|  | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) | 
|  | /* | 
|  | * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. | 
|  | * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 | 
|  | * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. | 
|  | * | 
|  | * This driver produces cryptographically secure pseudorandom data. It is divided | 
|  | * into roughly six sections, each with a section header: | 
|  | * | 
|  | *   - Initialization and readiness waiting. | 
|  | *   - Fast key erasure RNG, the "crng". | 
|  | *   - Entropy accumulation and extraction routines. | 
|  | *   - Entropy collection routines. | 
|  | *   - Userspace reader/writer interfaces. | 
|  | *   - Sysctl interface. | 
|  | * | 
|  | * The high level overview is that there is one input pool, into which | 
|  | * various pieces of data are hashed. Prior to initialization, some of that | 
|  | * data is then "credited" as having a certain number of bits of entropy. | 
|  | * When enough bits of entropy are available, the hash is finalized and | 
|  | * handed as a key to a stream cipher that expands it indefinitely for | 
|  | * various consumers. This key is periodically refreshed as the various | 
|  | * entropy collectors, described below, add data to the input pool. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/major.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/uuid.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/siphash.h> | 
|  | #include <linux/sched/isolation.h> | 
|  | #include <crypto/chacha.h> | 
|  | #include <crypto/blake2s.h> | 
|  | #ifdef CONFIG_VDSO_GETRANDOM | 
|  | #include <vdso/getrandom.h> | 
|  | #include <vdso/datapage.h> | 
|  | #include <vdso/vsyscall.h> | 
|  | #endif | 
|  | #include <asm/archrandom.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/irq_regs.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | /********************************************************************* | 
|  | * | 
|  | * Initialization and readiness waiting. | 
|  | * | 
|  | * Much of the RNG infrastructure is devoted to various dependencies | 
|  | * being able to wait until the RNG has collected enough entropy and | 
|  | * is ready for safe consumption. | 
|  | * | 
|  | *********************************************************************/ | 
|  |  | 
|  | /* | 
|  | * crng_init is protected by base_crng->lock, and only increases | 
|  | * its value (from empty->early->ready). | 
|  | */ | 
|  | static enum { | 
|  | CRNG_EMPTY = 0, /* Little to no entropy collected */ | 
|  | CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ | 
|  | CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */ | 
|  | } crng_init __read_mostly = CRNG_EMPTY; | 
|  | static DEFINE_STATIC_KEY_FALSE(crng_is_ready); | 
|  | #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) | 
|  | /* Various types of waiters for crng_init->CRNG_READY transition. */ | 
|  | static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); | 
|  | static struct fasync_struct *fasync; | 
|  | static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); | 
|  |  | 
|  | /* Control how we warn userspace. */ | 
|  | static struct ratelimit_state urandom_warning = | 
|  | RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); | 
|  | static int ratelimit_disable __read_mostly = | 
|  | IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); | 
|  | module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); | 
|  | MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); | 
|  |  | 
|  | /* | 
|  | * Returns whether or not the input pool has been seeded and thus guaranteed | 
|  | * to supply cryptographically secure random numbers. This applies to: the | 
|  | * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, | 
|  | * u16,u32,u64,long} family of functions. | 
|  | * | 
|  | * Returns: true if the input pool has been seeded. | 
|  | *          false if the input pool has not been seeded. | 
|  | */ | 
|  | bool rng_is_initialized(void) | 
|  | { | 
|  | return crng_ready(); | 
|  | } | 
|  | EXPORT_SYMBOL(rng_is_initialized); | 
|  |  | 
|  | static void __cold crng_set_ready(struct work_struct *work) | 
|  | { | 
|  | static_branch_enable(&crng_is_ready); | 
|  | } | 
|  |  | 
|  | /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ | 
|  | static void try_to_generate_entropy(void); | 
|  |  | 
|  | /* | 
|  | * Wait for the input pool to be seeded and thus guaranteed to supply | 
|  | * cryptographically secure random numbers. This applies to: the /dev/urandom | 
|  | * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, | 
|  | * long} family of functions. Using any of these functions without first | 
|  | * calling this function forfeits the guarantee of security. | 
|  | * | 
|  | * Returns: 0 if the input pool has been seeded. | 
|  | *          -ERESTARTSYS if the function was interrupted by a signal. | 
|  | */ | 
|  | int wait_for_random_bytes(void) | 
|  | { | 
|  | while (!crng_ready()) { | 
|  | int ret; | 
|  |  | 
|  | try_to_generate_entropy(); | 
|  | ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); | 
|  | if (ret) | 
|  | return ret > 0 ? 0 : ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_random_bytes); | 
|  |  | 
|  | /* | 
|  | * Add a callback function that will be invoked when the crng is initialised, | 
|  | * or immediately if it already has been. Only use this is you are absolutely | 
|  | * sure it is required. Most users should instead be able to test | 
|  | * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. | 
|  | */ | 
|  | int __cold execute_with_initialized_rng(struct notifier_block *nb) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irqsave(&random_ready_notifier.lock, flags); | 
|  | if (crng_ready()) | 
|  | nb->notifier_call(nb, 0, NULL); | 
|  | else | 
|  | ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb); | 
|  | spin_unlock_irqrestore(&random_ready_notifier.lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define warn_unseeded_randomness() \ | 
|  | if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ | 
|  | printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ | 
|  | __func__, (void *)_RET_IP_, crng_init) | 
|  |  | 
|  |  | 
|  | /********************************************************************* | 
|  | * | 
|  | * Fast key erasure RNG, the "crng". | 
|  | * | 
|  | * These functions expand entropy from the entropy extractor into | 
|  | * long streams for external consumption using the "fast key erasure" | 
|  | * RNG described at <https://blog.cr.yp.to/20170723-random.html>. | 
|  | * | 
|  | * There are a few exported interfaces for use by other drivers: | 
|  | * | 
|  | *	void get_random_bytes(void *buf, size_t len) | 
|  | *	u8 get_random_u8() | 
|  | *	u16 get_random_u16() | 
|  | *	u32 get_random_u32() | 
|  | *	u32 get_random_u32_below(u32 ceil) | 
|  | *	u32 get_random_u32_above(u32 floor) | 
|  | *	u32 get_random_u32_inclusive(u32 floor, u32 ceil) | 
|  | *	u64 get_random_u64() | 
|  | *	unsigned long get_random_long() | 
|  | * | 
|  | * These interfaces will return the requested number of random bytes | 
|  | * into the given buffer or as a return value. This is equivalent to | 
|  | * a read from /dev/urandom. The u8, u16, u32, u64, long family of | 
|  | * functions may be higher performance for one-off random integers, | 
|  | * because they do a bit of buffering and do not invoke reseeding | 
|  | * until the buffer is emptied. | 
|  | * | 
|  | *********************************************************************/ | 
|  |  | 
|  | enum { | 
|  | CRNG_RESEED_START_INTERVAL = HZ, | 
|  | CRNG_RESEED_INTERVAL = 60 * HZ | 
|  | }; | 
|  |  | 
|  | static struct { | 
|  | u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); | 
|  | unsigned long generation; | 
|  | spinlock_t lock; | 
|  | } base_crng = { | 
|  | .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) | 
|  | }; | 
|  |  | 
|  | struct crng { | 
|  | u8 key[CHACHA_KEY_SIZE]; | 
|  | unsigned long generation; | 
|  | local_lock_t lock; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct crng, crngs) = { | 
|  | .generation = ULONG_MAX, | 
|  | .lock = INIT_LOCAL_LOCK(crngs.lock), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return the interval until the next reseeding, which is normally | 
|  | * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval | 
|  | * proportional to the uptime. | 
|  | */ | 
|  | static unsigned int crng_reseed_interval(void) | 
|  | { | 
|  | static bool early_boot = true; | 
|  |  | 
|  | if (unlikely(READ_ONCE(early_boot))) { | 
|  | time64_t uptime = ktime_get_seconds(); | 
|  | if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) | 
|  | WRITE_ONCE(early_boot, false); | 
|  | else | 
|  | return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, | 
|  | (unsigned int)uptime / 2 * HZ); | 
|  | } | 
|  | return CRNG_RESEED_INTERVAL; | 
|  | } | 
|  |  | 
|  | /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ | 
|  | static void extract_entropy(void *buf, size_t len); | 
|  |  | 
|  | /* This extracts a new crng key from the input pool. */ | 
|  | static void crng_reseed(struct work_struct *work) | 
|  | { | 
|  | static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); | 
|  | unsigned long flags; | 
|  | unsigned long next_gen; | 
|  | u8 key[CHACHA_KEY_SIZE]; | 
|  |  | 
|  | /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ | 
|  | if (likely(system_unbound_wq)) | 
|  | queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval()); | 
|  |  | 
|  | extract_entropy(key, sizeof(key)); | 
|  |  | 
|  | /* | 
|  | * We copy the new key into the base_crng, overwriting the old one, | 
|  | * and update the generation counter. We avoid hitting ULONG_MAX, | 
|  | * because the per-cpu crngs are initialized to ULONG_MAX, so this | 
|  | * forces new CPUs that come online to always initialize. | 
|  | */ | 
|  | spin_lock_irqsave(&base_crng.lock, flags); | 
|  | memcpy(base_crng.key, key, sizeof(base_crng.key)); | 
|  | next_gen = base_crng.generation + 1; | 
|  | if (next_gen == ULONG_MAX) | 
|  | ++next_gen; | 
|  | WRITE_ONCE(base_crng.generation, next_gen); | 
|  | #ifdef CONFIG_VDSO_GETRANDOM | 
|  | /* base_crng.generation's invalid value is ULONG_MAX, while | 
|  | * vdso_k_rng_data->generation's invalid value is 0, so add one to the | 
|  | * former to arrive at the latter. Use smp_store_release so that this | 
|  | * is ordered with the write above to base_crng.generation. Pairs with | 
|  | * the smp_rmb() before the syscall in the vDSO code. | 
|  | * | 
|  | * Cast to unsigned long for 32-bit architectures, since atomic 64-bit | 
|  | * operations are not supported on those architectures. This is safe | 
|  | * because base_crng.generation is a 32-bit value. On big-endian | 
|  | * architectures it will be stored in the upper 32 bits, but that's okay | 
|  | * because the vDSO side only checks whether the value changed, without | 
|  | * actually using or interpreting the value. | 
|  | */ | 
|  | smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1); | 
|  | #endif | 
|  | if (!static_branch_likely(&crng_is_ready)) | 
|  | crng_init = CRNG_READY; | 
|  | spin_unlock_irqrestore(&base_crng.lock, flags); | 
|  | memzero_explicit(key, sizeof(key)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This generates a ChaCha block using the provided key, and then | 
|  | * immediately overwrites that key with half the block. It returns | 
|  | * the resultant ChaCha state to the user, along with the second | 
|  | * half of the block containing 32 bytes of random data that may | 
|  | * be used; random_data_len may not be greater than 32. | 
|  | * | 
|  | * The returned ChaCha state contains within it a copy of the old | 
|  | * key value, at index 4, so the state should always be zeroed out | 
|  | * immediately after using in order to maintain forward secrecy. | 
|  | * If the state cannot be erased in a timely manner, then it is | 
|  | * safer to set the random_data parameter to &chacha_state->x[4] | 
|  | * so that this function overwrites it before returning. | 
|  | */ | 
|  | static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], | 
|  | struct chacha_state *chacha_state, | 
|  | u8 *random_data, size_t random_data_len) | 
|  | { | 
|  | u8 first_block[CHACHA_BLOCK_SIZE]; | 
|  |  | 
|  | BUG_ON(random_data_len > 32); | 
|  |  | 
|  | chacha_init_consts(chacha_state); | 
|  | memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE); | 
|  | memset(&chacha_state->x[12], 0, sizeof(u32) * 4); | 
|  | chacha20_block(chacha_state, first_block); | 
|  |  | 
|  | memcpy(key, first_block, CHACHA_KEY_SIZE); | 
|  | memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); | 
|  | memzero_explicit(first_block, sizeof(first_block)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function returns a ChaCha state that you may use for generating | 
|  | * random data. It also returns up to 32 bytes on its own of random data | 
|  | * that may be used; random_data_len may not be greater than 32. | 
|  | */ | 
|  | static void crng_make_state(struct chacha_state *chacha_state, | 
|  | u8 *random_data, size_t random_data_len) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct crng *crng; | 
|  |  | 
|  | BUG_ON(random_data_len > 32); | 
|  |  | 
|  | /* | 
|  | * For the fast path, we check whether we're ready, unlocked first, and | 
|  | * then re-check once locked later. In the case where we're really not | 
|  | * ready, we do fast key erasure with the base_crng directly, extracting | 
|  | * when crng_init is CRNG_EMPTY. | 
|  | */ | 
|  | if (!crng_ready()) { | 
|  | bool ready; | 
|  |  | 
|  | spin_lock_irqsave(&base_crng.lock, flags); | 
|  | ready = crng_ready(); | 
|  | if (!ready) { | 
|  | if (crng_init == CRNG_EMPTY) | 
|  | extract_entropy(base_crng.key, sizeof(base_crng.key)); | 
|  | crng_fast_key_erasure(base_crng.key, chacha_state, | 
|  | random_data, random_data_len); | 
|  | } | 
|  | spin_unlock_irqrestore(&base_crng.lock, flags); | 
|  | if (!ready) | 
|  | return; | 
|  | } | 
|  |  | 
|  | local_lock_irqsave(&crngs.lock, flags); | 
|  | crng = raw_cpu_ptr(&crngs); | 
|  |  | 
|  | /* | 
|  | * If our per-cpu crng is older than the base_crng, then it means | 
|  | * somebody reseeded the base_crng. In that case, we do fast key | 
|  | * erasure on the base_crng, and use its output as the new key | 
|  | * for our per-cpu crng. This brings us up to date with base_crng. | 
|  | */ | 
|  | if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { | 
|  | spin_lock(&base_crng.lock); | 
|  | crng_fast_key_erasure(base_crng.key, chacha_state, | 
|  | crng->key, sizeof(crng->key)); | 
|  | crng->generation = base_crng.generation; | 
|  | spin_unlock(&base_crng.lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finally, when we've made it this far, our per-cpu crng has an up | 
|  | * to date key, and we can do fast key erasure with it to produce | 
|  | * some random data and a ChaCha state for the caller. All other | 
|  | * branches of this function are "unlikely", so most of the time we | 
|  | * should wind up here immediately. | 
|  | */ | 
|  | crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); | 
|  | local_unlock_irqrestore(&crngs.lock, flags); | 
|  | } | 
|  |  | 
|  | static void _get_random_bytes(void *buf, size_t len) | 
|  | { | 
|  | struct chacha_state chacha_state; | 
|  | u8 tmp[CHACHA_BLOCK_SIZE]; | 
|  | size_t first_block_len; | 
|  |  | 
|  | if (!len) | 
|  | return; | 
|  |  | 
|  | first_block_len = min_t(size_t, 32, len); | 
|  | crng_make_state(&chacha_state, buf, first_block_len); | 
|  | len -= first_block_len; | 
|  | buf += first_block_len; | 
|  |  | 
|  | while (len) { | 
|  | if (len < CHACHA_BLOCK_SIZE) { | 
|  | chacha20_block(&chacha_state, tmp); | 
|  | memcpy(buf, tmp, len); | 
|  | memzero_explicit(tmp, sizeof(tmp)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chacha20_block(&chacha_state, buf); | 
|  | if (unlikely(chacha_state.x[12] == 0)) | 
|  | ++chacha_state.x[13]; | 
|  | len -= CHACHA_BLOCK_SIZE; | 
|  | buf += CHACHA_BLOCK_SIZE; | 
|  | } | 
|  |  | 
|  | chacha_zeroize_state(&chacha_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns random bytes in arbitrary quantities. The quality of the | 
|  | * random bytes is good as /dev/urandom. In order to ensure that the | 
|  | * randomness provided by this function is okay, the function | 
|  | * wait_for_random_bytes() should be called and return 0 at least once | 
|  | * at any point prior. | 
|  | */ | 
|  | void get_random_bytes(void *buf, size_t len) | 
|  | { | 
|  | warn_unseeded_randomness(); | 
|  | _get_random_bytes(buf, len); | 
|  | } | 
|  | EXPORT_SYMBOL(get_random_bytes); | 
|  |  | 
|  | static ssize_t get_random_bytes_user(struct iov_iter *iter) | 
|  | { | 
|  | struct chacha_state chacha_state; | 
|  | u8 block[CHACHA_BLOCK_SIZE]; | 
|  | size_t ret = 0, copied; | 
|  |  | 
|  | if (unlikely(!iov_iter_count(iter))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Immediately overwrite the ChaCha key at index 4 with random | 
|  | * bytes, in case userspace causes copy_to_iter() below to sleep | 
|  | * forever, so that we still retain forward secrecy in that case. | 
|  | */ | 
|  | crng_make_state(&chacha_state, (u8 *)&chacha_state.x[4], | 
|  | CHACHA_KEY_SIZE); | 
|  | /* | 
|  | * However, if we're doing a read of len <= 32, we don't need to | 
|  | * use chacha_state after, so we can simply return those bytes to | 
|  | * the user directly. | 
|  | */ | 
|  | if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { | 
|  | ret = copy_to_iter(&chacha_state.x[4], CHACHA_KEY_SIZE, iter); | 
|  | goto out_zero_chacha; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | chacha20_block(&chacha_state, block); | 
|  | if (unlikely(chacha_state.x[12] == 0)) | 
|  | ++chacha_state.x[13]; | 
|  |  | 
|  | copied = copy_to_iter(block, sizeof(block), iter); | 
|  | ret += copied; | 
|  | if (!iov_iter_count(iter) || copied != sizeof(block)) | 
|  | break; | 
|  |  | 
|  | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); | 
|  | if (ret % PAGE_SIZE == 0) { | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | memzero_explicit(block, sizeof(block)); | 
|  | out_zero_chacha: | 
|  | chacha_zeroize_state(&chacha_state); | 
|  | return ret ? ret : -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Batched entropy returns random integers. The quality of the random | 
|  | * number is good as /dev/urandom. In order to ensure that the randomness | 
|  | * provided by this function is okay, the function wait_for_random_bytes() | 
|  | * should be called and return 0 at least once at any point prior. | 
|  | */ | 
|  |  | 
|  | #define DEFINE_BATCHED_ENTROPY(type)						\ | 
|  | struct batch_ ##type {								\ | 
|  | /*									\ | 
|  | * We make this 1.5x a ChaCha block, so that we get the			\ | 
|  | * remaining 32 bytes from fast key erasure, plus one full		\ | 
|  | * block from the detached ChaCha state. We can increase		\ | 
|  | * the size of this later if needed so long as we keep the		\ | 
|  | * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\ | 
|  | */									\ | 
|  | type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\ | 
|  | local_lock_t lock;							\ | 
|  | unsigned long generation;						\ | 
|  | unsigned int position;							\ | 
|  | };										\ | 
|  | \ | 
|  | static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\ | 
|  | .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\ | 
|  | .position = UINT_MAX							\ | 
|  | };										\ | 
|  | \ | 
|  | type get_random_ ##type(void)							\ | 
|  | {										\ | 
|  | type ret;								\ | 
|  | unsigned long flags;							\ | 
|  | struct batch_ ##type *batch;						\ | 
|  | unsigned long next_gen;							\ | 
|  | \ | 
|  | warn_unseeded_randomness();						\ | 
|  | \ | 
|  | if  (!crng_ready()) {							\ | 
|  | _get_random_bytes(&ret, sizeof(ret));				\ | 
|  | return ret;							\ | 
|  | }									\ | 
|  | \ | 
|  | local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\ | 
|  | batch = raw_cpu_ptr(&batched_entropy_##type);				\ | 
|  | \ | 
|  | next_gen = READ_ONCE(base_crng.generation);				\ | 
|  | if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\ | 
|  | next_gen != batch->generation) {					\ | 
|  | _get_random_bytes(batch->entropy, sizeof(batch->entropy));	\ | 
|  | batch->position = 0;						\ | 
|  | batch->generation = next_gen;					\ | 
|  | }									\ | 
|  | \ | 
|  | ret = batch->entropy[batch->position];					\ | 
|  | batch->entropy[batch->position] = 0;					\ | 
|  | ++batch->position;							\ | 
|  | local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\ | 
|  | return ret;								\ | 
|  | }										\ | 
|  | EXPORT_SYMBOL(get_random_ ##type); | 
|  |  | 
|  | DEFINE_BATCHED_ENTROPY(u8) | 
|  | DEFINE_BATCHED_ENTROPY(u16) | 
|  | DEFINE_BATCHED_ENTROPY(u32) | 
|  | DEFINE_BATCHED_ENTROPY(u64) | 
|  |  | 
|  | u32 __get_random_u32_below(u32 ceil) | 
|  | { | 
|  | /* | 
|  | * This is the slow path for variable ceil. It is still fast, most of | 
|  | * the time, by doing traditional reciprocal multiplication and | 
|  | * opportunistically comparing the lower half to ceil itself, before | 
|  | * falling back to computing a larger bound, and then rejecting samples | 
|  | * whose lower half would indicate a range indivisible by ceil. The use | 
|  | * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable | 
|  | * in 32-bits. | 
|  | */ | 
|  | u32 rand = get_random_u32(); | 
|  | u64 mult; | 
|  |  | 
|  | /* | 
|  | * This function is technically undefined for ceil == 0, and in fact | 
|  | * for the non-underscored constant version in the header, we build bug | 
|  | * on that. But for the non-constant case, it's convenient to have that | 
|  | * evaluate to being a straight call to get_random_u32(), so that | 
|  | * get_random_u32_inclusive() can work over its whole range without | 
|  | * undefined behavior. | 
|  | */ | 
|  | if (unlikely(!ceil)) | 
|  | return rand; | 
|  |  | 
|  | mult = (u64)ceil * rand; | 
|  | if (unlikely((u32)mult < ceil)) { | 
|  | u32 bound = -ceil % ceil; | 
|  | while (unlikely((u32)mult < bound)) | 
|  | mult = (u64)ceil * get_random_u32(); | 
|  | } | 
|  | return mult >> 32; | 
|  | } | 
|  | EXPORT_SYMBOL(__get_random_u32_below); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * This function is called when the CPU is coming up, with entry | 
|  | * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. | 
|  | */ | 
|  | int __cold random_prepare_cpu(unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * When the cpu comes back online, immediately invalidate both | 
|  | * the per-cpu crng and all batches, so that we serve fresh | 
|  | * randomness. | 
|  | */ | 
|  | per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; | 
|  | per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; | 
|  | per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; | 
|  | per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; | 
|  | per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /********************************************************************** | 
|  | * | 
|  | * Entropy accumulation and extraction routines. | 
|  | * | 
|  | * Callers may add entropy via: | 
|  | * | 
|  | *     static void mix_pool_bytes(const void *buf, size_t len) | 
|  | * | 
|  | * After which, if added entropy should be credited: | 
|  | * | 
|  | *     static void credit_init_bits(size_t bits) | 
|  | * | 
|  | * Finally, extract entropy via: | 
|  | * | 
|  | *     static void extract_entropy(void *buf, size_t len) | 
|  | * | 
|  | **********************************************************************/ | 
|  |  | 
|  | enum { | 
|  | POOL_BITS = BLAKE2S_HASH_SIZE * 8, | 
|  | POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ | 
|  | POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ | 
|  | }; | 
|  |  | 
|  | static struct { | 
|  | struct blake2s_state hash; | 
|  | spinlock_t lock; | 
|  | unsigned int init_bits; | 
|  | } input_pool = { | 
|  | .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), | 
|  | BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, | 
|  | BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, | 
|  | .hash.outlen = BLAKE2S_HASH_SIZE, | 
|  | .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), | 
|  | }; | 
|  |  | 
|  | static void _mix_pool_bytes(const void *buf, size_t len) | 
|  | { | 
|  | blake2s_update(&input_pool.hash, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function adds bytes into the input pool. It does not | 
|  | * update the initialization bit counter; the caller should call | 
|  | * credit_init_bits if this is appropriate. | 
|  | */ | 
|  | static void mix_pool_bytes(const void *buf, size_t len) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&input_pool.lock, flags); | 
|  | _mix_pool_bytes(buf, len); | 
|  | spin_unlock_irqrestore(&input_pool.lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is an HKDF-like construction for using the hashed collected entropy | 
|  | * as a PRF key, that's then expanded block-by-block. | 
|  | */ | 
|  | static void extract_entropy(void *buf, size_t len) | 
|  | { | 
|  | unsigned long flags; | 
|  | u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; | 
|  | struct { | 
|  | unsigned long rdseed[32 / sizeof(long)]; | 
|  | size_t counter; | 
|  | } block; | 
|  | size_t i, longs; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(block.rdseed);) { | 
|  | longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); | 
|  | if (longs) { | 
|  | i += longs; | 
|  | continue; | 
|  | } | 
|  | longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); | 
|  | if (longs) { | 
|  | i += longs; | 
|  | continue; | 
|  | } | 
|  | block.rdseed[i++] = random_get_entropy(); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&input_pool.lock, flags); | 
|  |  | 
|  | /* seed = HASHPRF(last_key, entropy_input) */ | 
|  | blake2s_final(&input_pool.hash, seed); | 
|  |  | 
|  | /* next_key = HASHPRF(seed, RDSEED || 0) */ | 
|  | block.counter = 0; | 
|  | blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); | 
|  | blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); | 
|  |  | 
|  | spin_unlock_irqrestore(&input_pool.lock, flags); | 
|  | memzero_explicit(next_key, sizeof(next_key)); | 
|  |  | 
|  | while (len) { | 
|  | i = min_t(size_t, len, BLAKE2S_HASH_SIZE); | 
|  | /* output = HASHPRF(seed, RDSEED || ++counter) */ | 
|  | ++block.counter; | 
|  | blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); | 
|  | len -= i; | 
|  | buf += i; | 
|  | } | 
|  |  | 
|  | memzero_explicit(seed, sizeof(seed)); | 
|  | memzero_explicit(&block, sizeof(block)); | 
|  | } | 
|  |  | 
|  | #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) | 
|  |  | 
|  | static void __cold _credit_init_bits(size_t bits) | 
|  | { | 
|  | static DECLARE_WORK(set_ready, crng_set_ready); | 
|  | unsigned int new, orig, add; | 
|  | unsigned long flags; | 
|  | int m; | 
|  |  | 
|  | if (!bits) | 
|  | return; | 
|  |  | 
|  | add = min_t(size_t, bits, POOL_BITS); | 
|  |  | 
|  | orig = READ_ONCE(input_pool.init_bits); | 
|  | do { | 
|  | new = min_t(unsigned int, POOL_BITS, orig + add); | 
|  | } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); | 
|  |  | 
|  | if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { | 
|  | crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ | 
|  | if (static_key_initialized && system_unbound_wq) | 
|  | queue_work(system_unbound_wq, &set_ready); | 
|  | atomic_notifier_call_chain(&random_ready_notifier, 0, NULL); | 
|  | #ifdef CONFIG_VDSO_GETRANDOM | 
|  | WRITE_ONCE(vdso_k_rng_data->is_ready, true); | 
|  | #endif | 
|  | wake_up_interruptible(&crng_init_wait); | 
|  | kill_fasync(&fasync, SIGIO, POLL_IN); | 
|  | pr_notice("crng init done\n"); | 
|  | m = ratelimit_state_get_miss(&urandom_warning); | 
|  | if (m) | 
|  | pr_notice("%d urandom warning(s) missed due to ratelimiting\n", m); | 
|  | } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { | 
|  | spin_lock_irqsave(&base_crng.lock, flags); | 
|  | /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ | 
|  | if (crng_init == CRNG_EMPTY) { | 
|  | extract_entropy(base_crng.key, sizeof(base_crng.key)); | 
|  | crng_init = CRNG_EARLY; | 
|  | } | 
|  | spin_unlock_irqrestore(&base_crng.lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /********************************************************************** | 
|  | * | 
|  | * Entropy collection routines. | 
|  | * | 
|  | * The following exported functions are used for pushing entropy into | 
|  | * the above entropy accumulation routines: | 
|  | * | 
|  | *	void add_device_randomness(const void *buf, size_t len); | 
|  | *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); | 
|  | *	void add_bootloader_randomness(const void *buf, size_t len); | 
|  | *	void add_vmfork_randomness(const void *unique_vm_id, size_t len); | 
|  | *	void add_interrupt_randomness(int irq); | 
|  | *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); | 
|  | *	void add_disk_randomness(struct gendisk *disk); | 
|  | * | 
|  | * add_device_randomness() adds data to the input pool that | 
|  | * is likely to differ between two devices (or possibly even per boot). | 
|  | * This would be things like MAC addresses or serial numbers, or the | 
|  | * read-out of the RTC. This does *not* credit any actual entropy to | 
|  | * the pool, but it initializes the pool to different values for devices | 
|  | * that might otherwise be identical and have very little entropy | 
|  | * available to them (particularly common in the embedded world). | 
|  | * | 
|  | * add_hwgenerator_randomness() is for true hardware RNGs, and will credit | 
|  | * entropy as specified by the caller. If the entropy pool is full it will | 
|  | * block until more entropy is needed. | 
|  | * | 
|  | * add_bootloader_randomness() is called by bootloader drivers, such as EFI | 
|  | * and device tree, and credits its input depending on whether or not the | 
|  | * command line option 'random.trust_bootloader'. | 
|  | * | 
|  | * add_vmfork_randomness() adds a unique (but not necessarily secret) ID | 
|  | * representing the current instance of a VM to the pool, without crediting, | 
|  | * and then force-reseeds the crng so that it takes effect immediately. | 
|  | * | 
|  | * add_interrupt_randomness() uses the interrupt timing as random | 
|  | * inputs to the entropy pool. Using the cycle counters and the irq source | 
|  | * as inputs, it feeds the input pool roughly once a second or after 64 | 
|  | * interrupts, crediting 1 bit of entropy for whichever comes first. | 
|  | * | 
|  | * add_input_randomness() uses the input layer interrupt timing, as well | 
|  | * as the event type information from the hardware. | 
|  | * | 
|  | * add_disk_randomness() uses what amounts to the seek time of block | 
|  | * layer request events, on a per-disk_devt basis, as input to the | 
|  | * entropy pool. Note that high-speed solid state drives with very low | 
|  | * seek times do not make for good sources of entropy, as their seek | 
|  | * times are usually fairly consistent. | 
|  | * | 
|  | * The last two routines try to estimate how many bits of entropy | 
|  | * to credit. They do this by keeping track of the first and second | 
|  | * order deltas of the event timings. | 
|  | * | 
|  | **********************************************************************/ | 
|  |  | 
|  | static bool trust_cpu __initdata = true; | 
|  | static bool trust_bootloader __initdata = true; | 
|  | static int __init parse_trust_cpu(char *arg) | 
|  | { | 
|  | return kstrtobool(arg, &trust_cpu); | 
|  | } | 
|  | static int __init parse_trust_bootloader(char *arg) | 
|  | { | 
|  | return kstrtobool(arg, &trust_bootloader); | 
|  | } | 
|  | early_param("random.trust_cpu", parse_trust_cpu); | 
|  | early_param("random.trust_bootloader", parse_trust_bootloader); | 
|  |  | 
|  | static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) | 
|  | { | 
|  | unsigned long flags, entropy = random_get_entropy(); | 
|  |  | 
|  | /* | 
|  | * Encode a representation of how long the system has been suspended, | 
|  | * in a way that is distinct from prior system suspends. | 
|  | */ | 
|  | ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; | 
|  |  | 
|  | spin_lock_irqsave(&input_pool.lock, flags); | 
|  | _mix_pool_bytes(&action, sizeof(action)); | 
|  | _mix_pool_bytes(stamps, sizeof(stamps)); | 
|  | _mix_pool_bytes(&entropy, sizeof(entropy)); | 
|  | spin_unlock_irqrestore(&input_pool.lock, flags); | 
|  |  | 
|  | if (crng_ready() && (action == PM_RESTORE_PREPARE || | 
|  | (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && | 
|  | !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { | 
|  | crng_reseed(NULL); | 
|  | pr_notice("crng reseeded on system resumption\n"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; | 
|  |  | 
|  | /* | 
|  | * This is called extremely early, before time keeping functionality is | 
|  | * available, but arch randomness is. Interrupts are not yet enabled. | 
|  | */ | 
|  | void __init random_init_early(const char *command_line) | 
|  | { | 
|  | unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; | 
|  | size_t i, longs, arch_bits; | 
|  |  | 
|  | #if defined(LATENT_ENTROPY_PLUGIN) | 
|  | static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; | 
|  | _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); | 
|  | #endif | 
|  |  | 
|  | for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { | 
|  | longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); | 
|  | if (longs) { | 
|  | _mix_pool_bytes(entropy, sizeof(*entropy) * longs); | 
|  | i += longs; | 
|  | continue; | 
|  | } | 
|  | longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); | 
|  | if (longs) { | 
|  | _mix_pool_bytes(entropy, sizeof(*entropy) * longs); | 
|  | i += longs; | 
|  | continue; | 
|  | } | 
|  | arch_bits -= sizeof(*entropy) * 8; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); | 
|  | _mix_pool_bytes(command_line, strlen(command_line)); | 
|  |  | 
|  | /* Reseed if already seeded by earlier phases. */ | 
|  | if (crng_ready()) | 
|  | crng_reseed(NULL); | 
|  | else if (trust_cpu) | 
|  | _credit_init_bits(arch_bits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called a little bit after the prior function, and now there is | 
|  | * access to timestamps counters. Interrupts are not yet enabled. | 
|  | */ | 
|  | void __init random_init(void) | 
|  | { | 
|  | unsigned long entropy = random_get_entropy(); | 
|  | ktime_t now = ktime_get_real(); | 
|  |  | 
|  | _mix_pool_bytes(&now, sizeof(now)); | 
|  | _mix_pool_bytes(&entropy, sizeof(entropy)); | 
|  | add_latent_entropy(); | 
|  |  | 
|  | /* | 
|  | * If we were initialized by the cpu or bootloader before jump labels | 
|  | * or workqueues are initialized, then we should enable the static | 
|  | * branch here, where it's guaranteed that these have been initialized. | 
|  | */ | 
|  | if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) | 
|  | crng_set_ready(NULL); | 
|  |  | 
|  | /* Reseed if already seeded by earlier phases. */ | 
|  | if (crng_ready()) | 
|  | crng_reseed(NULL); | 
|  |  | 
|  | WARN_ON(register_pm_notifier(&pm_notifier)); | 
|  |  | 
|  | WARN(!entropy, "Missing cycle counter and fallback timer; RNG " | 
|  | "entropy collection will consequently suffer."); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add device- or boot-specific data to the input pool to help | 
|  | * initialize it. | 
|  | * | 
|  | * None of this adds any entropy; it is meant to avoid the problem of | 
|  | * the entropy pool having similar initial state across largely | 
|  | * identical devices. | 
|  | */ | 
|  | void add_device_randomness(const void *buf, size_t len) | 
|  | { | 
|  | unsigned long entropy = random_get_entropy(); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&input_pool.lock, flags); | 
|  | _mix_pool_bytes(&entropy, sizeof(entropy)); | 
|  | _mix_pool_bytes(buf, len); | 
|  | spin_unlock_irqrestore(&input_pool.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(add_device_randomness); | 
|  |  | 
|  | /* | 
|  | * Interface for in-kernel drivers of true hardware RNGs. Those devices | 
|  | * may produce endless random bits, so this function will sleep for | 
|  | * some amount of time after, if the sleep_after parameter is true. | 
|  | */ | 
|  | void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) | 
|  | { | 
|  | mix_pool_bytes(buf, len); | 
|  | credit_init_bits(entropy); | 
|  |  | 
|  | /* | 
|  | * Throttle writing to once every reseed interval, unless we're not yet | 
|  | * initialized or no entropy is credited. | 
|  | */ | 
|  | if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) | 
|  | schedule_timeout_interruptible(crng_reseed_interval()); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); | 
|  |  | 
|  | /* | 
|  | * Handle random seed passed by bootloader, and credit it depending | 
|  | * on the command line option 'random.trust_bootloader'. | 
|  | */ | 
|  | void __init add_bootloader_randomness(const void *buf, size_t len) | 
|  | { | 
|  | mix_pool_bytes(buf, len); | 
|  | if (trust_bootloader) | 
|  | credit_init_bits(len * 8); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_VMGENID) | 
|  | static BLOCKING_NOTIFIER_HEAD(vmfork_chain); | 
|  |  | 
|  | /* | 
|  | * Handle a new unique VM ID, which is unique, not secret, so we | 
|  | * don't credit it, but we do immediately force a reseed after so | 
|  | * that it's used by the crng posthaste. | 
|  | */ | 
|  | void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) | 
|  | { | 
|  | add_device_randomness(unique_vm_id, len); | 
|  | if (crng_ready()) { | 
|  | crng_reseed(NULL); | 
|  | pr_notice("crng reseeded due to virtual machine fork\n"); | 
|  | } | 
|  | blocking_notifier_call_chain(&vmfork_chain, 0, NULL); | 
|  | } | 
|  | #if IS_MODULE(CONFIG_VMGENID) | 
|  | EXPORT_SYMBOL_GPL(add_vmfork_randomness); | 
|  | #endif | 
|  |  | 
|  | int __cold register_random_vmfork_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&vmfork_chain, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); | 
|  |  | 
|  | int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&vmfork_chain, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); | 
|  | #endif | 
|  |  | 
|  | struct fast_pool { | 
|  | unsigned long pool[4]; | 
|  | unsigned long last; | 
|  | unsigned int count; | 
|  | struct timer_list mix; | 
|  | }; | 
|  |  | 
|  | static void mix_interrupt_randomness(struct timer_list *work); | 
|  |  | 
|  | static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { | 
|  | #ifdef CONFIG_64BIT | 
|  | #define FASTMIX_PERM SIPHASH_PERMUTATION | 
|  | .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, | 
|  | #else | 
|  | #define FASTMIX_PERM HSIPHASH_PERMUTATION | 
|  | .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, | 
|  | #endif | 
|  | .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is [Half]SipHash-1-x, starting from an empty key. Because | 
|  | * the key is fixed, it assumes that its inputs are non-malicious, | 
|  | * and therefore this has no security on its own. s represents the | 
|  | * four-word SipHash state, while v represents a two-word input. | 
|  | */ | 
|  | static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) | 
|  | { | 
|  | s[3] ^= v1; | 
|  | FASTMIX_PERM(s[0], s[1], s[2], s[3]); | 
|  | s[0] ^= v1; | 
|  | s[3] ^= v2; | 
|  | FASTMIX_PERM(s[0], s[1], s[2], s[3]); | 
|  | s[0] ^= v2; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * This function is called when the CPU has just come online, with | 
|  | * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. | 
|  | */ | 
|  | int __cold random_online_cpu(unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * During CPU shutdown and before CPU onlining, add_interrupt_ | 
|  | * randomness() may schedule mix_interrupt_randomness(), and | 
|  | * set the MIX_INFLIGHT flag. However, because the worker can | 
|  | * be scheduled on a different CPU during this period, that | 
|  | * flag will never be cleared. For that reason, we zero out | 
|  | * the flag here, which runs just after workqueues are onlined | 
|  | * for the CPU again. This also has the effect of setting the | 
|  | * irq randomness count to zero so that new accumulated irqs | 
|  | * are fresh. | 
|  | */ | 
|  | per_cpu_ptr(&irq_randomness, cpu)->count = 0; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void mix_interrupt_randomness(struct timer_list *work) | 
|  | { | 
|  | struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); | 
|  | /* | 
|  | * The size of the copied stack pool is explicitly 2 longs so that we | 
|  | * only ever ingest half of the siphash output each time, retaining | 
|  | * the other half as the next "key" that carries over. The entropy is | 
|  | * supposed to be sufficiently dispersed between bits so on average | 
|  | * we don't wind up "losing" some. | 
|  | */ | 
|  | unsigned long pool[2]; | 
|  | unsigned int count; | 
|  |  | 
|  | /* Check to see if we're running on the wrong CPU due to hotplug. */ | 
|  | local_irq_disable(); | 
|  | if (fast_pool != this_cpu_ptr(&irq_randomness)) { | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the pool to the stack so that the mixer always has a | 
|  | * consistent view, before we reenable irqs again. | 
|  | */ | 
|  | memcpy(pool, fast_pool->pool, sizeof(pool)); | 
|  | count = fast_pool->count; | 
|  | fast_pool->count = 0; | 
|  | fast_pool->last = jiffies; | 
|  | local_irq_enable(); | 
|  |  | 
|  | mix_pool_bytes(pool, sizeof(pool)); | 
|  | credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); | 
|  |  | 
|  | memzero_explicit(pool, sizeof(pool)); | 
|  | } | 
|  |  | 
|  | void add_interrupt_randomness(int irq) | 
|  | { | 
|  | enum { MIX_INFLIGHT = 1U << 31 }; | 
|  | unsigned long entropy = random_get_entropy(); | 
|  | struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  | unsigned int new_count; | 
|  |  | 
|  | fast_mix(fast_pool->pool, entropy, | 
|  | (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); | 
|  | new_count = ++fast_pool->count; | 
|  |  | 
|  | if (new_count & MIX_INFLIGHT) | 
|  | return; | 
|  |  | 
|  | if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) | 
|  | return; | 
|  |  | 
|  | fast_pool->count |= MIX_INFLIGHT; | 
|  | if (!timer_pending(&fast_pool->mix)) { | 
|  | fast_pool->mix.expires = jiffies; | 
|  | add_timer_on(&fast_pool->mix, raw_smp_processor_id()); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_interrupt_randomness); | 
|  |  | 
|  | /* There is one of these per entropy source */ | 
|  | struct timer_rand_state { | 
|  | unsigned long last_time; | 
|  | long last_delta, last_delta2; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This function adds entropy to the entropy "pool" by using timing | 
|  | * delays. It uses the timer_rand_state structure to make an estimate | 
|  | * of how many bits of entropy this call has added to the pool. The | 
|  | * value "num" is also added to the pool; it should somehow describe | 
|  | * the type of event that just happened. | 
|  | */ | 
|  | static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) | 
|  | { | 
|  | unsigned long entropy = random_get_entropy(), now = jiffies, flags; | 
|  | long delta, delta2, delta3; | 
|  | unsigned int bits; | 
|  |  | 
|  | /* | 
|  | * If we're in a hard IRQ, add_interrupt_randomness() will be called | 
|  | * sometime after, so mix into the fast pool. | 
|  | */ | 
|  | if (in_hardirq()) { | 
|  | fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); | 
|  | } else { | 
|  | spin_lock_irqsave(&input_pool.lock, flags); | 
|  | _mix_pool_bytes(&entropy, sizeof(entropy)); | 
|  | _mix_pool_bytes(&num, sizeof(num)); | 
|  | spin_unlock_irqrestore(&input_pool.lock, flags); | 
|  | } | 
|  |  | 
|  | if (crng_ready()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Calculate number of bits of randomness we probably added. | 
|  | * We take into account the first, second and third-order deltas | 
|  | * in order to make our estimate. | 
|  | */ | 
|  | delta = now - READ_ONCE(state->last_time); | 
|  | WRITE_ONCE(state->last_time, now); | 
|  |  | 
|  | delta2 = delta - READ_ONCE(state->last_delta); | 
|  | WRITE_ONCE(state->last_delta, delta); | 
|  |  | 
|  | delta3 = delta2 - READ_ONCE(state->last_delta2); | 
|  | WRITE_ONCE(state->last_delta2, delta2); | 
|  |  | 
|  | if (delta < 0) | 
|  | delta = -delta; | 
|  | if (delta2 < 0) | 
|  | delta2 = -delta2; | 
|  | if (delta3 < 0) | 
|  | delta3 = -delta3; | 
|  | if (delta > delta2) | 
|  | delta = delta2; | 
|  | if (delta > delta3) | 
|  | delta = delta3; | 
|  |  | 
|  | /* | 
|  | * delta is now minimum absolute delta. Round down by 1 bit | 
|  | * on general principles, and limit entropy estimate to 11 bits. | 
|  | */ | 
|  | bits = min(fls(delta >> 1), 11); | 
|  |  | 
|  | /* | 
|  | * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() | 
|  | * will run after this, which uses a different crediting scheme of 1 bit | 
|  | * per every 64 interrupts. In order to let that function do accounting | 
|  | * close to the one in this function, we credit a full 64/64 bit per bit, | 
|  | * and then subtract one to account for the extra one added. | 
|  | */ | 
|  | if (in_hardirq()) | 
|  | this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; | 
|  | else | 
|  | _credit_init_bits(bits); | 
|  | } | 
|  |  | 
|  | void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) | 
|  | { | 
|  | static unsigned char last_value; | 
|  | static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; | 
|  |  | 
|  | /* Ignore autorepeat and the like. */ | 
|  | if (value == last_value) | 
|  | return; | 
|  |  | 
|  | last_value = value; | 
|  | add_timer_randomness(&input_timer_state, | 
|  | (type << 4) ^ code ^ (code >> 4) ^ value); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_input_randomness); | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | void add_disk_randomness(struct gendisk *disk) | 
|  | { | 
|  | if (!disk || !disk->random) | 
|  | return; | 
|  | /* First major is 1, so we get >= 0x200 here. */ | 
|  | add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_disk_randomness); | 
|  |  | 
|  | void __cold rand_initialize_disk(struct gendisk *disk) | 
|  | { | 
|  | struct timer_rand_state *state; | 
|  |  | 
|  | /* | 
|  | * If kzalloc returns null, we just won't use that entropy | 
|  | * source. | 
|  | */ | 
|  | state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); | 
|  | if (state) { | 
|  | state->last_time = INITIAL_JIFFIES; | 
|  | disk->random = state; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct entropy_timer_state { | 
|  | unsigned long entropy; | 
|  | struct timer_list timer; | 
|  | atomic_t samples; | 
|  | unsigned int samples_per_bit; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Each time the timer fires, we expect that we got an unpredictable jump in | 
|  | * the cycle counter. Even if the timer is running on another CPU, the timer | 
|  | * activity will be touching the stack of the CPU that is generating entropy. | 
|  | * | 
|  | * Note that we don't re-arm the timer in the timer itself - we are happy to be | 
|  | * scheduled away, since that just makes the load more complex, but we do not | 
|  | * want the timer to keep ticking unless the entropy loop is running. | 
|  | * | 
|  | * So the re-arming always happens in the entropy loop itself. | 
|  | */ | 
|  | static void __cold entropy_timer(struct timer_list *timer) | 
|  | { | 
|  | struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); | 
|  | unsigned long entropy = random_get_entropy(); | 
|  |  | 
|  | mix_pool_bytes(&entropy, sizeof(entropy)); | 
|  | if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0) | 
|  | credit_init_bits(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have an actual cycle counter, see if we can generate enough entropy | 
|  | * with timing noise. | 
|  | */ | 
|  | static void __cold try_to_generate_entropy(void) | 
|  | { | 
|  | enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; | 
|  | u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; | 
|  | struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); | 
|  | unsigned int i, num_different = 0; | 
|  | unsigned long last = random_get_entropy(); | 
|  | int cpu = -1; | 
|  |  | 
|  | for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { | 
|  | stack->entropy = random_get_entropy(); | 
|  | if (stack->entropy != last) | 
|  | ++num_different; | 
|  | last = stack->entropy; | 
|  | } | 
|  | stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); | 
|  | if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) | 
|  | return; | 
|  |  | 
|  | atomic_set(&stack->samples, 0); | 
|  | timer_setup_on_stack(&stack->timer, entropy_timer, 0); | 
|  | while (!crng_ready() && !signal_pending(current)) { | 
|  | /* | 
|  | * Check !timer_pending() and then ensure that any previous callback has finished | 
|  | * executing by checking timer_delete_sync_try(), before queueing the next one. | 
|  | */ | 
|  | if (!timer_pending(&stack->timer) && timer_delete_sync_try(&stack->timer) >= 0) { | 
|  | struct cpumask timer_cpus; | 
|  | unsigned int num_cpus; | 
|  |  | 
|  | /* | 
|  | * Preemption must be disabled here, both to read the current CPU number | 
|  | * and to avoid scheduling a timer on a dead CPU. | 
|  | */ | 
|  | preempt_disable(); | 
|  |  | 
|  | /* Only schedule callbacks on timer CPUs that are online. */ | 
|  | cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask); | 
|  | num_cpus = cpumask_weight(&timer_cpus); | 
|  | /* In very bizarre case of misconfiguration, fallback to all online. */ | 
|  | if (unlikely(num_cpus == 0)) { | 
|  | timer_cpus = *cpu_online_mask; | 
|  | num_cpus = cpumask_weight(&timer_cpus); | 
|  | } | 
|  |  | 
|  | /* Basic CPU round-robin, which avoids the current CPU. */ | 
|  | do { | 
|  | cpu = cpumask_next(cpu, &timer_cpus); | 
|  | if (cpu >= nr_cpu_ids) | 
|  | cpu = cpumask_first(&timer_cpus); | 
|  | } while (cpu == smp_processor_id() && num_cpus > 1); | 
|  |  | 
|  | /* Expiring the timer at `jiffies` means it's the next tick. */ | 
|  | stack->timer.expires = jiffies; | 
|  |  | 
|  | add_timer_on(&stack->timer, cpu); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  | mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); | 
|  | schedule(); | 
|  | stack->entropy = random_get_entropy(); | 
|  | } | 
|  | mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); | 
|  |  | 
|  | timer_delete_sync(&stack->timer); | 
|  | timer_destroy_on_stack(&stack->timer); | 
|  | } | 
|  |  | 
|  |  | 
|  | /********************************************************************** | 
|  | * | 
|  | * Userspace reader/writer interfaces. | 
|  | * | 
|  | * getrandom(2) is the primary modern interface into the RNG and should | 
|  | * be used in preference to anything else. | 
|  | * | 
|  | * Reading from /dev/random has the same functionality as calling | 
|  | * getrandom(2) with flags=0. In earlier versions, however, it had | 
|  | * vastly different semantics and should therefore be avoided, to | 
|  | * prevent backwards compatibility issues. | 
|  | * | 
|  | * Reading from /dev/urandom has the same functionality as calling | 
|  | * getrandom(2) with flags=GRND_INSECURE. Because it does not block | 
|  | * waiting for the RNG to be ready, it should not be used. | 
|  | * | 
|  | * Writing to either /dev/random or /dev/urandom adds entropy to | 
|  | * the input pool but does not credit it. | 
|  | * | 
|  | * Polling on /dev/random indicates when the RNG is initialized, on | 
|  | * the read side, and when it wants new entropy, on the write side. | 
|  | * | 
|  | * Both /dev/random and /dev/urandom have the same set of ioctls for | 
|  | * adding entropy, getting the entropy count, zeroing the count, and | 
|  | * reseeding the crng. | 
|  | * | 
|  | **********************************************************************/ | 
|  |  | 
|  | SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) | 
|  | { | 
|  | struct iov_iter iter; | 
|  | int ret; | 
|  |  | 
|  | if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Requesting insecure and blocking randomness at the same time makes | 
|  | * no sense. | 
|  | */ | 
|  | if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!crng_ready() && !(flags & GRND_INSECURE)) { | 
|  | if (flags & GRND_NONBLOCK) | 
|  | return -EAGAIN; | 
|  | ret = wait_for_random_bytes(); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = import_ubuf(ITER_DEST, ubuf, len, &iter); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | return get_random_bytes_user(&iter); | 
|  | } | 
|  |  | 
|  | static __poll_t random_poll(struct file *file, poll_table *wait) | 
|  | { | 
|  | poll_wait(file, &crng_init_wait, wait); | 
|  | return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; | 
|  | } | 
|  |  | 
|  | static ssize_t write_pool_user(struct iov_iter *iter) | 
|  | { | 
|  | u8 block[BLAKE2S_BLOCK_SIZE]; | 
|  | ssize_t ret = 0; | 
|  | size_t copied; | 
|  |  | 
|  | if (unlikely(!iov_iter_count(iter))) | 
|  | return 0; | 
|  |  | 
|  | for (;;) { | 
|  | copied = copy_from_iter(block, sizeof(block), iter); | 
|  | ret += copied; | 
|  | mix_pool_bytes(block, copied); | 
|  | if (!iov_iter_count(iter) || copied != sizeof(block)) | 
|  | break; | 
|  |  | 
|  | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); | 
|  | if (ret % PAGE_SIZE == 0) { | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | memzero_explicit(block, sizeof(block)); | 
|  | return ret ? ret : -EFAULT; | 
|  | } | 
|  |  | 
|  | static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) | 
|  | { | 
|  | return write_pool_user(iter); | 
|  | } | 
|  |  | 
|  | static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) | 
|  | { | 
|  | static int maxwarn = 10; | 
|  |  | 
|  | /* | 
|  | * Opportunistically attempt to initialize the RNG on platforms that | 
|  | * have fast cycle counters, but don't (for now) require it to succeed. | 
|  | */ | 
|  | if (!crng_ready()) | 
|  | try_to_generate_entropy(); | 
|  |  | 
|  | if (!crng_ready()) { | 
|  | if (!ratelimit_disable && maxwarn <= 0) | 
|  | ratelimit_state_inc_miss(&urandom_warning); | 
|  | else if (ratelimit_disable || __ratelimit(&urandom_warning)) { | 
|  | --maxwarn; | 
|  | pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", | 
|  | current->comm, iov_iter_count(iter)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return get_random_bytes_user(iter); | 
|  | } | 
|  |  | 
|  | static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!crng_ready() && | 
|  | ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || | 
|  | (kiocb->ki_filp->f_flags & O_NONBLOCK))) | 
|  | return -EAGAIN; | 
|  |  | 
|  | ret = wait_for_random_bytes(); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | return get_random_bytes_user(iter); | 
|  | } | 
|  |  | 
|  | static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | int __user *p = (int __user *)arg; | 
|  | int ent_count; | 
|  |  | 
|  | switch (cmd) { | 
|  | case RNDGETENTCNT: | 
|  | /* Inherently racy, no point locking. */ | 
|  | if (put_user(input_pool.init_bits, p)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | case RNDADDTOENTCNT: | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (get_user(ent_count, p)) | 
|  | return -EFAULT; | 
|  | if (ent_count < 0) | 
|  | return -EINVAL; | 
|  | credit_init_bits(ent_count); | 
|  | return 0; | 
|  | case RNDADDENTROPY: { | 
|  | struct iov_iter iter; | 
|  | ssize_t ret; | 
|  | int len; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (get_user(ent_count, p++)) | 
|  | return -EFAULT; | 
|  | if (ent_count < 0) | 
|  | return -EINVAL; | 
|  | if (get_user(len, p++)) | 
|  | return -EFAULT; | 
|  | ret = import_ubuf(ITER_SOURCE, p, len, &iter); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  | ret = write_pool_user(&iter); | 
|  | if (unlikely(ret < 0)) | 
|  | return ret; | 
|  | /* Since we're crediting, enforce that it was all written into the pool. */ | 
|  | if (unlikely(ret != len)) | 
|  | return -EFAULT; | 
|  | credit_init_bits(ent_count); | 
|  | return 0; | 
|  | } | 
|  | case RNDZAPENTCNT: | 
|  | case RNDCLEARPOOL: | 
|  | /* No longer has any effect. */ | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | case RNDRESEEDCRNG: | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (!crng_ready()) | 
|  | return -ENODATA; | 
|  | crng_reseed(NULL); | 
|  | return 0; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int random_fasync(int fd, struct file *filp, int on) | 
|  | { | 
|  | return fasync_helper(fd, filp, on, &fasync); | 
|  | } | 
|  |  | 
|  | const struct file_operations random_fops = { | 
|  | .read_iter = random_read_iter, | 
|  | .write_iter = random_write_iter, | 
|  | .poll = random_poll, | 
|  | .unlocked_ioctl = random_ioctl, | 
|  | .compat_ioctl = compat_ptr_ioctl, | 
|  | .fasync = random_fasync, | 
|  | .llseek = noop_llseek, | 
|  | .splice_read = copy_splice_read, | 
|  | .splice_write = iter_file_splice_write, | 
|  | }; | 
|  |  | 
|  | const struct file_operations urandom_fops = { | 
|  | .read_iter = urandom_read_iter, | 
|  | .write_iter = random_write_iter, | 
|  | .unlocked_ioctl = random_ioctl, | 
|  | .compat_ioctl = compat_ptr_ioctl, | 
|  | .fasync = random_fasync, | 
|  | .llseek = noop_llseek, | 
|  | .splice_read = copy_splice_read, | 
|  | .splice_write = iter_file_splice_write, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /******************************************************************** | 
|  | * | 
|  | * Sysctl interface. | 
|  | * | 
|  | * These are partly unused legacy knobs with dummy values to not break | 
|  | * userspace and partly still useful things. They are usually accessible | 
|  | * in /proc/sys/kernel/random/ and are as follows: | 
|  | * | 
|  | * - boot_id - a UUID representing the current boot. | 
|  | * | 
|  | * - uuid - a random UUID, different each time the file is read. | 
|  | * | 
|  | * - poolsize - the number of bits of entropy that the input pool can | 
|  | *   hold, tied to the POOL_BITS constant. | 
|  | * | 
|  | * - entropy_avail - the number of bits of entropy currently in the | 
|  | *   input pool. Always <= poolsize. | 
|  | * | 
|  | * - write_wakeup_threshold - the amount of entropy in the input pool | 
|  | *   below which write polls to /dev/random will unblock, requesting | 
|  | *   more entropy, tied to the POOL_READY_BITS constant. It is writable | 
|  | *   to avoid breaking old userspaces, but writing to it does not | 
|  | *   change any behavior of the RNG. | 
|  | * | 
|  | * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. | 
|  | *   It is writable to avoid breaking old userspaces, but writing | 
|  | *   to it does not change any behavior of the RNG. | 
|  | * | 
|  | ********************************************************************/ | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  |  | 
|  | #include <linux/sysctl.h> | 
|  |  | 
|  | static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; | 
|  | static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; | 
|  | static int sysctl_poolsize = POOL_BITS; | 
|  | static u8 sysctl_bootid[UUID_SIZE]; | 
|  |  | 
|  | /* | 
|  | * This function is used to return both the bootid UUID, and random | 
|  | * UUID. The difference is in whether table->data is NULL; if it is, | 
|  | * then a new UUID is generated and returned to the user. | 
|  | */ | 
|  | static int proc_do_uuid(const struct ctl_table *table, int write, void *buf, | 
|  | size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | u8 tmp_uuid[UUID_SIZE], *uuid; | 
|  | char uuid_string[UUID_STRING_LEN + 1]; | 
|  | struct ctl_table fake_table = { | 
|  | .data = uuid_string, | 
|  | .maxlen = UUID_STRING_LEN | 
|  | }; | 
|  |  | 
|  | if (write) | 
|  | return -EPERM; | 
|  |  | 
|  | uuid = table->data; | 
|  | if (!uuid) { | 
|  | uuid = tmp_uuid; | 
|  | generate_random_uuid(uuid); | 
|  | } else { | 
|  | static DEFINE_SPINLOCK(bootid_spinlock); | 
|  |  | 
|  | spin_lock(&bootid_spinlock); | 
|  | if (!uuid[8]) | 
|  | generate_random_uuid(uuid); | 
|  | spin_unlock(&bootid_spinlock); | 
|  | } | 
|  |  | 
|  | snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); | 
|  | return proc_dostring(&fake_table, 0, buf, lenp, ppos); | 
|  | } | 
|  |  | 
|  | /* The same as proc_dointvec, but writes don't change anything. */ | 
|  | static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf, | 
|  | size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); | 
|  | } | 
|  |  | 
|  | static const struct ctl_table random_table[] = { | 
|  | { | 
|  | .procname	= "poolsize", | 
|  | .data		= &sysctl_poolsize, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "entropy_avail", | 
|  | .data		= &input_pool.init_bits, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "write_wakeup_threshold", | 
|  | .data		= &sysctl_random_write_wakeup_bits, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_do_rointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "urandom_min_reseed_secs", | 
|  | .data		= &sysctl_random_min_urandom_seed, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_do_rointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "boot_id", | 
|  | .data		= &sysctl_bootid, | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_do_uuid, | 
|  | }, | 
|  | { | 
|  | .procname	= "uuid", | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_do_uuid, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * random_init() is called before sysctl_init(), | 
|  | * so we cannot call register_sysctl_init() in random_init() | 
|  | */ | 
|  | static int __init random_sysctls_init(void) | 
|  | { | 
|  | register_sysctl_init("kernel/random", random_table); | 
|  | return 0; | 
|  | } | 
|  | device_initcall(random_sysctls_init); | 
|  | #endif |