|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2013 Freescale Semiconductor, Inc. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nvmem-consumer.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/pm_opp.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/mfd/syscon.h> | 
|  | #include <linux/regmap.h> | 
|  |  | 
|  | #define PU_SOC_VOLTAGE_NORMAL	1250000 | 
|  | #define PU_SOC_VOLTAGE_HIGH	1275000 | 
|  | #define FREQ_1P2_GHZ		1200000000 | 
|  |  | 
|  | static struct regulator *arm_reg; | 
|  | static struct regulator *pu_reg; | 
|  | static struct regulator *soc_reg; | 
|  |  | 
|  | enum IMX6_CPUFREQ_CLKS { | 
|  | ARM, | 
|  | PLL1_SYS, | 
|  | STEP, | 
|  | PLL1_SW, | 
|  | PLL2_PFD2_396M, | 
|  | /* MX6UL requires two more clks */ | 
|  | PLL2_BUS, | 
|  | SECONDARY_SEL, | 
|  | }; | 
|  | #define IMX6Q_CPUFREQ_CLK_NUM		5 | 
|  | #define IMX6UL_CPUFREQ_CLK_NUM		7 | 
|  |  | 
|  | static int num_clks; | 
|  | static struct clk_bulk_data clks[] = { | 
|  | { .id = "arm" }, | 
|  | { .id = "pll1_sys" }, | 
|  | { .id = "step" }, | 
|  | { .id = "pll1_sw" }, | 
|  | { .id = "pll2_pfd2_396m" }, | 
|  | { .id = "pll2_bus" }, | 
|  | { .id = "secondary_sel" }, | 
|  | }; | 
|  |  | 
|  | static struct device *cpu_dev; | 
|  | static struct cpufreq_frequency_table *freq_table; | 
|  | static unsigned int max_freq; | 
|  | static unsigned int transition_latency; | 
|  |  | 
|  | static u32 *imx6_soc_volt; | 
|  | static u32 soc_opp_count; | 
|  |  | 
|  | static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index) | 
|  | { | 
|  | struct dev_pm_opp *opp; | 
|  | unsigned long freq_hz, volt, volt_old; | 
|  | unsigned int old_freq, new_freq; | 
|  | bool pll1_sys_temp_enabled = false; | 
|  | int ret; | 
|  |  | 
|  | new_freq = freq_table[index].frequency; | 
|  | freq_hz = new_freq * 1000; | 
|  | old_freq = clk_get_rate(clks[ARM].clk) / 1000; | 
|  |  | 
|  | opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); | 
|  | if (IS_ERR(opp)) { | 
|  | dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); | 
|  | return PTR_ERR(opp); | 
|  | } | 
|  |  | 
|  | volt = dev_pm_opp_get_voltage(opp); | 
|  | dev_pm_opp_put(opp); | 
|  |  | 
|  | volt_old = regulator_get_voltage(arm_reg); | 
|  |  | 
|  | dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", | 
|  | old_freq / 1000, volt_old / 1000, | 
|  | new_freq / 1000, volt / 1000); | 
|  |  | 
|  | /* scaling up?  scale voltage before frequency */ | 
|  | if (new_freq > old_freq) { | 
|  | if (!IS_ERR(pu_reg)) { | 
|  | ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); | 
|  | if (ret) { | 
|  | dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); | 
|  | if (ret) { | 
|  | dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | ret = regulator_set_voltage_tol(arm_reg, volt, 0); | 
|  | if (ret) { | 
|  | dev_err(cpu_dev, | 
|  | "failed to scale vddarm up: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The setpoints are selected per PLL/PDF frequencies, so we need to | 
|  | * reprogram PLL for frequency scaling.  The procedure of reprogramming | 
|  | * PLL1 is as below. | 
|  | * For i.MX6UL, it has a secondary clk mux, the cpu frequency change | 
|  | * flow is slightly different from other i.MX6 OSC. | 
|  | * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below: | 
|  | *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it | 
|  | *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it | 
|  | *  - Disable pll2_pfd2_396m_clk | 
|  | */ | 
|  | if (of_machine_is_compatible("fsl,imx6ul") || | 
|  | of_machine_is_compatible("fsl,imx6ull")) { | 
|  | /* | 
|  | * When changing pll1_sw_clk's parent to pll1_sys_clk, | 
|  | * CPU may run at higher than 528MHz, this will lead to | 
|  | * the system unstable if the voltage is lower than the | 
|  | * voltage of 528MHz, so lower the CPU frequency to one | 
|  | * half before changing CPU frequency. | 
|  | */ | 
|  | clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000); | 
|  | clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); | 
|  | if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) | 
|  | clk_set_parent(clks[SECONDARY_SEL].clk, | 
|  | clks[PLL2_BUS].clk); | 
|  | else | 
|  | clk_set_parent(clks[SECONDARY_SEL].clk, | 
|  | clks[PLL2_PFD2_396M].clk); | 
|  | clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk); | 
|  | clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); | 
|  | if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) { | 
|  | clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); | 
|  | clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); | 
|  | } | 
|  | } else { | 
|  | clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk); | 
|  | clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); | 
|  | if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) { | 
|  | clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); | 
|  | clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); | 
|  | } else { | 
|  | /* pll1_sys needs to be enabled for divider rate change to work. */ | 
|  | pll1_sys_temp_enabled = true; | 
|  | clk_prepare_enable(clks[PLL1_SYS].clk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure the arm clock divider is what we expect */ | 
|  | ret = clk_set_rate(clks[ARM].clk, new_freq * 1000); | 
|  | if (ret) { | 
|  | int ret1; | 
|  |  | 
|  | dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); | 
|  | ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0); | 
|  | if (ret1) | 
|  | dev_warn(cpu_dev, | 
|  | "failed to restore vddarm voltage: %d\n", ret1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* PLL1 is only needed until after ARM-PODF is set. */ | 
|  | if (pll1_sys_temp_enabled) | 
|  | clk_disable_unprepare(clks[PLL1_SYS].clk); | 
|  |  | 
|  | /* scaling down?  scale voltage after frequency */ | 
|  | if (new_freq < old_freq) { | 
|  | ret = regulator_set_voltage_tol(arm_reg, volt, 0); | 
|  | if (ret) | 
|  | dev_warn(cpu_dev, | 
|  | "failed to scale vddarm down: %d\n", ret); | 
|  | ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); | 
|  | if (ret) | 
|  | dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret); | 
|  | if (!IS_ERR(pu_reg)) { | 
|  | ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); | 
|  | if (ret) | 
|  | dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int imx6q_cpufreq_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | policy->clk = clks[ARM].clk; | 
|  | cpufreq_generic_init(policy, freq_table, transition_latency); | 
|  | policy->suspend_freq = max_freq; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cpufreq_driver imx6q_cpufreq_driver = { | 
|  | .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | | 
|  | CPUFREQ_IS_COOLING_DEV, | 
|  | .verify = cpufreq_generic_frequency_table_verify, | 
|  | .target_index = imx6q_set_target, | 
|  | .get = cpufreq_generic_get, | 
|  | .init = imx6q_cpufreq_init, | 
|  | .register_em = cpufreq_register_em_with_opp, | 
|  | .name = "imx6q-cpufreq", | 
|  | .suspend = cpufreq_generic_suspend, | 
|  | }; | 
|  |  | 
|  | static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq) | 
|  | { | 
|  | int ret = dev_pm_opp_disable(dev, freq); | 
|  |  | 
|  | if (ret < 0 && ret != -ENODEV) | 
|  | dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000); | 
|  | } | 
|  |  | 
|  | #define OCOTP_CFG3			0x440 | 
|  | #define OCOTP_CFG3_SPEED_SHIFT		16 | 
|  | #define OCOTP_CFG3_SPEED_1P2GHZ		0x3 | 
|  | #define OCOTP_CFG3_SPEED_996MHZ		0x2 | 
|  | #define OCOTP_CFG3_SPEED_852MHZ		0x1 | 
|  |  | 
|  | static int imx6q_opp_check_speed_grading(struct device *dev) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (of_property_present(dev->of_node, "nvmem-cells")) { | 
|  | ret = nvmem_cell_read_u32(dev, "speed_grade", &val); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | struct regmap *ocotp; | 
|  |  | 
|  | ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6q-ocotp"); | 
|  | if (IS_ERR(ocotp)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * SPEED_GRADING[1:0] defines the max speed of ARM: | 
|  | * 2b'11: 1200000000Hz; | 
|  | * 2b'10: 996000000Hz; | 
|  | * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz. | 
|  | * 2b'00: 792000000Hz; | 
|  | * We need to set the max speed of ARM according to fuse map. | 
|  | */ | 
|  | regmap_read(ocotp, OCOTP_CFG3, &val); | 
|  | } | 
|  |  | 
|  | val >>= OCOTP_CFG3_SPEED_SHIFT; | 
|  | val &= 0x3; | 
|  |  | 
|  | if (val < OCOTP_CFG3_SPEED_996MHZ) | 
|  | imx6x_disable_freq_in_opp(dev, 996000000); | 
|  |  | 
|  | if (of_machine_is_compatible("fsl,imx6q") || | 
|  | of_machine_is_compatible("fsl,imx6qp")) { | 
|  | if (val != OCOTP_CFG3_SPEED_852MHZ) | 
|  | imx6x_disable_freq_in_opp(dev, 852000000); | 
|  |  | 
|  | if (val != OCOTP_CFG3_SPEED_1P2GHZ) | 
|  | imx6x_disable_freq_in_opp(dev, 1200000000); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2 | 
|  | #define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2 | 
|  | #define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3 | 
|  |  | 
|  | static int imx6ul_opp_check_speed_grading(struct device *dev) | 
|  | { | 
|  | u32 val; | 
|  | int ret = 0; | 
|  |  | 
|  | if (of_property_present(dev->of_node, "nvmem-cells")) { | 
|  | ret = nvmem_cell_read_u32(dev, "speed_grade", &val); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | struct regmap *ocotp; | 
|  |  | 
|  | ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ul-ocotp"); | 
|  | if (IS_ERR(ocotp)) | 
|  | ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ull-ocotp"); | 
|  |  | 
|  | if (IS_ERR(ocotp)) | 
|  | return -ENOENT; | 
|  |  | 
|  | regmap_read(ocotp, OCOTP_CFG3, &val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Speed GRADING[1:0] defines the max speed of ARM: | 
|  | * 2b'00: Reserved; | 
|  | * 2b'01: 528000000Hz; | 
|  | * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL; | 
|  | * 2b'11: 900000000Hz on i.MX6ULL only; | 
|  | * We need to set the max speed of ARM according to fuse map. | 
|  | */ | 
|  | val >>= OCOTP_CFG3_SPEED_SHIFT; | 
|  | val &= 0x3; | 
|  |  | 
|  | if (of_machine_is_compatible("fsl,imx6ul")) | 
|  | if (val != OCOTP_CFG3_6UL_SPEED_696MHZ) | 
|  | imx6x_disable_freq_in_opp(dev, 696000000); | 
|  |  | 
|  | if (of_machine_is_compatible("fsl,imx6ull")) { | 
|  | if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ) | 
|  | imx6x_disable_freq_in_opp(dev, 792000000); | 
|  |  | 
|  | if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ) | 
|  | imx6x_disable_freq_in_opp(dev, 900000000); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int imx6q_cpufreq_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device_node *np; | 
|  | struct dev_pm_opp *opp; | 
|  | unsigned long min_volt, max_volt; | 
|  | int num, ret; | 
|  | const struct property *prop; | 
|  | const __be32 *val; | 
|  | u32 nr, i, j; | 
|  |  | 
|  | cpu_dev = get_cpu_device(0); | 
|  | if (!cpu_dev) { | 
|  | pr_err("failed to get cpu0 device\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | np = of_node_get(cpu_dev->of_node); | 
|  | if (!np) { | 
|  | dev_err(cpu_dev, "failed to find cpu0 node\n"); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | if (of_machine_is_compatible("fsl,imx6ul") || | 
|  | of_machine_is_compatible("fsl,imx6ull")) | 
|  | num_clks = IMX6UL_CPUFREQ_CLK_NUM; | 
|  | else | 
|  | num_clks = IMX6Q_CPUFREQ_CLK_NUM; | 
|  |  | 
|  | ret = clk_bulk_get(cpu_dev, num_clks, clks); | 
|  | if (ret) | 
|  | goto put_node; | 
|  |  | 
|  | arm_reg = regulator_get(cpu_dev, "arm"); | 
|  | pu_reg = regulator_get_optional(cpu_dev, "pu"); | 
|  | soc_reg = regulator_get(cpu_dev, "soc"); | 
|  | if (PTR_ERR(arm_reg) == -EPROBE_DEFER || | 
|  | PTR_ERR(soc_reg) == -EPROBE_DEFER || | 
|  | PTR_ERR(pu_reg) == -EPROBE_DEFER) { | 
|  | ret = -EPROBE_DEFER; | 
|  | dev_dbg(cpu_dev, "regulators not ready, defer\n"); | 
|  | goto put_reg; | 
|  | } | 
|  | if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { | 
|  | dev_err(cpu_dev, "failed to get regulators\n"); | 
|  | ret = -ENOENT; | 
|  | goto put_reg; | 
|  | } | 
|  |  | 
|  | ret = dev_pm_opp_of_add_table(cpu_dev); | 
|  | if (ret < 0) { | 
|  | dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); | 
|  | goto put_reg; | 
|  | } | 
|  |  | 
|  | if (of_machine_is_compatible("fsl,imx6ul") || | 
|  | of_machine_is_compatible("fsl,imx6ull")) { | 
|  | ret = imx6ul_opp_check_speed_grading(cpu_dev); | 
|  | } else { | 
|  | ret = imx6q_opp_check_speed_grading(cpu_dev); | 
|  | } | 
|  | if (ret) { | 
|  | dev_err_probe(cpu_dev, ret, "failed to read ocotp\n"); | 
|  | goto out_free_opp; | 
|  | } | 
|  |  | 
|  | num = dev_pm_opp_get_opp_count(cpu_dev); | 
|  | if (num < 0) { | 
|  | ret = num; | 
|  | dev_err(cpu_dev, "no OPP table is found: %d\n", ret); | 
|  | goto out_free_opp; | 
|  | } | 
|  |  | 
|  | ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); | 
|  | if (ret) { | 
|  | dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); | 
|  | goto out_free_opp; | 
|  | } | 
|  |  | 
|  | /* Make imx6_soc_volt array's size same as arm opp number */ | 
|  | imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt), | 
|  | GFP_KERNEL); | 
|  | if (imx6_soc_volt == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto free_freq_table; | 
|  | } | 
|  |  | 
|  | prop = of_find_property(np, "fsl,soc-operating-points", NULL); | 
|  | if (!prop || !prop->value) | 
|  | goto soc_opp_out; | 
|  |  | 
|  | /* | 
|  | * Each OPP is a set of tuples consisting of frequency and | 
|  | * voltage like <freq-kHz vol-uV>. | 
|  | */ | 
|  | nr = prop->length / sizeof(u32); | 
|  | if (nr % 2 || (nr / 2) < num) | 
|  | goto soc_opp_out; | 
|  |  | 
|  | for (j = 0; j < num; j++) { | 
|  | val = prop->value; | 
|  | for (i = 0; i < nr / 2; i++) { | 
|  | unsigned long freq = be32_to_cpup(val++); | 
|  | unsigned long volt = be32_to_cpup(val++); | 
|  | if (freq_table[j].frequency == freq) { | 
|  | imx6_soc_volt[soc_opp_count++] = volt; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | soc_opp_out: | 
|  | /* use fixed soc opp volt if no valid soc opp info found in dtb */ | 
|  | if (soc_opp_count != num) { | 
|  | dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n"); | 
|  | for (j = 0; j < num; j++) | 
|  | imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL; | 
|  | if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ) | 
|  | imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH; | 
|  | } | 
|  |  | 
|  | if (of_property_read_u32(np, "clock-latency", &transition_latency)) | 
|  | transition_latency = CPUFREQ_DEFAULT_TRANSITION_LATENCY_NS; | 
|  |  | 
|  | /* | 
|  | * Calculate the ramp time for max voltage change in the | 
|  | * VDDSOC and VDDPU regulators. | 
|  | */ | 
|  | ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); | 
|  | if (ret > 0) | 
|  | transition_latency += ret * 1000; | 
|  | if (!IS_ERR(pu_reg)) { | 
|  | ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); | 
|  | if (ret > 0) | 
|  | transition_latency += ret * 1000; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OPP is maintained in order of increasing frequency, and | 
|  | * freq_table initialised from OPP is therefore sorted in the | 
|  | * same order. | 
|  | */ | 
|  | max_freq = freq_table[--num].frequency; | 
|  | opp = dev_pm_opp_find_freq_exact(cpu_dev, | 
|  | freq_table[0].frequency * 1000, true); | 
|  | min_volt = dev_pm_opp_get_voltage(opp); | 
|  | dev_pm_opp_put(opp); | 
|  | opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true); | 
|  | max_volt = dev_pm_opp_get_voltage(opp); | 
|  | dev_pm_opp_put(opp); | 
|  |  | 
|  | ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); | 
|  | if (ret > 0) | 
|  | transition_latency += ret * 1000; | 
|  |  | 
|  | ret = cpufreq_register_driver(&imx6q_cpufreq_driver); | 
|  | if (ret) { | 
|  | dev_err(cpu_dev, "failed register driver: %d\n", ret); | 
|  | goto free_freq_table; | 
|  | } | 
|  |  | 
|  | of_node_put(np); | 
|  | return 0; | 
|  |  | 
|  | free_freq_table: | 
|  | dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); | 
|  | out_free_opp: | 
|  | dev_pm_opp_of_remove_table(cpu_dev); | 
|  | put_reg: | 
|  | if (!IS_ERR(arm_reg)) | 
|  | regulator_put(arm_reg); | 
|  | if (!IS_ERR(pu_reg)) | 
|  | regulator_put(pu_reg); | 
|  | if (!IS_ERR(soc_reg)) | 
|  | regulator_put(soc_reg); | 
|  |  | 
|  | clk_bulk_put(num_clks, clks); | 
|  | put_node: | 
|  | of_node_put(np); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void imx6q_cpufreq_remove(struct platform_device *pdev) | 
|  | { | 
|  | cpufreq_unregister_driver(&imx6q_cpufreq_driver); | 
|  | dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); | 
|  | dev_pm_opp_of_remove_table(cpu_dev); | 
|  | regulator_put(arm_reg); | 
|  | if (!IS_ERR(pu_reg)) | 
|  | regulator_put(pu_reg); | 
|  | regulator_put(soc_reg); | 
|  |  | 
|  | clk_bulk_put(num_clks, clks); | 
|  | } | 
|  |  | 
|  | static struct platform_driver imx6q_cpufreq_platdrv = { | 
|  | .driver = { | 
|  | .name	= "imx6q-cpufreq", | 
|  | }, | 
|  | .probe		= imx6q_cpufreq_probe, | 
|  | .remove		= imx6q_cpufreq_remove, | 
|  | }; | 
|  | module_platform_driver(imx6q_cpufreq_platdrv); | 
|  |  | 
|  | MODULE_ALIAS("platform:imx6q-cpufreq"); | 
|  | MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); | 
|  | MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); | 
|  | MODULE_LICENSE("GPL"); |