_dir)) | 
|  | debugfs_create_file("pseudo_lock_measure", 0200, | 
|  | plr->debugfs_dir, rdtgrp, | 
|  | &pseudo_measure_fops); | 
|  | } | 
|  |  | 
|  | dev = device_create(&pseudo_lock_class, NULL, | 
|  | MKDEV(pseudo_lock_major, new_minor), | 
|  | rdtgrp, "%s", kn_name); | 
|  |  | 
|  | mutex_lock(&rdtgroup_mutex); | 
|  |  | 
|  | if (IS_ERR(dev)) { | 
|  | ret = PTR_ERR(dev); | 
|  | rdt_last_cmd_printf("Failed to create character device: %d\n", | 
|  | ret); | 
|  | goto out_debugfs; | 
|  | } | 
|  |  | 
|  | /* We released the mutex - check if group was removed while we did so */ | 
|  | if (rdtgrp->flags & RDT_DELETED) { | 
|  | ret = -ENODEV; | 
|  | goto out_device; | 
|  | } | 
|  |  | 
|  | plr->minor = new_minor; | 
|  |  | 
|  | rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED; | 
|  | closid_free(rdtgrp->closid); | 
|  | rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444); | 
|  | rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444); | 
|  |  | 
|  | ret = 0; | 
|  | goto out; | 
|  |  | 
|  | out_device: | 
|  | device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor)); | 
|  | out_debugfs: | 
|  | debugfs_remove_recursive(plr->debugfs_dir); | 
|  | pseudo_lock_minor_release(new_minor); | 
|  | out_cstates: | 
|  | pseudo_lock_cstates_relax(plr); | 
|  | out_region: | 
|  | pseudo_lock_region_clear(plr); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region | 
|  | * @rdtgrp: resource group to which the pseudo-locked region belongs | 
|  | * | 
|  | * The removal of a pseudo-locked region can be initiated when the resource | 
|  | * group is removed from user space via a "rmdir" from userspace or the | 
|  | * unmount of the resctrl filesystem. On removal the resource group does | 
|  | * not go back to pseudo-locksetup mode before it is removed, instead it is | 
|  | * removed directly. There is thus asymmetry with the creation where the | 
|  | * &struct pseudo_lock_region is removed here while it was not created in | 
|  | * rdtgroup_pseudo_lock_create(). | 
|  | * | 
|  | * Return: void | 
|  | */ | 
|  | void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) | 
|  | { | 
|  | struct pseudo_lock_region *plr = rdtgrp->plr; | 
|  |  | 
|  | if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { | 
|  | /* | 
|  | * Default group cannot be a pseudo-locked region so we can | 
|  | * free closid here. | 
|  | */ | 
|  | closid_free(rdtgrp->closid); | 
|  | goto free; | 
|  | } | 
|  |  | 
|  | pseudo_lock_cstates_relax(plr); | 
|  | debugfs_remove_recursive(rdtgrp->plr->debugfs_dir); | 
|  | device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor)); | 
|  | pseudo_lock_minor_release(plr->minor); | 
|  |  | 
|  | free: | 
|  | pseudo_lock_free(rdtgrp); | 
|  | } | 
|  |  | 
|  | static int pseudo_lock_dev_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct rdtgroup *rdtgrp; | 
|  |  | 
|  | mutex_lock(&rdtgroup_mutex); | 
|  |  | 
|  | rdtgrp = region_find_by_minor(iminor(inode)); | 
|  | if (!rdtgrp) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | filp->private_data = rdtgrp; | 
|  | atomic_inc(&rdtgrp->waitcount); | 
|  | /* Perform a non-seekable open - llseek is not supported */ | 
|  | filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); | 
|  |  | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pseudo_lock_dev_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct rdtgroup *rdtgrp; | 
|  |  | 
|  | mutex_lock(&rdtgroup_mutex); | 
|  | rdtgrp = filp->private_data; | 
|  | WARN_ON(!rdtgrp); | 
|  | if (!rdtgrp) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -ENODEV; | 
|  | } | 
|  | filp->private_data = NULL; | 
|  | atomic_dec(&rdtgrp->waitcount); | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pseudo_lock_dev_mremap(struct vm_area_struct *area) | 
|  | { | 
|  | /* Not supported */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct pseudo_mmap_ops = { | 
|  | .mremap = pseudo_lock_dev_mremap, | 
|  | }; | 
|  |  | 
|  | static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long vsize = vma->vm_end - vma->vm_start; | 
|  | unsigned long off = vma->vm_pgoff << PAGE_SHIFT; | 
|  | struct pseudo_lock_region *plr; | 
|  | struct rdtgroup *rdtgrp; | 
|  | unsigned long physical; | 
|  | unsigned long psize; | 
|  |  | 
|  | mutex_lock(&rdtgroup_mutex); | 
|  |  | 
|  | rdtgrp = filp->private_data; | 
|  | WARN_ON(!rdtgrp); | 
|  | if (!rdtgrp) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | plr = rdtgrp->plr; | 
|  |  | 
|  | if (!plr->d) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Task is required to run with affinity to the cpus associated | 
|  | * with the pseudo-locked region. If this is not the case the task | 
|  | * may be scheduled elsewhere and invalidate entries in the | 
|  | * pseudo-locked region. | 
|  | */ | 
|  | if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | physical = __pa(plr->kmem) >> PAGE_SHIFT; | 
|  | psize = plr->size - off; | 
|  |  | 
|  | if (off > plr->size) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure changes are carried directly to the memory being mapped, | 
|  | * do not allow copy-on-write mapping. | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_SHARED)) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (vsize > psize) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | memset(plr->kmem + off, 0, vsize); | 
|  |  | 
|  | if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff, | 
|  | vsize, vma->vm_page_prot)) { | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return -EAGAIN; | 
|  | } | 
|  | vma->vm_ops = &pseudo_mmap_ops; | 
|  | mutex_unlock(&rdtgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations pseudo_lock_dev_fops = { | 
|  | .owner =	THIS_MODULE, | 
|  | .read =		NULL, | 
|  | .write =	NULL, | 
|  | .open =		pseudo_lock_dev_open, | 
|  | .release =	pseudo_lock_dev_release, | 
|  | .mmap =		pseudo_lock_dev_mmap, | 
|  | }; | 
|  |  | 
|  | int rdt_pseudo_lock_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | pseudo_lock_major = ret; | 
|  |  | 
|  | ret = class_register(&pseudo_lock_class); | 
|  | if (ret) { | 
|  | unregister_chrdev(pseudo_lock_major, "pseudo_lock"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void rdt_pseudo_lock_release(void) | 
|  | { | 
|  | class_unregister(&pseudo_lock_class); | 
|  | unregister_chrdev(pseudo_lock_major, "pseudo_lock"); | 
|  | pseudo_lock_major = 0; | 
|  | } |