|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | /* | 
|  | * Hardware-accelerated CRC-32 variants for Linux on z Systems | 
|  | * | 
|  | * Use the z/Architecture Vector Extension Facility to accelerate the | 
|  | * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet | 
|  | * and Castagnoli. | 
|  | * | 
|  | * This CRC-32 implementation algorithm is bitreflected and processes | 
|  | * the least-significant bit first (Little-Endian). | 
|  | * | 
|  | * Copyright IBM Corp. 2015 | 
|  | * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <asm/fpu.h> | 
|  | #include "crc32-vx.h" | 
|  |  | 
|  | /* Vector register range containing CRC-32 constants */ | 
|  | #define CONST_PERM_LE2BE	9 | 
|  | #define CONST_R2R1		10 | 
|  | #define CONST_R4R3		11 | 
|  | #define CONST_R5		12 | 
|  | #define CONST_RU_POLY		13 | 
|  | #define CONST_CRC_POLY		14 | 
|  |  | 
|  | /* | 
|  | * The CRC-32 constant block contains reduction constants to fold and | 
|  | * process particular chunks of the input data stream in parallel. | 
|  | * | 
|  | * For the CRC-32 variants, the constants are precomputed according to | 
|  | * these definitions: | 
|  | * | 
|  | *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 | 
|  | *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 | 
|  | *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1 | 
|  | *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1 | 
|  | *	R5 = [(x64 mod P'(x) << 32)]'	    << 1 | 
|  | *	R6 = [(x32 mod P'(x) << 32)]'	    << 1 | 
|  | * | 
|  | *	The bitreflected Barret reduction constant, u', is defined as | 
|  | *	the bit reversal of floor(x**64 / P(x)). | 
|  | * | 
|  | *	where P(x) is the polynomial in the normal domain and the P'(x) is the | 
|  | *	polynomial in the reversed (bitreflected) domain. | 
|  | * | 
|  | * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: | 
|  | * | 
|  | *	P(x)  = 0x04C11DB7 | 
|  | *	P'(x) = 0xEDB88320 | 
|  | * | 
|  | * CRC-32C (Castagnoli) polynomials: | 
|  | * | 
|  | *	P(x)  = 0x1EDC6F41 | 
|  | *	P'(x) = 0x82F63B78 | 
|  | */ | 
|  |  | 
|  | static unsigned long constants_CRC_32_LE[] = { | 
|  | 0x0f0e0d0c0b0a0908, 0x0706050403020100,	/* BE->LE mask */ | 
|  | 0x1c6e41596, 0x154442bd4,		/* R2, R1 */ | 
|  | 0x0ccaa009e, 0x1751997d0,		/* R4, R3 */ | 
|  | 0x0, 0x163cd6124,			/* R5 */ | 
|  | 0x0, 0x1f7011641,			/* u' */ | 
|  | 0x0, 0x1db710641			/* P'(x) << 1 */ | 
|  | }; | 
|  |  | 
|  | static unsigned long constants_CRC_32C_LE[] = { | 
|  | 0x0f0e0d0c0b0a0908, 0x0706050403020100,	/* BE->LE mask */ | 
|  | 0x09e4addf8, 0x740eef02,		/* R2, R1 */ | 
|  | 0x14cd00bd6, 0xf20c0dfe,		/* R4, R3 */ | 
|  | 0x0, 0x0dd45aab8,			/* R5 */ | 
|  | 0x0, 0x0dea713f1,			/* u' */ | 
|  | 0x0, 0x105ec76f0			/* P'(x) << 1 */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers | 
|  | * @crc: Initial CRC value, typically ~0. | 
|  | * @buf: Input buffer pointer, performance might be improved if the | 
|  | *	 buffer is on a doubleword boundary. | 
|  | * @size: Size of the buffer, must be 64 bytes or greater. | 
|  | * @constants: CRC-32 constant pool base pointer. | 
|  | * | 
|  | * Register usage: | 
|  | *	V0:	  Initial CRC value and intermediate constants and results. | 
|  | *	V1..V4:	  Data for CRC computation. | 
|  | *	V5..V8:	  Next data chunks that are fetched from the input buffer. | 
|  | *	V9:	  Constant for BE->LE conversion and shift operations | 
|  | *	V10..V14: CRC-32 constants. | 
|  | */ | 
|  | static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants) | 
|  | { | 
|  | /* Load CRC-32 constants */ | 
|  | fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants); | 
|  |  | 
|  | /* | 
|  | * Load the initial CRC value. | 
|  | * | 
|  | * The CRC value is loaded into the rightmost word of the | 
|  | * vector register and is later XORed with the LSB portion | 
|  | * of the loaded input data. | 
|  | */ | 
|  | fpu_vzero(0);			/* Clear V0 */ | 
|  | fpu_vlvgf(0, crc, 3);		/* Load CRC into rightmost word */ | 
|  |  | 
|  | /* Load a 64-byte data chunk and XOR with CRC */ | 
|  | fpu_vlm(1, 4, buf); | 
|  | fpu_vperm(1, 1, 1, CONST_PERM_LE2BE); | 
|  | fpu_vperm(2, 2, 2, CONST_PERM_LE2BE); | 
|  | fpu_vperm(3, 3, 3, CONST_PERM_LE2BE); | 
|  | fpu_vperm(4, 4, 4, CONST_PERM_LE2BE); | 
|  |  | 
|  | fpu_vx(1, 0, 1);		/* V1 ^= CRC */ | 
|  | buf += 64; | 
|  | size -= 64; | 
|  |  | 
|  | while (size >= 64) { | 
|  | fpu_vlm(5, 8, buf); | 
|  | fpu_vperm(5, 5, 5, CONST_PERM_LE2BE); | 
|  | fpu_vperm(6, 6, 6, CONST_PERM_LE2BE); | 
|  | fpu_vperm(7, 7, 7, CONST_PERM_LE2BE); | 
|  | fpu_vperm(8, 8, 8, CONST_PERM_LE2BE); | 
|  | /* | 
|  | * Perform a GF(2) multiplication of the doublewords in V1 with | 
|  | * the R1 and R2 reduction constants in V0.  The intermediate | 
|  | * result is then folded (accumulated) with the next data chunk | 
|  | * in V5 and stored in V1. Repeat this step for the register | 
|  | * contents in V2, V3, and V4 respectively. | 
|  | */ | 
|  | fpu_vgfmag(1, CONST_R2R1, 1, 5); | 
|  | fpu_vgfmag(2, CONST_R2R1, 2, 6); | 
|  | fpu_vgfmag(3, CONST_R2R1, 3, 7); | 
|  | fpu_vgfmag(4, CONST_R2R1, 4, 8); | 
|  | buf += 64; | 
|  | size -= 64; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3 | 
|  | * and R4 and accumulating the next 128-bit chunk until a single 128-bit | 
|  | * value remains. | 
|  | */ | 
|  | fpu_vgfmag(1, CONST_R4R3, 1, 2); | 
|  | fpu_vgfmag(1, CONST_R4R3, 1, 3); | 
|  | fpu_vgfmag(1, CONST_R4R3, 1, 4); | 
|  |  | 
|  | while (size >= 16) { | 
|  | fpu_vl(2, buf); | 
|  | fpu_vperm(2, 2, 2, CONST_PERM_LE2BE); | 
|  | fpu_vgfmag(1, CONST_R4R3, 1, 2); | 
|  | buf += 16; | 
|  | size -= 16; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up a vector register for byte shifts.  The shift value must | 
|  | * be loaded in bits 1-4 in byte element 7 of a vector register. | 
|  | * Shift by 8 bytes: 0x40 | 
|  | * Shift by 4 bytes: 0x20 | 
|  | */ | 
|  | fpu_vleib(9, 0x40, 7); | 
|  |  | 
|  | /* | 
|  | * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes | 
|  | * to move R4 into the rightmost doubleword and set the leftmost | 
|  | * doubleword to 0x1. | 
|  | */ | 
|  | fpu_vsrlb(0, CONST_R4R3, 9); | 
|  | fpu_vleig(0, 1, 0); | 
|  |  | 
|  | /* | 
|  | * Compute GF(2) product of V1 and V0.	The rightmost doubleword | 
|  | * of V1 is multiplied with R4.  The leftmost doubleword of V1 is | 
|  | * multiplied by 0x1 and is then XORed with rightmost product. | 
|  | * Implicitly, the intermediate leftmost product becomes padded | 
|  | */ | 
|  | fpu_vgfmg(1, 0, 1); | 
|  |  | 
|  | /* | 
|  | * Now do the final 32-bit fold by multiplying the rightmost word | 
|  | * in V1 with R5 and XOR the result with the remaining bits in V1. | 
|  | * | 
|  | * To achieve this by a single VGFMAG, right shift V1 by a word | 
|  | * and store the result in V2 which is then accumulated.  Use the | 
|  | * vector unpack instruction to load the rightmost half of the | 
|  | * doubleword into the rightmost doubleword element of V1; the other | 
|  | * half is loaded in the leftmost doubleword. | 
|  | * The vector register with CONST_R5 contains the R5 constant in the | 
|  | * rightmost doubleword and the leftmost doubleword is zero to ignore | 
|  | * the leftmost product of V1. | 
|  | */ | 
|  | fpu_vleib(9, 0x20, 7);		  /* Shift by words */ | 
|  | fpu_vsrlb(2, 1, 9);		  /* Store remaining bits in V2 */ | 
|  | fpu_vupllf(1, 1);		  /* Split rightmost doubleword */ | 
|  | fpu_vgfmag(1, CONST_R5, 1, 2);	  /* V1 = (V1 * R5) XOR V2 */ | 
|  |  | 
|  | /* | 
|  | * Apply a Barret reduction to compute the final 32-bit CRC value. | 
|  | * | 
|  | * The input values to the Barret reduction are the degree-63 polynomial | 
|  | * in V1 (R(x)), degree-32 generator polynomial, and the reduction | 
|  | * constant u.	The Barret reduction result is the CRC value of R(x) mod | 
|  | * P(x). | 
|  | * | 
|  | * The Barret reduction algorithm is defined as: | 
|  | * | 
|  | *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u | 
|  | *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) | 
|  | *    3. C(x)  = R(x) XOR T2(x) mod x^32 | 
|  | * | 
|  | *  Note: The leftmost doubleword of vector register containing | 
|  | *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product | 
|  | *  is zero and does not contribute to the final result. | 
|  | */ | 
|  |  | 
|  | /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ | 
|  | fpu_vupllf(2, 1); | 
|  | fpu_vgfmg(2, CONST_RU_POLY, 2); | 
|  |  | 
|  | /* | 
|  | * Compute the GF(2) product of the CRC polynomial with T1(x) in | 
|  | * V2 and XOR the intermediate result, T2(x), with the value in V1. | 
|  | * The final result is stored in word element 2 of V2. | 
|  | */ | 
|  | fpu_vupllf(2, 2); | 
|  | fpu_vgfmag(2, CONST_CRC_POLY, 2, 1); | 
|  |  | 
|  | return fpu_vlgvf(2, 2); | 
|  | } | 
|  |  | 
|  | u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size) | 
|  | { | 
|  | return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]); | 
|  | } | 
|  |  | 
|  | u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size) | 
|  | { | 
|  | return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]); | 
|  | } |