|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * HugeTLB Vmemmap Optimization (HVO) | 
|  | * | 
|  | * Copyright (c) 2020, ByteDance. All rights reserved. | 
|  | * | 
|  | *     Author: Muchun Song <songmuchun@bytedance.com> | 
|  | * | 
|  | * See Documentation/mm/vmemmap_dedup.rst | 
|  | */ | 
|  | #define pr_fmt(fmt)	"HugeTLB: " fmt | 
|  |  | 
|  | #include <linux/pgtable.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/bootmem_info.h> | 
|  | #include <linux/mmdebug.h> | 
|  | #include <linux/pagewalk.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include "hugetlb_vmemmap.h" | 
|  |  | 
|  | /** | 
|  | * struct vmemmap_remap_walk - walk vmemmap page table | 
|  | * | 
|  | * @remap_pte:		called for each lowest-level entry (PTE). | 
|  | * @nr_walked:		the number of walked pte. | 
|  | * @reuse_page:		the page which is reused for the tail vmemmap pages. | 
|  | * @reuse_addr:		the virtual address of the @reuse_page page. | 
|  | * @vmemmap_pages:	the list head of the vmemmap pages that can be freed | 
|  | *			or is mapped from. | 
|  | * @flags:		used to modify behavior in vmemmap page table walking | 
|  | *			operations. | 
|  | */ | 
|  | struct vmemmap_remap_walk { | 
|  | void			(*remap_pte)(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk); | 
|  | unsigned long		nr_walked; | 
|  | struct page		*reuse_page; | 
|  | unsigned long		reuse_addr; | 
|  | struct list_head	*vmemmap_pages; | 
|  |  | 
|  | /* Skip the TLB flush when we split the PMD */ | 
|  | #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0) | 
|  | /* Skip the TLB flush when we remap the PTE */ | 
|  | #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1) | 
|  | /* synchronize_rcu() to avoid writes from page_ref_add_unless() */ | 
|  | #define VMEMMAP_SYNCHRONIZE_RCU		BIT(2) | 
|  | unsigned long		flags; | 
|  | }; | 
|  |  | 
|  | static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pmd_t __pmd; | 
|  | int i; | 
|  | unsigned long addr = start; | 
|  | pte_t *pgtable; | 
|  |  | 
|  | pgtable = pte_alloc_one_kernel(&init_mm); | 
|  | if (!pgtable) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pmd_populate_kernel(&init_mm, &__pmd, pgtable); | 
|  |  | 
|  | for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { | 
|  | pte_t entry, *pte; | 
|  | pgprot_t pgprot = PAGE_KERNEL; | 
|  |  | 
|  | entry = mk_pte(head + i, pgprot); | 
|  | pte = pte_offset_kernel(&__pmd, addr); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | if (likely(pmd_leaf(*pmd))) { | 
|  | /* | 
|  | * Higher order allocations from buddy allocator must be able to | 
|  | * be treated as indepdenent small pages (as they can be freed | 
|  | * individually). | 
|  | */ | 
|  | if (!PageReserved(head)) | 
|  | split_page(head, get_order(PMD_SIZE)); | 
|  |  | 
|  | /* Make pte visible before pmd. See comment in pmd_install(). */ | 
|  | smp_wmb(); | 
|  | pmd_populate_kernel(&init_mm, pmd, pgtable); | 
|  | if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH)) | 
|  | flush_tlb_kernel_range(start, start + PMD_SIZE); | 
|  | } else { | 
|  | pte_free_kernel(&init_mm, pgtable); | 
|  | } | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long next, struct mm_walk *walk) | 
|  | { | 
|  | int ret = 0; | 
|  | struct page *head; | 
|  | struct vmemmap_remap_walk *vmemmap_walk = walk->private; | 
|  |  | 
|  | /* Only splitting, not remapping the vmemmap pages. */ | 
|  | if (!vmemmap_walk->remap_pte) | 
|  | walk->action = ACTION_CONTINUE; | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL; | 
|  | /* | 
|  | * Due to HugeTLB alignment requirements and the vmemmap | 
|  | * pages being at the start of the hotplugged memory | 
|  | * region in memory_hotplug.memmap_on_memory case. Checking | 
|  | * the vmemmap page associated with the first vmemmap page | 
|  | * if it is self-hosted is sufficient. | 
|  | * | 
|  | * [                  hotplugged memory                  ] | 
|  | * [        section        ][...][        section        ] | 
|  | * [ vmemmap ][              usable memory               ] | 
|  | *   ^  | ^                        | | 
|  | *   +--+ |                        | | 
|  | *        +------------------------+ | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) { | 
|  | struct page *page = head ? head + pte_index(addr) : | 
|  | pte_page(ptep_get(pte_offset_kernel(pmd, addr))); | 
|  |  | 
|  | if (PageVmemmapSelfHosted(page)) | 
|  | ret = -ENOTSUPP; | 
|  | } | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | if (!head || ret) | 
|  | return ret; | 
|  |  | 
|  | return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk); | 
|  | } | 
|  |  | 
|  | static int vmemmap_pte_entry(pte_t *pte, unsigned long addr, | 
|  | unsigned long next, struct mm_walk *walk) | 
|  | { | 
|  | struct vmemmap_remap_walk *vmemmap_walk = walk->private; | 
|  |  | 
|  | /* | 
|  | * The reuse_page is found 'first' in page table walking before | 
|  | * starting remapping. | 
|  | */ | 
|  | if (!vmemmap_walk->reuse_page) | 
|  | vmemmap_walk->reuse_page = pte_page(ptep_get(pte)); | 
|  | else | 
|  | vmemmap_walk->remap_pte(pte, addr, vmemmap_walk); | 
|  | vmemmap_walk->nr_walked++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mm_walk_ops vmemmap_remap_ops = { | 
|  | .pmd_entry	= vmemmap_pmd_entry, | 
|  | .pte_entry	= vmemmap_pte_entry, | 
|  | }; | 
|  |  | 
|  | static int vmemmap_remap_range(unsigned long start, unsigned long end, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | VM_BUG_ON(!PAGE_ALIGNED(start | end)); | 
|  |  | 
|  | mmap_read_lock(&init_mm); | 
|  | ret = walk_kernel_page_table_range(start, end, &vmemmap_remap_ops, | 
|  | NULL, walk); | 
|  | mmap_read_unlock(&init_mm); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH)) | 
|  | flush_tlb_kernel_range(start, end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a vmemmap page. A vmemmap page can be allocated from the memblock | 
|  | * allocator or buddy allocator. If the PG_reserved flag is set, it means | 
|  | * that it allocated from the memblock allocator, just free it via the | 
|  | * free_bootmem_page(). Otherwise, use __free_page(). | 
|  | */ | 
|  | static inline void free_vmemmap_page(struct page *page) | 
|  | { | 
|  | if (PageReserved(page)) { | 
|  | memmap_boot_pages_add(-1); | 
|  | free_bootmem_page(page); | 
|  | } else { | 
|  | memmap_pages_add(-1); | 
|  | __free_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Free a list of the vmemmap pages */ | 
|  | static void free_vmemmap_page_list(struct list_head *list) | 
|  | { | 
|  | struct page *page, *next; | 
|  |  | 
|  | list_for_each_entry_safe(page, next, list, lru) | 
|  | free_vmemmap_page(page); | 
|  | } | 
|  |  | 
|  | static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | /* | 
|  | * Remap the tail pages as read-only to catch illegal write operation | 
|  | * to the tail pages. | 
|  | */ | 
|  | pgprot_t pgprot = PAGE_KERNEL_RO; | 
|  | struct page *page = pte_page(ptep_get(pte)); | 
|  | pte_t entry; | 
|  |  | 
|  | /* Remapping the head page requires r/w */ | 
|  | if (unlikely(addr == walk->reuse_addr)) { | 
|  | pgprot = PAGE_KERNEL; | 
|  | list_del(&walk->reuse_page->lru); | 
|  |  | 
|  | /* | 
|  | * Makes sure that preceding stores to the page contents from | 
|  | * vmemmap_remap_free() become visible before the set_pte_at() | 
|  | * write. | 
|  | */ | 
|  | smp_wmb(); | 
|  | } | 
|  |  | 
|  | entry = mk_pte(walk->reuse_page, pgprot); | 
|  | list_add(&page->lru, walk->vmemmap_pages); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How many struct page structs need to be reset. When we reuse the head | 
|  | * struct page, the special metadata (e.g. page->flags or page->mapping) | 
|  | * cannot copy to the tail struct page structs. The invalid value will be | 
|  | * checked in the free_tail_page_prepare(). In order to avoid the message | 
|  | * of "corrupted mapping in tail page". We need to reset at least 4 (one | 
|  | * head struct page struct and three tail struct page structs) struct page | 
|  | * structs. | 
|  | */ | 
|  | #define NR_RESET_STRUCT_PAGE		4 | 
|  |  | 
|  | static inline void reset_struct_pages(struct page *start) | 
|  | { | 
|  | struct page *from = start + NR_RESET_STRUCT_PAGE; | 
|  |  | 
|  | BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page)); | 
|  | memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE); | 
|  | } | 
|  |  | 
|  | static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, | 
|  | struct vmemmap_remap_walk *walk) | 
|  | { | 
|  | pgprot_t pgprot = PAGE_KERNEL; | 
|  | struct page *page; | 
|  | void *to; | 
|  |  | 
|  | BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page); | 
|  |  | 
|  | page = list_first_entry(walk->vmemmap_pages, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | to = page_to_virt(page); | 
|  | copy_page(to, (void *)walk->reuse_addr); | 
|  | reset_struct_pages(to); | 
|  |  | 
|  | /* | 
|  | * Makes sure that preceding stores to the page contents become visible | 
|  | * before the set_pte_at() write. | 
|  | */ | 
|  | smp_wmb(); | 
|  | set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end) | 
|  | *                      backing PMDs of the directmap into PTEs | 
|  | * @start:     start address of the vmemmap virtual address range that we want | 
|  | *             to remap. | 
|  | * @end:       end address of the vmemmap virtual address range that we want to | 
|  | *             remap. | 
|  | * @reuse:     reuse address. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | static int vmemmap_remap_split(unsigned long start, unsigned long end, | 
|  | unsigned long reuse) | 
|  | { | 
|  | struct vmemmap_remap_walk walk = { | 
|  | .remap_pte	= NULL, | 
|  | .flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH, | 
|  | }; | 
|  |  | 
|  | /* See the comment in the vmemmap_remap_free(). */ | 
|  | BUG_ON(start - reuse != PAGE_SIZE); | 
|  |  | 
|  | return vmemmap_remap_range(reuse, end, &walk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) | 
|  | *			to the page which @reuse is mapped to, then free vmemmap | 
|  | *			which the range are mapped to. | 
|  | * @start:	start address of the vmemmap virtual address range that we want | 
|  | *		to remap. | 
|  | * @end:	end address of the vmemmap virtual address range that we want to | 
|  | *		remap. | 
|  | * @reuse:	reuse address. | 
|  | * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers | 
|  | *		responsibility to free pages. | 
|  | * @flags:	modifications to vmemmap_remap_walk flags | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | static int vmemmap_remap_free(unsigned long start, unsigned long end, | 
|  | unsigned long reuse, | 
|  | struct list_head *vmemmap_pages, | 
|  | unsigned long flags) | 
|  | { | 
|  | int ret; | 
|  | struct vmemmap_remap_walk walk = { | 
|  | .remap_pte	= vmemmap_remap_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= vmemmap_pages, | 
|  | .flags		= flags, | 
|  | }; | 
|  | int nid = page_to_nid((struct page *)reuse); | 
|  | gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; | 
|  |  | 
|  | /* | 
|  | * Allocate a new head vmemmap page to avoid breaking a contiguous | 
|  | * block of struct page memory when freeing it back to page allocator | 
|  | * in free_vmemmap_page_list(). This will allow the likely contiguous | 
|  | * struct page backing memory to be kept contiguous and allowing for | 
|  | * more allocations of hugepages. Fallback to the currently | 
|  | * mapped head page in case should it fail to allocate. | 
|  | */ | 
|  | walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0); | 
|  | if (walk.reuse_page) { | 
|  | copy_page(page_to_virt(walk.reuse_page), | 
|  | (void *)walk.reuse_addr); | 
|  | list_add(&walk.reuse_page->lru, vmemmap_pages); | 
|  | memmap_pages_add(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to make remapping routine most efficient for the huge pages, | 
|  | * the routine of vmemmap page table walking has the following rules | 
|  | * (see more details from the vmemmap_pte_range()): | 
|  | * | 
|  | * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) | 
|  | *   should be continuous. | 
|  | * - The @reuse address is part of the range [@reuse, @end) that we are | 
|  | *   walking which is passed to vmemmap_remap_range(). | 
|  | * - The @reuse address is the first in the complete range. | 
|  | * | 
|  | * So we need to make sure that @start and @reuse meet the above rules. | 
|  | */ | 
|  | BUG_ON(start - reuse != PAGE_SIZE); | 
|  |  | 
|  | ret = vmemmap_remap_range(reuse, end, &walk); | 
|  | if (ret && walk.nr_walked) { | 
|  | end = reuse + walk.nr_walked * PAGE_SIZE; | 
|  | /* | 
|  | * vmemmap_pages contains pages from the previous | 
|  | * vmemmap_remap_range call which failed.  These | 
|  | * are pages which were removed from the vmemmap. | 
|  | * They will be restored in the following call. | 
|  | */ | 
|  | walk = (struct vmemmap_remap_walk) { | 
|  | .remap_pte	= vmemmap_restore_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= vmemmap_pages, | 
|  | .flags		= 0, | 
|  | }; | 
|  |  | 
|  | vmemmap_remap_range(reuse, end, &walk); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, | 
|  | struct list_head *list) | 
|  | { | 
|  | gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL; | 
|  | unsigned long nr_pages = (end - start) >> PAGE_SHIFT; | 
|  | int nid = page_to_nid((struct page *)start); | 
|  | struct page *page, *next; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | page = alloc_pages_node(nid, gfp_mask, 0); | 
|  | if (!page) | 
|  | goto out; | 
|  | list_add(&page->lru, list); | 
|  | } | 
|  | memmap_pages_add(nr_pages); | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | list_for_each_entry_safe(page, next, list, lru) | 
|  | __free_page(page); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) | 
|  | *			 to the page which is from the @vmemmap_pages | 
|  | *			 respectively. | 
|  | * @start:	start address of the vmemmap virtual address range that we want | 
|  | *		to remap. | 
|  | * @end:	end address of the vmemmap virtual address range that we want to | 
|  | *		remap. | 
|  | * @reuse:	reuse address. | 
|  | * @flags:	modifications to vmemmap_remap_walk flags | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | static int vmemmap_remap_alloc(unsigned long start, unsigned long end, | 
|  | unsigned long reuse, unsigned long flags) | 
|  | { | 
|  | LIST_HEAD(vmemmap_pages); | 
|  | struct vmemmap_remap_walk walk = { | 
|  | .remap_pte	= vmemmap_restore_pte, | 
|  | .reuse_addr	= reuse, | 
|  | .vmemmap_pages	= &vmemmap_pages, | 
|  | .flags		= flags, | 
|  | }; | 
|  |  | 
|  | /* See the comment in the vmemmap_remap_free(). */ | 
|  | BUG_ON(start - reuse != PAGE_SIZE); | 
|  |  | 
|  | if (alloc_vmemmap_page_list(start, end, &vmemmap_pages)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return vmemmap_remap_range(reuse, end, &walk); | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); | 
|  | EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); | 
|  |  | 
|  | static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); | 
|  | static int __init hugetlb_vmemmap_optimize_param(char *buf) | 
|  | { | 
|  | return kstrtobool(buf, &vmemmap_optimize_enabled); | 
|  | } | 
|  | early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_optimize_param); | 
|  |  | 
|  | static int __hugetlb_vmemmap_restore_folio(const struct hstate *h, | 
|  | struct folio *folio, unsigned long flags) | 
|  | { | 
|  | int ret; | 
|  | unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end; | 
|  | unsigned long vmemmap_reuse; | 
|  |  | 
|  | VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio); | 
|  | VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio); | 
|  |  | 
|  | if (!folio_test_hugetlb_vmemmap_optimized(folio)) | 
|  | return 0; | 
|  |  | 
|  | if (flags & VMEMMAP_SYNCHRONIZE_RCU) | 
|  | synchronize_rcu(); | 
|  |  | 
|  | vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h); | 
|  | vmemmap_reuse	= vmemmap_start; | 
|  | vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE; | 
|  |  | 
|  | /* | 
|  | * The pages which the vmemmap virtual address range [@vmemmap_start, | 
|  | * @vmemmap_end) are mapped to are freed to the buddy allocator, and | 
|  | * the range is mapped to the page which @vmemmap_reuse is mapped to. | 
|  | * When a HugeTLB page is freed to the buddy allocator, previously | 
|  | * discarded vmemmap pages must be allocated and remapping. | 
|  | */ | 
|  | ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags); | 
|  | if (!ret) { | 
|  | folio_clear_hugetlb_vmemmap_optimized(folio); | 
|  | static_branch_dec(&hugetlb_optimize_vmemmap_key); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hugetlb_vmemmap_restore_folio - restore previously optimized (by | 
|  | *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which | 
|  | *				will be reallocated and remapped. | 
|  | * @h:		struct hstate. | 
|  | * @folio:     the folio whose vmemmap pages will be restored. | 
|  | * | 
|  | * Return: %0 if @folio's vmemmap pages have been reallocated and remapped, | 
|  | * negative error code otherwise. | 
|  | */ | 
|  | int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio) | 
|  | { | 
|  | return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list. | 
|  | * @h:			hstate. | 
|  | * @folio_list:		list of folios. | 
|  | * @non_hvo_folios:	Output list of folios for which vmemmap exists. | 
|  | * | 
|  | * Return: number of folios for which vmemmap was restored, or an error code | 
|  | *		if an error was encountered restoring vmemmap for a folio. | 
|  | *		Folios that have vmemmap are moved to the non_hvo_folios | 
|  | *		list.  Processing of entries stops when the first error is | 
|  | *		encountered. The folio that experienced the error and all | 
|  | *		non-processed folios will remain on folio_list. | 
|  | */ | 
|  | long hugetlb_vmemmap_restore_folios(const struct hstate *h, | 
|  | struct list_head *folio_list, | 
|  | struct list_head *non_hvo_folios) | 
|  | { | 
|  | struct folio *folio, *t_folio; | 
|  | long restored = 0; | 
|  | long ret = 0; | 
|  | unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU; | 
|  |  | 
|  | list_for_each_entry_safe(folio, t_folio, folio_list, lru) { | 
|  | if (folio_test_hugetlb_vmemmap_optimized(folio)) { | 
|  | ret = __hugetlb_vmemmap_restore_folio(h, folio, flags); | 
|  | /* only need to synchronize_rcu() once for each batch */ | 
|  | flags &= ~VMEMMAP_SYNCHRONIZE_RCU; | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  | restored++; | 
|  | } | 
|  |  | 
|  | /* Add non-optimized folios to output list */ | 
|  | list_move(&folio->lru, non_hvo_folios); | 
|  | } | 
|  |  | 
|  | if (restored) | 
|  | flush_tlb_all(); | 
|  | if (!ret) | 
|  | ret = restored; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ | 
|  | static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio) | 
|  | { | 
|  | if (folio_test_hugetlb_vmemmap_optimized(folio)) | 
|  | return false; | 
|  |  | 
|  | if (!READ_ONCE(vmemmap_optimize_enabled)) | 
|  | return false; | 
|  |  | 
|  | if (!hugetlb_vmemmap_optimizable(h)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h, | 
|  | struct folio *folio, | 
|  | struct list_head *vmemmap_pages, | 
|  | unsigned long flags) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end; | 
|  | unsigned long vmemmap_reuse; | 
|  |  | 
|  | VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio); | 
|  | VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio); | 
|  |  | 
|  | if (!vmemmap_should_optimize_folio(h, folio)) | 
|  | return ret; | 
|  |  | 
|  | static_branch_inc(&hugetlb_optimize_vmemmap_key); | 
|  |  | 
|  | if (flags & VMEMMAP_SYNCHRONIZE_RCU) | 
|  | synchronize_rcu(); | 
|  | /* | 
|  | * Very Subtle | 
|  | * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed | 
|  | * immediately after remapping.  As a result, subsequent accesses | 
|  | * and modifications to struct pages associated with the hugetlb | 
|  | * page could be to the OLD struct pages.  Set the vmemmap optimized | 
|  | * flag here so that it is copied to the new head page.  This keeps | 
|  | * the old and new struct pages in sync. | 
|  | * If there is an error during optimization, we will immediately FLUSH | 
|  | * the TLB and clear the flag below. | 
|  | */ | 
|  | folio_set_hugetlb_vmemmap_optimized(folio); | 
|  |  | 
|  | vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h); | 
|  | vmemmap_reuse	= vmemmap_start; | 
|  | vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE; | 
|  |  | 
|  | /* | 
|  | * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) | 
|  | * to the page which @vmemmap_reuse is mapped to.  Add pages previously | 
|  | * mapping the range to vmemmap_pages list so that they can be freed by | 
|  | * the caller. | 
|  | */ | 
|  | ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse, | 
|  | vmemmap_pages, flags); | 
|  | if (ret) { | 
|  | static_branch_dec(&hugetlb_optimize_vmemmap_key); | 
|  | folio_clear_hugetlb_vmemmap_optimized(folio); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages. | 
|  | * @h:		struct hstate. | 
|  | * @folio:     the folio whose vmemmap pages will be optimized. | 
|  | * | 
|  | * This function only tries to optimize @folio's vmemmap pages and does not | 
|  | * guarantee that the optimization will succeed after it returns. The caller | 
|  | * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's | 
|  | * vmemmap pages have been optimized. | 
|  | */ | 
|  | void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio) | 
|  | { | 
|  | LIST_HEAD(vmemmap_pages); | 
|  |  | 
|  | __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU); | 
|  | free_vmemmap_page_list(&vmemmap_pages); | 
|  | } | 
|  |  | 
|  | static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio) | 
|  | { | 
|  | unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end; | 
|  | unsigned long vmemmap_reuse; | 
|  |  | 
|  | if (!vmemmap_should_optimize_folio(h, folio)) | 
|  | return 0; | 
|  |  | 
|  | vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h); | 
|  | vmemmap_reuse	= vmemmap_start; | 
|  | vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE; | 
|  |  | 
|  | /* | 
|  | * Split PMDs on the vmemmap virtual address range [@vmemmap_start, | 
|  | * @vmemmap_end] | 
|  | */ | 
|  | return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse); | 
|  | } | 
|  |  | 
|  | static void __hugetlb_vmemmap_optimize_folios(struct hstate *h, | 
|  | struct list_head *folio_list, | 
|  | bool boot) | 
|  | { | 
|  | struct folio *folio; | 
|  | int nr_to_optimize; | 
|  | LIST_HEAD(vmemmap_pages); | 
|  | unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU; | 
|  |  | 
|  | nr_to_optimize = 0; | 
|  | list_for_each_entry(folio, folio_list, lru) { | 
|  | int ret; | 
|  | unsigned long spfn, epfn; | 
|  |  | 
|  | if (boot && folio_test_hugetlb_vmemmap_optimized(folio)) { | 
|  | /* | 
|  | * Already optimized by pre-HVO, just map the | 
|  | * mirrored tail page structs RO. | 
|  | */ | 
|  | spfn = (unsigned long)&folio->page; | 
|  | epfn = spfn + pages_per_huge_page(h); | 
|  | vmemmap_wrprotect_hvo(spfn, epfn, folio_nid(folio), | 
|  | HUGETLB_VMEMMAP_RESERVE_SIZE); | 
|  | register_page_bootmem_memmap(pfn_to_section_nr(spfn), | 
|  | &folio->page, | 
|  | HUGETLB_VMEMMAP_RESERVE_SIZE); | 
|  | static_branch_inc(&hugetlb_optimize_vmemmap_key); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nr_to_optimize++; | 
|  |  | 
|  | ret = hugetlb_vmemmap_split_folio(h, folio); | 
|  |  | 
|  | /* | 
|  | * Spliting the PMD requires allocating a page, thus lets fail | 
|  | * early once we encounter the first OOM. No point in retrying | 
|  | * as it can be dynamically done on remap with the memory | 
|  | * we get back from the vmemmap deduplication. | 
|  | */ | 
|  | if (ret == -ENOMEM) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!nr_to_optimize) | 
|  | /* | 
|  | * All pre-HVO folios, nothing left to do. It's ok if | 
|  | * there is a mix of pre-HVO and not yet HVO-ed folios | 
|  | * here, as __hugetlb_vmemmap_optimize_folio() will | 
|  | * skip any folios that already have the optimized flag | 
|  | * set, see vmemmap_should_optimize_folio(). | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | flush_tlb_all(); | 
|  |  | 
|  | list_for_each_entry(folio, folio_list, lru) { | 
|  | int ret; | 
|  |  | 
|  | ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags); | 
|  | /* only need to synchronize_rcu() once for each batch */ | 
|  | flags &= ~VMEMMAP_SYNCHRONIZE_RCU; | 
|  |  | 
|  | /* | 
|  | * Pages to be freed may have been accumulated.  If we | 
|  | * encounter an ENOMEM,  free what we have and try again. | 
|  | * This can occur in the case that both spliting fails | 
|  | * halfway and head page allocation also failed. In this | 
|  | * case __hugetlb_vmemmap_optimize_folio() would free memory | 
|  | * allowing more vmemmap remaps to occur. | 
|  | */ | 
|  | if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) { | 
|  | flush_tlb_all(); | 
|  | free_vmemmap_page_list(&vmemmap_pages); | 
|  | INIT_LIST_HEAD(&vmemmap_pages); | 
|  | __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | flush_tlb_all(); | 
|  | free_vmemmap_page_list(&vmemmap_pages); | 
|  | } | 
|  |  | 
|  | void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list) | 
|  | { | 
|  | __hugetlb_vmemmap_optimize_folios(h, folio_list, false); | 
|  | } | 
|  |  | 
|  | void hugetlb_vmemmap_optimize_bootmem_folios(struct hstate *h, struct list_head *folio_list) | 
|  | { | 
|  | __hugetlb_vmemmap_optimize_folios(h, folio_list, true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT | 
|  |  | 
|  | /* Return true of a bootmem allocated HugeTLB page should be pre-HVO-ed */ | 
|  | static bool vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page *m) | 
|  | { | 
|  | unsigned long section_size, psize, pmd_vmemmap_size; | 
|  | phys_addr_t paddr; | 
|  |  | 
|  | if (!READ_ONCE(vmemmap_optimize_enabled)) | 
|  | return false; | 
|  |  | 
|  | if (!hugetlb_vmemmap_optimizable(m->hstate)) | 
|  | return false; | 
|  |  | 
|  | psize = huge_page_size(m->hstate); | 
|  | paddr = virt_to_phys(m); | 
|  |  | 
|  | /* | 
|  | * Pre-HVO only works if the bootmem huge page | 
|  | * is aligned to the section size. | 
|  | */ | 
|  | section_size = (1UL << PA_SECTION_SHIFT); | 
|  | if (!IS_ALIGNED(paddr, section_size) || | 
|  | !IS_ALIGNED(psize, section_size)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The pre-HVO code does not deal with splitting PMDS, | 
|  | * so the bootmem page must be aligned to the number | 
|  | * of base pages that can be mapped with one vmemmap PMD. | 
|  | */ | 
|  | pmd_vmemmap_size = (PMD_SIZE / (sizeof(struct page))) << PAGE_SHIFT; | 
|  | if (!IS_ALIGNED(paddr, pmd_vmemmap_size) || | 
|  | !IS_ALIGNED(psize, pmd_vmemmap_size)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize memmap section for a gigantic page, HVO-style. | 
|  | */ | 
|  | void __init hugetlb_vmemmap_init_early(int nid) | 
|  | { | 
|  | unsigned long psize, paddr, section_size; | 
|  | unsigned long ns, i, pnum, pfn, nr_pages; | 
|  | unsigned long start, end; | 
|  | struct huge_bootmem_page *m = NULL; | 
|  | void *map; | 
|  |  | 
|  | /* | 
|  | * Noting to do if bootmem pages were not allocated | 
|  | * early in boot, or if HVO wasn't enabled in the | 
|  | * first place. | 
|  | */ | 
|  | if (!hugetlb_bootmem_allocated()) | 
|  | return; | 
|  |  | 
|  | if (!READ_ONCE(vmemmap_optimize_enabled)) | 
|  | return; | 
|  |  | 
|  | section_size = (1UL << PA_SECTION_SHIFT); | 
|  |  | 
|  | list_for_each_entry(m, &huge_boot_pages[nid], list) { | 
|  | if (!vmemmap_should_optimize_bootmem_page(m)) | 
|  | continue; | 
|  |  | 
|  | nr_pages = pages_per_huge_page(m->hstate); | 
|  | psize = nr_pages << PAGE_SHIFT; | 
|  | paddr = virt_to_phys(m); | 
|  | pfn = PHYS_PFN(paddr); | 
|  | map = pfn_to_page(pfn); | 
|  | start = (unsigned long)map; | 
|  | end = start + nr_pages * sizeof(struct page); | 
|  |  | 
|  | if (vmemmap_populate_hvo(start, end, nid, | 
|  | HUGETLB_VMEMMAP_RESERVE_SIZE) < 0) | 
|  | continue; | 
|  |  | 
|  | memmap_boot_pages_add(HUGETLB_VMEMMAP_RESERVE_SIZE / PAGE_SIZE); | 
|  |  | 
|  | pnum = pfn_to_section_nr(pfn); | 
|  | ns = psize / section_size; | 
|  |  | 
|  | for (i = 0; i < ns; i++) { | 
|  | sparse_init_early_section(nid, map, pnum, | 
|  | SECTION_IS_VMEMMAP_PREINIT); | 
|  | map += section_map_size(); | 
|  | pnum++; | 
|  | } | 
|  |  | 
|  | m->flags |= HUGE_BOOTMEM_HVO; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init hugetlb_vmemmap_init_late(int nid) | 
|  | { | 
|  | struct huge_bootmem_page *m, *tm; | 
|  | unsigned long phys, nr_pages, start, end; | 
|  | unsigned long pfn, nr_mmap; | 
|  | struct hstate *h; | 
|  | void *map; | 
|  |  | 
|  | if (!hugetlb_bootmem_allocated()) | 
|  | return; | 
|  |  | 
|  | if (!READ_ONCE(vmemmap_optimize_enabled)) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { | 
|  | if (!(m->flags & HUGE_BOOTMEM_HVO)) | 
|  | continue; | 
|  |  | 
|  | phys = virt_to_phys(m); | 
|  | h = m->hstate; | 
|  | pfn = PHYS_PFN(phys); | 
|  | nr_pages = pages_per_huge_page(h); | 
|  |  | 
|  | if (!hugetlb_bootmem_page_zones_valid(nid, m)) { | 
|  | /* | 
|  | * Oops, the hugetlb page spans multiple zones. | 
|  | * Remove it from the list, and undo HVO. | 
|  | */ | 
|  | list_del(&m->list); | 
|  |  | 
|  | map = pfn_to_page(pfn); | 
|  |  | 
|  | start = (unsigned long)map; | 
|  | end = start + nr_pages * sizeof(struct page); | 
|  |  | 
|  | vmemmap_undo_hvo(start, end, nid, | 
|  | HUGETLB_VMEMMAP_RESERVE_SIZE); | 
|  | nr_mmap = end - start - HUGETLB_VMEMMAP_RESERVE_SIZE; | 
|  | memmap_boot_pages_add(DIV_ROUND_UP(nr_mmap, PAGE_SIZE)); | 
|  |  | 
|  | memblock_phys_free(phys, huge_page_size(h)); | 
|  | continue; | 
|  | } else | 
|  | m->flags |= HUGE_BOOTMEM_ZONES_VALID; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct ctl_table hugetlb_vmemmap_sysctls[] = { | 
|  | { | 
|  | .procname	= "hugetlb_optimize_vmemmap", | 
|  | .data		= &vmemmap_optimize_enabled, | 
|  | .maxlen		= sizeof(vmemmap_optimize_enabled), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dobool, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init hugetlb_vmemmap_init(void) | 
|  | { | 
|  | const struct hstate *h; | 
|  |  | 
|  | /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ | 
|  | BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES); | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | if (hugetlb_vmemmap_optimizable(h)) { | 
|  | register_sysctl_init("vm", hugetlb_vmemmap_sysctls); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | late_initcall(hugetlb_vmemmap_init); |