blob: 6681a71625f0a32d9f7779728edbc6452cdc22a5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Filesystem-level keyring for fscrypt
*
* Copyright 2019 Google LLC
*/
/*
* This file implements management of fscrypt master keys in the
* filesystem-level keyring, including the ioctls:
*
* - FS_IOC_ADD_ENCRYPTION_KEY
* - FS_IOC_REMOVE_ENCRYPTION_KEY
* - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
* - FS_IOC_GET_ENCRYPTION_KEY_STATUS
*
* See the "User API" section of Documentation/filesystems/fscrypt.rst for more
* information about these ioctls.
*/
#include <asm/unaligned.h>
#include <crypto/skcipher.h>
#include <linux/key-type.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include "fscrypt_private.h"
/* The master encryption keys for a filesystem (->s_master_keys) */
struct fscrypt_keyring {
/*
* Lock that protects ->key_hashtable. It does *not* protect the
* fscrypt_master_key structs themselves.
*/
spinlock_t lock;
/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
struct hlist_head key_hashtable[128];
};
static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
{
fscrypt_destroy_hkdf(&secret->hkdf);
memzero_explicit(secret, sizeof(*secret));
}
static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
struct fscrypt_master_key_secret *src)
{
memcpy(dst, src, sizeof(*dst));
memzero_explicit(src, sizeof(*src));
}
static void fscrypt_free_master_key(struct rcu_head *head)
{
struct fscrypt_master_key *mk =
container_of(head, struct fscrypt_master_key, mk_rcu_head);
/*
* The master key secret and any embedded subkeys should have already
* been wiped when the last active reference to the fscrypt_master_key
* struct was dropped; doing it here would be unnecessarily late.
* Nevertheless, use kfree_sensitive() in case anything was missed.
*/
kfree_sensitive(mk);
}
void fscrypt_put_master_key(struct fscrypt_master_key *mk)
{
if (!refcount_dec_and_test(&mk->mk_struct_refs))
return;
/*
* No structural references left, so free ->mk_users, and also free the
* fscrypt_master_key struct itself after an RCU grace period ensures
* that concurrent keyring lookups can no longer find it.
*/
WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
if (mk->mk_users) {
/* Clear the keyring so the quota gets released right away. */
keyring_clear(mk->mk_users);
key_put(mk->mk_users);
mk->mk_users = NULL;
}
call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
}
void fscrypt_put_master_key_activeref(struct super_block *sb,
struct fscrypt_master_key *mk)
{
size_t i;
if (!refcount_dec_and_test(&mk->mk_active_refs))
return;
/*
* No active references left, so complete the full removal of this
* fscrypt_master_key struct by removing it from the keyring and
* destroying any subkeys embedded in it.
*/
if (WARN_ON_ONCE(!sb->s_master_keys))
return;
spin_lock(&sb->s_master_keys->lock);
hlist_del_rcu(&mk->mk_node);
spin_unlock(&sb->s_master_keys->lock);
/*
* ->mk_active_refs == 0 implies that ->mk_present is false and
* ->mk_decrypted_inodes is empty.
*/
WARN_ON_ONCE(mk->mk_present);
WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
fscrypt_destroy_prepared_key(
sb, &mk->mk_direct_keys[i]);
fscrypt_destroy_prepared_key(
sb, &mk->mk_iv_ino_lblk_64_keys[i]);
fscrypt_destroy_prepared_key(
sb, &mk->mk_iv_ino_lblk_32_keys[i]);
}
memzero_explicit(&mk->mk_ino_hash_key,
sizeof(mk->mk_ino_hash_key));
mk->mk_ino_hash_key_initialized = false;
/* Drop the structural ref associated with the active refs. */
fscrypt_put_master_key(mk);
}
/*
* This transitions the key state from present to incompletely removed, and then
* potentially to absent (depending on whether inodes remain).
*/
static void fscrypt_initiate_key_removal(struct super_block *sb,
struct fscrypt_master_key *mk)
{
WRITE_ONCE(mk->mk_present, false);
wipe_master_key_secret(&mk->mk_secret);
fscrypt_put_master_key_activeref(sb, mk);
}
static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
{
if (spec->__reserved)
return false;
return master_key_spec_len(spec) != 0;
}
static int fscrypt_user_key_instantiate(struct key *key,
struct key_preparsed_payload *prep)
{
/*
* We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
* each key, regardless of the exact key size. The amount of memory
* actually used is greater than the size of the raw key anyway.
*/
return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
}
static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
{
seq_puts(m, key->description);
}
/*
* Type of key in ->mk_users. Each key of this type represents a particular
* user who has added a particular master key.
*
* Note that the name of this key type really should be something like
* ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
* mainly for simplicity of presentation in /proc/keys when read by a non-root
* user. And it is expected to be rare that a key is actually added by multiple
* users, since users should keep their encryption keys confidential.
*/
static struct key_type key_type_fscrypt_user = {
.name = ".fscrypt",
.instantiate = fscrypt_user_key_instantiate,
.describe = fscrypt_user_key_describe,
};
#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
CONST_STRLEN("-users") + 1)
#define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
static void format_mk_users_keyring_description(
char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
{
sprintf(description, "fscrypt-%*phN-users",
FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
}
static void format_mk_user_description(
char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
{
sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
mk_identifier, __kuid_val(current_fsuid()));
}
/* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
static int allocate_filesystem_keyring(struct super_block *sb)
{
struct fscrypt_keyring *keyring;
if (sb->s_master_keys)
return 0;
keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
if (!keyring)
return -ENOMEM;
spin_lock_init(&keyring->lock);
/*
* Pairs with the smp_load_acquire() in fscrypt_find_master_key().
* I.e., here we publish ->s_master_keys with a RELEASE barrier so that
* concurrent tasks can ACQUIRE it.
*/
smp_store_release(&sb->s_master_keys, keyring);
return 0;
}
/*
* Release all encryption keys that have been added to the filesystem, along
* with the keyring that contains them.
*
* This is called at unmount time, after all potentially-encrypted inodes have
* been evicted. The filesystem's underlying block device(s) are still
* available at this time; this is important because after user file accesses
* have been allowed, this function may need to evict keys from the keyslots of
* an inline crypto engine, which requires the block device(s).
*/
void fscrypt_destroy_keyring(struct super_block *sb)
{
struct fscrypt_keyring *keyring = sb->s_master_keys;
size_t i;
if (!keyring)
return;
for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
struct hlist_head *bucket = &keyring->key_hashtable[i];
struct fscrypt_master_key *mk;
struct hlist_node *tmp;
hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
/*
* Since all potentially-encrypted inodes were already
* evicted, every key remaining in the keyring should
* have an empty inode list, and should only still be in
* the keyring due to the single active ref associated
* with ->mk_present. There should be no structural
* refs beyond the one associated with the active ref.
*/
WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
WARN_ON_ONCE(!mk->mk_present);
fscrypt_initiate_key_removal(sb, mk);
}
}
kfree_sensitive(keyring);
sb->s_master_keys = NULL;
}
static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
const struct fscrypt_key_specifier *mk_spec)
{
/*
* Since key specifiers should be "random" values, it is sufficient to
* use a trivial hash function that just takes the first several bits of
* the key specifier.
*/
unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
}
/*
* Find the specified master key struct in ->s_master_keys and take a structural
* ref to it. The structural ref guarantees that the key struct continues to
* exist, but it does *not* guarantee that ->s_master_keys continues to contain
* the key struct. The structural ref needs to be dropped by
* fscrypt_put_master_key(). Returns NULL if the key struct is not found.
*/
struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block *sb,
const struct fscrypt_key_specifier *mk_spec)
{
struct fscrypt_keyring *keyring;
struct hlist_head *bucket;
struct fscrypt_master_key *mk;
/*
* Pairs with the smp_store_release() in allocate_filesystem_keyring().
* I.e., another task can publish ->s_master_keys concurrently,
* executing a RELEASE barrier. We need to use smp_load_acquire() here
* to safely ACQUIRE the memory the other task published.
*/
keyring = smp_load_acquire(&sb->s_master_keys);
if (keyring == NULL)
return NULL; /* No keyring yet, so no keys yet. */
bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
rcu_read_lock();
switch (mk_spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
hlist_for_each_entry_rcu(mk, bucket, mk_node) {
if (mk->mk_spec.type ==
FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
memcmp(mk->mk_spec.u.descriptor,
mk_spec->u.descriptor,
FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
refcount_inc_not_zero(&mk->mk_struct_refs))
goto out;
}
break;
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
hlist_for_each_entry_rcu(mk, bucket, mk_node) {
if (mk->mk_spec.type ==
FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
memcmp(mk->mk_spec.u.identifier,
mk_spec->u.identifier,
FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
refcount_inc_not_zero(&mk->mk_struct_refs))
goto out;
}
break;
}
mk = NULL;
out:
rcu_read_unlock();
return mk;
}
static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
{
char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
struct key *keyring;
format_mk_users_keyring_description(description,
mk->mk_spec.u.identifier);
keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
current_cred(), KEY_POS_SEARCH |
KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
if (IS_ERR(keyring))
return PTR_ERR(keyring);
mk->mk_users = keyring;
return 0;
}
/*
* Find the current user's "key" in the master key's ->mk_users.
* Returns ERR_PTR(-ENOKEY) if not found.
*/
static struct key *find_master_key_user(struct fscrypt_master_key *mk)
{
char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
key_ref_t keyref;
format_mk_user_description(description, mk->mk_spec.u.identifier);
/*
* We need to mark the keyring reference as "possessed" so that we
* acquire permission to search it, via the KEY_POS_SEARCH permission.
*/
keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
&key_type_fscrypt_user, description, false);
if (IS_ERR(keyref)) {
if (PTR_ERR(keyref) == -EAGAIN || /* not found */
PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
keyref = ERR_PTR(-ENOKEY);
return ERR_CAST(keyref);
}
return key_ref_to_ptr(keyref);
}
/*
* Give the current user a "key" in ->mk_users. This charges the user's quota
* and marks the master key as added by the current user, so that it cannot be
* removed by another user with the key. Either ->mk_sem must be held for
* write, or the master key must be still undergoing initialization.
*/
static int add_master_key_user(struct fscrypt_master_key *mk)
{
char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
struct key *mk_user;
int err;
format_mk_user_description(description, mk->mk_spec.u.identifier);
mk_user = key_alloc(&key_type_fscrypt_user, description,
current_fsuid(), current_gid(), current_cred(),
KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
if (IS_ERR(mk_user))
return PTR_ERR(mk_user);
err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
key_put(mk_user);
return err;
}
/*
* Remove the current user's "key" from ->mk_users.
* ->mk_sem must be held for write.
*
* Returns 0 if removed, -ENOKEY if not found, or another -errno code.
*/
static int remove_master_key_user(struct fscrypt_master_key *mk)
{
struct key *mk_user;
int err;
mk_user = find_master_key_user(mk);
if (IS_ERR(mk_user))
return PTR_ERR(mk_user);
err = key_unlink(mk->mk_users, mk_user);
key_put(mk_user);
return err;
}
/*
* Allocate a new fscrypt_master_key, transfer the given secret over to it, and
* insert it into sb->s_master_keys.
*/
static int add_new_master_key(struct super_block *sb,
struct fscrypt_master_key_secret *secret,
const struct fscrypt_key_specifier *mk_spec)
{
struct fscrypt_keyring *keyring = sb->s_master_keys;
struct fscrypt_master_key *mk;
int err;
mk = kzalloc(sizeof(*mk), GFP_KERNEL);
if (!mk)
return -ENOMEM;
init_rwsem(&mk->mk_sem);
refcount_set(&mk->mk_struct_refs, 1);
mk->mk_spec = *mk_spec;
INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
spin_lock_init(&mk->mk_decrypted_inodes_lock);
if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
err = allocate_master_key_users_keyring(mk);
if (err)
goto out_put;
err = add_master_key_user(mk);
if (err)
goto out_put;
}
move_master_key_secret(&mk->mk_secret, secret);
mk->mk_present = true;
refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
spin_lock(&keyring->lock);
hlist_add_head_rcu(&mk->mk_node,
fscrypt_mk_hash_bucket(keyring, mk_spec));
spin_unlock(&keyring->lock);
return 0;
out_put:
fscrypt_put_master_key(mk);
return err;
}
#define KEY_DEAD 1
static int add_existing_master_key(struct fscrypt_master_key *mk,
struct fscrypt_master_key_secret *secret)
{
int err;
/*
* If the current user is already in ->mk_users, then there's nothing to
* do. Otherwise, we need to add the user to ->mk_users. (Neither is
* applicable for v1 policy keys, which have NULL ->mk_users.)
*/
if (mk->mk_users) {
struct key *mk_user = find_master_key_user(mk);
if (mk_user != ERR_PTR(-ENOKEY)) {
if (IS_ERR(mk_user))
return PTR_ERR(mk_user);
key_put(mk_user);
return 0;
}
err = add_master_key_user(mk);
if (err)
return err;
}
/* If the key is incompletely removed, make it present again. */
if (!mk->mk_present) {
if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
/*
* Raced with the last active ref being dropped, so the
* key has become, or is about to become, "absent".
* Therefore, we need to allocate a new key struct.
*/
return KEY_DEAD;
}
move_master_key_secret(&mk->mk_secret, secret);
WRITE_ONCE(mk->mk_present, true);
}
return 0;
}
static int do_add_master_key(struct super_block *sb,
struct fscrypt_master_key_secret *secret,
const struct fscrypt_key_specifier *mk_spec)
{
static DEFINE_MUTEX(fscrypt_add_key_mutex);
struct fscrypt_master_key *mk;
int err;
mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
mk = fscrypt_find_master_key(sb, mk_spec);
if (!mk) {
/* Didn't find the key in ->s_master_keys. Add it. */
err = allocate_filesystem_keyring(sb);
if (!err)
err = add_new_master_key(sb, secret, mk_spec);
} else {
/*
* Found the key in ->s_master_keys. Add the user to ->mk_users
* if needed, and make the key "present" again if possible.
*/
down_write(&mk->mk_sem);
err = add_existing_master_key(mk, secret);
up_write(&mk->mk_sem);
if (err == KEY_DEAD) {
/*
* We found a key struct, but it's already been fully
* removed. Ignore the old struct and add a new one.
* fscrypt_add_key_mutex means we don't need to worry
* about concurrent adds.
*/
err = add_new_master_key(sb, secret, mk_spec);
}
fscrypt_put_master_key(mk);
}
mutex_unlock(&fscrypt_add_key_mutex);
return err;
}
static int add_master_key(struct super_block *sb,
struct fscrypt_master_key_secret *secret,
struct fscrypt_key_specifier *key_spec)
{
int err;
if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
secret->size);
if (err)
return err;
/*
* Now that the HKDF context is initialized, the raw key is no
* longer needed.
*/
memzero_explicit(secret->raw, secret->size);
/* Calculate the key identifier */
err = fscrypt_hkdf_expand(&secret->hkdf,
HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
key_spec->u.identifier,
FSCRYPT_KEY_IDENTIFIER_SIZE);
if (err)
return err;
}
return do_add_master_key(sb, secret, key_spec);
}
static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
{
const struct fscrypt_provisioning_key_payload *payload = prep->data;
if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
return -EINVAL;
if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
return -EINVAL;
if (payload->__reserved)
return -EINVAL;
prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
if (!prep->payload.data[0])
return -ENOMEM;
prep->quotalen = prep->datalen;
return 0;
}
static void fscrypt_provisioning_key_free_preparse(
struct key_preparsed_payload *prep)
{
kfree_sensitive(prep->payload.data[0]);
}
static void fscrypt_provisioning_key_describe(const struct key *key,
struct seq_file *m)
{
seq_puts(m, key->description);
if (key_is_positive(key)) {
const struct fscrypt_provisioning_key_payload *payload =
key->payload.data[0];
seq_printf(m, ": %u [%u]", key->datalen, payload->type);
}
}
static void fscrypt_provisioning_key_destroy(struct key *key)
{
kfree_sensitive(key->payload.data[0]);
}
static struct key_type key_type_fscrypt_provisioning = {
.name = "fscrypt-provisioning",
.preparse = fscrypt_provisioning_key_preparse,
.free_preparse = fscrypt_provisioning_key_free_preparse,
.instantiate = generic_key_instantiate,
.describe = fscrypt_provisioning_key_describe,
.destroy = fscrypt_provisioning_key_destroy,
};
/*
* Retrieve the raw key from the Linux keyring key specified by 'key_id', and
* store it into 'secret'.
*
* The key must be of type "fscrypt-provisioning" and must have the field
* fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
* only usable with fscrypt with the particular KDF version identified by
* 'type'. We don't use the "logon" key type because there's no way to
* completely restrict the use of such keys; they can be used by any kernel API
* that accepts "logon" keys and doesn't require a specific service prefix.
*
* The ability to specify the key via Linux keyring key is intended for cases
* where userspace needs to re-add keys after the filesystem is unmounted and
* re-mounted. Most users should just provide the raw key directly instead.
*/
static int get_keyring_key(u32 key_id, u32 type,
struct fscrypt_master_key_secret *secret)
{
key_ref_t ref;
struct key *key;
const struct fscrypt_provisioning_key_payload *payload;
int err;
ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
if (IS_ERR(ref))
return PTR_ERR(ref);
key = key_ref_to_ptr(ref);
if (key->type != &key_type_fscrypt_provisioning)
goto bad_key;
payload = key->payload.data[0];
/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
if (payload->type != type)
goto bad_key;
secret->size = key->datalen - sizeof(*payload);
memcpy(secret->raw, payload->raw, secret->size);
err = 0;
goto out_put;
bad_key:
err = -EKEYREJECTED;
out_put:
key_ref_put(ref);
return err;
}
/*
* Add a master encryption key to the filesystem, causing all files which were
* encrypted with it to appear "unlocked" (decrypted) when accessed.
*
* When adding a key for use by v1 encryption policies, this ioctl is
* privileged, and userspace must provide the 'key_descriptor'.
*
* When adding a key for use by v2+ encryption policies, this ioctl is
* unprivileged. This is needed, in general, to allow non-root users to use
* encryption without encountering the visibility problems of process-subscribed
* keyrings and the inability to properly remove keys. This works by having
* each key identified by its cryptographically secure hash --- the
* 'key_identifier'. The cryptographic hash ensures that a malicious user
* cannot add the wrong key for a given identifier. Furthermore, each added key
* is charged to the appropriate user's quota for the keyrings service, which
* prevents a malicious user from adding too many keys. Finally, we forbid a
* user from removing a key while other users have added it too, which prevents
* a user who knows another user's key from causing a denial-of-service by
* removing it at an inopportune time. (We tolerate that a user who knows a key
* can prevent other users from removing it.)
*
* For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
* Documentation/filesystems/fscrypt.rst.
*/
int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
{
struct super_block *sb = file_inode(filp)->i_sb;
struct fscrypt_add_key_arg __user *uarg = _uarg;
struct fscrypt_add_key_arg arg;
struct fscrypt_master_key_secret secret;
int err;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
if (!valid_key_spec(&arg.key_spec))
return -EINVAL;
if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
return -EINVAL;
/*
* Only root can add keys that are identified by an arbitrary descriptor
* rather than by a cryptographic hash --- since otherwise a malicious
* user could add the wrong key.
*/
if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
!capable(CAP_SYS_ADMIN))
return -EACCES;
memset(&secret, 0, sizeof(secret));
if (arg.key_id) {
if (arg.raw_size != 0)
return -EINVAL;
err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
if (err)
goto out_wipe_secret;
} else {
if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
return -EINVAL;
secret.size = arg.raw_size;
err = -EFAULT;
if (copy_from_user(secret.raw, uarg->raw, secret.size))
goto out_wipe_secret;
}
err = add_master_key(sb, &secret, &arg.key_spec);
if (err)
goto out_wipe_secret;
/* Return the key identifier to userspace, if applicable */
err = -EFAULT;
if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
FSCRYPT_KEY_IDENTIFIER_SIZE))
goto out_wipe_secret;
err = 0;
out_wipe_secret:
wipe_master_key_secret(&secret);
return err;
}
EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
{
static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
memset(secret, 0, sizeof(*secret));
secret->size = FSCRYPT_MAX_KEY_SIZE;
memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
}
int fscrypt_get_test_dummy_key_identifier(
u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
{
struct fscrypt_master_key_secret secret;
int err;
fscrypt_get_test_dummy_secret(&secret);
err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
if (err)
goto out;
err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
NULL, 0, key_identifier,
FSCRYPT_KEY_IDENTIFIER_SIZE);
out:
wipe_master_key_secret(&secret);
return err;
}
/**
* fscrypt_add_test_dummy_key() - add the test dummy encryption key
* @sb: the filesystem instance to add the key to
* @key_spec: the key specifier of the test dummy encryption key
*
* Add the key for the test_dummy_encryption mount option to the filesystem. To
* prevent misuse of this mount option, a per-boot random key is used instead of
* a hardcoded one. This makes it so that any encrypted files created using
* this option won't be accessible after a reboot.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_add_test_dummy_key(struct super_block *sb,
struct fscrypt_key_specifier *key_spec)
{
struct fscrypt_master_key_secret secret;
int err;
fscrypt_get_test_dummy_secret(&secret);
err = add_master_key(sb, &secret, key_spec);
wipe_master_key_secret(&secret);
return err;
}
/*
* Verify that the current user has added a master key with the given identifier
* (returns -ENOKEY if not). This is needed to prevent a user from encrypting
* their files using some other user's key which they don't actually know.
* Cryptographically this isn't much of a problem, but the semantics of this
* would be a bit weird, so it's best to just forbid it.
*
* The system administrator (CAP_FOWNER) can override this, which should be
* enough for any use cases where encryption policies are being set using keys
* that were chosen ahead of time but aren't available at the moment.
*
* Note that the key may have already removed by the time this returns, but
* that's okay; we just care whether the key was there at some point.
*
* Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
*/
int fscrypt_verify_key_added(struct super_block *sb,
const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
{
struct fscrypt_key_specifier mk_spec;
struct fscrypt_master_key *mk;
struct key *mk_user;
int err;
mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
mk = fscrypt_find_master_key(sb, &mk_spec);
if (!mk) {
err = -ENOKEY;
goto out;
}
down_read(&mk->mk_sem);
mk_user = find_master_key_user(mk);
if (IS_ERR(mk_user)) {
err = PTR_ERR(mk_user);
} else {
key_put(mk_user);
err = 0;
}
up_read(&mk->mk_sem);
fscrypt_put_master_key(mk);
out:
if (err == -ENOKEY && capable(CAP_FOWNER))
err = 0;
return err;
}
/*
* Try to evict the inode's dentries from the dentry cache. If the inode is a
* directory, then it can have at most one dentry; however, that dentry may be
* pinned by child dentries, so first try to evict the children too.
*/
static void shrink_dcache_inode(struct inode *inode)
{
struct dentry *dentry;
if (S_ISDIR(inode->i_mode)) {
dentry = d_find_any_alias(inode);
if (dentry) {
shrink_dcache_parent(dentry);
dput(dentry);
}
}
d_prune_aliases(inode);
}
static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
{
struct fscrypt_inode_info *ci;
struct inode *inode;
struct inode *toput_inode = NULL;
spin_lock(&mk->mk_decrypted_inodes_lock);
list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
inode = ci->ci_inode;
spin_lock(&inode->i_lock);
if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
spin_unlock(&inode->i_lock);
continue;
}
__iget(inode);
spin_unlock(&inode->i_lock);
spin_unlock(&mk->mk_decrypted_inodes_lock);
shrink_dcache_inode(inode);
iput(toput_inode);
toput_inode = inode;
spin_lock(&mk->mk_decrypted_inodes_lock);
}
spin_unlock(&mk->mk_decrypted_inodes_lock);
iput(toput_inode);
}
static int check_for_busy_inodes(struct super_block *sb,
struct fscrypt_master_key *mk)
{
struct list_head *pos;
size_t busy_count = 0;
unsigned long ino;
char ino_str[50] = "";
spin_lock(&mk->mk_decrypted_inodes_lock);
list_for_each(pos, &mk->mk_decrypted_inodes)
busy_count++;
if (busy_count == 0) {
spin_unlock(&mk->mk_decrypted_inodes_lock);
return 0;
}
{
/* select an example file to show for debugging purposes */
struct inode *inode =
list_first_entry(&mk->mk_decrypted_inodes,
struct fscrypt_inode_info,
ci_master_key_link)->ci_inode;
ino = inode->i_ino;
}
spin_unlock(&mk->mk_decrypted_inodes_lock);
/* If the inode is currently being created, ino may still be 0. */
if (ino)
snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
fscrypt_warn(NULL,
"%s: %zu inode(s) still busy after removing key with %s %*phN%s",
sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
ino_str);
return -EBUSY;
}
static int try_to_lock_encrypted_files(struct super_block *sb,
struct fscrypt_master_key *mk)
{
int err1;
int err2;
/*
* An inode can't be evicted while it is dirty or has dirty pages.
* Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
*
* Just do it the easy way: call sync_filesystem(). It's overkill, but
* it works, and it's more important to minimize the amount of caches we
* drop than the amount of data we sync. Also, unprivileged users can
* already call sync_filesystem() via sys_syncfs() or sys_sync().
*/
down_read(&sb->s_umount);
err1 = sync_filesystem(sb);
up_read(&sb->s_umount);
/* If a sync error occurs, still try to evict as much as possible. */
/*
* Inodes are pinned by their dentries, so we have to evict their
* dentries. shrink_dcache_sb() would suffice, but would be overkill
* and inappropriate for use by unprivileged users. So instead go
* through the inodes' alias lists and try to evict each dentry.
*/
evict_dentries_for_decrypted_inodes(mk);
/*
* evict_dentries_for_decrypted_inodes() already iput() each inode in
* the list; any inodes for which that dropped the last reference will
* have been evicted due to fscrypt_drop_inode() detecting the key
* removal and telling the VFS to evict the inode. So to finish, we
* just need to check whether any inodes couldn't be evicted.
*/
err2 = check_for_busy_inodes(sb, mk);
return err1 ?: err2;
}
/*
* Try to remove an fscrypt master encryption key.
*
* FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
* claim to the key, then removes the key itself if no other users have claims.
* FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
* key itself.
*
* To "remove the key itself", first we transition the key to the "incompletely
* removed" state, so that no more inodes can be unlocked with it. Then we try
* to evict all cached inodes that had been unlocked with the key.
*
* If all inodes were evicted, then we unlink the fscrypt_master_key from the
* keyring. Otherwise it remains in the keyring in the "incompletely removed"
* state where it tracks the list of remaining inodes. Userspace can execute
* the ioctl again later to retry eviction, or alternatively can re-add the key.
*
* For more details, see the "Removing keys" section of
* Documentation/filesystems/fscrypt.rst.
*/
static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
{
struct super_block *sb = file_inode(filp)->i_sb;
struct fscrypt_remove_key_arg __user *uarg = _uarg;
struct fscrypt_remove_key_arg arg;
struct fscrypt_master_key *mk;
u32 status_flags = 0;
int err;
bool inodes_remain;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
if (!valid_key_spec(&arg.key_spec))
return -EINVAL;
if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
return -EINVAL;
/*
* Only root can add and remove keys that are identified by an arbitrary
* descriptor rather than by a cryptographic hash.
*/
if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
!capable(CAP_SYS_ADMIN))
return -EACCES;
/* Find the key being removed. */
mk = fscrypt_find_master_key(sb, &arg.key_spec);
if (!mk)
return -ENOKEY;
down_write(&mk->mk_sem);
/* If relevant, remove current user's (or all users) claim to the key */
if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
if (all_users)
err = keyring_clear(mk->mk_users);
else
err = remove_master_key_user(mk);
if (err) {
up_write(&mk->mk_sem);
goto out_put_key;
}
if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
/*
* Other users have still added the key too. We removed
* the current user's claim to the key, but we still
* can't remove the key itself.
*/
status_flags |=
FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
err = 0;
up_write(&mk->mk_sem);
goto out_put_key;
}
}
/* No user claims remaining. Initiate removal of the key. */
err = -ENOKEY;
if (mk->mk_present) {
fscrypt_initiate_key_removal(sb, mk);
err = 0;
}
inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
up_write(&mk->mk_sem);
if (inodes_remain) {
/* Some inodes still reference this key; try to evict them. */
err = try_to_lock_encrypted_files(sb, mk);
if (err == -EBUSY) {
status_flags |=
FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
err = 0;
}
}
/*
* We return 0 if we successfully did something: removed a claim to the
* key, initiated removal of the key, or tried locking the files again.
* Users need to check the informational status flags if they care
* whether the key has been fully removed including all files locked.
*/
out_put_key:
fscrypt_put_master_key(mk);
if (err == 0)
err = put_user(status_flags, &uarg->removal_status_flags);
return err;
}
int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
{
return do_remove_key(filp, uarg, false);
}
EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
{
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
return do_remove_key(filp, uarg, true);
}
EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
/*
* Retrieve the status of an fscrypt master encryption key.
*
* We set ->status to indicate whether the key is absent, present, or
* incompletely removed. (For an explanation of what these statuses mean and
* how they are represented internally, see struct fscrypt_master_key.) This
* field allows applications to easily determine the status of an encrypted
* directory without using a hack such as trying to open a regular file in it
* (which can confuse the "incompletely removed" status with absent or present).
*
* In addition, for v2 policy keys we allow applications to determine, via
* ->status_flags and ->user_count, whether the key has been added by the
* current user, by other users, or by both. Most applications should not need
* this, since ordinarily only one user should know a given key. However, if a
* secret key is shared by multiple users, applications may wish to add an
* already-present key to prevent other users from removing it. This ioctl can
* be used to check whether that really is the case before the work is done to
* add the key --- which might e.g. require prompting the user for a passphrase.
*
* For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
* Documentation/filesystems/fscrypt.rst.
*/
int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
{
struct super_block *sb = file_inode(filp)->i_sb;
struct fscrypt_get_key_status_arg arg;
struct fscrypt_master_key *mk;
int err;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
if (!valid_key_spec(&arg.key_spec))
return -EINVAL;
if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
return -EINVAL;
arg.status_flags = 0;
arg.user_count = 0;
memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
mk = fscrypt_find_master_key(sb, &arg.key_spec);
if (!mk) {
arg.status = FSCRYPT_KEY_STATUS_ABSENT;
err = 0;
goto out;
}
down_read(&mk->mk_sem);
if (!mk->mk_present) {
arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
err = 0;
goto out_release_key;
}
arg.status = FSCRYPT_KEY_STATUS_PRESENT;
if (mk->mk_users) {
struct key *mk_user;
arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
mk_user = find_master_key_user(mk);
if (!IS_ERR(mk_user)) {
arg.status_flags |=
FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
key_put(mk_user);
} else if (mk_user != ERR_PTR(-ENOKEY)) {
err = PTR_ERR(mk_user);
goto out_release_key;
}
}
err = 0;
out_release_key:
up_read(&mk->mk_sem);
fscrypt_put_master_key(mk);
out:
if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
err = -EFAULT;
return err;
}
EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
int __init fscrypt_init_keyring(void)
{
int err;
err = register_key_type(&key_type_fscrypt_user);
if (err)
return err;
err = register_key_type(&key_type_fscrypt_provisioning);
if (err)
goto err_unregister_fscrypt_user;
return 0;
err_unregister_fscrypt_user:
unregister_key_type(&key_type_fscrypt_user);
return err;
}