| /* | 
 |  * Ram backed block device driver. | 
 |  * | 
 |  * Copyright (C) 2007 Nick Piggin | 
 |  * Copyright (C) 2007 Novell Inc. | 
 |  * | 
 |  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright | 
 |  * of their respective owners. | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/major.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/radix-tree.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/backing-dev.h> | 
 |  | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT) | 
 | #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT) | 
 |  | 
 | /* | 
 |  * Each block ramdisk device has a radix_tree brd_pages of pages that stores | 
 |  * the pages containing the block device's contents. A brd page's ->index is | 
 |  * its offset in PAGE_SIZE units. This is similar to, but in no way connected | 
 |  * with, the kernel's pagecache or buffer cache (which sit above our block | 
 |  * device). | 
 |  */ | 
 | struct brd_device { | 
 | 	int		brd_number; | 
 |  | 
 | 	struct request_queue	*brd_queue; | 
 | 	struct gendisk		*brd_disk; | 
 | 	struct list_head	brd_list; | 
 |  | 
 | 	/* | 
 | 	 * Backing store of pages and lock to protect it. This is the contents | 
 | 	 * of the block device. | 
 | 	 */ | 
 | 	spinlock_t		brd_lock; | 
 | 	struct radix_tree_root	brd_pages; | 
 | }; | 
 |  | 
 | /* | 
 |  * Look up and return a brd's page for a given sector. | 
 |  */ | 
 | static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) | 
 | { | 
 | 	pgoff_t idx; | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * The page lifetime is protected by the fact that we have opened the | 
 | 	 * device node -- brd pages will never be deleted under us, so we | 
 | 	 * don't need any further locking or refcounting. | 
 | 	 * | 
 | 	 * This is strictly true for the radix-tree nodes as well (ie. we | 
 | 	 * don't actually need the rcu_read_lock()), however that is not a | 
 | 	 * documented feature of the radix-tree API so it is better to be | 
 | 	 * safe here (we don't have total exclusion from radix tree updates | 
 | 	 * here, only deletes). | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ | 
 | 	page = radix_tree_lookup(&brd->brd_pages, idx); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	BUG_ON(page && page->index != idx); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Look up and return a brd's page for a given sector. | 
 |  * If one does not exist, allocate an empty page, and insert that. Then | 
 |  * return it. | 
 |  */ | 
 | static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) | 
 | { | 
 | 	pgoff_t idx; | 
 | 	struct page *page; | 
 | 	gfp_t gfp_flags; | 
 |  | 
 | 	page = brd_lookup_page(brd, sector); | 
 | 	if (page) | 
 | 		return page; | 
 |  | 
 | 	/* | 
 | 	 * Must use NOIO because we don't want to recurse back into the | 
 | 	 * block or filesystem layers from page reclaim. | 
 | 	 * | 
 | 	 * Cannot support DAX and highmem, because our ->direct_access | 
 | 	 * routine for DAX must return memory that is always addressable. | 
 | 	 * If DAX was reworked to use pfns and kmap throughout, this | 
 | 	 * restriction might be able to be lifted. | 
 | 	 */ | 
 | 	gfp_flags = GFP_NOIO | __GFP_ZERO; | 
 | 	page = alloc_page(gfp_flags); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	if (radix_tree_preload(GFP_NOIO)) { | 
 | 		__free_page(page); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	spin_lock(&brd->brd_lock); | 
 | 	idx = sector >> PAGE_SECTORS_SHIFT; | 
 | 	page->index = idx; | 
 | 	if (radix_tree_insert(&brd->brd_pages, idx, page)) { | 
 | 		__free_page(page); | 
 | 		page = radix_tree_lookup(&brd->brd_pages, idx); | 
 | 		BUG_ON(!page); | 
 | 		BUG_ON(page->index != idx); | 
 | 	} | 
 | 	spin_unlock(&brd->brd_lock); | 
 |  | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Free all backing store pages and radix tree. This must only be called when | 
 |  * there are no other users of the device. | 
 |  */ | 
 | #define FREE_BATCH 16 | 
 | static void brd_free_pages(struct brd_device *brd) | 
 | { | 
 | 	unsigned long pos = 0; | 
 | 	struct page *pages[FREE_BATCH]; | 
 | 	int nr_pages; | 
 |  | 
 | 	do { | 
 | 		int i; | 
 |  | 
 | 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages, | 
 | 				(void **)pages, pos, FREE_BATCH); | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			void *ret; | 
 |  | 
 | 			BUG_ON(pages[i]->index < pos); | 
 | 			pos = pages[i]->index; | 
 | 			ret = radix_tree_delete(&brd->brd_pages, pos); | 
 | 			BUG_ON(!ret || ret != pages[i]); | 
 | 			__free_page(pages[i]); | 
 | 		} | 
 |  | 
 | 		pos++; | 
 |  | 
 | 		/* | 
 | 		 * This assumes radix_tree_gang_lookup always returns as | 
 | 		 * many pages as possible. If the radix-tree code changes, | 
 | 		 * so will this have to. | 
 | 		 */ | 
 | 	} while (nr_pages == FREE_BATCH); | 
 | } | 
 |  | 
 | /* | 
 |  * copy_to_brd_setup must be called before copy_to_brd. It may sleep. | 
 |  */ | 
 | static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) | 
 | { | 
 | 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; | 
 | 	size_t copy; | 
 |  | 
 | 	copy = min_t(size_t, n, PAGE_SIZE - offset); | 
 | 	if (!brd_insert_page(brd, sector)) | 
 | 		return -ENOSPC; | 
 | 	if (copy < n) { | 
 | 		sector += copy >> SECTOR_SHIFT; | 
 | 		if (!brd_insert_page(brd, sector)) | 
 | 			return -ENOSPC; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Copy n bytes from src to the brd starting at sector. Does not sleep. | 
 |  */ | 
 | static void copy_to_brd(struct brd_device *brd, const void *src, | 
 | 			sector_t sector, size_t n) | 
 | { | 
 | 	struct page *page; | 
 | 	void *dst; | 
 | 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; | 
 | 	size_t copy; | 
 |  | 
 | 	copy = min_t(size_t, n, PAGE_SIZE - offset); | 
 | 	page = brd_lookup_page(brd, sector); | 
 | 	BUG_ON(!page); | 
 |  | 
 | 	dst = kmap_atomic(page); | 
 | 	memcpy(dst + offset, src, copy); | 
 | 	kunmap_atomic(dst); | 
 |  | 
 | 	if (copy < n) { | 
 | 		src += copy; | 
 | 		sector += copy >> SECTOR_SHIFT; | 
 | 		copy = n - copy; | 
 | 		page = brd_lookup_page(brd, sector); | 
 | 		BUG_ON(!page); | 
 |  | 
 | 		dst = kmap_atomic(page); | 
 | 		memcpy(dst, src, copy); | 
 | 		kunmap_atomic(dst); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Copy n bytes to dst from the brd starting at sector. Does not sleep. | 
 |  */ | 
 | static void copy_from_brd(void *dst, struct brd_device *brd, | 
 | 			sector_t sector, size_t n) | 
 | { | 
 | 	struct page *page; | 
 | 	void *src; | 
 | 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; | 
 | 	size_t copy; | 
 |  | 
 | 	copy = min_t(size_t, n, PAGE_SIZE - offset); | 
 | 	page = brd_lookup_page(brd, sector); | 
 | 	if (page) { | 
 | 		src = kmap_atomic(page); | 
 | 		memcpy(dst, src + offset, copy); | 
 | 		kunmap_atomic(src); | 
 | 	} else | 
 | 		memset(dst, 0, copy); | 
 |  | 
 | 	if (copy < n) { | 
 | 		dst += copy; | 
 | 		sector += copy >> SECTOR_SHIFT; | 
 | 		copy = n - copy; | 
 | 		page = brd_lookup_page(brd, sector); | 
 | 		if (page) { | 
 | 			src = kmap_atomic(page); | 
 | 			memcpy(dst, src, copy); | 
 | 			kunmap_atomic(src); | 
 | 		} else | 
 | 			memset(dst, 0, copy); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Process a single bvec of a bio. | 
 |  */ | 
 | static int brd_do_bvec(struct brd_device *brd, struct page *page, | 
 | 			unsigned int len, unsigned int off, unsigned int op, | 
 | 			sector_t sector) | 
 | { | 
 | 	void *mem; | 
 | 	int err = 0; | 
 |  | 
 | 	if (op_is_write(op)) { | 
 | 		err = copy_to_brd_setup(brd, sector, len); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	mem = kmap_atomic(page); | 
 | 	if (!op_is_write(op)) { | 
 | 		copy_from_brd(mem + off, brd, sector, len); | 
 | 		flush_dcache_page(page); | 
 | 	} else { | 
 | 		flush_dcache_page(page); | 
 | 		copy_to_brd(brd, mem + off, sector, len); | 
 | 	} | 
 | 	kunmap_atomic(mem); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	struct brd_device *brd = bio->bi_disk->private_data; | 
 | 	struct bio_vec bvec; | 
 | 	sector_t sector; | 
 | 	struct bvec_iter iter; | 
 |  | 
 | 	sector = bio->bi_iter.bi_sector; | 
 | 	if (bio_end_sector(bio) > get_capacity(bio->bi_disk)) | 
 | 		goto io_error; | 
 |  | 
 | 	bio_for_each_segment(bvec, bio, iter) { | 
 | 		unsigned int len = bvec.bv_len; | 
 | 		int err; | 
 |  | 
 | 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, | 
 | 				  bio_op(bio), sector); | 
 | 		if (err) | 
 | 			goto io_error; | 
 | 		sector += len >> SECTOR_SHIFT; | 
 | 	} | 
 |  | 
 | 	bio_endio(bio); | 
 | 	return BLK_QC_T_NONE; | 
 | io_error: | 
 | 	bio_io_error(bio); | 
 | 	return BLK_QC_T_NONE; | 
 | } | 
 |  | 
 | static int brd_rw_page(struct block_device *bdev, sector_t sector, | 
 | 		       struct page *page, unsigned int op) | 
 | { | 
 | 	struct brd_device *brd = bdev->bd_disk->private_data; | 
 | 	int err; | 
 |  | 
 | 	if (PageTransHuge(page)) | 
 | 		return -ENOTSUPP; | 
 | 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); | 
 | 	page_endio(page, op_is_write(op), err); | 
 | 	return err; | 
 | } | 
 |  | 
 | static const struct block_device_operations brd_fops = { | 
 | 	.owner =		THIS_MODULE, | 
 | 	.rw_page =		brd_rw_page, | 
 | }; | 
 |  | 
 | /* | 
 |  * And now the modules code and kernel interface. | 
 |  */ | 
 | static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; | 
 | module_param(rd_nr, int, 0444); | 
 | MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); | 
 |  | 
 | unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; | 
 | module_param(rd_size, ulong, 0444); | 
 | MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); | 
 |  | 
 | static int max_part = 1; | 
 | module_param(max_part, int, 0444); | 
 | MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); | 
 | MODULE_ALIAS("rd"); | 
 |  | 
 | #ifndef MODULE | 
 | /* Legacy boot options - nonmodular */ | 
 | static int __init ramdisk_size(char *str) | 
 | { | 
 | 	rd_size = simple_strtol(str, NULL, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("ramdisk_size=", ramdisk_size); | 
 | #endif | 
 |  | 
 | /* | 
 |  * The device scheme is derived from loop.c. Keep them in synch where possible | 
 |  * (should share code eventually). | 
 |  */ | 
 | static LIST_HEAD(brd_devices); | 
 | static DEFINE_MUTEX(brd_devices_mutex); | 
 |  | 
 | static struct brd_device *brd_alloc(int i) | 
 | { | 
 | 	struct brd_device *brd; | 
 | 	struct gendisk *disk; | 
 |  | 
 | 	brd = kzalloc(sizeof(*brd), GFP_KERNEL); | 
 | 	if (!brd) | 
 | 		goto out; | 
 | 	brd->brd_number		= i; | 
 | 	spin_lock_init(&brd->brd_lock); | 
 | 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); | 
 |  | 
 | 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL); | 
 | 	if (!brd->brd_queue) | 
 | 		goto out_free_dev; | 
 |  | 
 | 	blk_queue_make_request(brd->brd_queue, brd_make_request); | 
 | 	blk_queue_max_hw_sectors(brd->brd_queue, 1024); | 
 |  | 
 | 	/* This is so fdisk will align partitions on 4k, because of | 
 | 	 * direct_access API needing 4k alignment, returning a PFN | 
 | 	 * (This is only a problem on very small devices <= 4M, | 
 | 	 *  otherwise fdisk will align on 1M. Regardless this call | 
 | 	 *  is harmless) | 
 | 	 */ | 
 | 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); | 
 | 	disk = brd->brd_disk = alloc_disk(max_part); | 
 | 	if (!disk) | 
 | 		goto out_free_queue; | 
 | 	disk->major		= RAMDISK_MAJOR; | 
 | 	disk->first_minor	= i * max_part; | 
 | 	disk->fops		= &brd_fops; | 
 | 	disk->private_data	= brd; | 
 | 	disk->flags		= GENHD_FL_EXT_DEVT; | 
 | 	sprintf(disk->disk_name, "ram%d", i); | 
 | 	set_capacity(disk, rd_size * 2); | 
 | 	brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; | 
 |  | 
 | 	/* Tell the block layer that this is not a rotational device */ | 
 | 	blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue); | 
 | 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue); | 
 |  | 
 | 	return brd; | 
 |  | 
 | out_free_queue: | 
 | 	blk_cleanup_queue(brd->brd_queue); | 
 | out_free_dev: | 
 | 	kfree(brd); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void brd_free(struct brd_device *brd) | 
 | { | 
 | 	put_disk(brd->brd_disk); | 
 | 	blk_cleanup_queue(brd->brd_queue); | 
 | 	brd_free_pages(brd); | 
 | 	kfree(brd); | 
 | } | 
 |  | 
 | static struct brd_device *brd_init_one(int i, bool *new) | 
 | { | 
 | 	struct brd_device *brd; | 
 |  | 
 | 	*new = false; | 
 | 	list_for_each_entry(brd, &brd_devices, brd_list) { | 
 | 		if (brd->brd_number == i) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	brd = brd_alloc(i); | 
 | 	if (brd) { | 
 | 		brd->brd_disk->queue = brd->brd_queue; | 
 | 		add_disk(brd->brd_disk); | 
 | 		list_add_tail(&brd->brd_list, &brd_devices); | 
 | 	} | 
 | 	*new = true; | 
 | out: | 
 | 	return brd; | 
 | } | 
 |  | 
 | static void brd_del_one(struct brd_device *brd) | 
 | { | 
 | 	list_del(&brd->brd_list); | 
 | 	del_gendisk(brd->brd_disk); | 
 | 	brd_free(brd); | 
 | } | 
 |  | 
 | static struct kobject *brd_probe(dev_t dev, int *part, void *data) | 
 | { | 
 | 	struct brd_device *brd; | 
 | 	struct kobject *kobj; | 
 | 	bool new; | 
 |  | 
 | 	mutex_lock(&brd_devices_mutex); | 
 | 	brd = brd_init_one(MINOR(dev) / max_part, &new); | 
 | 	kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL; | 
 | 	mutex_unlock(&brd_devices_mutex); | 
 |  | 
 | 	if (new) | 
 | 		*part = 0; | 
 |  | 
 | 	return kobj; | 
 | } | 
 |  | 
 | static int __init brd_init(void) | 
 | { | 
 | 	struct brd_device *brd, *next; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * brd module now has a feature to instantiate underlying device | 
 | 	 * structure on-demand, provided that there is an access dev node. | 
 | 	 * | 
 | 	 * (1) if rd_nr is specified, create that many upfront. else | 
 | 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT | 
 | 	 * (2) User can further extend brd devices by create dev node themselves | 
 | 	 *     and have kernel automatically instantiate actual device | 
 | 	 *     on-demand. Example: | 
 | 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major | 
 | 	 *		fdisk -l /path/devnod_name | 
 | 	 *	If (X / max_part) was not already created it will be created | 
 | 	 *	dynamically. | 
 | 	 */ | 
 |  | 
 | 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) | 
 | 		return -EIO; | 
 |  | 
 | 	if (unlikely(!max_part)) | 
 | 		max_part = 1; | 
 |  | 
 | 	for (i = 0; i < rd_nr; i++) { | 
 | 		brd = brd_alloc(i); | 
 | 		if (!brd) | 
 | 			goto out_free; | 
 | 		list_add_tail(&brd->brd_list, &brd_devices); | 
 | 	} | 
 |  | 
 | 	/* point of no return */ | 
 |  | 
 | 	list_for_each_entry(brd, &brd_devices, brd_list) { | 
 | 		/* | 
 | 		 * associate with queue just before adding disk for | 
 | 		 * avoiding to mess up failure path | 
 | 		 */ | 
 | 		brd->brd_disk->queue = brd->brd_queue; | 
 | 		add_disk(brd->brd_disk); | 
 | 	} | 
 |  | 
 | 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, | 
 | 				  THIS_MODULE, brd_probe, NULL, NULL); | 
 |  | 
 | 	pr_info("brd: module loaded\n"); | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { | 
 | 		list_del(&brd->brd_list); | 
 | 		brd_free(brd); | 
 | 	} | 
 | 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); | 
 |  | 
 | 	pr_info("brd: module NOT loaded !!!\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void __exit brd_exit(void) | 
 | { | 
 | 	struct brd_device *brd, *next; | 
 |  | 
 | 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) | 
 | 		brd_del_one(brd); | 
 |  | 
 | 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); | 
 | 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); | 
 |  | 
 | 	pr_info("brd: module unloaded\n"); | 
 | } | 
 |  | 
 | module_init(brd_init); | 
 | module_exit(brd_exit); | 
 |  |