|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright 2012-2013 Freescale Semiconductor, Inc. | 
|  | * Copyright 2018,2021-2025 NXP | 
|  | */ | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/cpuhotplug.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/sched_clock.h> | 
|  | #include <linux/platform_device.h> | 
|  |  | 
|  | /* | 
|  | * Each pit takes 0x10 Bytes register space | 
|  | */ | 
|  | #define PIT0_OFFSET	0x100 | 
|  | #define PIT_CH(n)       (PIT0_OFFSET + 0x10 * (n)) | 
|  |  | 
|  | #define PITMCR(__base)	(__base) | 
|  |  | 
|  | #define PITMCR_FRZ	BIT(0) | 
|  | #define PITMCR_MDIS	BIT(1) | 
|  |  | 
|  | #define PITLDVAL(__base)	(__base) | 
|  | #define PITTCTRL(__base)	((__base) + 0x08) | 
|  |  | 
|  | #define PITCVAL_OFFSET	0x04 | 
|  | #define PITCVAL(__base)	((__base) + 0x04) | 
|  |  | 
|  | #define PITTCTRL_TEN			BIT(0) | 
|  | #define PITTCTRL_TIE			BIT(1) | 
|  |  | 
|  | #define PITTFLG(__base)	((__base) + 0x0c) | 
|  |  | 
|  | #define PITTFLG_TIF			BIT(0) | 
|  |  | 
|  | struct pit_timer { | 
|  | void __iomem *clksrc_base; | 
|  | void __iomem *clkevt_base; | 
|  | struct clock_event_device ced; | 
|  | struct clocksource cs; | 
|  | int rate; | 
|  | }; | 
|  |  | 
|  | struct pit_timer_data { | 
|  | int max_pit_instances; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct pit_timer *, pit_timers); | 
|  |  | 
|  | /* | 
|  | * Global structure for multiple PITs initialization | 
|  | */ | 
|  | static int pit_instances; | 
|  | static int max_pit_instances = 1; | 
|  |  | 
|  | static void __iomem *sched_clock_base; | 
|  |  | 
|  | static inline struct pit_timer *ced_to_pit(struct clock_event_device *ced) | 
|  | { | 
|  | return container_of(ced, struct pit_timer, ced); | 
|  | } | 
|  |  | 
|  | static inline struct pit_timer *cs_to_pit(struct clocksource *cs) | 
|  | { | 
|  | return container_of(cs, struct pit_timer, cs); | 
|  | } | 
|  |  | 
|  | static inline void pit_module_enable(void __iomem *base) | 
|  | { | 
|  | writel(0, PITMCR(base)); | 
|  | } | 
|  |  | 
|  | static inline void pit_module_disable(void __iomem *base) | 
|  | { | 
|  | writel(PITMCR_MDIS, PITMCR(base)); | 
|  | } | 
|  |  | 
|  | static inline void pit_timer_enable(void __iomem *base, bool tie) | 
|  | { | 
|  | u32 val = PITTCTRL_TEN | (tie ? PITTCTRL_TIE : 0); | 
|  |  | 
|  | writel(val, PITTCTRL(base)); | 
|  | } | 
|  |  | 
|  | static inline void pit_timer_disable(void __iomem *base) | 
|  | { | 
|  | writel(0, PITTCTRL(base)); | 
|  | } | 
|  |  | 
|  | static inline void pit_timer_set_counter(void __iomem *base, unsigned int cnt) | 
|  | { | 
|  | writel(cnt, PITLDVAL(base)); | 
|  | } | 
|  |  | 
|  | static inline void pit_timer_irqack(struct pit_timer *pit) | 
|  | { | 
|  | writel(PITTFLG_TIF, PITTFLG(pit->clkevt_base)); | 
|  | } | 
|  |  | 
|  | static u64 notrace pit_read_sched_clock(void) | 
|  | { | 
|  | return ~readl(sched_clock_base); | 
|  | } | 
|  |  | 
|  | static u64 pit_timer_clocksource_read(struct clocksource *cs) | 
|  | { | 
|  | struct pit_timer *pit = cs_to_pit(cs); | 
|  |  | 
|  | return (u64)~readl(PITCVAL(pit->clksrc_base)); | 
|  | } | 
|  |  | 
|  | static int pit_clocksource_init(struct pit_timer *pit, const char *name, | 
|  | void __iomem *base, unsigned long rate) | 
|  | { | 
|  | /* | 
|  | * The channels 0 and 1 can be chained to build a 64-bit | 
|  | * timer. Let's use the channel 2 as a clocksource and leave | 
|  | * the channels 0 and 1 unused for anyone else who needs them | 
|  | */ | 
|  | pit->clksrc_base = base + PIT_CH(2); | 
|  | pit->cs.name = name; | 
|  | pit->cs.rating = 300; | 
|  | pit->cs.read = pit_timer_clocksource_read; | 
|  | pit->cs.mask = CLOCKSOURCE_MASK(32); | 
|  | pit->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; | 
|  |  | 
|  | /* set the max load value and start the clock source counter */ | 
|  | pit_timer_disable(pit->clksrc_base); | 
|  | pit_timer_set_counter(pit->clksrc_base, ~0); | 
|  | pit_timer_enable(pit->clksrc_base, 0); | 
|  |  | 
|  | sched_clock_base = pit->clksrc_base + PITCVAL_OFFSET; | 
|  | sched_clock_register(pit_read_sched_clock, 32, rate); | 
|  |  | 
|  | return clocksource_register_hz(&pit->cs, rate); | 
|  | } | 
|  |  | 
|  | static int pit_set_next_event(unsigned long delta, struct clock_event_device *ced) | 
|  | { | 
|  | struct pit_timer *pit = ced_to_pit(ced); | 
|  |  | 
|  | /* | 
|  | * set a new value to PITLDVAL register will not restart the timer, | 
|  | * to abort the current cycle and start a timer period with the new | 
|  | * value, the timer must be disabled and enabled again. | 
|  | * and the PITLAVAL should be set to delta minus one according to pit | 
|  | * hardware requirement. | 
|  | */ | 
|  | pit_timer_disable(pit->clkevt_base); | 
|  | pit_timer_set_counter(pit->clkevt_base, delta - 1); | 
|  | pit_timer_enable(pit->clkevt_base, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pit_shutdown(struct clock_event_device *ced) | 
|  | { | 
|  | struct pit_timer *pit = ced_to_pit(ced); | 
|  |  | 
|  | pit_timer_disable(pit->clkevt_base); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pit_set_periodic(struct clock_event_device *ced) | 
|  | { | 
|  | struct pit_timer *pit = ced_to_pit(ced); | 
|  |  | 
|  | pit_set_next_event(pit->rate / HZ, ced); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t pit_timer_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct clock_event_device *ced = dev_id; | 
|  | struct pit_timer *pit = ced_to_pit(ced); | 
|  |  | 
|  | pit_timer_irqack(pit); | 
|  |  | 
|  | /* | 
|  | * pit hardware doesn't support oneshot, it will generate an interrupt | 
|  | * and reload the counter value from PITLDVAL when PITCVAL reach zero, | 
|  | * and start the counter again. So software need to disable the timer | 
|  | * to stop the counter loop in ONESHOT mode. | 
|  | */ | 
|  | if (likely(clockevent_state_oneshot(ced))) | 
|  | pit_timer_disable(pit->clkevt_base); | 
|  |  | 
|  | ced->event_handler(ced); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int pit_clockevent_per_cpu_init(struct pit_timer *pit, const char *name, | 
|  | void __iomem *base, unsigned long rate, | 
|  | int irq, unsigned int cpu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * The channels 0 and 1 can be chained to build a 64-bit | 
|  | * timer. Let's use the channel 3 as a clockevent and leave | 
|  | * the channels 0 and 1 unused for anyone else who needs them | 
|  | */ | 
|  | pit->clkevt_base = base + PIT_CH(3); | 
|  | pit->rate = rate; | 
|  |  | 
|  | pit_timer_disable(pit->clkevt_base); | 
|  |  | 
|  | pit_timer_irqack(pit); | 
|  |  | 
|  | ret = request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_NOBALANCING, | 
|  | name, &pit->ced); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | pit->ced.cpumask = cpumask_of(cpu); | 
|  | pit->ced.irq = irq; | 
|  |  | 
|  | pit->ced.name = name; | 
|  | pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; | 
|  | pit->ced.set_state_shutdown = pit_shutdown; | 
|  | pit->ced.set_state_periodic = pit_set_periodic; | 
|  | pit->ced.set_next_event	= pit_set_next_event; | 
|  | pit->ced.rating	= 300; | 
|  |  | 
|  | per_cpu(pit_timers, cpu) = pit; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pit_clockevent_per_cpu_exit(struct pit_timer *pit, unsigned int cpu) | 
|  | { | 
|  | pit_timer_disable(pit->clkevt_base); | 
|  | free_irq(pit->ced.irq, &pit->ced); | 
|  | per_cpu(pit_timers, cpu) = NULL; | 
|  | } | 
|  |  | 
|  | static int pit_clockevent_starting_cpu(unsigned int cpu) | 
|  | { | 
|  | struct pit_timer *pit = per_cpu(pit_timers, cpu); | 
|  | int ret; | 
|  |  | 
|  | if (!pit) | 
|  | return 0; | 
|  |  | 
|  | ret = irq_force_affinity(pit->ced.irq, cpumask_of(cpu)); | 
|  | if (ret) { | 
|  | pit_clockevent_per_cpu_exit(pit, cpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The value for the LDVAL register trigger is calculated as: | 
|  | * LDVAL trigger = (period / clock period) - 1 | 
|  | * The pit is a 32-bit down count timer, when the counter value | 
|  | * reaches 0, it will generate an interrupt, thus the minimal | 
|  | * LDVAL trigger value is 1. And then the min_delta is | 
|  | * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit. | 
|  | */ | 
|  | clockevents_config_and_register(&pit->ced, pit->rate, 2, 0xffffffff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pit_timer_init(struct device_node *np) | 
|  | { | 
|  | struct pit_timer *pit; | 
|  | struct clk *pit_clk; | 
|  | void __iomem *timer_base; | 
|  | const char *name = of_node_full_name(np); | 
|  | unsigned long clk_rate; | 
|  | int irq, ret; | 
|  |  | 
|  | pit = kzalloc(sizeof(*pit), GFP_KERNEL); | 
|  | if (!pit) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = -ENXIO; | 
|  | timer_base = of_iomap(np, 0); | 
|  | if (!timer_base) { | 
|  | pr_err("Failed to iomap\n"); | 
|  | goto out_kfree; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  | irq = irq_of_parse_and_map(np, 0); | 
|  | if (irq <= 0) { | 
|  | pr_err("Failed to irq_of_parse_and_map\n"); | 
|  | goto out_iounmap; | 
|  | } | 
|  |  | 
|  | pit_clk = of_clk_get(np, 0); | 
|  | if (IS_ERR(pit_clk)) { | 
|  | ret = PTR_ERR(pit_clk); | 
|  | goto out_irq_dispose_mapping; | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(pit_clk); | 
|  | if (ret) | 
|  | goto out_clk_put; | 
|  |  | 
|  | clk_rate = clk_get_rate(pit_clk); | 
|  |  | 
|  | pit_module_disable(timer_base); | 
|  |  | 
|  | ret = pit_clocksource_init(pit, name, timer_base, clk_rate); | 
|  | if (ret) { | 
|  | pr_err("Failed to initialize clocksource '%pOF'\n", np); | 
|  | goto out_pit_module_disable; | 
|  | } | 
|  |  | 
|  | ret = pit_clockevent_per_cpu_init(pit, name, timer_base, clk_rate, irq, pit_instances); | 
|  | if (ret) { | 
|  | pr_err("Failed to initialize clockevent '%pOF'\n", np); | 
|  | goto out_pit_clocksource_unregister; | 
|  | } | 
|  |  | 
|  | /* enable the pit module */ | 
|  | pit_module_enable(timer_base); | 
|  |  | 
|  | pit_instances++; | 
|  |  | 
|  | if (pit_instances == max_pit_instances) { | 
|  | ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "PIT timer:starting", | 
|  | pit_clockevent_starting_cpu, NULL); | 
|  | if (ret < 0) | 
|  | goto out_pit_clocksource_unregister; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_pit_clocksource_unregister: | 
|  | clocksource_unregister(&pit->cs); | 
|  | out_pit_module_disable: | 
|  | pit_module_disable(timer_base); | 
|  | clk_disable_unprepare(pit_clk); | 
|  | out_clk_put: | 
|  | clk_put(pit_clk); | 
|  | out_irq_dispose_mapping: | 
|  | irq_dispose_mapping(irq); | 
|  | out_iounmap: | 
|  | iounmap(timer_base); | 
|  | out_kfree: | 
|  | kfree(pit); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pit_timer_probe(struct platform_device *pdev) | 
|  | { | 
|  | const struct pit_timer_data *pit_timer_data; | 
|  |  | 
|  | pit_timer_data = of_device_get_match_data(&pdev->dev); | 
|  | if (pit_timer_data) | 
|  | max_pit_instances = pit_timer_data->max_pit_instances; | 
|  |  | 
|  | return pit_timer_init(pdev->dev.of_node); | 
|  | } | 
|  |  | 
|  | static struct pit_timer_data s32g2_data = { .max_pit_instances = 2 }; | 
|  |  | 
|  | static const struct of_device_id pit_timer_of_match[] = { | 
|  | { .compatible = "nxp,s32g2-pit", .data = &s32g2_data }, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, pit_timer_of_match); | 
|  |  | 
|  | static struct platform_driver nxp_pit_driver = { | 
|  | .driver = { | 
|  | .name = "nxp-pit", | 
|  | .of_match_table = pit_timer_of_match, | 
|  | }, | 
|  | .probe = pit_timer_probe, | 
|  | }; | 
|  | module_platform_driver(nxp_pit_driver); | 
|  |  | 
|  | TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init); |