|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * | 
|  | * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kernel.h> | 
|  |  | 
|  | #include "debug.h" | 
|  | #include "ntfs.h" | 
|  | #include "ntfs_fs.h" | 
|  |  | 
|  | static const struct INDEX_NAMES { | 
|  | const __le16 *name; | 
|  | u8 name_len; | 
|  | } s_index_names[INDEX_MUTEX_TOTAL] = { | 
|  | { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, | 
|  | { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, | 
|  | { SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * cmp_fnames - Compare two names in index. | 
|  | * | 
|  | * if l1 != 0 | 
|  | *   Both names are little endian on-disk ATTR_FILE_NAME structs. | 
|  | * else | 
|  | *   key1 - cpu_str, key2 - ATTR_FILE_NAME | 
|  | */ | 
|  | static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, | 
|  | const void *data) | 
|  | { | 
|  | const struct ATTR_FILE_NAME *f2 = key2; | 
|  | const struct ntfs_sb_info *sbi = data; | 
|  | const struct ATTR_FILE_NAME *f1; | 
|  | u16 fsize2; | 
|  | bool both_case; | 
|  |  | 
|  | if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) | 
|  | return -1; | 
|  |  | 
|  | fsize2 = fname_full_size(f2); | 
|  | if (l2 < fsize2) | 
|  | return -1; | 
|  |  | 
|  | both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase; | 
|  | if (!l1) { | 
|  | const struct le_str *s2 = (struct le_str *)&f2->name_len; | 
|  |  | 
|  | /* | 
|  | * If names are equal (case insensitive) | 
|  | * try to compare it case sensitive. | 
|  | */ | 
|  | return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); | 
|  | } | 
|  |  | 
|  | f1 = key1; | 
|  | return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, | 
|  | sbi->upcase, both_case); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cmp_uint - $SII of $Secure and $Q of Quota | 
|  | */ | 
|  | static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, | 
|  | const void *data) | 
|  | { | 
|  | const u32 *k1 = key1; | 
|  | const u32 *k2 = key2; | 
|  |  | 
|  | if (l2 < sizeof(u32)) | 
|  | return -1; | 
|  |  | 
|  | if (*k1 < *k2) | 
|  | return -1; | 
|  | if (*k1 > *k2) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cmp_sdh - $SDH of $Secure | 
|  | */ | 
|  | static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, | 
|  | const void *data) | 
|  | { | 
|  | const struct SECURITY_KEY *k1 = key1; | 
|  | const struct SECURITY_KEY *k2 = key2; | 
|  | u32 t1, t2; | 
|  |  | 
|  | if (l2 < sizeof(struct SECURITY_KEY)) | 
|  | return -1; | 
|  |  | 
|  | t1 = le32_to_cpu(k1->hash); | 
|  | t2 = le32_to_cpu(k2->hash); | 
|  |  | 
|  | /* First value is a hash value itself. */ | 
|  | if (t1 < t2) | 
|  | return -1; | 
|  | if (t1 > t2) | 
|  | return 1; | 
|  |  | 
|  | /* Second value is security Id. */ | 
|  | if (data) { | 
|  | t1 = le32_to_cpu(k1->sec_id); | 
|  | t2 = le32_to_cpu(k2->sec_id); | 
|  | if (t1 < t2) | 
|  | return -1; | 
|  | if (t1 > t2) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cmp_uints - $O of ObjId and "$R" for Reparse. | 
|  | */ | 
|  | static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, | 
|  | const void *data) | 
|  | { | 
|  | const __le32 *k1 = key1; | 
|  | const __le32 *k2 = key2; | 
|  | size_t count; | 
|  |  | 
|  | if ((size_t)data == 1) { | 
|  | /* | 
|  | * ni_delete_all -> ntfs_remove_reparse -> | 
|  | * delete all with this reference. | 
|  | * k1, k2 - pointers to REPARSE_KEY | 
|  | */ | 
|  |  | 
|  | k1 += 1; // Skip REPARSE_KEY.ReparseTag | 
|  | k2 += 1; // Skip REPARSE_KEY.ReparseTag | 
|  | if (l2 <= sizeof(int)) | 
|  | return -1; | 
|  | l2 -= sizeof(int); | 
|  | if (l1 <= sizeof(int)) | 
|  | return 1; | 
|  | l1 -= sizeof(int); | 
|  | } | 
|  |  | 
|  | if (l2 < sizeof(int)) | 
|  | return -1; | 
|  |  | 
|  | for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { | 
|  | u32 t1 = le32_to_cpu(*k1); | 
|  | u32 t2 = le32_to_cpu(*k2); | 
|  |  | 
|  | if (t1 > t2) | 
|  | return 1; | 
|  | if (t1 < t2) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (l1 > l2) | 
|  | return 1; | 
|  | if (l1 < l2) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) | 
|  | { | 
|  | switch (root->type) { | 
|  | case ATTR_NAME: | 
|  | if (root->rule == NTFS_COLLATION_TYPE_FILENAME) | 
|  | return &cmp_fnames; | 
|  | break; | 
|  | case ATTR_ZERO: | 
|  | switch (root->rule) { | 
|  | case NTFS_COLLATION_TYPE_UINT: | 
|  | return &cmp_uint; | 
|  | case NTFS_COLLATION_TYPE_SECURITY_HASH: | 
|  | return &cmp_sdh; | 
|  | case NTFS_COLLATION_TYPE_UINTS: | 
|  | return &cmp_uints; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct bmp_buf { | 
|  | struct ATTRIB *b; | 
|  | struct mft_inode *mi; | 
|  | struct buffer_head *bh; | 
|  | ulong *buf; | 
|  | size_t bit; | 
|  | u32 nbits; | 
|  | u64 new_valid; | 
|  | }; | 
|  |  | 
|  | static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | size_t bit, struct bmp_buf *bbuf) | 
|  | { | 
|  | struct ATTRIB *b; | 
|  | size_t data_size, valid_size, vbo, off = bit >> 3; | 
|  | struct ntfs_sb_info *sbi = ni->mi.sbi; | 
|  | CLST vcn = off >> sbi->cluster_bits; | 
|  | struct ATTR_LIST_ENTRY *le = NULL; | 
|  | struct buffer_head *bh; | 
|  | struct super_block *sb; | 
|  | u32 blocksize; | 
|  | const struct INDEX_NAMES *in = &s_index_names[indx->type]; | 
|  |  | 
|  | bbuf->bh = NULL; | 
|  |  | 
|  | b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, | 
|  | &vcn, &bbuf->mi); | 
|  | bbuf->b = b; | 
|  | if (!b) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!b->non_res) { | 
|  | data_size = le32_to_cpu(b->res.data_size); | 
|  |  | 
|  | if (off >= data_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | bbuf->buf = (ulong *)resident_data(b); | 
|  | bbuf->bit = 0; | 
|  | bbuf->nbits = data_size * 8; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | data_size = le64_to_cpu(b->nres.data_size); | 
|  | if (WARN_ON(off >= data_size)) { | 
|  | /* Looks like filesystem error. */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | valid_size = le64_to_cpu(b->nres.valid_size); | 
|  |  | 
|  | bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); | 
|  | if (!bh) | 
|  | return -EIO; | 
|  |  | 
|  | if (IS_ERR(bh)) | 
|  | return PTR_ERR(bh); | 
|  |  | 
|  | bbuf->bh = bh; | 
|  |  | 
|  | if (buffer_locked(bh)) | 
|  | __wait_on_buffer(bh); | 
|  |  | 
|  | lock_buffer(bh); | 
|  |  | 
|  | sb = sbi->sb; | 
|  | blocksize = sb->s_blocksize; | 
|  |  | 
|  | vbo = off & ~(size_t)sbi->block_mask; | 
|  |  | 
|  | bbuf->new_valid = vbo + blocksize; | 
|  | if (bbuf->new_valid <= valid_size) | 
|  | bbuf->new_valid = 0; | 
|  | else if (bbuf->new_valid > data_size) | 
|  | bbuf->new_valid = data_size; | 
|  |  | 
|  | if (vbo >= valid_size) { | 
|  | memset(bh->b_data, 0, blocksize); | 
|  | } else if (vbo + blocksize > valid_size) { | 
|  | u32 voff = valid_size & sbi->block_mask; | 
|  |  | 
|  | memset(bh->b_data + voff, 0, blocksize - voff); | 
|  | } | 
|  |  | 
|  | bbuf->buf = (ulong *)bh->b_data; | 
|  | bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); | 
|  | bbuf->nbits = 8 * blocksize; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) | 
|  | { | 
|  | struct buffer_head *bh = bbuf->bh; | 
|  | struct ATTRIB *b = bbuf->b; | 
|  |  | 
|  | if (!bh) { | 
|  | if (b && !b->non_res && dirty) | 
|  | bbuf->mi->dirty = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!dirty) | 
|  | goto out; | 
|  |  | 
|  | if (bbuf->new_valid) { | 
|  | b->nres.valid_size = cpu_to_le64(bbuf->new_valid); | 
|  | bbuf->mi->dirty = true; | 
|  | } | 
|  |  | 
|  | set_buffer_uptodate(bh); | 
|  | mark_buffer_dirty(bh); | 
|  |  | 
|  | out: | 
|  | unlock_buffer(bh); | 
|  | put_bh(bh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_mark_used - Mark the bit @bit as used. | 
|  | */ | 
|  | static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | size_t bit) | 
|  | { | 
|  | int err; | 
|  | struct bmp_buf bbuf; | 
|  |  | 
|  | err = bmp_buf_get(indx, ni, bit, &bbuf); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | __set_bit_le(bit - bbuf.bit, bbuf.buf); | 
|  |  | 
|  | bmp_buf_put(&bbuf, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_mark_free - Mark the bit @bit as free. | 
|  | */ | 
|  | static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | size_t bit) | 
|  | { | 
|  | int err; | 
|  | struct bmp_buf bbuf; | 
|  |  | 
|  | err = bmp_buf_get(indx, ni, bit, &bbuf); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | __clear_bit_le(bit - bbuf.bit, bbuf.buf); | 
|  |  | 
|  | bmp_buf_put(&bbuf, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * scan_nres_bitmap | 
|  | * | 
|  | * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), | 
|  | * inode is shared locked and no ni_lock. | 
|  | * Use rw_semaphore for read/write access to bitmap_run. | 
|  | */ | 
|  | static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, | 
|  | struct ntfs_index *indx, size_t from, | 
|  | bool (*fn)(const ulong *buf, u32 bit, u32 bits, | 
|  | size_t *ret), | 
|  | size_t *ret) | 
|  | { | 
|  | struct ntfs_sb_info *sbi = ni->mi.sbi; | 
|  | struct super_block *sb = sbi->sb; | 
|  | struct runs_tree *run = &indx->bitmap_run; | 
|  | struct rw_semaphore *lock = &indx->run_lock; | 
|  | u32 nbits = sb->s_blocksize * 8; | 
|  | u32 blocksize = sb->s_blocksize; | 
|  | u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); | 
|  | u64 data_size = le64_to_cpu(bitmap->nres.data_size); | 
|  | sector_t eblock = bytes_to_block(sb, data_size); | 
|  | size_t vbo = from >> 3; | 
|  | sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; | 
|  | sector_t vblock = vbo >> sb->s_blocksize_bits; | 
|  | sector_t blen, block; | 
|  | CLST lcn, clen, vcn, vcn_next; | 
|  | size_t idx; | 
|  | struct buffer_head *bh; | 
|  | bool ok; | 
|  |  | 
|  | *ret = MINUS_ONE_T; | 
|  |  | 
|  | if (vblock >= eblock) | 
|  | return 0; | 
|  |  | 
|  | from &= nbits - 1; | 
|  | vcn = vbo >> sbi->cluster_bits; | 
|  |  | 
|  | down_read(lock); | 
|  | ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); | 
|  | up_read(lock); | 
|  |  | 
|  | next_run: | 
|  | if (!ok) { | 
|  | int err; | 
|  | const struct INDEX_NAMES *name = &s_index_names[indx->type]; | 
|  |  | 
|  | down_write(lock); | 
|  | err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, | 
|  | name->name_len, run, vcn); | 
|  | up_write(lock); | 
|  | if (err) | 
|  | return err; | 
|  | down_read(lock); | 
|  | ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); | 
|  | up_read(lock); | 
|  | if (!ok) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | blen = (sector_t)clen * sbi->blocks_per_cluster; | 
|  | block = (sector_t)lcn * sbi->blocks_per_cluster; | 
|  |  | 
|  | for (; blk < blen; blk++, from = 0) { | 
|  | bh = ntfs_bread(sb, block + blk); | 
|  | if (!bh) | 
|  | return -EIO; | 
|  |  | 
|  | vbo = (u64)vblock << sb->s_blocksize_bits; | 
|  | if (vbo >= valid_size) { | 
|  | memset(bh->b_data, 0, blocksize); | 
|  | } else if (vbo + blocksize > valid_size) { | 
|  | u32 voff = valid_size & sbi->block_mask; | 
|  |  | 
|  | memset(bh->b_data + voff, 0, blocksize - voff); | 
|  | } | 
|  |  | 
|  | if (vbo + blocksize > data_size) | 
|  | nbits = 8 * (data_size - vbo); | 
|  |  | 
|  | ok = nbits > from ? | 
|  | (*fn)((ulong *)bh->b_data, from, nbits, ret) : | 
|  | false; | 
|  | put_bh(bh); | 
|  |  | 
|  | if (ok) { | 
|  | *ret += 8 * vbo; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (++vblock >= eblock) { | 
|  | *ret = MINUS_ONE_T; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | blk = 0; | 
|  | vcn_next = vcn + clen; | 
|  | down_read(lock); | 
|  | ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; | 
|  | if (!ok) | 
|  | vcn = vcn_next; | 
|  | up_read(lock); | 
|  | goto next_run; | 
|  | } | 
|  |  | 
|  | static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) | 
|  | { | 
|  | size_t pos = find_next_zero_bit_le(buf, bits, bit); | 
|  |  | 
|  | if (pos >= bits) | 
|  | return false; | 
|  | *ret = pos; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_find_free - Look for free bit. | 
|  | * | 
|  | * Return: -1 if no free bits. | 
|  | */ | 
|  | static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | size_t *bit, struct ATTRIB **bitmap) | 
|  | { | 
|  | struct ATTRIB *b; | 
|  | struct ATTR_LIST_ENTRY *le = NULL; | 
|  | const struct INDEX_NAMES *in = &s_index_names[indx->type]; | 
|  | int err; | 
|  |  | 
|  | b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, | 
|  | NULL, NULL); | 
|  |  | 
|  | if (!b) | 
|  | return -ENOENT; | 
|  |  | 
|  | *bitmap = b; | 
|  | *bit = MINUS_ONE_T; | 
|  |  | 
|  | if (!b->non_res) { | 
|  | u32 nbits = 8 * le32_to_cpu(b->res.data_size); | 
|  | size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0); | 
|  |  | 
|  | if (pos < nbits) | 
|  | *bit = pos; | 
|  | } else { | 
|  | err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) | 
|  | { | 
|  | size_t pos = find_next_bit_le(buf, bits, bit); | 
|  |  | 
|  | if (pos >= bits) | 
|  | return false; | 
|  | *ret = pos; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_used_bit - Look for used bit. | 
|  | * | 
|  | * Return: MINUS_ONE_T if no used bits. | 
|  | */ | 
|  | int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) | 
|  | { | 
|  | struct ATTRIB *b; | 
|  | struct ATTR_LIST_ENTRY *le = NULL; | 
|  | size_t from = *bit; | 
|  | const struct INDEX_NAMES *in = &s_index_names[indx->type]; | 
|  | int err; | 
|  |  | 
|  | b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, | 
|  | NULL, NULL); | 
|  |  | 
|  | if (!b) | 
|  | return -ENOENT; | 
|  |  | 
|  | *bit = MINUS_ONE_T; | 
|  |  | 
|  | if (!b->non_res) { | 
|  | u32 nbits = le32_to_cpu(b->res.data_size) * 8; | 
|  | size_t pos = find_next_bit_le(resident_data(b), nbits, from); | 
|  |  | 
|  | if (pos < nbits) | 
|  | *bit = pos; | 
|  | } else { | 
|  | err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hdr_find_split | 
|  | * | 
|  | * Find a point at which the index allocation buffer would like to be split. | 
|  | * NOTE: This function should never return 'END' entry NULL returns on error. | 
|  | */ | 
|  | static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) | 
|  | { | 
|  | size_t o; | 
|  | const struct NTFS_DE *e = hdr_first_de(hdr); | 
|  | u32 used_2 = le32_to_cpu(hdr->used) >> 1; | 
|  | u16 esize; | 
|  |  | 
|  | if (!e || de_is_last(e)) | 
|  | return NULL; | 
|  |  | 
|  | esize = le16_to_cpu(e->size); | 
|  | for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { | 
|  | const struct NTFS_DE *p = e; | 
|  |  | 
|  | e = Add2Ptr(hdr, o); | 
|  |  | 
|  | /* We must not return END entry. */ | 
|  | if (de_is_last(e)) | 
|  | return p; | 
|  |  | 
|  | esize = le16_to_cpu(e->size); | 
|  | } | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hdr_insert_head - Insert some entries at the beginning of the buffer. | 
|  | * | 
|  | * It is used to insert entries into a newly-created buffer. | 
|  | */ | 
|  | static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, | 
|  | const void *ins, u32 ins_bytes) | 
|  | { | 
|  | u32 to_move; | 
|  | struct NTFS_DE *e = hdr_first_de(hdr); | 
|  | u32 used = le32_to_cpu(hdr->used); | 
|  |  | 
|  | if (!e) | 
|  | return NULL; | 
|  |  | 
|  | /* Now we just make room for the inserted entries and jam it in. */ | 
|  | to_move = used - le32_to_cpu(hdr->de_off); | 
|  | memmove(Add2Ptr(e, ins_bytes), e, to_move); | 
|  | memcpy(e, ins, ins_bytes); | 
|  | hdr->used = cpu_to_le32(used + ins_bytes); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * index_hdr_check | 
|  | * | 
|  | * return true if INDEX_HDR is valid | 
|  | */ | 
|  | static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes) | 
|  | { | 
|  | u32 end = le32_to_cpu(hdr->used); | 
|  | u32 tot = le32_to_cpu(hdr->total); | 
|  | u32 off = le32_to_cpu(hdr->de_off); | 
|  |  | 
|  | if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot || | 
|  | size_add(off, sizeof(struct NTFS_DE)) > end) { | 
|  | /* incorrect index buffer. */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * index_buf_check | 
|  | * | 
|  | * return true if INDEX_BUFFER seems is valid | 
|  | */ | 
|  | static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes, | 
|  | const CLST *vbn) | 
|  | { | 
|  | const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr; | 
|  | u16 fo = le16_to_cpu(rhdr->fix_off); | 
|  | u16 fn = le16_to_cpu(rhdr->fix_num); | 
|  |  | 
|  | if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) || | 
|  | rhdr->sign != NTFS_INDX_SIGNATURE || | 
|  | fo < sizeof(struct INDEX_BUFFER) | 
|  | /* Check index buffer vbn. */ | 
|  | || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) || | 
|  | fo + fn * sizeof(short) >= bytes || | 
|  | fn != ((bytes >> SECTOR_SHIFT) + 1)) { | 
|  | /* incorrect index buffer. */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return index_hdr_check(&ib->ihdr, | 
|  | bytes - offsetof(struct INDEX_BUFFER, ihdr)); | 
|  | } | 
|  |  | 
|  | void fnd_clear(struct ntfs_fnd *fnd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = fnd->level - 1; i >= 0; i--) { | 
|  | struct indx_node *n = fnd->nodes[i]; | 
|  |  | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | put_indx_node(n); | 
|  | fnd->nodes[i] = NULL; | 
|  | } | 
|  | fnd->level = 0; | 
|  | fnd->root_de = NULL; | 
|  | } | 
|  |  | 
|  | static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, | 
|  | struct NTFS_DE *e) | 
|  | { | 
|  | int i = fnd->level; | 
|  |  | 
|  | if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) | 
|  | return -EINVAL; | 
|  | fnd->nodes[i] = n; | 
|  | fnd->de[i] = e; | 
|  | fnd->level += 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) | 
|  | { | 
|  | struct indx_node *n; | 
|  | int i = fnd->level; | 
|  |  | 
|  | i -= 1; | 
|  | n = fnd->nodes[i]; | 
|  | fnd->nodes[i] = NULL; | 
|  | fnd->level = i; | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static bool fnd_is_empty(struct ntfs_fnd *fnd) | 
|  | { | 
|  | if (!fnd->level) | 
|  | return !fnd->root_de; | 
|  |  | 
|  | return !fnd->de[fnd->level - 1]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hdr_find_e - Locate an entry the index buffer. | 
|  | * | 
|  | * If no matching entry is found, it returns the first entry which is greater | 
|  | * than the desired entry If the search key is greater than all the entries the | 
|  | * buffer, it returns the 'end' entry. This function does a binary search of the | 
|  | * current index buffer, for the first entry that is <= to the search value. | 
|  | * | 
|  | * Return: NULL if error. | 
|  | */ | 
|  | static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, | 
|  | const struct INDEX_HDR *hdr, const void *key, | 
|  | size_t key_len, const void *ctx, int *diff) | 
|  | { | 
|  | struct NTFS_DE *e, *found = NULL; | 
|  | NTFS_CMP_FUNC cmp = indx->cmp; | 
|  | int min_idx = 0, mid_idx, max_idx = 0; | 
|  | int diff2; | 
|  | int table_size = 8; | 
|  | u32 e_size, e_key_len; | 
|  | u32 end = le32_to_cpu(hdr->used); | 
|  | u32 off = le32_to_cpu(hdr->de_off); | 
|  | u32 total = le32_to_cpu(hdr->total); | 
|  | u16 offs[128]; | 
|  |  | 
|  | if (unlikely(!cmp)) | 
|  | return NULL; | 
|  |  | 
|  | fill_table: | 
|  | if (end > total) | 
|  | return NULL; | 
|  |  | 
|  | if (size_add(off, sizeof(struct NTFS_DE)) > end) | 
|  | return NULL; | 
|  |  | 
|  | e = Add2Ptr(hdr, off); | 
|  | e_size = le16_to_cpu(e->size); | 
|  |  | 
|  | if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) | 
|  | return NULL; | 
|  |  | 
|  | if (!de_is_last(e)) { | 
|  | offs[max_idx] = off; | 
|  | off += e_size; | 
|  |  | 
|  | max_idx++; | 
|  | if (max_idx < table_size) | 
|  | goto fill_table; | 
|  |  | 
|  | max_idx--; | 
|  | } | 
|  |  | 
|  | binary_search: | 
|  | e_key_len = le16_to_cpu(e->key_size); | 
|  |  | 
|  | diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); | 
|  | if (diff2 > 0) { | 
|  | if (found) { | 
|  | min_idx = mid_idx + 1; | 
|  | } else { | 
|  | if (de_is_last(e)) | 
|  | return NULL; | 
|  |  | 
|  | max_idx = 0; | 
|  | table_size = min(table_size * 2, (int)ARRAY_SIZE(offs)); | 
|  | goto fill_table; | 
|  | } | 
|  | } else if (diff2 < 0) { | 
|  | if (found) | 
|  | max_idx = mid_idx - 1; | 
|  | else | 
|  | max_idx--; | 
|  |  | 
|  | found = e; | 
|  | } else { | 
|  | *diff = 0; | 
|  | return e; | 
|  | } | 
|  |  | 
|  | if (min_idx > max_idx) { | 
|  | *diff = -1; | 
|  | return found; | 
|  | } | 
|  |  | 
|  | mid_idx = (min_idx + max_idx) >> 1; | 
|  | e = Add2Ptr(hdr, offs[mid_idx]); | 
|  |  | 
|  | goto binary_search; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hdr_insert_de - Insert an index entry into the buffer. | 
|  | * | 
|  | * 'before' should be a pointer previously returned from hdr_find_e. | 
|  | */ | 
|  | static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, | 
|  | struct INDEX_HDR *hdr, | 
|  | const struct NTFS_DE *de, | 
|  | struct NTFS_DE *before, const void *ctx) | 
|  | { | 
|  | int diff; | 
|  | size_t off = PtrOffset(hdr, before); | 
|  | u32 used = le32_to_cpu(hdr->used); | 
|  | u32 total = le32_to_cpu(hdr->total); | 
|  | u16 de_size = le16_to_cpu(de->size); | 
|  |  | 
|  | /* First, check to see if there's enough room. */ | 
|  | if (used + de_size > total) | 
|  | return NULL; | 
|  |  | 
|  | /* We know there's enough space, so we know we'll succeed. */ | 
|  | if (before) { | 
|  | /* Check that before is inside Index. */ | 
|  | if (off >= used || off < le32_to_cpu(hdr->de_off) || | 
|  | off + le16_to_cpu(before->size) > total) { | 
|  | return NULL; | 
|  | } | 
|  | goto ok; | 
|  | } | 
|  | /* No insert point is applied. Get it manually. */ | 
|  | before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, | 
|  | &diff); | 
|  | if (!before) | 
|  | return NULL; | 
|  | off = PtrOffset(hdr, before); | 
|  |  | 
|  | ok: | 
|  | /* Now we just make room for the entry and jam it in. */ | 
|  | memmove(Add2Ptr(before, de_size), before, used - off); | 
|  |  | 
|  | hdr->used = cpu_to_le32(used + de_size); | 
|  | memcpy(before, de, de_size); | 
|  |  | 
|  | return before; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hdr_delete_de - Remove an entry from the index buffer. | 
|  | */ | 
|  | static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, | 
|  | struct NTFS_DE *re) | 
|  | { | 
|  | u32 used = le32_to_cpu(hdr->used); | 
|  | u16 esize = le16_to_cpu(re->size); | 
|  | u32 off = PtrOffset(hdr, re); | 
|  | int bytes = used - (off + esize); | 
|  |  | 
|  | /* check INDEX_HDR valid before using INDEX_HDR */ | 
|  | if (!check_index_header(hdr, le32_to_cpu(hdr->total))) | 
|  | return NULL; | 
|  |  | 
|  | if (off >= used || esize < sizeof(struct NTFS_DE) || | 
|  | bytes < sizeof(struct NTFS_DE)) | 
|  | return NULL; | 
|  |  | 
|  | hdr->used = cpu_to_le32(used - esize); | 
|  | memmove(re, Add2Ptr(re, esize), bytes); | 
|  |  | 
|  | return re; | 
|  | } | 
|  |  | 
|  | void indx_clear(struct ntfs_index *indx) | 
|  | { | 
|  | run_close(&indx->alloc_run); | 
|  | run_close(&indx->bitmap_run); | 
|  | } | 
|  |  | 
|  | int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, | 
|  | const struct ATTRIB *attr, enum index_mutex_classed type) | 
|  | { | 
|  | u32 t32; | 
|  | const struct INDEX_ROOT *root = resident_data(attr); | 
|  |  | 
|  | t32 = le32_to_cpu(attr->res.data_size); | 
|  | if (t32 <= offsetof(struct INDEX_ROOT, ihdr) || | 
|  | !index_hdr_check(&root->ihdr, | 
|  | t32 - offsetof(struct INDEX_ROOT, ihdr))) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check root fields. */ | 
|  | if (!root->index_block_clst) | 
|  | goto out; | 
|  |  | 
|  | indx->type = type; | 
|  | indx->idx2vbn_bits = __ffs(root->index_block_clst); | 
|  |  | 
|  | t32 = le32_to_cpu(root->index_block_size); | 
|  | indx->index_bits = blksize_bits(t32); | 
|  |  | 
|  | /* Check index record size. */ | 
|  | if (t32 < sbi->cluster_size) { | 
|  | /* Index record is smaller than a cluster, use 512 blocks. */ | 
|  | if (t32 != root->index_block_clst * SECTOR_SIZE) | 
|  | goto out; | 
|  |  | 
|  | /* Check alignment to a cluster. */ | 
|  | if ((sbi->cluster_size >> SECTOR_SHIFT) & | 
|  | (root->index_block_clst - 1)) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | indx->vbn2vbo_bits = SECTOR_SHIFT; | 
|  | } else { | 
|  | /* Index record must be a multiple of cluster size. */ | 
|  | if (t32 != root->index_block_clst << sbi->cluster_bits) | 
|  | goto out; | 
|  |  | 
|  | indx->vbn2vbo_bits = sbi->cluster_bits; | 
|  | } | 
|  |  | 
|  | init_rwsem(&indx->run_lock); | 
|  |  | 
|  | indx->cmp = get_cmp_func(root); | 
|  | if (!indx->cmp) | 
|  | goto out; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static struct indx_node *indx_new(struct ntfs_index *indx, | 
|  | struct ntfs_inode *ni, CLST vbn, | 
|  | const __le64 *sub_vbn) | 
|  | { | 
|  | int err; | 
|  | struct NTFS_DE *e; | 
|  | struct indx_node *r; | 
|  | struct INDEX_HDR *hdr; | 
|  | struct INDEX_BUFFER *index; | 
|  | u64 vbo = (u64)vbn << indx->vbn2vbo_bits; | 
|  | u32 bytes = 1u << indx->index_bits; | 
|  | u16 fn; | 
|  | u32 eo; | 
|  |  | 
|  | r = kzalloc(sizeof(struct indx_node), GFP_NOFS); | 
|  | if (!r) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | index = kzalloc(bytes, GFP_NOFS); | 
|  | if (!index) { | 
|  | kfree(r); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); | 
|  |  | 
|  | if (err) { | 
|  | kfree(index); | 
|  | kfree(r); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* Create header. */ | 
|  | index->rhdr.sign = NTFS_INDX_SIGNATURE; | 
|  | index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 | 
|  | fn = (bytes >> SECTOR_SHIFT) + 1; // 9 | 
|  | index->rhdr.fix_num = cpu_to_le16(fn); | 
|  | index->vbn = cpu_to_le64(vbn); | 
|  | hdr = &index->ihdr; | 
|  | eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); | 
|  | hdr->de_off = cpu_to_le32(eo); | 
|  |  | 
|  | e = Add2Ptr(hdr, eo); | 
|  |  | 
|  | if (sub_vbn) { | 
|  | e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; | 
|  | e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); | 
|  | hdr->used = | 
|  | cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); | 
|  | de_set_vbn_le(e, *sub_vbn); | 
|  | hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES; | 
|  | } else { | 
|  | e->size = cpu_to_le16(sizeof(struct NTFS_DE)); | 
|  | hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); | 
|  | e->flags = NTFS_IE_LAST; | 
|  | } | 
|  |  | 
|  | hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); | 
|  |  | 
|  | r->index = index; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | struct ATTRIB **attr, struct mft_inode **mi) | 
|  | { | 
|  | struct ATTR_LIST_ENTRY *le = NULL; | 
|  | struct ATTRIB *a; | 
|  | const struct INDEX_NAMES *in = &s_index_names[indx->type]; | 
|  | struct INDEX_ROOT *root; | 
|  |  | 
|  | a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, | 
|  | mi); | 
|  | if (!a) | 
|  | return NULL; | 
|  |  | 
|  | if (attr) | 
|  | *attr = a; | 
|  |  | 
|  | root = resident_data_ex(a, sizeof(struct INDEX_ROOT)); | 
|  |  | 
|  | /* length check */ | 
|  | if (root && | 
|  | offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) > | 
|  | le32_to_cpu(a->res.data_size)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | struct indx_node *node, int sync) | 
|  | { | 
|  | struct INDEX_BUFFER *ib = node->index; | 
|  |  | 
|  | return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_read | 
|  | * | 
|  | * If ntfs_readdir calls this function | 
|  | * inode is shared locked and no ni_lock. | 
|  | * Use rw_semaphore for read/write access to alloc_run. | 
|  | */ | 
|  | int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, | 
|  | struct indx_node **node) | 
|  | { | 
|  | int err; | 
|  | struct INDEX_BUFFER *ib; | 
|  | struct runs_tree *run = &indx->alloc_run; | 
|  | struct rw_semaphore *lock = &indx->run_lock; | 
|  | u64 vbo = (u64)vbn << indx->vbn2vbo_bits; | 
|  | u32 bytes = 1u << indx->index_bits; | 
|  | struct indx_node *in = *node; | 
|  | const struct INDEX_NAMES *name; | 
|  |  | 
|  | if (!in) { | 
|  | in = kzalloc(sizeof(struct indx_node), GFP_NOFS); | 
|  | if (!in) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | nb_put(&in->nb); | 
|  | } | 
|  |  | 
|  | ib = in->index; | 
|  | if (!ib) { | 
|  | ib = kmalloc(bytes, GFP_NOFS); | 
|  | if (!ib) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | down_read(lock); | 
|  | err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); | 
|  | up_read(lock); | 
|  | if (!err) | 
|  | goto ok; | 
|  |  | 
|  | if (err == -E_NTFS_FIXUP) | 
|  | goto ok; | 
|  |  | 
|  | if (err != -ENOENT) | 
|  | goto out; | 
|  |  | 
|  | name = &s_index_names[indx->type]; | 
|  | down_write(lock); | 
|  | err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, | 
|  | run, vbo, vbo + bytes); | 
|  | up_write(lock); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | down_read(lock); | 
|  | err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); | 
|  | up_read(lock); | 
|  | if (err == -E_NTFS_FIXUP) | 
|  | goto ok; | 
|  |  | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | ok: | 
|  | if (!index_buf_check(ib, bytes, &vbn)) { | 
|  | _ntfs_bad_inode(&ni->vfs_inode); | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (err == -E_NTFS_FIXUP) { | 
|  | ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); | 
|  | err = 0; | 
|  | } | 
|  |  | 
|  | /* check for index header length */ | 
|  | if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) > | 
|  | bytes) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | in->index = ib; | 
|  | *node = in; | 
|  |  | 
|  | out: | 
|  | if (err == -E_NTFS_CORRUPT) { | 
|  | _ntfs_bad_inode(&ni->vfs_inode); | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ib != in->index) | 
|  | kfree(ib); | 
|  |  | 
|  | if (*node != in) { | 
|  | nb_put(&in->nb); | 
|  | kfree(in); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_find - Scan NTFS directory for given entry. | 
|  | */ | 
|  | int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | const struct INDEX_ROOT *root, const void *key, size_t key_len, | 
|  | const void *ctx, int *diff, struct NTFS_DE **entry, | 
|  | struct ntfs_fnd *fnd) | 
|  | { | 
|  | int err; | 
|  | struct NTFS_DE *e; | 
|  | struct indx_node *node; | 
|  |  | 
|  | if (!root) | 
|  | root = indx_get_root(&ni->dir, ni, NULL, NULL); | 
|  |  | 
|  | if (!root) { | 
|  | /* Should not happen. */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check cache. */ | 
|  | e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; | 
|  | if (e && !de_is_last(e) && | 
|  | !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { | 
|  | *entry = e; | 
|  | *diff = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Soft finder reset. */ | 
|  | fnd_clear(fnd); | 
|  |  | 
|  | /* Lookup entry that is <= to the search value. */ | 
|  | e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff); | 
|  | if (!e) | 
|  | return -EINVAL; | 
|  |  | 
|  | fnd->root_de = e; | 
|  |  | 
|  | for (;;) { | 
|  | node = NULL; | 
|  | if (*diff >= 0 || !de_has_vcn_ex(e)) | 
|  | break; | 
|  |  | 
|  | /* Read next level. */ | 
|  | err = indx_read(indx, ni, de_get_vbn(e), &node); | 
|  | if (err) { | 
|  | /* io error? */ | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Lookup entry that is <= to the search value. */ | 
|  | e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, | 
|  | diff); | 
|  | if (!e) { | 
|  | put_indx_node(node); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fnd_push(fnd, node, e); | 
|  | } | 
|  |  | 
|  | *entry = e; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | const struct INDEX_ROOT *root, struct NTFS_DE **entry, | 
|  | struct ntfs_fnd *fnd) | 
|  | { | 
|  | int err; | 
|  | struct indx_node *n = NULL; | 
|  | struct NTFS_DE *e; | 
|  | size_t iter = 0; | 
|  | int level = fnd->level; | 
|  |  | 
|  | if (!*entry) { | 
|  | /* Start find. */ | 
|  | e = hdr_first_de(&root->ihdr); | 
|  | if (!e) | 
|  | return 0; | 
|  | fnd_clear(fnd); | 
|  | fnd->root_de = e; | 
|  | } else if (!level) { | 
|  | if (de_is_last(fnd->root_de)) { | 
|  | *entry = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | e = hdr_next_de(&root->ihdr, fnd->root_de); | 
|  | if (!e) | 
|  | return -EINVAL; | 
|  | fnd->root_de = e; | 
|  | } else { | 
|  | n = fnd->nodes[level - 1]; | 
|  | e = fnd->de[level - 1]; | 
|  |  | 
|  | if (de_is_last(e)) | 
|  | goto pop_level; | 
|  |  | 
|  | e = hdr_next_de(&n->index->ihdr, e); | 
|  | if (!e) | 
|  | return -EINVAL; | 
|  |  | 
|  | fnd->de[level - 1] = e; | 
|  | } | 
|  |  | 
|  | /* Just to avoid tree cycle. */ | 
|  | next_iter: | 
|  | if (iter++ >= 1000) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (de_has_vcn_ex(e)) { | 
|  | if (le16_to_cpu(e->size) < | 
|  | sizeof(struct NTFS_DE) + sizeof(u64)) { | 
|  | if (n) { | 
|  | fnd_pop(fnd); | 
|  | kfree(n); | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Read next level. */ | 
|  | err = indx_read(indx, ni, de_get_vbn(e), &n); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Try next level. */ | 
|  | e = hdr_first_de(&n->index->ihdr); | 
|  | if (!e) { | 
|  | kfree(n); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fnd_push(fnd, n, e); | 
|  | } | 
|  |  | 
|  | if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { | 
|  | *entry = e; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pop_level: | 
|  | for (;;) { | 
|  | if (!de_is_last(e)) | 
|  | goto next_iter; | 
|  |  | 
|  | /* Pop one level. */ | 
|  | if (n) { | 
|  | fnd_pop(fnd); | 
|  | kfree(n); | 
|  | } | 
|  |  | 
|  | level = fnd->level; | 
|  |  | 
|  | if (level) { | 
|  | n = fnd->nodes[level - 1]; | 
|  | e = fnd->de[level - 1]; | 
|  | } else if (fnd->root_de) { | 
|  | n = NULL; | 
|  | e = fnd->root_de; | 
|  | fnd->root_de = NULL; | 
|  | } else { | 
|  | *entry = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { | 
|  | *entry = e; | 
|  | if (!fnd->root_de) | 
|  | fnd->root_de = e; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | const struct INDEX_ROOT *root, struct NTFS_DE **entry, | 
|  | size_t *off, struct ntfs_fnd *fnd) | 
|  | { | 
|  | int err; | 
|  | struct indx_node *n = NULL; | 
|  | struct NTFS_DE *e = NULL; | 
|  | struct NTFS_DE *e2; | 
|  | size_t bit; | 
|  | CLST next_used_vbn; | 
|  | CLST next_vbn; | 
|  | u32 record_size = ni->mi.sbi->record_size; | 
|  |  | 
|  | /* Use non sorted algorithm. */ | 
|  | if (!*entry) { | 
|  | /* This is the first call. */ | 
|  | e = hdr_first_de(&root->ihdr); | 
|  | if (!e) | 
|  | return 0; | 
|  | fnd_clear(fnd); | 
|  | fnd->root_de = e; | 
|  |  | 
|  | /* The first call with setup of initial element. */ | 
|  | if (*off >= record_size) { | 
|  | next_vbn = (((*off - record_size) >> indx->index_bits)) | 
|  | << indx->idx2vbn_bits; | 
|  | /* Jump inside cycle 'for'. */ | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* Start enumeration from root. */ | 
|  | *off = 0; | 
|  | } else if (!fnd->root_de) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (;;) { | 
|  | /* Check if current entry can be used. */ | 
|  | if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) | 
|  | goto ok; | 
|  |  | 
|  | if (!fnd->level) { | 
|  | /* Continue to enumerate root. */ | 
|  | if (!de_is_last(fnd->root_de)) { | 
|  | e = hdr_next_de(&root->ihdr, fnd->root_de); | 
|  | if (!e) | 
|  | return -EINVAL; | 
|  | fnd->root_de = e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Start to enumerate indexes from 0. */ | 
|  | next_vbn = 0; | 
|  | } else { | 
|  | /* Continue to enumerate indexes. */ | 
|  | e2 = fnd->de[fnd->level - 1]; | 
|  |  | 
|  | n = fnd->nodes[fnd->level - 1]; | 
|  |  | 
|  | if (!de_is_last(e2)) { | 
|  | e = hdr_next_de(&n->index->ihdr, e2); | 
|  | if (!e) | 
|  | return -EINVAL; | 
|  | fnd->de[fnd->level - 1] = e; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Continue with next index. */ | 
|  | next_vbn = le64_to_cpu(n->index->vbn) + | 
|  | root->index_block_clst; | 
|  | } | 
|  |  | 
|  | next: | 
|  | /* Release current index. */ | 
|  | if (n) { | 
|  | fnd_pop(fnd); | 
|  | put_indx_node(n); | 
|  | n = NULL; | 
|  | } | 
|  |  | 
|  | /* Skip all free indexes. */ | 
|  | bit = next_vbn >> indx->idx2vbn_bits; | 
|  | err = indx_used_bit(indx, ni, &bit); | 
|  | if (err == -ENOENT || bit == MINUS_ONE_T) { | 
|  | /* No used indexes. */ | 
|  | *entry = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | next_used_vbn = bit << indx->idx2vbn_bits; | 
|  |  | 
|  | /* Read buffer into memory. */ | 
|  | err = indx_read(indx, ni, next_used_vbn, &n); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | e = hdr_first_de(&n->index->ihdr); | 
|  | fnd_push(fnd, n, e); | 
|  | if (!e) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ok: | 
|  | /* Return offset to restore enumerator if necessary. */ | 
|  | if (!n) { | 
|  | /* 'e' points in root, */ | 
|  | *off = PtrOffset(&root->ihdr, e); | 
|  | } else { | 
|  | /* 'e' points in index, */ | 
|  | *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + | 
|  | record_size + PtrOffset(&n->index->ihdr, e); | 
|  | } | 
|  |  | 
|  | *entry = e; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_create_allocate - Create "Allocation + Bitmap" attributes. | 
|  | */ | 
|  | static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | CLST *vbn) | 
|  | { | 
|  | int err; | 
|  | struct ntfs_sb_info *sbi = ni->mi.sbi; | 
|  | struct ATTRIB *bitmap; | 
|  | struct ATTRIB *alloc; | 
|  | u32 data_size = 1u << indx->index_bits; | 
|  | u32 alloc_size = ntfs_up_cluster(sbi, data_size); | 
|  | CLST len = alloc_size >> sbi->cluster_bits; | 
|  | const struct INDEX_NAMES *in = &s_index_names[indx->type]; | 
|  | CLST alen; | 
|  | struct runs_tree run; | 
|  |  | 
|  | run_init(&run); | 
|  |  | 
|  | err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF, | 
|  | &alen, 0, NULL, NULL); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, | 
|  | &run, 0, len, 0, &alloc, NULL, NULL); | 
|  | if (err) | 
|  | goto out1; | 
|  |  | 
|  | alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); | 
|  |  | 
|  | err = ni_insert_resident(ni, ntfs3_bitmap_size(1), ATTR_BITMAP, | 
|  | in->name, in->name_len, &bitmap, NULL, NULL); | 
|  | if (err) | 
|  | goto out2; | 
|  |  | 
|  | if (in->name == I30_NAME) { | 
|  | i_size_write(&ni->vfs_inode, data_size); | 
|  | inode_set_bytes(&ni->vfs_inode, alloc_size); | 
|  | } | 
|  |  | 
|  | memcpy(&indx->alloc_run, &run, sizeof(run)); | 
|  |  | 
|  | *vbn = 0; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out2: | 
|  | mi_remove_attr(NULL, &ni->mi, alloc); | 
|  |  | 
|  | out1: | 
|  | run_deallocate(sbi, &run, false); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_add_allocate - Add clusters to index. | 
|  | */ | 
|  | static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | CLST *vbn) | 
|  | { | 
|  | int err; | 
|  | size_t bit; | 
|  | u64 data_size; | 
|  | u64 bmp_size, bmp_size_v; | 
|  | struct ATTRIB *bmp, *alloc; | 
|  | struct mft_inode *mi; | 
|  | const struct INDEX_NAMES *in = &s_index_names[indx->type]; | 
|  |  | 
|  | err = indx_find_free(indx, ni, &bit, &bmp); | 
|  | if (err) | 
|  | goto out1; | 
|  |  | 
|  | if (bit != MINUS_ONE_T) { | 
|  | bmp = NULL; | 
|  | } else { | 
|  | if (bmp->non_res) { | 
|  | bmp_size = le64_to_cpu(bmp->nres.data_size); | 
|  | bmp_size_v = le64_to_cpu(bmp->nres.valid_size); | 
|  | } else { | 
|  | bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Index blocks exist, but $BITMAP has zero valid bits. | 
|  | * This implies an on-disk corruption and must be rejected. | 
|  | */ | 
|  | if (in->name == I30_NAME && | 
|  | unlikely(bmp_size_v == 0 && indx->alloc_run.count)) { | 
|  | err = -EINVAL; | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | bit = bmp_size << 3; | 
|  | } | 
|  |  | 
|  | data_size = (u64)(bit + 1) << indx->index_bits; | 
|  |  | 
|  | if (bmp) { | 
|  | /* Increase bitmap. */ | 
|  | err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, | 
|  | &indx->bitmap_run, | 
|  | ntfs3_bitmap_size(bit + 1), NULL, true, | 
|  | NULL); | 
|  | if (err) | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, | 
|  | NULL, &mi); | 
|  | if (!alloc) { | 
|  | err = -EINVAL; | 
|  | if (bmp) | 
|  | goto out2; | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | if (data_size <= le64_to_cpu(alloc->nres.data_size)) { | 
|  | /* Reuse index. */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Increase allocation. */ | 
|  | err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, | 
|  | &indx->alloc_run, data_size, &data_size, true, | 
|  | NULL); | 
|  | if (err) { | 
|  | if (bmp) | 
|  | goto out2; | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | if (in->name == I30_NAME) | 
|  | i_size_write(&ni->vfs_inode, data_size); | 
|  |  | 
|  | out: | 
|  | *vbn = bit << indx->idx2vbn_bits; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out2: | 
|  | /* Ops. No space? */ | 
|  | attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, | 
|  | &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); | 
|  |  | 
|  | out1: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_insert_into_root - Attempt to insert an entry into the index root. | 
|  | * | 
|  | * @undo - True if we undoing previous remove. | 
|  | * If necessary, it will twiddle the index b-tree. | 
|  | */ | 
|  | static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | const struct NTFS_DE *new_de, | 
|  | struct NTFS_DE *root_de, const void *ctx, | 
|  | struct ntfs_fnd *fnd, bool undo) | 
|  | { | 
|  | int err = 0; | 
|  | struct NTFS_DE *e, *e0, *re; | 
|  | struct mft_inode *mi; | 
|  | struct ATTRIB *attr; | 
|  | struct INDEX_HDR *hdr; | 
|  | struct indx_node *n; | 
|  | CLST new_vbn; | 
|  | __le64 *sub_vbn, t_vbn; | 
|  | u16 new_de_size; | 
|  | u32 hdr_used, hdr_total, asize, to_move; | 
|  | u32 root_size, new_root_size; | 
|  | struct ntfs_sb_info *sbi; | 
|  | int ds_root; | 
|  | struct INDEX_ROOT *root, *a_root; | 
|  |  | 
|  | /* Get the record this root placed in. */ | 
|  | root = indx_get_root(indx, ni, &attr, &mi); | 
|  | if (!root) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Try easy case: | 
|  | * hdr_insert_de will succeed if there's | 
|  | * room the root for the new entry. | 
|  | */ | 
|  | hdr = &root->ihdr; | 
|  | sbi = ni->mi.sbi; | 
|  | new_de_size = le16_to_cpu(new_de->size); | 
|  | hdr_used = le32_to_cpu(hdr->used); | 
|  | hdr_total = le32_to_cpu(hdr->total); | 
|  | asize = le32_to_cpu(attr->size); | 
|  | root_size = le32_to_cpu(attr->res.data_size); | 
|  |  | 
|  | ds_root = new_de_size + hdr_used - hdr_total; | 
|  |  | 
|  | /* If 'undo' is set then reduce requirements. */ | 
|  | if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && | 
|  | mi_resize_attr(mi, attr, ds_root)) { | 
|  | hdr->total = cpu_to_le32(hdr_total + ds_root); | 
|  | e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); | 
|  | WARN_ON(!e); | 
|  | fnd_clear(fnd); | 
|  | fnd->root_de = e; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Make a copy of root attribute to restore if error. */ | 
|  | a_root = kmemdup(attr, asize, GFP_NOFS); | 
|  | if (!a_root) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Copy all the non-end entries from | 
|  | * the index root to the new buffer. | 
|  | */ | 
|  | to_move = 0; | 
|  | e0 = hdr_first_de(hdr); | 
|  |  | 
|  | /* Calculate the size to copy. */ | 
|  | for (e = e0;; e = hdr_next_de(hdr, e)) { | 
|  | if (!e) { | 
|  | err = -EINVAL; | 
|  | goto out_free_root; | 
|  | } | 
|  |  | 
|  | if (de_is_last(e)) | 
|  | break; | 
|  | to_move += le16_to_cpu(e->size); | 
|  | } | 
|  |  | 
|  | if (!to_move) { | 
|  | re = NULL; | 
|  | } else { | 
|  | re = kmemdup(e0, to_move, GFP_NOFS); | 
|  | if (!re) { | 
|  | err = -ENOMEM; | 
|  | goto out_free_root; | 
|  | } | 
|  | } | 
|  |  | 
|  | sub_vbn = NULL; | 
|  | if (de_has_vcn(e)) { | 
|  | t_vbn = de_get_vbn_le(e); | 
|  | sub_vbn = &t_vbn; | 
|  | } | 
|  |  | 
|  | new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + | 
|  | sizeof(u64); | 
|  | ds_root = new_root_size - root_size; | 
|  |  | 
|  | if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { | 
|  | /* Make root external. */ | 
|  | err = -EOPNOTSUPP; | 
|  | goto out_free_re; | 
|  | } | 
|  |  | 
|  | if (ds_root) | 
|  | mi_resize_attr(mi, attr, ds_root); | 
|  |  | 
|  | /* Fill first entry (vcn will be set later). */ | 
|  | e = (struct NTFS_DE *)(root + 1); | 
|  | memset(e, 0, sizeof(struct NTFS_DE)); | 
|  | e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); | 
|  | e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; | 
|  |  | 
|  | hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES; | 
|  | hdr->used = hdr->total = | 
|  | cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); | 
|  |  | 
|  | fnd->root_de = hdr_first_de(hdr); | 
|  | mi->dirty = true; | 
|  |  | 
|  | /* Create alloc and bitmap attributes (if not). */ | 
|  | err = run_is_empty(&indx->alloc_run) ? | 
|  | indx_create_allocate(indx, ni, &new_vbn) : | 
|  | indx_add_allocate(indx, ni, &new_vbn); | 
|  |  | 
|  | /* Layout of record may be changed, so rescan root. */ | 
|  | root = indx_get_root(indx, ni, &attr, &mi); | 
|  | if (!root) { | 
|  | /* Bug? */ | 
|  | ntfs_set_state(sbi, NTFS_DIRTY_ERROR); | 
|  | err = -EINVAL; | 
|  | goto out_free_re; | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | /* Restore root. */ | 
|  | if (mi_resize_attr(mi, attr, -ds_root)) { | 
|  | memcpy(attr, a_root, asize); | 
|  | } else { | 
|  | /* Bug? */ | 
|  | ntfs_set_state(sbi, NTFS_DIRTY_ERROR); | 
|  | } | 
|  | goto out_free_re; | 
|  | } | 
|  |  | 
|  | e = (struct NTFS_DE *)(root + 1); | 
|  | *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); | 
|  | mi->dirty = true; | 
|  |  | 
|  | /* Now we can create/format the new buffer and copy the entries into. */ | 
|  | n = indx_new(indx, ni, new_vbn, sub_vbn); | 
|  | if (IS_ERR(n)) { | 
|  | err = PTR_ERR(n); | 
|  | goto out_free_re; | 
|  | } | 
|  |  | 
|  | hdr = &n->index->ihdr; | 
|  | hdr_used = le32_to_cpu(hdr->used); | 
|  | hdr_total = le32_to_cpu(hdr->total); | 
|  |  | 
|  | /* Copy root entries into new buffer. */ | 
|  | hdr_insert_head(hdr, re, to_move); | 
|  |  | 
|  | /* Update bitmap attribute. */ | 
|  | indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); | 
|  |  | 
|  | /* Check if we can insert new entry new index buffer. */ | 
|  | if (hdr_used + new_de_size > hdr_total) { | 
|  | /* | 
|  | * This occurs if MFT record is the same or bigger than index | 
|  | * buffer. Move all root new index and have no space to add | 
|  | * new entry classic case when MFT record is 1K and index | 
|  | * buffer 4K the problem should not occurs. | 
|  | */ | 
|  | kfree(re); | 
|  | indx_write(indx, ni, n, 0); | 
|  |  | 
|  | put_indx_node(n); | 
|  | fnd_clear(fnd); | 
|  | err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); | 
|  | goto out_free_root; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now root is a parent for new index buffer. | 
|  | * Insert NewEntry a new buffer. | 
|  | */ | 
|  | e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); | 
|  | if (!e) { | 
|  | err = -EINVAL; | 
|  | goto out_put_n; | 
|  | } | 
|  | fnd_push(fnd, n, e); | 
|  |  | 
|  | /* Just write updates index into disk. */ | 
|  | indx_write(indx, ni, n, 0); | 
|  |  | 
|  | n = NULL; | 
|  |  | 
|  | out_put_n: | 
|  | put_indx_node(n); | 
|  | out_free_re: | 
|  | kfree(re); | 
|  | out_free_root: | 
|  | kfree(a_root); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_insert_into_buffer | 
|  | * | 
|  | * Attempt to insert an entry into an Index Allocation Buffer. | 
|  | * If necessary, it will split the buffer. | 
|  | */ | 
|  | static int | 
|  | indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | struct INDEX_ROOT *root, const struct NTFS_DE *new_de, | 
|  | const void *ctx, int level, struct ntfs_fnd *fnd) | 
|  | { | 
|  | int err; | 
|  | const struct NTFS_DE *sp; | 
|  | struct NTFS_DE *e, *de_t, *up_e; | 
|  | struct indx_node *n2; | 
|  | struct indx_node *n1 = fnd->nodes[level]; | 
|  | struct INDEX_HDR *hdr1 = &n1->index->ihdr; | 
|  | struct INDEX_HDR *hdr2; | 
|  | u32 to_copy, used, used1; | 
|  | CLST new_vbn; | 
|  | __le64 t_vbn, *sub_vbn; | 
|  | u16 sp_size; | 
|  | void *hdr1_saved = NULL; | 
|  |  | 
|  | /* Try the most easy case. */ | 
|  | e = fnd->level - 1 == level ? fnd->de[level] : NULL; | 
|  | e = hdr_insert_de(indx, hdr1, new_de, e, ctx); | 
|  | fnd->de[level] = e; | 
|  | if (e) { | 
|  | /* Just write updated index into disk. */ | 
|  | indx_write(indx, ni, n1, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No space to insert into buffer. Split it. | 
|  | * To split we: | 
|  | *  - Save split point ('cause index buffers will be changed) | 
|  | * - Allocate NewBuffer and copy all entries <= sp into new buffer | 
|  | * - Remove all entries (sp including) from TargetBuffer | 
|  | * - Insert NewEntry into left or right buffer (depending on sp <=> | 
|  | *     NewEntry) | 
|  | * - Insert sp into parent buffer (or root) | 
|  | * - Make sp a parent for new buffer | 
|  | */ | 
|  | sp = hdr_find_split(hdr1); | 
|  | if (!sp) | 
|  | return -EINVAL; | 
|  |  | 
|  | sp_size = le16_to_cpu(sp->size); | 
|  | up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); | 
|  | if (!up_e) | 
|  | return -ENOMEM; | 
|  | memcpy(up_e, sp, sp_size); | 
|  |  | 
|  | used1 = le32_to_cpu(hdr1->used); | 
|  | hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS); | 
|  | if (!hdr1_saved) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!hdr1->flags) { | 
|  | up_e->flags |= NTFS_IE_HAS_SUBNODES; | 
|  | up_e->size = cpu_to_le16(sp_size + sizeof(u64)); | 
|  | sub_vbn = NULL; | 
|  | } else { | 
|  | t_vbn = de_get_vbn_le(up_e); | 
|  | sub_vbn = &t_vbn; | 
|  | } | 
|  |  | 
|  | /* Allocate on disk a new index allocation buffer. */ | 
|  | err = indx_add_allocate(indx, ni, &new_vbn); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* Allocate and format memory a new index buffer. */ | 
|  | n2 = indx_new(indx, ni, new_vbn, sub_vbn); | 
|  | if (IS_ERR(n2)) { | 
|  | err = PTR_ERR(n2); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hdr2 = &n2->index->ihdr; | 
|  |  | 
|  | /* Make sp a parent for new buffer. */ | 
|  | de_set_vbn(up_e, new_vbn); | 
|  |  | 
|  | /* Copy all the entries <= sp into the new buffer. */ | 
|  | de_t = hdr_first_de(hdr1); | 
|  | to_copy = PtrOffset(de_t, sp); | 
|  | hdr_insert_head(hdr2, de_t, to_copy); | 
|  |  | 
|  | /* Remove all entries (sp including) from hdr1. */ | 
|  | used = used1 - to_copy - sp_size; | 
|  | memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); | 
|  | hdr1->used = cpu_to_le32(used); | 
|  |  | 
|  | /* | 
|  | * Insert new entry into left or right buffer | 
|  | * (depending on sp <=> new_de). | 
|  | */ | 
|  | hdr_insert_de(indx, | 
|  | (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), | 
|  | up_e + 1, le16_to_cpu(up_e->key_size), | 
|  | ctx) < 0 ? | 
|  | hdr2 : | 
|  | hdr1, | 
|  | new_de, NULL, ctx); | 
|  |  | 
|  | indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); | 
|  |  | 
|  | indx_write(indx, ni, n1, 0); | 
|  | indx_write(indx, ni, n2, 0); | 
|  |  | 
|  | put_indx_node(n2); | 
|  |  | 
|  | /* | 
|  | * We've finished splitting everybody, so we are ready to | 
|  | * insert the promoted entry into the parent. | 
|  | */ | 
|  | if (!level) { | 
|  | /* Insert in root. */ | 
|  | err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); | 
|  | } else { | 
|  | /* | 
|  | * The target buffer's parent is another index buffer. | 
|  | * TODO: Remove recursion. | 
|  | */ | 
|  | err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, | 
|  | level - 1, fnd); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | /* | 
|  | * Undo critical operations. | 
|  | */ | 
|  | indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits); | 
|  | memcpy(hdr1, hdr1_saved, used1); | 
|  | indx_write(indx, ni, n1, 0); | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(up_e); | 
|  | kfree(hdr1_saved); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_insert_entry - Insert new entry into index. | 
|  | * | 
|  | * @undo - True if we undoing previous remove. | 
|  | */ | 
|  | int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | const struct NTFS_DE *new_de, const void *ctx, | 
|  | struct ntfs_fnd *fnd, bool undo) | 
|  | { | 
|  | int err; | 
|  | int diff; | 
|  | struct NTFS_DE *e; | 
|  | struct ntfs_fnd *fnd_a = NULL; | 
|  | struct INDEX_ROOT *root; | 
|  |  | 
|  | if (!fnd) { | 
|  | fnd_a = fnd_get(); | 
|  | if (!fnd_a) { | 
|  | err = -ENOMEM; | 
|  | goto out1; | 
|  | } | 
|  | fnd = fnd_a; | 
|  | } | 
|  |  | 
|  | root = indx_get_root(indx, ni, NULL, NULL); | 
|  | if (!root) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (fnd_is_empty(fnd)) { | 
|  | /* | 
|  | * Find the spot the tree where we want to | 
|  | * insert the new entry. | 
|  | */ | 
|  | err = indx_find(indx, ni, root, new_de + 1, | 
|  | le16_to_cpu(new_de->key_size), ctx, &diff, &e, | 
|  | fnd); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (!diff) { | 
|  | err = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fnd->level) { | 
|  | /* | 
|  | * The root is also a leaf, so we'll insert the | 
|  | * new entry into it. | 
|  | */ | 
|  | err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, | 
|  | fnd, undo); | 
|  | } else { | 
|  | /* | 
|  | * Found a leaf buffer, so we'll insert the new entry into it. | 
|  | */ | 
|  | err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, | 
|  | fnd->level - 1, fnd); | 
|  | } | 
|  |  | 
|  | out: | 
|  | fnd_put(fnd_a); | 
|  | out1: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_find_buffer - Locate a buffer from the tree. | 
|  | */ | 
|  | static struct indx_node *indx_find_buffer(struct ntfs_index *indx, | 
|  | struct ntfs_inode *ni, | 
|  | const struct INDEX_ROOT *root, | 
|  | __le64 vbn, struct indx_node *n) | 
|  | { | 
|  | int err; | 
|  | const struct NTFS_DE *e; | 
|  | struct indx_node *r; | 
|  | const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; | 
|  |  | 
|  | /* Step 1: Scan one level. */ | 
|  | for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { | 
|  | if (!e) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) | 
|  | return n; | 
|  |  | 
|  | if (de_is_last(e)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Step2: Do recursion. */ | 
|  | e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); | 
|  | for (;;) { | 
|  | if (de_has_vcn_ex(e)) { | 
|  | err = indx_read(indx, ni, de_get_vbn(e), &n); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | r = indx_find_buffer(indx, ni, root, vbn, n); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (de_is_last(e)) | 
|  | break; | 
|  |  | 
|  | e = Add2Ptr(e, le16_to_cpu(e->size)); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_shrink - Deallocate unused tail indexes. | 
|  | */ | 
|  | static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | size_t bit) | 
|  | { | 
|  | int err = 0; | 
|  | u64 bpb, new_data; | 
|  | size_t nbits; | 
|  | struct ATTRIB *b; | 
|  | struct ATTR_LIST_ENTRY *le = NULL; | 
|  | const struct INDEX_NAMES *in = &s_index_names[indx->type]; | 
|  |  | 
|  | b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, | 
|  | NULL, NULL); | 
|  |  | 
|  | if (!b) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (!b->non_res) { | 
|  | unsigned long pos; | 
|  | const unsigned long *bm = resident_data(b); | 
|  |  | 
|  | nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; | 
|  |  | 
|  | if (bit >= nbits) | 
|  | return 0; | 
|  |  | 
|  | pos = find_next_bit_le(bm, nbits, bit); | 
|  | if (pos < nbits) | 
|  | return 0; | 
|  | } else { | 
|  | size_t used = MINUS_ONE_T; | 
|  |  | 
|  | nbits = le64_to_cpu(b->nres.data_size) * 8; | 
|  |  | 
|  | if (bit >= nbits) | 
|  | return 0; | 
|  |  | 
|  | err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (used != MINUS_ONE_T) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | new_data = (u64)bit << indx->index_bits; | 
|  |  | 
|  | err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, | 
|  | &indx->alloc_run, new_data, &new_data, false, NULL); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (in->name == I30_NAME) | 
|  | i_size_write(&ni->vfs_inode, new_data); | 
|  |  | 
|  | bpb = ntfs3_bitmap_size(bit); | 
|  | if (bpb * 8 == nbits) | 
|  | return 0; | 
|  |  | 
|  | err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, | 
|  | &indx->bitmap_run, bpb, &bpb, false, NULL); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | const struct NTFS_DE *e, bool trim) | 
|  | { | 
|  | int err; | 
|  | struct indx_node *n = NULL; | 
|  | struct INDEX_HDR *hdr; | 
|  | CLST vbn = de_get_vbn(e); | 
|  | size_t i; | 
|  |  | 
|  | err = indx_read(indx, ni, vbn, &n); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | hdr = &n->index->ihdr; | 
|  | /* First, recurse into the children, if any. */ | 
|  | if (hdr_has_subnode(hdr)) { | 
|  | for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { | 
|  | indx_free_children(indx, ni, e, false); | 
|  | if (de_is_last(e)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | put_indx_node(n); | 
|  |  | 
|  | i = vbn >> indx->idx2vbn_bits; | 
|  | /* | 
|  | * We've gotten rid of the children; add this buffer to the free list. | 
|  | */ | 
|  | indx_mark_free(indx, ni, i); | 
|  |  | 
|  | if (!trim) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If there are no used indexes after current free index | 
|  | * then we can truncate allocation and bitmap. | 
|  | * Use bitmap to estimate the case. | 
|  | */ | 
|  | indx_shrink(indx, ni, i + 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_get_entry_to_replace | 
|  | * | 
|  | * Find a replacement entry for a deleted entry. | 
|  | * Always returns a node entry: | 
|  | * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. | 
|  | */ | 
|  | static int indx_get_entry_to_replace(struct ntfs_index *indx, | 
|  | struct ntfs_inode *ni, | 
|  | const struct NTFS_DE *de_next, | 
|  | struct NTFS_DE **de_to_replace, | 
|  | struct ntfs_fnd *fnd) | 
|  | { | 
|  | int err; | 
|  | int level = -1; | 
|  | CLST vbn; | 
|  | struct NTFS_DE *e, *te, *re; | 
|  | struct indx_node *n; | 
|  | struct INDEX_BUFFER *ib; | 
|  |  | 
|  | *de_to_replace = NULL; | 
|  |  | 
|  | /* Find first leaf entry down from de_next. */ | 
|  | vbn = de_get_vbn(de_next); | 
|  | for (;;) { | 
|  | n = NULL; | 
|  | err = indx_read(indx, ni, vbn, &n); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | e = hdr_first_de(&n->index->ihdr); | 
|  | fnd_push(fnd, n, e); | 
|  | if (!e) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!de_is_last(e)) { | 
|  | /* | 
|  | * This buffer is non-empty, so its first entry | 
|  | * could be used as the replacement entry. | 
|  | */ | 
|  | level = fnd->level - 1; | 
|  | } | 
|  |  | 
|  | if (!de_has_vcn(e)) | 
|  | break; | 
|  |  | 
|  | /* This buffer is a node. Continue to go down. */ | 
|  | vbn = de_get_vbn(e); | 
|  | } | 
|  |  | 
|  | if (level == -1) | 
|  | goto out; | 
|  |  | 
|  | n = fnd->nodes[level]; | 
|  | te = hdr_first_de(&n->index->ihdr); | 
|  | if (!te) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | /* Copy the candidate entry into the replacement entry buffer. */ | 
|  | re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); | 
|  | if (!re) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *de_to_replace = re; | 
|  | memcpy(re, te, le16_to_cpu(te->size)); | 
|  |  | 
|  | if (!de_has_vcn(re)) { | 
|  | /* | 
|  | * The replacement entry we found doesn't have a sub_vcn. | 
|  | * increase its size to hold one. | 
|  | */ | 
|  | le16_add_cpu(&re->size, sizeof(u64)); | 
|  | re->flags |= NTFS_IE_HAS_SUBNODES; | 
|  | } else { | 
|  | /* | 
|  | * The replacement entry we found was a node entry, which | 
|  | * means that all its child buffers are empty. Return them | 
|  | * to the free pool. | 
|  | */ | 
|  | indx_free_children(indx, ni, te, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expunge the replacement entry from its former location, | 
|  | * and then write that buffer. | 
|  | */ | 
|  | ib = n->index; | 
|  | e = hdr_delete_de(&ib->ihdr, te); | 
|  |  | 
|  | fnd->de[level] = e; | 
|  | indx_write(indx, ni, n, 0); | 
|  |  | 
|  | if (ib_is_leaf(ib) && ib_is_empty(ib)) { | 
|  | /* An empty leaf. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | fnd_clear(fnd); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indx_delete_entry - Delete an entry from the index. | 
|  | */ | 
|  | int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, | 
|  | const void *key, u32 key_len, const void *ctx) | 
|  | { | 
|  | int err, diff; | 
|  | struct INDEX_ROOT *root; | 
|  | struct INDEX_HDR *hdr; | 
|  | struct ntfs_fnd *fnd, *fnd2; | 
|  | struct INDEX_BUFFER *ib; | 
|  | struct NTFS_DE *e, *re, *next, *prev, *me; | 
|  | struct indx_node *n, *n2d = NULL; | 
|  | __le64 sub_vbn; | 
|  | int level, level2; | 
|  | struct ATTRIB *attr; | 
|  | struct mft_inode *mi; | 
|  | u32 e_size, root_size, new_root_size; | 
|  | size_t trim_bit; | 
|  | const struct INDEX_NAMES *in; | 
|  |  | 
|  | fnd = fnd_get(); | 
|  | if (!fnd) { | 
|  | err = -ENOMEM; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | fnd2 = fnd_get(); | 
|  | if (!fnd2) { | 
|  | err = -ENOMEM; | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | root = indx_get_root(indx, ni, &attr, &mi); | 
|  | if (!root) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Locate the entry to remove. */ | 
|  | err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (!e || diff) { | 
|  | err = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | level = fnd->level; | 
|  |  | 
|  | if (level) { | 
|  | n = fnd->nodes[level - 1]; | 
|  | e = fnd->de[level - 1]; | 
|  | ib = n->index; | 
|  | hdr = &ib->ihdr; | 
|  | } else { | 
|  | hdr = &root->ihdr; | 
|  | e = fnd->root_de; | 
|  | n = NULL; | 
|  | } | 
|  |  | 
|  | e_size = le16_to_cpu(e->size); | 
|  |  | 
|  | if (!de_has_vcn_ex(e)) { | 
|  | /* The entry to delete is a leaf, so we can just rip it out. */ | 
|  | hdr_delete_de(hdr, e); | 
|  |  | 
|  | if (!level) { | 
|  | hdr->total = hdr->used; | 
|  |  | 
|  | /* Shrink resident root attribute. */ | 
|  | mi_resize_attr(mi, attr, 0 - e_size); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | indx_write(indx, ni, n, 0); | 
|  |  | 
|  | /* | 
|  | * Check to see if removing that entry made | 
|  | * the leaf empty. | 
|  | */ | 
|  | if (ib_is_leaf(ib) && ib_is_empty(ib)) { | 
|  | fnd_pop(fnd); | 
|  | fnd_push(fnd2, n, e); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * The entry we wish to delete is a node buffer, so we | 
|  | * have to find a replacement for it. | 
|  | */ | 
|  | next = de_get_next(e); | 
|  |  | 
|  | err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (re) { | 
|  | de_set_vbn_le(re, de_get_vbn_le(e)); | 
|  | hdr_delete_de(hdr, e); | 
|  |  | 
|  | err = level ? indx_insert_into_buffer(indx, ni, root, | 
|  | re, ctx, | 
|  | fnd->level - 1, | 
|  | fnd) : | 
|  | indx_insert_into_root(indx, ni, re, e, | 
|  | ctx, fnd, 0); | 
|  | kfree(re); | 
|  |  | 
|  | if (err) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * There is no replacement for the current entry. | 
|  | * This means that the subtree rooted at its node | 
|  | * is empty, and can be deleted, which turn means | 
|  | * that the node can just inherit the deleted | 
|  | * entry sub_vcn. | 
|  | */ | 
|  | indx_free_children(indx, ni, next, true); | 
|  |  | 
|  | de_set_vbn_le(next, de_get_vbn_le(e)); | 
|  | hdr_delete_de(hdr, e); | 
|  | if (level) { | 
|  | indx_write(indx, ni, n, 0); | 
|  | } else { | 
|  | hdr->total = hdr->used; | 
|  |  | 
|  | /* Shrink resident root attribute. */ | 
|  | mi_resize_attr(mi, attr, 0 - e_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Delete a branch of tree. */ | 
|  | if (!fnd2 || !fnd2->level) | 
|  | goto out; | 
|  |  | 
|  | /* Reinit root 'cause it can be changed. */ | 
|  | root = indx_get_root(indx, ni, &attr, &mi); | 
|  | if (!root) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | n2d = NULL; | 
|  | sub_vbn = fnd2->nodes[0]->index->vbn; | 
|  | level2 = 0; | 
|  | level = fnd->level; | 
|  |  | 
|  | hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; | 
|  |  | 
|  | /* Scan current level. */ | 
|  | for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { | 
|  | if (!e) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) | 
|  | break; | 
|  |  | 
|  | if (de_is_last(e)) { | 
|  | e = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!e) { | 
|  | /* Do slow search from root. */ | 
|  | struct indx_node *in; | 
|  |  | 
|  | fnd_clear(fnd); | 
|  |  | 
|  | in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); | 
|  | if (IS_ERR(in)) { | 
|  | err = PTR_ERR(in); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (in) | 
|  | fnd_push(fnd, in, NULL); | 
|  | } | 
|  |  | 
|  | /* Merge fnd2 -> fnd. */ | 
|  | for (level = 0; level < fnd2->level; level++) { | 
|  | fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); | 
|  | fnd2->nodes[level] = NULL; | 
|  | } | 
|  | fnd2->level = 0; | 
|  |  | 
|  | hdr = NULL; | 
|  | for (level = fnd->level; level; level--) { | 
|  | struct indx_node *in = fnd->nodes[level - 1]; | 
|  |  | 
|  | ib = in->index; | 
|  | if (ib_is_empty(ib)) { | 
|  | sub_vbn = ib->vbn; | 
|  | } else { | 
|  | hdr = &ib->ihdr; | 
|  | n2d = in; | 
|  | level2 = level; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!hdr) | 
|  | hdr = &root->ihdr; | 
|  |  | 
|  | e = hdr_first_de(hdr); | 
|  | if (!e) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (hdr != &root->ihdr || !de_is_last(e)) { | 
|  | prev = NULL; | 
|  | while (!de_is_last(e)) { | 
|  | if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) | 
|  | break; | 
|  | prev = e; | 
|  | e = hdr_next_de(hdr, e); | 
|  | if (!e) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sub_vbn != de_get_vbn_le(e)) { | 
|  | /* | 
|  | * Didn't find the parent entry, although this buffer | 
|  | * is the parent trail. Something is corrupt. | 
|  | */ | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (de_is_last(e)) { | 
|  | /* | 
|  | * Since we can't remove the end entry, we'll remove | 
|  | * its predecessor instead. This means we have to | 
|  | * transfer the predecessor's sub_vcn to the end entry. | 
|  | * Note: This index block is not empty, so the | 
|  | * predecessor must exist. | 
|  | */ | 
|  | if (!prev) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (de_has_vcn(prev)) { | 
|  | de_set_vbn_le(e, de_get_vbn_le(prev)); | 
|  | } else if (de_has_vcn(e)) { | 
|  | le16_sub_cpu(&e->size, sizeof(u64)); | 
|  | e->flags &= ~NTFS_IE_HAS_SUBNODES; | 
|  | le32_sub_cpu(&hdr->used, sizeof(u64)); | 
|  | } | 
|  | e = prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the current entry into a temporary buffer (stripping | 
|  | * off its down-pointer, if any) and delete it from the current | 
|  | * buffer or root, as appropriate. | 
|  | */ | 
|  | e_size = le16_to_cpu(e->size); | 
|  | me = kmemdup(e, e_size, GFP_NOFS); | 
|  | if (!me) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (de_has_vcn(me)) { | 
|  | me->flags &= ~NTFS_IE_HAS_SUBNODES; | 
|  | le16_sub_cpu(&me->size, sizeof(u64)); | 
|  | } | 
|  |  | 
|  | hdr_delete_de(hdr, e); | 
|  |  | 
|  | if (hdr == &root->ihdr) { | 
|  | level = 0; | 
|  | hdr->total = hdr->used; | 
|  |  | 
|  | /* Shrink resident root attribute. */ | 
|  | mi_resize_attr(mi, attr, 0 - e_size); | 
|  | } else { | 
|  | indx_write(indx, ni, n2d, 0); | 
|  | level = level2; | 
|  | } | 
|  |  | 
|  | /* Mark unused buffers as free. */ | 
|  | trim_bit = -1; | 
|  | for (; level < fnd->level; level++) { | 
|  | ib = fnd->nodes[level]->index; | 
|  | if (ib_is_empty(ib)) { | 
|  | size_t k = le64_to_cpu(ib->vbn) >> | 
|  | indx->idx2vbn_bits; | 
|  |  | 
|  | indx_mark_free(indx, ni, k); | 
|  | if (k < trim_bit) | 
|  | trim_bit = k; | 
|  | } | 
|  | } | 
|  |  | 
|  | fnd_clear(fnd); | 
|  | /*fnd->root_de = NULL;*/ | 
|  |  | 
|  | /* | 
|  | * Re-insert the entry into the tree. | 
|  | * Find the spot the tree where we want to insert the new entry. | 
|  | */ | 
|  | err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); | 
|  | kfree(me); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (trim_bit != -1) | 
|  | indx_shrink(indx, ni, trim_bit); | 
|  | } else { | 
|  | /* | 
|  | * This tree needs to be collapsed down to an empty root. | 
|  | * Recreate the index root as an empty leaf and free all | 
|  | * the bits the index allocation bitmap. | 
|  | */ | 
|  | fnd_clear(fnd); | 
|  | fnd_clear(fnd2); | 
|  |  | 
|  | in = &s_index_names[indx->type]; | 
|  |  | 
|  | err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, | 
|  | &indx->alloc_run, 0, NULL, false, NULL); | 
|  | if (in->name == I30_NAME) | 
|  | i_size_write(&ni->vfs_inode, 0); | 
|  |  | 
|  | err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, | 
|  | false, NULL); | 
|  | run_close(&indx->alloc_run); | 
|  |  | 
|  | err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, | 
|  | &indx->bitmap_run, 0, NULL, false, NULL); | 
|  | err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, | 
|  | false, NULL); | 
|  | run_close(&indx->bitmap_run); | 
|  |  | 
|  | root = indx_get_root(indx, ni, &attr, &mi); | 
|  | if (!root) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | root_size = le32_to_cpu(attr->res.data_size); | 
|  | new_root_size = | 
|  | sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); | 
|  |  | 
|  | if (new_root_size != root_size && | 
|  | !mi_resize_attr(mi, attr, new_root_size - root_size)) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Fill first entry. */ | 
|  | e = (struct NTFS_DE *)(root + 1); | 
|  | e->ref.low = 0; | 
|  | e->ref.high = 0; | 
|  | e->ref.seq = 0; | 
|  | e->size = cpu_to_le16(sizeof(struct NTFS_DE)); | 
|  | e->flags = NTFS_IE_LAST; // 0x02 | 
|  | e->key_size = 0; | 
|  | e->res = 0; | 
|  |  | 
|  | hdr = &root->ihdr; | 
|  | hdr->flags = 0; | 
|  | hdr->used = hdr->total = cpu_to_le32( | 
|  | new_root_size - offsetof(struct INDEX_ROOT, ihdr)); | 
|  | mi->dirty = true; | 
|  | } | 
|  |  | 
|  | out: | 
|  | fnd_put(fnd2); | 
|  | out1: | 
|  | fnd_put(fnd); | 
|  | out2: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update duplicated information in directory entry | 
|  | * 'dup' - info from MFT record | 
|  | */ | 
|  | int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, | 
|  | const struct ATTR_FILE_NAME *fname, | 
|  | const struct NTFS_DUP_INFO *dup, int sync) | 
|  | { | 
|  | int err, diff; | 
|  | struct NTFS_DE *e = NULL; | 
|  | struct ATTR_FILE_NAME *e_fname; | 
|  | struct ntfs_fnd *fnd; | 
|  | struct INDEX_ROOT *root; | 
|  | struct mft_inode *mi; | 
|  | struct ntfs_index *indx = &ni->dir; | 
|  |  | 
|  | fnd = fnd_get(); | 
|  | if (!fnd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | root = indx_get_root(indx, ni, NULL, &mi); | 
|  | if (!root) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Find entry in directory. */ | 
|  | err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, | 
|  | &diff, &e, fnd); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (!e) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (diff) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | e_fname = (struct ATTR_FILE_NAME *)(e + 1); | 
|  |  | 
|  | if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { | 
|  | /* | 
|  | * Nothing to update in index! Try to avoid this call. | 
|  | */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcpy(&e_fname->dup, dup, sizeof(*dup)); | 
|  |  | 
|  | if (fnd->level) { | 
|  | /* Directory entry in index. */ | 
|  | err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); | 
|  | } else { | 
|  | /* Directory entry in directory MFT record. */ | 
|  | mi->dirty = true; | 
|  | if (sync) | 
|  | err = mi_write(mi, 1); | 
|  | else | 
|  | mark_inode_dirty(&ni->vfs_inode); | 
|  | } | 
|  |  | 
|  | out: | 
|  | fnd_put(fnd); | 
|  | return err; | 
|  | } |