| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * pSeries NUMA support | 
 |  * | 
 |  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
 |  */ | 
 | #define pr_fmt(fmt) "numa: " fmt | 
 |  | 
 | #include <linux/threads.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/export.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/node.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/cputhreads.h> | 
 | #include <asm/sparsemem.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/topology.h> | 
 | #include <asm/firmware.h> | 
 | #include <asm/paca.h> | 
 | #include <asm/hvcall.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/vdso.h> | 
 | #include <asm/vphn.h> | 
 | #include <asm/drmem.h> | 
 |  | 
 | static int numa_enabled = 1; | 
 |  | 
 | static char *cmdline __initdata; | 
 |  | 
 | int numa_cpu_lookup_table[NR_CPUS]; | 
 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; | 
 |  | 
 | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
 | EXPORT_SYMBOL(node_to_cpumask_map); | 
 |  | 
 | static int primary_domain_index; | 
 | static int n_mem_addr_cells, n_mem_size_cells; | 
 |  | 
 | #define FORM0_AFFINITY 0 | 
 | #define FORM1_AFFINITY 1 | 
 | #define FORM2_AFFINITY 2 | 
 | static int affinity_form; | 
 |  | 
 | #define MAX_DISTANCE_REF_POINTS 4 | 
 | static int distance_ref_points_depth; | 
 | static const __be32 *distance_ref_points; | 
 | static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; | 
 | static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = { | 
 | 	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 } | 
 | }; | 
 | static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE }; | 
 |  | 
 | /* | 
 |  * Allocate node_to_cpumask_map based on number of available nodes | 
 |  * Requires node_possible_map to be valid. | 
 |  * | 
 |  * Note: cpumask_of_node() is not valid until after this is done. | 
 |  */ | 
 | static void __init setup_node_to_cpumask_map(void) | 
 | { | 
 | 	unsigned int node; | 
 |  | 
 | 	/* setup nr_node_ids if not done yet */ | 
 | 	if (nr_node_ids == MAX_NUMNODES) | 
 | 		setup_nr_node_ids(); | 
 |  | 
 | 	/* allocate the map */ | 
 | 	for_each_node(node) | 
 | 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); | 
 |  | 
 | 	/* cpumask_of_node() will now work */ | 
 | 	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); | 
 | } | 
 |  | 
 | static int __init fake_numa_create_new_node(unsigned long end_pfn, | 
 | 						unsigned int *nid) | 
 | { | 
 | 	unsigned long long mem; | 
 | 	char *p = cmdline; | 
 | 	static unsigned int fake_nid; | 
 | 	static unsigned long long curr_boundary; | 
 |  | 
 | 	/* | 
 | 	 * Modify node id, iff we started creating NUMA nodes | 
 | 	 * We want to continue from where we left of the last time | 
 | 	 */ | 
 | 	if (fake_nid) | 
 | 		*nid = fake_nid; | 
 | 	/* | 
 | 	 * In case there are no more arguments to parse, the | 
 | 	 * node_id should be the same as the last fake node id | 
 | 	 * (we've handled this above). | 
 | 	 */ | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	mem = memparse(p, &p); | 
 | 	if (!mem) | 
 | 		return 0; | 
 |  | 
 | 	if (mem < curr_boundary) | 
 | 		return 0; | 
 |  | 
 | 	curr_boundary = mem; | 
 |  | 
 | 	if ((end_pfn << PAGE_SHIFT) > mem) { | 
 | 		/* | 
 | 		 * Skip commas and spaces | 
 | 		 */ | 
 | 		while (*p == ',' || *p == ' ' || *p == '\t') | 
 | 			p++; | 
 |  | 
 | 		cmdline = p; | 
 | 		fake_nid++; | 
 | 		*nid = fake_nid; | 
 | 		pr_debug("created new fake_node with id %d\n", fake_nid); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init reset_numa_cpu_lookup_table(void) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		numa_cpu_lookup_table[cpu] = -1; | 
 | } | 
 |  | 
 | void map_cpu_to_node(int cpu, int node) | 
 | { | 
 | 	update_numa_cpu_lookup_table(cpu, node); | 
 |  | 
 | 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) { | 
 | 		pr_debug("adding cpu %d to node %d\n", cpu, node); | 
 | 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]); | 
 | 	} | 
 | } | 
 |  | 
 | #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) | 
 | void unmap_cpu_from_node(unsigned long cpu) | 
 | { | 
 | 	int node = numa_cpu_lookup_table[cpu]; | 
 |  | 
 | 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { | 
 | 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); | 
 | 		pr_debug("removing cpu %lu from node %d\n", cpu, node); | 
 | 	} else { | 
 | 		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ | 
 |  | 
 | static int __associativity_to_nid(const __be32 *associativity, | 
 | 				  int max_array_sz) | 
 | { | 
 | 	int nid; | 
 | 	/* | 
 | 	 * primary_domain_index is 1 based array index. | 
 | 	 */ | 
 | 	int index = primary_domain_index  - 1; | 
 |  | 
 | 	if (!numa_enabled || index >= max_array_sz) | 
 | 		return NUMA_NO_NODE; | 
 |  | 
 | 	nid = of_read_number(&associativity[index], 1); | 
 |  | 
 | 	/* POWER4 LPAR uses 0xffff as invalid node */ | 
 | 	if (nid == 0xffff || nid >= nr_node_ids) | 
 | 		nid = NUMA_NO_NODE; | 
 | 	return nid; | 
 | } | 
 | /* | 
 |  * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA | 
 |  * info is found. | 
 |  */ | 
 | static int associativity_to_nid(const __be32 *associativity) | 
 | { | 
 | 	int array_sz = of_read_number(associativity, 1); | 
 |  | 
 | 	/* Skip the first element in the associativity array */ | 
 | 	return __associativity_to_nid((associativity + 1), array_sz); | 
 | } | 
 |  | 
 | static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) | 
 | { | 
 | 	int dist; | 
 | 	int node1, node2; | 
 |  | 
 | 	node1 = associativity_to_nid(cpu1_assoc); | 
 | 	node2 = associativity_to_nid(cpu2_assoc); | 
 |  | 
 | 	dist = numa_distance_table[node1][node2]; | 
 | 	if (dist <= LOCAL_DISTANCE) | 
 | 		return 0; | 
 | 	else if (dist <= REMOTE_DISTANCE) | 
 | 		return 1; | 
 | 	else | 
 | 		return 2; | 
 | } | 
 |  | 
 | static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) | 
 | { | 
 | 	int dist = 0; | 
 |  | 
 | 	int i, index; | 
 |  | 
 | 	for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 		index = be32_to_cpu(distance_ref_points[i]); | 
 | 		if (cpu1_assoc[index] == cpu2_assoc[index]) | 
 | 			break; | 
 | 		dist++; | 
 | 	} | 
 |  | 
 | 	return dist; | 
 | } | 
 |  | 
 | int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) | 
 | { | 
 | 	/* We should not get called with FORM0 */ | 
 | 	VM_WARN_ON(affinity_form == FORM0_AFFINITY); | 
 | 	if (affinity_form == FORM1_AFFINITY) | 
 | 		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc); | 
 | 	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc); | 
 | } | 
 |  | 
 | /* must hold reference to node during call */ | 
 | static const __be32 *of_get_associativity(struct device_node *dev) | 
 | { | 
 | 	return of_get_property(dev, "ibm,associativity", NULL); | 
 | } | 
 |  | 
 | int __node_distance(int a, int b) | 
 | { | 
 | 	int i; | 
 | 	int distance = LOCAL_DISTANCE; | 
 |  | 
 | 	if (affinity_form == FORM2_AFFINITY) | 
 | 		return numa_distance_table[a][b]; | 
 | 	else if (affinity_form == FORM0_AFFINITY) | 
 | 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); | 
 |  | 
 | 	for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) | 
 | 			break; | 
 |  | 
 | 		/* Double the distance for each NUMA level */ | 
 | 		distance *= 2; | 
 | 	} | 
 |  | 
 | 	return distance; | 
 | } | 
 | EXPORT_SYMBOL(__node_distance); | 
 |  | 
 | /* Returns the nid associated with the given device tree node, | 
 |  * or -1 if not found. | 
 |  */ | 
 | static int of_node_to_nid_single(struct device_node *device) | 
 | { | 
 | 	int nid = NUMA_NO_NODE; | 
 | 	const __be32 *tmp; | 
 |  | 
 | 	tmp = of_get_associativity(device); | 
 | 	if (tmp) | 
 | 		nid = associativity_to_nid(tmp); | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* Walk the device tree upwards, looking for an associativity id */ | 
 | int of_node_to_nid(struct device_node *device) | 
 | { | 
 | 	int nid = NUMA_NO_NODE; | 
 |  | 
 | 	of_node_get(device); | 
 | 	while (device) { | 
 | 		nid = of_node_to_nid_single(device); | 
 | 		if (nid != -1) | 
 | 			break; | 
 |  | 
 | 		device = of_get_next_parent(device); | 
 | 	} | 
 | 	of_node_put(device); | 
 |  | 
 | 	return nid; | 
 | } | 
 | EXPORT_SYMBOL(of_node_to_nid); | 
 |  | 
 | static void __initialize_form1_numa_distance(const __be32 *associativity, | 
 | 					     int max_array_sz) | 
 | { | 
 | 	int i, nid; | 
 |  | 
 | 	if (affinity_form != FORM1_AFFINITY) | 
 | 		return; | 
 |  | 
 | 	nid = __associativity_to_nid(associativity, max_array_sz); | 
 | 	if (nid != NUMA_NO_NODE) { | 
 | 		for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 			const __be32 *entry; | 
 | 			int index = be32_to_cpu(distance_ref_points[i]) - 1; | 
 |  | 
 | 			/* | 
 | 			 * broken hierarchy, return with broken distance table | 
 | 			 */ | 
 | 			if (WARN(index >= max_array_sz, "Broken ibm,associativity property")) | 
 | 				return; | 
 |  | 
 | 			entry = &associativity[index]; | 
 | 			distance_lookup_table[nid][i] = of_read_number(entry, 1); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void initialize_form1_numa_distance(const __be32 *associativity) | 
 | { | 
 | 	int array_sz; | 
 |  | 
 | 	array_sz = of_read_number(associativity, 1); | 
 | 	/* Skip the first element in the associativity array */ | 
 | 	__initialize_form1_numa_distance(associativity + 1, array_sz); | 
 | } | 
 |  | 
 | /* | 
 |  * Used to update distance information w.r.t newly added node. | 
 |  */ | 
 | void update_numa_distance(struct device_node *node) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	if (affinity_form == FORM0_AFFINITY) | 
 | 		return; | 
 | 	else if (affinity_form == FORM1_AFFINITY) { | 
 | 		const __be32 *associativity; | 
 |  | 
 | 		associativity = of_get_associativity(node); | 
 | 		if (!associativity) | 
 | 			return; | 
 |  | 
 | 		initialize_form1_numa_distance(associativity); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* FORM2 affinity  */ | 
 | 	nid = of_node_to_nid_single(node); | 
 | 	if (nid == NUMA_NO_NODE) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * With FORM2 we expect NUMA distance of all possible NUMA | 
 | 	 * nodes to be provided during boot. | 
 | 	 */ | 
 | 	WARN(numa_distance_table[nid][nid] == -1, | 
 | 	     "NUMA distance details for node %d not provided\n", nid); | 
 | } | 
 | EXPORT_SYMBOL_GPL(update_numa_distance); | 
 |  | 
 | /* | 
 |  * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN} | 
 |  * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements} | 
 |  */ | 
 | static void __init initialize_form2_numa_distance_lookup_table(void) | 
 | { | 
 | 	int i, j; | 
 | 	struct device_node *root; | 
 | 	const __u8 *form2_distances; | 
 | 	const __be32 *numa_lookup_index; | 
 | 	int form2_distances_length; | 
 | 	int max_numa_index, distance_index; | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_OPAL)) | 
 | 		root = of_find_node_by_path("/ibm,opal"); | 
 | 	else | 
 | 		root = of_find_node_by_path("/rtas"); | 
 | 	if (!root) | 
 | 		root = of_find_node_by_path("/"); | 
 |  | 
 | 	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL); | 
 | 	max_numa_index = of_read_number(&numa_lookup_index[0], 1); | 
 |  | 
 | 	/* first element of the array is the size and is encode-int */ | 
 | 	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL); | 
 | 	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1); | 
 | 	/* Skip the size which is encoded int */ | 
 | 	form2_distances += sizeof(__be32); | 
 |  | 
 | 	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n", | 
 | 		 form2_distances_length, max_numa_index); | 
 |  | 
 | 	for (i = 0; i < max_numa_index; i++) | 
 | 		/* +1 skip the max_numa_index in the property */ | 
 | 		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1); | 
 |  | 
 |  | 
 | 	if (form2_distances_length != max_numa_index * max_numa_index) { | 
 | 		WARN(1, "Wrong NUMA distance information\n"); | 
 | 		form2_distances = NULL; // don't use it | 
 | 	} | 
 | 	distance_index = 0; | 
 | 	for (i = 0;  i < max_numa_index; i++) { | 
 | 		for (j = 0; j < max_numa_index; j++) { | 
 | 			int nodeA = numa_id_index_table[i]; | 
 | 			int nodeB = numa_id_index_table[j]; | 
 | 			int dist; | 
 |  | 
 | 			if (form2_distances) | 
 | 				dist = form2_distances[distance_index++]; | 
 | 			else if (nodeA == nodeB) | 
 | 				dist = LOCAL_DISTANCE; | 
 | 			else | 
 | 				dist = REMOTE_DISTANCE; | 
 | 			numa_distance_table[nodeA][nodeB] = dist; | 
 | 			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	of_node_put(root); | 
 | } | 
 |  | 
 | static int __init find_primary_domain_index(void) | 
 | { | 
 | 	int index; | 
 | 	struct device_node *root; | 
 |  | 
 | 	/* | 
 | 	 * Check for which form of affinity. | 
 | 	 */ | 
 | 	if (firmware_has_feature(FW_FEATURE_OPAL)) { | 
 | 		affinity_form = FORM1_AFFINITY; | 
 | 	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) { | 
 | 		pr_debug("Using form 2 affinity\n"); | 
 | 		affinity_form = FORM2_AFFINITY; | 
 | 	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) { | 
 | 		pr_debug("Using form 1 affinity\n"); | 
 | 		affinity_form = FORM1_AFFINITY; | 
 | 	} else | 
 | 		affinity_form = FORM0_AFFINITY; | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_OPAL)) | 
 | 		root = of_find_node_by_path("/ibm,opal"); | 
 | 	else | 
 | 		root = of_find_node_by_path("/rtas"); | 
 | 	if (!root) | 
 | 		root = of_find_node_by_path("/"); | 
 |  | 
 | 	/* | 
 | 	 * This property is a set of 32-bit integers, each representing | 
 | 	 * an index into the ibm,associativity nodes. | 
 | 	 * | 
 | 	 * With form 0 affinity the first integer is for an SMP configuration | 
 | 	 * (should be all 0's) and the second is for a normal NUMA | 
 | 	 * configuration. We have only one level of NUMA. | 
 | 	 * | 
 | 	 * With form 1 affinity the first integer is the most significant | 
 | 	 * NUMA boundary and the following are progressively less significant | 
 | 	 * boundaries. There can be more than one level of NUMA. | 
 | 	 */ | 
 | 	distance_ref_points = of_get_property(root, | 
 | 					"ibm,associativity-reference-points", | 
 | 					&distance_ref_points_depth); | 
 |  | 
 | 	if (!distance_ref_points) { | 
 | 		pr_debug("ibm,associativity-reference-points not found.\n"); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	distance_ref_points_depth /= sizeof(int); | 
 | 	if (affinity_form == FORM0_AFFINITY) { | 
 | 		if (distance_ref_points_depth < 2) { | 
 | 			pr_warn("short ibm,associativity-reference-points\n"); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		index = of_read_number(&distance_ref_points[1], 1); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Both FORM1 and FORM2 affinity find the primary domain details | 
 | 		 * at the same offset. | 
 | 		 */ | 
 | 		index = of_read_number(distance_ref_points, 1); | 
 | 	} | 
 | 	/* | 
 | 	 * Warn and cap if the hardware supports more than | 
 | 	 * MAX_DISTANCE_REF_POINTS domains. | 
 | 	 */ | 
 | 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { | 
 | 		pr_warn("distance array capped at %d entries\n", | 
 | 			MAX_DISTANCE_REF_POINTS); | 
 | 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; | 
 | 	} | 
 |  | 
 | 	of_node_put(root); | 
 | 	return index; | 
 |  | 
 | err: | 
 | 	of_node_put(root); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 |  | 
 | 	memory = of_find_node_by_type(memory, "memory"); | 
 | 	if (!memory) | 
 | 		panic("numa.c: No memory nodes found!"); | 
 |  | 
 | 	*n_addr_cells = of_n_addr_cells(memory); | 
 | 	*n_size_cells = of_n_size_cells(memory); | 
 | 	of_node_put(memory); | 
 | } | 
 |  | 
 | static unsigned long read_n_cells(int n, const __be32 **buf) | 
 | { | 
 | 	unsigned long result = 0; | 
 |  | 
 | 	while (n--) { | 
 | 		result = (result << 32) | of_read_number(*buf, 1); | 
 | 		(*buf)++; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | struct assoc_arrays { | 
 | 	u32	n_arrays; | 
 | 	u32	array_sz; | 
 | 	const __be32 *arrays; | 
 | }; | 
 |  | 
 | /* | 
 |  * Retrieve and validate the list of associativity arrays for drconf | 
 |  * memory from the ibm,associativity-lookup-arrays property of the | 
 |  * device tree.. | 
 |  * | 
 |  * The layout of the ibm,associativity-lookup-arrays property is a number N | 
 |  * indicating the number of associativity arrays, followed by a number M | 
 |  * indicating the size of each associativity array, followed by a list | 
 |  * of N associativity arrays. | 
 |  */ | 
 | static int of_get_assoc_arrays(struct assoc_arrays *aa) | 
 | { | 
 | 	struct device_node *memory; | 
 | 	const __be32 *prop; | 
 | 	u32 len; | 
 |  | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (!memory) | 
 | 		return -1; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); | 
 | 	if (!prop || len < 2 * sizeof(unsigned int)) { | 
 | 		of_node_put(memory); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	aa->n_arrays = of_read_number(prop++, 1); | 
 | 	aa->array_sz = of_read_number(prop++, 1); | 
 |  | 
 | 	of_node_put(memory); | 
 |  | 
 | 	/* Now that we know the number of arrays and size of each array, | 
 | 	 * revalidate the size of the property read in. | 
 | 	 */ | 
 | 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | 
 | 		return -1; | 
 |  | 
 | 	aa->arrays = prop; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb) | 
 | { | 
 | 	struct assoc_arrays aa = { .arrays = NULL }; | 
 | 	int default_nid = NUMA_NO_NODE; | 
 | 	int nid = default_nid; | 
 | 	int rc, index; | 
 |  | 
 | 	if ((primary_domain_index < 0) || !numa_enabled) | 
 | 		return default_nid; | 
 |  | 
 | 	rc = of_get_assoc_arrays(&aa); | 
 | 	if (rc) | 
 | 		return default_nid; | 
 |  | 
 | 	if (primary_domain_index <= aa.array_sz && | 
 | 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { | 
 | 		const __be32 *associativity; | 
 |  | 
 | 		index = lmb->aa_index * aa.array_sz; | 
 | 		associativity = &aa.arrays[index]; | 
 | 		nid = __associativity_to_nid(associativity, aa.array_sz); | 
 | 		if (nid > 0 && affinity_form == FORM1_AFFINITY) { | 
 | 			/* | 
 | 			 * lookup array associativity entries have | 
 | 			 * no length of the array as the first element. | 
 | 			 */ | 
 | 			__initialize_form1_numa_distance(associativity, aa.array_sz); | 
 | 		} | 
 | 	} | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * This is like of_node_to_nid_single() for memory represented in the | 
 |  * ibm,dynamic-reconfiguration-memory node. | 
 |  */ | 
 | int of_drconf_to_nid_single(struct drmem_lmb *lmb) | 
 | { | 
 | 	struct assoc_arrays aa = { .arrays = NULL }; | 
 | 	int default_nid = NUMA_NO_NODE; | 
 | 	int nid = default_nid; | 
 | 	int rc, index; | 
 |  | 
 | 	if ((primary_domain_index < 0) || !numa_enabled) | 
 | 		return default_nid; | 
 |  | 
 | 	rc = of_get_assoc_arrays(&aa); | 
 | 	if (rc) | 
 | 		return default_nid; | 
 |  | 
 | 	if (primary_domain_index <= aa.array_sz && | 
 | 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { | 
 | 		const __be32 *associativity; | 
 |  | 
 | 		index = lmb->aa_index * aa.array_sz; | 
 | 		associativity = &aa.arrays[index]; | 
 | 		nid = __associativity_to_nid(associativity, aa.array_sz); | 
 | 	} | 
 | 	return nid; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_SPLPAR | 
 |  | 
 | static int __vphn_get_associativity(long lcpu, __be32 *associativity) | 
 | { | 
 | 	long rc, hwid; | 
 |  | 
 | 	/* | 
 | 	 * On a shared lpar, device tree will not have node associativity. | 
 | 	 * At this time lppaca, or its __old_status field may not be | 
 | 	 * updated. Hence kernel cannot detect if its on a shared lpar. So | 
 | 	 * request an explicit associativity irrespective of whether the | 
 | 	 * lpar is shared or dedicated. Use the device tree property as a | 
 | 	 * fallback. cpu_to_phys_id is only valid between | 
 | 	 * smp_setup_cpu_maps() and smp_setup_pacas(). | 
 | 	 */ | 
 | 	if (firmware_has_feature(FW_FEATURE_VPHN)) { | 
 | 		if (cpu_to_phys_id) | 
 | 			hwid = cpu_to_phys_id[lcpu]; | 
 | 		else | 
 | 			hwid = get_hard_smp_processor_id(lcpu); | 
 |  | 
 | 		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); | 
 | 		if (rc == H_SUCCESS) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int vphn_get_nid(long lcpu) | 
 | { | 
 | 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | 
 |  | 
 |  | 
 | 	if (!__vphn_get_associativity(lcpu, associativity)) | 
 | 		return associativity_to_nid(associativity); | 
 |  | 
 | 	return NUMA_NO_NODE; | 
 |  | 
 | } | 
 | #else | 
 |  | 
 | static int __vphn_get_associativity(long lcpu, __be32 *associativity) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int vphn_get_nid(long unused) | 
 | { | 
 | 	return NUMA_NO_NODE; | 
 | } | 
 | #endif  /* CONFIG_PPC_SPLPAR */ | 
 |  | 
 | /* | 
 |  * Figure out to which domain a cpu belongs and stick it there. | 
 |  * Return the id of the domain used. | 
 |  */ | 
 | static int numa_setup_cpu(unsigned long lcpu) | 
 | { | 
 | 	struct device_node *cpu; | 
 | 	int fcpu = cpu_first_thread_sibling(lcpu); | 
 | 	int nid = NUMA_NO_NODE; | 
 |  | 
 | 	if (!cpu_present(lcpu)) { | 
 | 		set_cpu_numa_node(lcpu, first_online_node); | 
 | 		return first_online_node; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If a valid cpu-to-node mapping is already available, use it | 
 | 	 * directly instead of querying the firmware, since it represents | 
 | 	 * the most recent mapping notified to us by the platform (eg: VPHN). | 
 | 	 * Since cpu_to_node binding remains the same for all threads in the | 
 | 	 * core. If a valid cpu-to-node mapping is already available, for | 
 | 	 * the first thread in the core, use it. | 
 | 	 */ | 
 | 	nid = numa_cpu_lookup_table[fcpu]; | 
 | 	if (nid >= 0) { | 
 | 		map_cpu_to_node(lcpu, nid); | 
 | 		return nid; | 
 | 	} | 
 |  | 
 | 	nid = vphn_get_nid(lcpu); | 
 | 	if (nid != NUMA_NO_NODE) | 
 | 		goto out_present; | 
 |  | 
 | 	cpu = of_get_cpu_node(lcpu, NULL); | 
 |  | 
 | 	if (!cpu) { | 
 | 		WARN_ON(1); | 
 | 		if (cpu_present(lcpu)) | 
 | 			goto out_present; | 
 | 		else | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	nid = of_node_to_nid_single(cpu); | 
 | 	of_node_put(cpu); | 
 |  | 
 | out_present: | 
 | 	if (nid < 0 || !node_possible(nid)) | 
 | 		nid = first_online_node; | 
 |  | 
 | 	/* | 
 | 	 * Update for the first thread of the core. All threads of a core | 
 | 	 * have to be part of the same node. This not only avoids querying | 
 | 	 * for every other thread in the core, but always avoids a case | 
 | 	 * where virtual node associativity change causes subsequent threads | 
 | 	 * of a core to be associated with different nid. However if first | 
 | 	 * thread is already online, expect it to have a valid mapping. | 
 | 	 */ | 
 | 	if (fcpu != lcpu) { | 
 | 		WARN_ON(cpu_online(fcpu)); | 
 | 		map_cpu_to_node(fcpu, nid); | 
 | 	} | 
 |  | 
 | 	map_cpu_to_node(lcpu, nid); | 
 | out: | 
 | 	return nid; | 
 | } | 
 |  | 
 | static void verify_cpu_node_mapping(int cpu, int node) | 
 | { | 
 | 	int base, sibling, i; | 
 |  | 
 | 	/* Verify that all the threads in the core belong to the same node */ | 
 | 	base = cpu_first_thread_sibling(cpu); | 
 |  | 
 | 	for (i = 0; i < threads_per_core; i++) { | 
 | 		sibling = base + i; | 
 |  | 
 | 		if (sibling == cpu || cpu_is_offline(sibling)) | 
 | 			continue; | 
 |  | 
 | 		if (cpu_to_node(sibling) != node) { | 
 | 			WARN(1, "CPU thread siblings %d and %d don't belong" | 
 | 				" to the same node!\n", cpu, sibling); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Must run before sched domains notifier. */ | 
 | static int ppc_numa_cpu_prepare(unsigned int cpu) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	nid = numa_setup_cpu(cpu); | 
 | 	verify_cpu_node_mapping(cpu, nid); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ppc_numa_cpu_dead(unsigned int cpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check and possibly modify a memory region to enforce the memory limit. | 
 |  * | 
 |  * Returns the size the region should have to enforce the memory limit. | 
 |  * This will either be the original value of size, a truncated value, | 
 |  * or zero. If the returned value of size is 0 the region should be | 
 |  * discarded as it lies wholly above the memory limit. | 
 |  */ | 
 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
 | 						      unsigned long size) | 
 | { | 
 | 	/* | 
 | 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because | 
 | 	 * we've already adjusted it for the limit and it takes care of | 
 | 	 * having memory holes below the limit.  Also, in the case of | 
 | 	 * iommu_is_off, memory_limit is not set but is implicitly enforced. | 
 | 	 */ | 
 |  | 
 | 	if (start + size <= memblock_end_of_DRAM()) | 
 | 		return size; | 
 |  | 
 | 	if (start >= memblock_end_of_DRAM()) | 
 | 		return 0; | 
 |  | 
 | 	return memblock_end_of_DRAM() - start; | 
 | } | 
 |  | 
 | /* | 
 |  * Reads the counter for a given entry in | 
 |  * linux,drconf-usable-memory property | 
 |  */ | 
 | static inline int __init read_usm_ranges(const __be32 **usm) | 
 | { | 
 | 	/* | 
 | 	 * For each lmb in ibm,dynamic-memory a corresponding | 
 | 	 * entry in linux,drconf-usable-memory property contains | 
 | 	 * a counter followed by that many (base, size) duple. | 
 | 	 * read the counter from linux,drconf-usable-memory | 
 | 	 */ | 
 | 	return read_n_cells(n_mem_size_cells, usm); | 
 | } | 
 |  | 
 | /* | 
 |  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | 
 |  * node.  This assumes n_mem_{addr,size}_cells have been set. | 
 |  */ | 
 | static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, | 
 | 					const __be32 **usm, | 
 | 					void *data) | 
 | { | 
 | 	unsigned int ranges, is_kexec_kdump = 0; | 
 | 	unsigned long base, size, sz; | 
 | 	int nid; | 
 |  | 
 | 	/* | 
 | 	 * Skip this block if the reserved bit is set in flags (0x80) | 
 | 	 * or if the block is not assigned to this partition (0x8) | 
 | 	 */ | 
 | 	if ((lmb->flags & DRCONF_MEM_RESERVED) | 
 | 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | 
 | 		return 0; | 
 |  | 
 | 	if (*usm) | 
 | 		is_kexec_kdump = 1; | 
 |  | 
 | 	base = lmb->base_addr; | 
 | 	size = drmem_lmb_size(); | 
 | 	ranges = 1; | 
 |  | 
 | 	if (is_kexec_kdump) { | 
 | 		ranges = read_usm_ranges(usm); | 
 | 		if (!ranges) /* there are no (base, size) duple */ | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		if (is_kexec_kdump) { | 
 | 			base = read_n_cells(n_mem_addr_cells, usm); | 
 | 			size = read_n_cells(n_mem_size_cells, usm); | 
 | 		} | 
 |  | 
 | 		nid = get_nid_and_numa_distance(lmb); | 
 | 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), | 
 | 					  &nid); | 
 | 		node_set_online(nid); | 
 | 		sz = numa_enforce_memory_limit(base, size); | 
 | 		if (sz) | 
 | 			memblock_set_node(base, sz, &memblock.memory, nid); | 
 | 	} while (--ranges); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init parse_numa_properties(void) | 
 | { | 
 | 	struct device_node *memory, *pci; | 
 | 	int default_nid = 0; | 
 | 	unsigned long i; | 
 | 	const __be32 *associativity; | 
 |  | 
 | 	if (numa_enabled == 0) { | 
 | 		pr_warn("disabled by user\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	primary_domain_index = find_primary_domain_index(); | 
 |  | 
 | 	if (primary_domain_index < 0) { | 
 | 		/* | 
 | 		 * if we fail to parse primary_domain_index from device tree | 
 | 		 * mark the numa disabled, boot with numa disabled. | 
 | 		 */ | 
 | 		numa_enabled = false; | 
 | 		return primary_domain_index; | 
 | 	} | 
 |  | 
 | 	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index); | 
 |  | 
 | 	/* | 
 | 	 * If it is FORM2 initialize the distance table here. | 
 | 	 */ | 
 | 	if (affinity_form == FORM2_AFFINITY) | 
 | 		initialize_form2_numa_distance_lookup_table(); | 
 |  | 
 | 	/* | 
 | 	 * Even though we connect cpus to numa domains later in SMP | 
 | 	 * init, we need to know the node ids now. This is because | 
 | 	 * each node to be onlined must have NODE_DATA etc backing it. | 
 | 	 */ | 
 | 	for_each_present_cpu(i) { | 
 | 		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE]; | 
 | 		struct device_node *cpu; | 
 | 		int nid = NUMA_NO_NODE; | 
 |  | 
 | 		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32)); | 
 |  | 
 | 		if (__vphn_get_associativity(i, vphn_assoc) == 0) { | 
 | 			nid = associativity_to_nid(vphn_assoc); | 
 | 			initialize_form1_numa_distance(vphn_assoc); | 
 | 		} else { | 
 |  | 
 | 			/* | 
 | 			 * Don't fall back to default_nid yet -- we will plug | 
 | 			 * cpus into nodes once the memory scan has discovered | 
 | 			 * the topology. | 
 | 			 */ | 
 | 			cpu = of_get_cpu_node(i, NULL); | 
 | 			BUG_ON(!cpu); | 
 |  | 
 | 			associativity = of_get_associativity(cpu); | 
 | 			if (associativity) { | 
 | 				nid = associativity_to_nid(associativity); | 
 | 				initialize_form1_numa_distance(associativity); | 
 | 			} | 
 | 			of_node_put(cpu); | 
 | 		} | 
 |  | 
 | 		/* node_set_online() is an UB if 'nid' is negative */ | 
 | 		if (likely(nid >= 0)) | 
 | 			node_set_online(nid); | 
 | 	} | 
 |  | 
 | 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
 |  | 
 | 	for_each_node_by_type(memory, "memory") { | 
 | 		unsigned long start; | 
 | 		unsigned long size; | 
 | 		int nid; | 
 | 		int ranges; | 
 | 		const __be32 *memcell_buf; | 
 | 		unsigned int len; | 
 |  | 
 | 		memcell_buf = of_get_property(memory, | 
 | 			"linux,usable-memory", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			memcell_buf = of_get_property(memory, "reg", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			continue; | 
 |  | 
 | 		/* ranges in cell */ | 
 | 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
 | new_range: | 
 | 		/* these are order-sensitive, and modify the buffer pointer */ | 
 | 		start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
 | 		size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
 |  | 
 | 		/* | 
 | 		 * Assumption: either all memory nodes or none will | 
 | 		 * have associativity properties.  If none, then | 
 | 		 * everything goes to default_nid. | 
 | 		 */ | 
 | 		associativity = of_get_associativity(memory); | 
 | 		if (associativity) { | 
 | 			nid = associativity_to_nid(associativity); | 
 | 			initialize_form1_numa_distance(associativity); | 
 | 		} else | 
 | 			nid = default_nid; | 
 |  | 
 | 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | 
 | 		node_set_online(nid); | 
 |  | 
 | 		size = numa_enforce_memory_limit(start, size); | 
 | 		if (size) | 
 | 			memblock_set_node(start, size, &memblock.memory, nid); | 
 |  | 
 | 		if (--ranges) | 
 | 			goto new_range; | 
 | 	} | 
 |  | 
 | 	for_each_node_by_name(pci, "pci") { | 
 | 		int nid = NUMA_NO_NODE; | 
 |  | 
 | 		associativity = of_get_associativity(pci); | 
 | 		if (associativity) { | 
 | 			nid = associativity_to_nid(associativity); | 
 | 			initialize_form1_numa_distance(associativity); | 
 | 		} | 
 | 		if (likely(nid >= 0) && !node_online(nid)) | 
 | 			node_set_online(nid); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now do the same thing for each MEMBLOCK listed in the | 
 | 	 * ibm,dynamic-memory property in the | 
 | 	 * ibm,dynamic-reconfiguration-memory node. | 
 | 	 */ | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) { | 
 | 		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); | 
 | 		of_node_put(memory); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init setup_nonnuma(void) | 
 | { | 
 | 	unsigned long top_of_ram = memblock_end_of_DRAM(); | 
 | 	unsigned long total_ram = memblock_phys_mem_size(); | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	unsigned int nid = 0; | 
 | 	int i; | 
 |  | 
 | 	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); | 
 | 	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { | 
 | 		fake_numa_create_new_node(end_pfn, &nid); | 
 | 		memblock_set_node(PFN_PHYS(start_pfn), | 
 | 				  PFN_PHYS(end_pfn - start_pfn), | 
 | 				  &memblock.memory, nid); | 
 | 		node_set_online(nid); | 
 | 	} | 
 | } | 
 |  | 
 | void __init dump_numa_cpu_topology(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int cpu, count; | 
 |  | 
 | 	if (!numa_enabled) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		pr_info("Node %d CPUs:", node); | 
 |  | 
 | 		count = 0; | 
 | 		/* | 
 | 		 * If we used a CPU iterator here we would miss printing | 
 | 		 * the holes in the cpumap. | 
 | 		 */ | 
 | 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) { | 
 | 			if (cpumask_test_cpu(cpu, | 
 | 					node_to_cpumask_map[node])) { | 
 | 				if (count == 0) | 
 | 					pr_cont(" %u", cpu); | 
 | 				++count; | 
 | 			} else { | 
 | 				if (count > 1) | 
 | 					pr_cont("-%u", cpu - 1); | 
 | 				count = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (count > 1) | 
 | 			pr_cont("-%u", nr_cpu_ids - 1); | 
 | 		pr_cont("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* Initialize NODE_DATA for a node on the local memory */ | 
 | static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) | 
 | { | 
 | 	u64 spanned_pages = end_pfn - start_pfn; | 
 |  | 
 | 	alloc_node_data(nid); | 
 |  | 
 | 	NODE_DATA(nid)->node_id = nid; | 
 | 	NODE_DATA(nid)->node_start_pfn = start_pfn; | 
 | 	NODE_DATA(nid)->node_spanned_pages = spanned_pages; | 
 | } | 
 |  | 
 | static void __init find_possible_nodes(void) | 
 | { | 
 | 	struct device_node *rtas, *root; | 
 | 	const __be32 *domains = NULL; | 
 | 	int prop_length, max_nodes; | 
 | 	u32 i; | 
 |  | 
 | 	if (!numa_enabled) | 
 | 		return; | 
 |  | 
 | 	rtas = of_find_node_by_path("/rtas"); | 
 | 	if (!rtas) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * ibm,current-associativity-domains is a fairly recent property. If | 
 | 	 * it doesn't exist, then fallback on ibm,max-associativity-domains. | 
 | 	 * Current denotes what the platform can support compared to max | 
 | 	 * which denotes what the Hypervisor can support. | 
 | 	 * | 
 | 	 * If the LPAR is migratable, new nodes might be activated after a LPM, | 
 | 	 * so we should consider the max number in that case. | 
 | 	 */ | 
 | 	root = of_find_node_by_path("/"); | 
 | 	if (!of_get_property(root, "ibm,migratable-partition", NULL)) | 
 | 		domains = of_get_property(rtas, | 
 | 					  "ibm,current-associativity-domains", | 
 | 					  &prop_length); | 
 | 	of_node_put(root); | 
 | 	if (!domains) { | 
 | 		domains = of_get_property(rtas, "ibm,max-associativity-domains", | 
 | 					&prop_length); | 
 | 		if (!domains) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	max_nodes = of_read_number(&domains[primary_domain_index], 1); | 
 | 	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes); | 
 |  | 
 | 	for (i = 0; i < max_nodes; i++) { | 
 | 		if (!node_possible(i)) | 
 | 			node_set(i, node_possible_map); | 
 | 	} | 
 |  | 
 | 	prop_length /= sizeof(int); | 
 | 	if (prop_length > primary_domain_index + 2) | 
 | 		coregroup_enabled = 1; | 
 |  | 
 | out: | 
 | 	of_node_put(rtas); | 
 | } | 
 |  | 
 | void __init mem_topology_setup(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
 | 	min_low_pfn = MEMORY_START >> PAGE_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Linux/mm assumes node 0 to be online at boot. However this is not | 
 | 	 * true on PowerPC, where node 0 is similar to any other node, it | 
 | 	 * could be cpuless, memoryless node. So force node 0 to be offline | 
 | 	 * for now. This will prevent cpuless, memoryless node 0 showing up | 
 | 	 * unnecessarily as online. If a node has cpus or memory that need | 
 | 	 * to be online, then node will anyway be marked online. | 
 | 	 */ | 
 | 	node_set_offline(0); | 
 |  | 
 | 	if (parse_numa_properties()) | 
 | 		setup_nonnuma(); | 
 |  | 
 | 	/* | 
 | 	 * Modify the set of possible NUMA nodes to reflect information | 
 | 	 * available about the set of online nodes, and the set of nodes | 
 | 	 * that we expect to make use of for this platform's affinity | 
 | 	 * calculations. | 
 | 	 */ | 
 | 	nodes_and(node_possible_map, node_possible_map, node_online_map); | 
 |  | 
 | 	find_possible_nodes(); | 
 |  | 
 | 	setup_node_to_cpumask_map(); | 
 |  | 
 | 	reset_numa_cpu_lookup_table(); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		/* | 
 | 		 * Powerpc with CONFIG_NUMA always used to have a node 0, | 
 | 		 * even if it was memoryless or cpuless. For all cpus that | 
 | 		 * are possible but not present, cpu_to_node() would point | 
 | 		 * to node 0. To remove a cpuless, memoryless dummy node, | 
 | 		 * powerpc need to make sure all possible but not present | 
 | 		 * cpu_to_node are set to a proper node. | 
 | 		 */ | 
 | 		numa_setup_cpu(cpu); | 
 | 	} | 
 | } | 
 |  | 
 | void __init initmem_init(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	memblock_dump_all(); | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 | 		setup_node_data(nid, start_pfn, end_pfn); | 
 | 	} | 
 |  | 
 | 	sparse_init(); | 
 |  | 
 | 	/* | 
 | 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs, | 
 | 	 * even before we online them, so that we can use cpu_to_{node,mem} | 
 | 	 * early in boot, cf. smp_prepare_cpus(). | 
 | 	 * _nocalls() + manual invocation is used because cpuhp is not yet | 
 | 	 * initialized for the boot CPU. | 
 | 	 */ | 
 | 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", | 
 | 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead); | 
 | } | 
 |  | 
 | static int __init early_numa(char *p) | 
 | { | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	if (strstr(p, "off")) | 
 | 		numa_enabled = 0; | 
 |  | 
 | 	p = strstr(p, "fake="); | 
 | 	if (p) | 
 | 		cmdline = p + strlen("fake="); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("numa", early_numa); | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | /* | 
 |  * Find the node associated with a hot added memory section for | 
 |  * memory represented in the device tree by the property | 
 |  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. | 
 |  */ | 
 | static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct drmem_lmb *lmb; | 
 | 	unsigned long lmb_size; | 
 | 	int nid = NUMA_NO_NODE; | 
 |  | 
 | 	lmb_size = drmem_lmb_size(); | 
 |  | 
 | 	for_each_drmem_lmb(lmb) { | 
 | 		/* skip this block if it is reserved or not assigned to | 
 | 		 * this partition */ | 
 | 		if ((lmb->flags & DRCONF_MEM_RESERVED) | 
 | 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | 
 | 			continue; | 
 |  | 
 | 		if ((scn_addr < lmb->base_addr) | 
 | 		    || (scn_addr >= (lmb->base_addr + lmb_size))) | 
 | 			continue; | 
 |  | 
 | 		nid = of_drconf_to_nid_single(lmb); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section for memory | 
 |  * represented in the device tree as a node (i.e. memory@XXXX) for | 
 |  * each memblock. | 
 |  */ | 
 | static int hot_add_node_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct device_node *memory; | 
 | 	int nid = NUMA_NO_NODE; | 
 |  | 
 | 	for_each_node_by_type(memory, "memory") { | 
 | 		int i = 0; | 
 |  | 
 | 		while (1) { | 
 | 			struct resource res; | 
 |  | 
 | 			if (of_address_to_resource(memory, i++, &res)) | 
 | 				break; | 
 |  | 
 | 			if ((scn_addr < res.start) || (scn_addr > res.end)) | 
 | 				continue; | 
 |  | 
 | 			nid = of_node_to_nid_single(memory); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (nid >= 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	of_node_put(memory); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section.  Section | 
 |  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that | 
 |  * sections are fully contained within a single MEMBLOCK. | 
 |  */ | 
 | int hot_add_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 | 	int nid; | 
 |  | 
 | 	if (!numa_enabled) | 
 | 		return first_online_node; | 
 |  | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) { | 
 | 		nid = hot_add_drconf_scn_to_nid(scn_addr); | 
 | 		of_node_put(memory); | 
 | 	} else { | 
 | 		nid = hot_add_node_scn_to_nid(scn_addr); | 
 | 	} | 
 |  | 
 | 	if (nid < 0 || !node_possible(nid)) | 
 | 		nid = first_online_node; | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | u64 hot_add_drconf_memory_max(void) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 | 	struct device_node *dn = NULL; | 
 | 	const __be64 *lrdr = NULL; | 
 |  | 
 | 	dn = of_find_node_by_path("/rtas"); | 
 | 	if (dn) { | 
 | 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); | 
 | 		of_node_put(dn); | 
 | 		if (lrdr) | 
 | 			return be64_to_cpup(lrdr); | 
 | 	} | 
 |  | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) { | 
 | 		of_node_put(memory); | 
 | 		return drmem_lmb_memory_max(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * memory_hotplug_max - return max address of memory that may be added | 
 |  * | 
 |  * This is currently only used on systems that support drconfig memory | 
 |  * hotplug. | 
 |  */ | 
 | u64 memory_hotplug_max(void) | 
 | { | 
 |         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | /* Virtual Processor Home Node (VPHN) support */ | 
 | #ifdef CONFIG_PPC_SPLPAR | 
 | static int topology_inited; | 
 |  | 
 | /* | 
 |  * Retrieve the new associativity information for a virtual processor's | 
 |  * home node. | 
 |  */ | 
 | static long vphn_get_associativity(unsigned long cpu, | 
 | 					__be32 *associativity) | 
 | { | 
 | 	long rc; | 
 |  | 
 | 	rc = hcall_vphn(get_hard_smp_processor_id(cpu), | 
 | 				VPHN_FLAG_VCPU, associativity); | 
 |  | 
 | 	switch (rc) { | 
 | 	case H_SUCCESS: | 
 | 		pr_debug("VPHN hcall succeeded. Reset polling...\n"); | 
 | 		goto out; | 
 |  | 
 | 	case H_FUNCTION: | 
 | 		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); | 
 | 		break; | 
 | 	case H_HARDWARE: | 
 | 		pr_err_ratelimited("hcall_vphn() experienced a hardware fault " | 
 | 			"preventing VPHN. Disabling polling...\n"); | 
 | 		break; | 
 | 	case H_PARAMETER: | 
 | 		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " | 
 | 			"Disabling polling...\n"); | 
 | 		break; | 
 | 	default: | 
 | 		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" | 
 | 			, rc); | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | void find_and_update_cpu_nid(int cpu) | 
 | { | 
 | 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | 
 | 	int new_nid; | 
 |  | 
 | 	/* Use associativity from first thread for all siblings */ | 
 | 	if (vphn_get_associativity(cpu, associativity)) | 
 | 		return; | 
 |  | 
 | 	/* Do not have previous associativity, so find it now. */ | 
 | 	new_nid = associativity_to_nid(associativity); | 
 |  | 
 | 	if (new_nid < 0 || !node_possible(new_nid)) | 
 | 		new_nid = first_online_node; | 
 | 	else | 
 | 		// Associate node <-> cpu, so cpu_up() calls | 
 | 		// try_online_node() on the right node. | 
 | 		set_cpu_numa_node(cpu, new_nid); | 
 |  | 
 | 	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid); | 
 | } | 
 |  | 
 | int cpu_to_coregroup_id(int cpu) | 
 | { | 
 | 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | 
 | 	int index; | 
 |  | 
 | 	if (cpu < 0 || cpu > nr_cpu_ids) | 
 | 		return -1; | 
 |  | 
 | 	if (!coregroup_enabled) | 
 | 		goto out; | 
 |  | 
 | 	if (!firmware_has_feature(FW_FEATURE_VPHN)) | 
 | 		goto out; | 
 |  | 
 | 	if (vphn_get_associativity(cpu, associativity)) | 
 | 		goto out; | 
 |  | 
 | 	index = of_read_number(associativity, 1); | 
 | 	if (index > primary_domain_index + 1) | 
 | 		return of_read_number(&associativity[index - 1], 1); | 
 |  | 
 | out: | 
 | 	return cpu_to_core_id(cpu); | 
 | } | 
 |  | 
 | static int topology_update_init(void) | 
 | { | 
 | 	topology_inited = 1; | 
 | 	return 0; | 
 | } | 
 | device_initcall(topology_update_init); | 
 | #endif /* CONFIG_PPC_SPLPAR */ |