|  | /* SPDX-License-Identifier: GPL-2.0-or-later */ | 
|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Definitions for the AF_INET socket handler. | 
|  | * | 
|  | * Version:	@(#)sock.h	1.0.4	05/13/93 | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | *		Florian La Roche <flla@stud.uni-sb.de> | 
|  | * | 
|  | * Fixes: | 
|  | *		Alan Cox	:	Volatiles in skbuff pointers. See | 
|  | *					skbuff comments. May be overdone, | 
|  | *					better to prove they can be removed | 
|  | *					than the reverse. | 
|  | *		Alan Cox	:	Added a zapped field for tcp to note | 
|  | *					a socket is reset and must stay shut up | 
|  | *		Alan Cox	:	New fields for options | 
|  | *	Pauline Middelink	:	identd support | 
|  | *		Alan Cox	:	Eliminate low level recv/recvfrom | 
|  | *		David S. Miller	:	New socket lookup architecture. | 
|  | *              Steve Whitehouse:       Default routines for sock_ops | 
|  | *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made | 
|  | *              			protinfo be just a void pointer, as the | 
|  | *              			protocol specific parts were moved to | 
|  | *              			respective headers and ipv4/v6, etc now | 
|  | *              			use private slabcaches for its socks | 
|  | *              Pedro Hortas	:	New flags field for socket options | 
|  | */ | 
|  | #ifndef _SOCK_H | 
|  | #define _SOCK_H | 
|  |  | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/list_nulls.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/skbuff.h>	/* struct sk_buff */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/page_counter.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/static_key.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/cgroup-defs.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/rculist_nulls.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/sockptr.h> | 
|  | #include <linux/indirect_call_wrapper.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/llist.h> | 
|  | #include <net/dst.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/tcp_states.h> | 
|  | #include <linux/net_tstamp.h> | 
|  | #include <net/l3mdev.h> | 
|  | #include <uapi/linux/socket.h> | 
|  |  | 
|  | /* | 
|  | * This structure really needs to be cleaned up. | 
|  | * Most of it is for TCP, and not used by any of | 
|  | * the other protocols. | 
|  | */ | 
|  |  | 
|  | /* This is the per-socket lock.  The spinlock provides a synchronization | 
|  | * between user contexts and software interrupt processing, whereas the | 
|  | * mini-semaphore synchronizes multiple users amongst themselves. | 
|  | */ | 
|  | typedef struct { | 
|  | spinlock_t		slock; | 
|  | int			owned; | 
|  | wait_queue_head_t	wq; | 
|  | /* | 
|  | * We express the mutex-alike socket_lock semantics | 
|  | * to the lock validator by explicitly managing | 
|  | * the slock as a lock variant (in addition to | 
|  | * the slock itself): | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | struct lockdep_map dep_map; | 
|  | #endif | 
|  | } socket_lock_t; | 
|  |  | 
|  | struct sock; | 
|  | struct proto; | 
|  | struct net; | 
|  |  | 
|  | typedef __u32 __bitwise __portpair; | 
|  | typedef __u64 __bitwise __addrpair; | 
|  |  | 
|  | /** | 
|  | *	struct sock_common - minimal network layer representation of sockets | 
|  | *	@skc_daddr: Foreign IPv4 addr | 
|  | *	@skc_rcv_saddr: Bound local IPv4 addr | 
|  | *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr | 
|  | *	@skc_hash: hash value used with various protocol lookup tables | 
|  | *	@skc_u16hashes: two u16 hash values used by UDP lookup tables | 
|  | *	@skc_dport: placeholder for inet_dport/tw_dport | 
|  | *	@skc_num: placeholder for inet_num/tw_num | 
|  | *	@skc_portpair: __u32 union of @skc_dport & @skc_num | 
|  | *	@skc_family: network address family | 
|  | *	@skc_state: Connection state | 
|  | *	@skc_reuse: %SO_REUSEADDR setting | 
|  | *	@skc_reuseport: %SO_REUSEPORT setting | 
|  | *	@skc_ipv6only: socket is IPV6 only | 
|  | *	@skc_net_refcnt: socket is using net ref counting | 
|  | *	@skc_bound_dev_if: bound device index if != 0 | 
|  | *	@skc_bind_node: bind hash linkage for various protocol lookup tables | 
|  | *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol | 
|  | *	@skc_prot: protocol handlers inside a network family | 
|  | *	@skc_net: reference to the network namespace of this socket | 
|  | *	@skc_v6_daddr: IPV6 destination address | 
|  | *	@skc_v6_rcv_saddr: IPV6 source address | 
|  | *	@skc_cookie: socket's cookie value | 
|  | *	@skc_node: main hash linkage for various protocol lookup tables | 
|  | *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol | 
|  | *	@skc_tx_queue_mapping: tx queue number for this connection | 
|  | *	@skc_rx_queue_mapping: rx queue number for this connection | 
|  | *	@skc_flags: place holder for sk_flags | 
|  | *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, | 
|  | *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings | 
|  | *	@skc_listener: connection request listener socket (aka rsk_listener) | 
|  | *		[union with @skc_flags] | 
|  | *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row | 
|  | *		[union with @skc_flags] | 
|  | *	@skc_incoming_cpu: record/match cpu processing incoming packets | 
|  | *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) | 
|  | *		[union with @skc_incoming_cpu] | 
|  | *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number | 
|  | *		[union with @skc_incoming_cpu] | 
|  | *	@skc_refcnt: reference count | 
|  | * | 
|  | *	This is the minimal network layer representation of sockets, the header | 
|  | *	for struct sock and struct inet_timewait_sock. | 
|  | */ | 
|  | struct sock_common { | 
|  | union { | 
|  | __addrpair	skc_addrpair; | 
|  | struct { | 
|  | __be32	skc_daddr; | 
|  | __be32	skc_rcv_saddr; | 
|  | }; | 
|  | }; | 
|  | union  { | 
|  | unsigned int	skc_hash; | 
|  | __u16		skc_u16hashes[2]; | 
|  | }; | 
|  | /* skc_dport && skc_num must be grouped as well */ | 
|  | union { | 
|  | __portpair	skc_portpair; | 
|  | struct { | 
|  | __be16	skc_dport; | 
|  | __u16	skc_num; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | unsigned short		skc_family; | 
|  | volatile unsigned char	skc_state; | 
|  | unsigned char		skc_reuse:4; | 
|  | unsigned char		skc_reuseport:1; | 
|  | unsigned char		skc_ipv6only:1; | 
|  | unsigned char		skc_net_refcnt:1; | 
|  | int			skc_bound_dev_if; | 
|  | union { | 
|  | struct hlist_node	skc_bind_node; | 
|  | struct hlist_node	skc_portaddr_node; | 
|  | }; | 
|  | struct proto		*skc_prot; | 
|  | possible_net_t		skc_net; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | struct in6_addr		skc_v6_daddr; | 
|  | struct in6_addr		skc_v6_rcv_saddr; | 
|  | #endif | 
|  |  | 
|  | atomic64_t		skc_cookie; | 
|  |  | 
|  | /* following fields are padding to force | 
|  | * offset(struct sock, sk_refcnt) == 128 on 64bit arches | 
|  | * assuming IPV6 is enabled. We use this padding differently | 
|  | * for different kind of 'sockets' | 
|  | */ | 
|  | union { | 
|  | unsigned long	skc_flags; | 
|  | struct sock	*skc_listener; /* request_sock */ | 
|  | struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ | 
|  | }; | 
|  | /* | 
|  | * fields between dontcopy_begin/dontcopy_end | 
|  | * are not copied in sock_copy() | 
|  | */ | 
|  | /* private: */ | 
|  | int			skc_dontcopy_begin[0]; | 
|  | /* public: */ | 
|  | union { | 
|  | struct hlist_node	skc_node; | 
|  | struct hlist_nulls_node skc_nulls_node; | 
|  | }; | 
|  | unsigned short		skc_tx_queue_mapping; | 
|  | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING | 
|  | unsigned short		skc_rx_queue_mapping; | 
|  | #endif | 
|  | union { | 
|  | int		skc_incoming_cpu; | 
|  | u32		skc_rcv_wnd; | 
|  | u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */ | 
|  | }; | 
|  |  | 
|  | refcount_t		skc_refcnt; | 
|  | /* private: */ | 
|  | int                     skc_dontcopy_end[0]; | 
|  | union { | 
|  | u32		skc_rxhash; | 
|  | u32		skc_window_clamp; | 
|  | u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */ | 
|  | }; | 
|  | /* public: */ | 
|  | }; | 
|  |  | 
|  | struct bpf_local_storage; | 
|  | struct sk_filter; | 
|  |  | 
|  | /** | 
|  | *	struct sock - network layer representation of sockets | 
|  | *	@__sk_common: shared layout with inet_timewait_sock | 
|  | *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN | 
|  | *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings | 
|  | *	@sk_lock:	synchronizer | 
|  | *	@sk_kern_sock: True if sock is using kernel lock classes | 
|  | *	@sk_rcvbuf: size of receive buffer in bytes | 
|  | *	@sk_wq: sock wait queue and async head | 
|  | *	@sk_rx_dst: receive input route used by early demux | 
|  | *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst | 
|  | *	@sk_rx_dst_cookie: cookie for @sk_rx_dst | 
|  | *	@sk_dst_cache: destination cache | 
|  | *	@sk_dst_pending_confirm: need to confirm neighbour | 
|  | *	@sk_policy: flow policy | 
|  | *	@psp_assoc: PSP association, if socket is PSP-secured | 
|  | *	@sk_receive_queue: incoming packets | 
|  | *	@sk_wmem_alloc: transmit queue bytes committed | 
|  | *	@sk_tsq_flags: TCP Small Queues flags | 
|  | *	@sk_write_queue: Packet sending queue | 
|  | *	@sk_omem_alloc: "o" is "option" or "other" | 
|  | *	@sk_wmem_queued: persistent queue size | 
|  | *	@sk_forward_alloc: space allocated forward | 
|  | *	@sk_reserved_mem: space reserved and non-reclaimable for the socket | 
|  | *	@sk_napi_id: id of the last napi context to receive data for sk | 
|  | *	@sk_ll_usec: usecs to busypoll when there is no data | 
|  | *	@sk_allocation: allocation mode | 
|  | *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) | 
|  | *	@sk_pacing_status: Pacing status (requested, handled by sch_fq) | 
|  | *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) | 
|  | *	@sk_sndbuf: size of send buffer in bytes | 
|  | *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets | 
|  | *	@sk_no_check_rx: allow zero checksum in RX packets | 
|  | *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) | 
|  | *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. | 
|  | *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) | 
|  | *	@sk_gso_max_size: Maximum GSO segment size to build | 
|  | *	@sk_gso_max_segs: Maximum number of GSO segments | 
|  | *	@sk_pacing_shift: scaling factor for TCP Small Queues | 
|  | *	@sk_lingertime: %SO_LINGER l_linger setting | 
|  | *	@sk_backlog: always used with the per-socket spinlock held | 
|  | *	@sk_callback_lock: used with the callbacks in the end of this struct | 
|  | *	@sk_error_queue: rarely used | 
|  | *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, | 
|  | *			  IPV6_ADDRFORM for instance) | 
|  | *	@sk_err: last error | 
|  | *	@sk_err_soft: errors that don't cause failure but are the cause of a | 
|  | *		      persistent failure not just 'timed out' | 
|  | *	@sk_drops: raw/udp drops counter | 
|  | *	@sk_drop_counters: optional pointer to numa_drop_counters | 
|  | *	@sk_ack_backlog: current listen backlog | 
|  | *	@sk_max_ack_backlog: listen backlog set in listen() | 
|  | *	@sk_uid: user id of owner | 
|  | *	@sk_ino: inode number (zero if orphaned) | 
|  | *	@sk_prefer_busy_poll: prefer busypolling over softirq processing | 
|  | *	@sk_busy_poll_budget: napi processing budget when busypolling | 
|  | *	@sk_priority: %SO_PRIORITY setting | 
|  | *	@sk_type: socket type (%SOCK_STREAM, etc) | 
|  | *	@sk_protocol: which protocol this socket belongs in this network family | 
|  | *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred | 
|  | *	@sk_peer_pid: &struct pid for this socket's peer | 
|  | *	@sk_peer_cred: %SO_PEERCRED setting | 
|  | *	@sk_rcvlowat: %SO_RCVLOWAT setting | 
|  | *	@sk_rcvtimeo: %SO_RCVTIMEO setting | 
|  | *	@sk_sndtimeo: %SO_SNDTIMEO setting | 
|  | *	@sk_txhash: computed flow hash for use on transmit | 
|  | *	@sk_txrehash: enable TX hash rethink | 
|  | *	@sk_filter: socket filtering instructions | 
|  | *	@sk_timer: sock cleanup timer | 
|  | *	@sk_stamp: time stamp of last packet received | 
|  | *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only | 
|  | *	@sk_tsflags: SO_TIMESTAMPING flags | 
|  | *	@sk_bpf_cb_flags: used in bpf_setsockopt() | 
|  | *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag. | 
|  | *			   Sockets that can be used under memory reclaim should | 
|  | *			   set this to false. | 
|  | *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock | 
|  | *	              for timestamping | 
|  | *	@sk_tskey: counter to disambiguate concurrent tstamp requests | 
|  | *	@sk_zckey: counter to order MSG_ZEROCOPY notifications | 
|  | *	@sk_socket: Identd and reporting IO signals | 
|  | *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. | 
|  | *	@sk_frag: cached page frag | 
|  | *	@sk_peek_off: current peek_offset value | 
|  | *	@sk_send_head: front of stuff to transmit | 
|  | *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] | 
|  | *	@sk_security: used by security modules | 
|  | *	@sk_mark: generic packet mark | 
|  | *	@sk_cgrp_data: cgroup data for this cgroup | 
|  | *	@sk_memcg: this socket's memory cgroup association | 
|  | *	@sk_write_pending: a write to stream socket waits to start | 
|  | *	@sk_disconnects: number of disconnect operations performed on this sock | 
|  | *	@sk_state_change: callback to indicate change in the state of the sock | 
|  | *	@sk_data_ready: callback to indicate there is data to be processed | 
|  | *	@sk_write_space: callback to indicate there is bf sending space available | 
|  | *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) | 
|  | *	@sk_backlog_rcv: callback to process the backlog | 
|  | *	@sk_validate_xmit_skb: ptr to an optional validate function | 
|  | *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 | 
|  | *	@sk_reuseport_cb: reuseport group container | 
|  | *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage | 
|  | *	@sk_rcu: used during RCU grace period | 
|  | *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME) | 
|  | *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME | 
|  | *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME | 
|  | *	@sk_txtime_unused: unused txtime flags | 
|  | *	@sk_scm_recv_flags: all flags used by scm_recv() | 
|  | *	@sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS | 
|  | *	@sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY | 
|  | *	@sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD | 
|  | *	@sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS | 
|  | *	@sk_scm_unused: unused flags for scm_recv() | 
|  | *	@ns_tracker: tracker for netns reference | 
|  | *	@sk_user_frags: xarray of pages the user is holding a reference on. | 
|  | *	@sk_owner: reference to the real owner of the socket that calls | 
|  | *		   sock_lock_init_class_and_name(). | 
|  | */ | 
|  | struct sock { | 
|  | /* | 
|  | * Now struct inet_timewait_sock also uses sock_common, so please just | 
|  | * don't add nothing before this first member (__sk_common) --acme | 
|  | */ | 
|  | struct sock_common	__sk_common; | 
|  | #define sk_node			__sk_common.skc_node | 
|  | #define sk_nulls_node		__sk_common.skc_nulls_node | 
|  | #define sk_refcnt		__sk_common.skc_refcnt | 
|  | #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping | 
|  | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING | 
|  | #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping | 
|  | #endif | 
|  |  | 
|  | #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin | 
|  | #define sk_dontcopy_end		__sk_common.skc_dontcopy_end | 
|  | #define sk_hash			__sk_common.skc_hash | 
|  | #define sk_portpair		__sk_common.skc_portpair | 
|  | #define sk_num			__sk_common.skc_num | 
|  | #define sk_dport		__sk_common.skc_dport | 
|  | #define sk_addrpair		__sk_common.skc_addrpair | 
|  | #define sk_daddr		__sk_common.skc_daddr | 
|  | #define sk_rcv_saddr		__sk_common.skc_rcv_saddr | 
|  | #define sk_family		__sk_common.skc_family | 
|  | #define sk_state		__sk_common.skc_state | 
|  | #define sk_reuse		__sk_common.skc_reuse | 
|  | #define sk_reuseport		__sk_common.skc_reuseport | 
|  | #define sk_ipv6only		__sk_common.skc_ipv6only | 
|  | #define sk_net_refcnt		__sk_common.skc_net_refcnt | 
|  | #define sk_bound_dev_if		__sk_common.skc_bound_dev_if | 
|  | #define sk_bind_node		__sk_common.skc_bind_node | 
|  | #define sk_prot			__sk_common.skc_prot | 
|  | #define sk_net			__sk_common.skc_net | 
|  | #define sk_v6_daddr		__sk_common.skc_v6_daddr | 
|  | #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr | 
|  | #define sk_cookie		__sk_common.skc_cookie | 
|  | #define sk_incoming_cpu		__sk_common.skc_incoming_cpu | 
|  | #define sk_flags		__sk_common.skc_flags | 
|  | #define sk_rxhash		__sk_common.skc_rxhash | 
|  |  | 
|  | __cacheline_group_begin(sock_write_rx); | 
|  |  | 
|  | atomic_t		sk_drops; | 
|  | __s32			sk_peek_off; | 
|  | struct sk_buff_head	sk_error_queue; | 
|  | struct sk_buff_head	sk_receive_queue; | 
|  | /* | 
|  | * The backlog queue is special, it is always used with | 
|  | * the per-socket spinlock held and requires low latency | 
|  | * access. Therefore we special case it's implementation. | 
|  | * Note : rmem_alloc is in this structure to fill a hole | 
|  | * on 64bit arches, not because its logically part of | 
|  | * backlog. | 
|  | */ | 
|  | struct { | 
|  | atomic_t	rmem_alloc; | 
|  | int		len; | 
|  | struct sk_buff	*head; | 
|  | struct sk_buff	*tail; | 
|  | } sk_backlog; | 
|  | #define sk_rmem_alloc sk_backlog.rmem_alloc | 
|  |  | 
|  | __cacheline_group_end(sock_write_rx); | 
|  |  | 
|  | __cacheline_group_begin(sock_read_rx); | 
|  | /* early demux fields */ | 
|  | struct dst_entry __rcu	*sk_rx_dst; | 
|  | int			sk_rx_dst_ifindex; | 
|  | u32			sk_rx_dst_cookie; | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | unsigned int		sk_ll_usec; | 
|  | unsigned int		sk_napi_id; | 
|  | u16			sk_busy_poll_budget; | 
|  | u8			sk_prefer_busy_poll; | 
|  | #endif | 
|  | u8			sk_userlocks; | 
|  | int			sk_rcvbuf; | 
|  |  | 
|  | struct sk_filter __rcu	*sk_filter; | 
|  | union { | 
|  | struct socket_wq __rcu	*sk_wq; | 
|  | /* private: */ | 
|  | struct socket_wq	*sk_wq_raw; | 
|  | /* public: */ | 
|  | }; | 
|  |  | 
|  | void			(*sk_data_ready)(struct sock *sk); | 
|  | long			sk_rcvtimeo; | 
|  | int			sk_rcvlowat; | 
|  | __cacheline_group_end(sock_read_rx); | 
|  |  | 
|  | __cacheline_group_begin(sock_read_rxtx); | 
|  | int			sk_err; | 
|  | struct socket		*sk_socket; | 
|  | #ifdef CONFIG_MEMCG | 
|  | struct mem_cgroup	*sk_memcg; | 
|  | #endif | 
|  | #ifdef CONFIG_XFRM | 
|  | struct xfrm_policy __rcu *sk_policy[2]; | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_INET_PSP) | 
|  | struct psp_assoc __rcu	*psp_assoc; | 
|  | #endif | 
|  | __cacheline_group_end(sock_read_rxtx); | 
|  |  | 
|  | __cacheline_group_begin(sock_write_rxtx); | 
|  | socket_lock_t		sk_lock; | 
|  | u32			sk_reserved_mem; | 
|  | int			sk_forward_alloc; | 
|  | u32			sk_tsflags; | 
|  | __cacheline_group_end(sock_write_rxtx); | 
|  |  | 
|  | __cacheline_group_begin(sock_write_tx); | 
|  | int			sk_write_pending; | 
|  | atomic_t		sk_omem_alloc; | 
|  | int			sk_err_soft; | 
|  |  | 
|  | int			sk_wmem_queued; | 
|  | refcount_t		sk_wmem_alloc; | 
|  | unsigned long		sk_tsq_flags; | 
|  | union { | 
|  | struct sk_buff	*sk_send_head; | 
|  | struct rb_root	tcp_rtx_queue; | 
|  | }; | 
|  | struct sk_buff_head	sk_write_queue; | 
|  | u32			sk_dst_pending_confirm; | 
|  | u32			sk_pacing_status; /* see enum sk_pacing */ | 
|  | struct page_frag	sk_frag; | 
|  | struct timer_list	sk_timer; | 
|  |  | 
|  | unsigned long		sk_pacing_rate; /* bytes per second */ | 
|  | atomic_t		sk_zckey; | 
|  | atomic_t		sk_tskey; | 
|  | __cacheline_group_end(sock_write_tx); | 
|  |  | 
|  | __cacheline_group_begin(sock_read_tx); | 
|  | unsigned long		sk_max_pacing_rate; | 
|  | long			sk_sndtimeo; | 
|  | u32			sk_priority; | 
|  | u32			sk_mark; | 
|  | kuid_t			sk_uid; | 
|  | u16			sk_protocol; | 
|  | u16			sk_type; | 
|  | struct dst_entry __rcu	*sk_dst_cache; | 
|  | netdev_features_t	sk_route_caps; | 
|  | #ifdef CONFIG_SOCK_VALIDATE_XMIT | 
|  | struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk, | 
|  | struct net_device *dev, | 
|  | struct sk_buff *skb); | 
|  | #endif | 
|  | u16			sk_gso_type; | 
|  | u16			sk_gso_max_segs; | 
|  | unsigned int		sk_gso_max_size; | 
|  | gfp_t			sk_allocation; | 
|  | u32			sk_txhash; | 
|  | int			sk_sndbuf; | 
|  | u8			sk_pacing_shift; | 
|  | bool			sk_use_task_frag; | 
|  | __cacheline_group_end(sock_read_tx); | 
|  |  | 
|  | /* | 
|  | * Because of non atomicity rules, all | 
|  | * changes are protected by socket lock. | 
|  | */ | 
|  | u8			sk_gso_disabled : 1, | 
|  | sk_kern_sock : 1, | 
|  | sk_no_check_tx : 1, | 
|  | sk_no_check_rx : 1; | 
|  | u8			sk_shutdown; | 
|  | unsigned long	        sk_lingertime; | 
|  | struct proto		*sk_prot_creator; | 
|  | rwlock_t		sk_callback_lock; | 
|  | u32			sk_ack_backlog; | 
|  | u32			sk_max_ack_backlog; | 
|  | unsigned long		sk_ino; | 
|  | spinlock_t		sk_peer_lock; | 
|  | int			sk_bind_phc; | 
|  | struct pid		*sk_peer_pid; | 
|  | const struct cred	*sk_peer_cred; | 
|  |  | 
|  | ktime_t			sk_stamp; | 
|  | #if BITS_PER_LONG==32 | 
|  | seqlock_t		sk_stamp_seq; | 
|  | #endif | 
|  | int			sk_disconnects; | 
|  |  | 
|  | union { | 
|  | u8		sk_txrehash; | 
|  | u8		sk_scm_recv_flags; | 
|  | struct { | 
|  | u8	sk_scm_credentials : 1, | 
|  | sk_scm_security : 1, | 
|  | sk_scm_pidfd : 1, | 
|  | sk_scm_rights : 1, | 
|  | sk_scm_unused : 4; | 
|  | }; | 
|  | }; | 
|  | u8			sk_clockid; | 
|  | u8			sk_txtime_deadline_mode : 1, | 
|  | sk_txtime_report_errors : 1, | 
|  | sk_txtime_unused : 6; | 
|  | #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) | 
|  | u8			sk_bpf_cb_flags; | 
|  |  | 
|  | void			*sk_user_data; | 
|  | #ifdef CONFIG_SECURITY | 
|  | void			*sk_security; | 
|  | #endif | 
|  | struct sock_cgroup_data	sk_cgrp_data; | 
|  | void			(*sk_state_change)(struct sock *sk); | 
|  | void			(*sk_write_space)(struct sock *sk); | 
|  | void			(*sk_error_report)(struct sock *sk); | 
|  | int			(*sk_backlog_rcv)(struct sock *sk, | 
|  | struct sk_buff *skb); | 
|  | void                    (*sk_destruct)(struct sock *sk); | 
|  | struct sock_reuseport __rcu	*sk_reuseport_cb; | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | struct bpf_local_storage __rcu	*sk_bpf_storage; | 
|  | #endif | 
|  | struct numa_drop_counters *sk_drop_counters; | 
|  | struct rcu_head		sk_rcu; | 
|  | netns_tracker		ns_tracker; | 
|  | struct xarray		sk_user_frags; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) | 
|  | struct module		*sk_owner; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct sock_bh_locked { | 
|  | struct sock *sock; | 
|  | local_lock_t bh_lock; | 
|  | }; | 
|  |  | 
|  | enum sk_pacing { | 
|  | SK_PACING_NONE		= 0, | 
|  | SK_PACING_NEEDED	= 1, | 
|  | SK_PACING_FQ		= 2, | 
|  | }; | 
|  |  | 
|  | /* flag bits in sk_user_data | 
|  | * | 
|  | * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might | 
|  | *   not be suitable for copying when cloning the socket. For instance, | 
|  | *   it can point to a reference counted object. sk_user_data bottom | 
|  | *   bit is set if pointer must not be copied. | 
|  | * | 
|  | * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is | 
|  | *   managed/owned by a BPF reuseport array. This bit should be set | 
|  | *   when sk_user_data's sk is added to the bpf's reuseport_array. | 
|  | * | 
|  | * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in | 
|  | *   sk_user_data points to psock type. This bit should be set | 
|  | *   when sk_user_data is assigned to a psock object. | 
|  | */ | 
|  | #define SK_USER_DATA_NOCOPY	1UL | 
|  | #define SK_USER_DATA_BPF	2UL | 
|  | #define SK_USER_DATA_PSOCK	4UL | 
|  | #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ | 
|  | SK_USER_DATA_PSOCK) | 
|  |  | 
|  | /** | 
|  | * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied | 
|  | * @sk: socket | 
|  | */ | 
|  | static inline bool sk_user_data_is_nocopy(const struct sock *sk) | 
|  | { | 
|  | return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); | 
|  | } | 
|  |  | 
|  | #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) | 
|  |  | 
|  | /** | 
|  | * __locked_read_sk_user_data_with_flags - return the pointer | 
|  | * only if argument flags all has been set in sk_user_data. Otherwise | 
|  | * return NULL | 
|  | * | 
|  | * @sk: socket | 
|  | * @flags: flag bits | 
|  | * | 
|  | * The caller must be holding sk->sk_callback_lock. | 
|  | */ | 
|  | static inline void * | 
|  | __locked_read_sk_user_data_with_flags(const struct sock *sk, | 
|  | uintptr_t flags) | 
|  | { | 
|  | uintptr_t sk_user_data = | 
|  | (uintptr_t)rcu_dereference_check(__sk_user_data(sk), | 
|  | lockdep_is_held(&sk->sk_callback_lock)); | 
|  |  | 
|  | WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); | 
|  |  | 
|  | if ((sk_user_data & flags) == flags) | 
|  | return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __rcu_dereference_sk_user_data_with_flags - return the pointer | 
|  | * only if argument flags all has been set in sk_user_data. Otherwise | 
|  | * return NULL | 
|  | * | 
|  | * @sk: socket | 
|  | * @flags: flag bits | 
|  | */ | 
|  | static inline void * | 
|  | __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, | 
|  | uintptr_t flags) | 
|  | { | 
|  | uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); | 
|  |  | 
|  | WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); | 
|  |  | 
|  | if ((sk_user_data & flags) == flags) | 
|  | return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #define rcu_dereference_sk_user_data(sk)				\ | 
|  | __rcu_dereference_sk_user_data_with_flags(sk, 0) | 
|  | #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\ | 
|  | ({									\ | 
|  | uintptr_t __tmp1 = (uintptr_t)(ptr),				\ | 
|  | __tmp2 = (uintptr_t)(flags);				\ | 
|  | WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\ | 
|  | WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\ | 
|  | rcu_assign_pointer(__sk_user_data((sk)),			\ | 
|  | __tmp1 | __tmp2);				\ | 
|  | }) | 
|  | #define rcu_assign_sk_user_data(sk, ptr)				\ | 
|  | __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) | 
|  |  | 
|  | static inline | 
|  | struct net *sock_net(const struct sock *sk) | 
|  | { | 
|  | return read_pnet(&sk->sk_net); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void sock_net_set(struct sock *sk, struct net *net) | 
|  | { | 
|  | write_pnet(&sk->sk_net, net); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK | 
|  | * or not whether his port will be reused by someone else. SK_FORCE_REUSE | 
|  | * on a socket means that the socket will reuse everybody else's port | 
|  | * without looking at the other's sk_reuse value. | 
|  | */ | 
|  |  | 
|  | #define SK_NO_REUSE	0 | 
|  | #define SK_CAN_REUSE	1 | 
|  | #define SK_FORCE_REUSE	2 | 
|  |  | 
|  | int sk_set_peek_off(struct sock *sk, int val); | 
|  |  | 
|  | static inline int sk_peek_offset(const struct sock *sk, int flags) | 
|  | { | 
|  | if (unlikely(flags & MSG_PEEK)) { | 
|  | return READ_ONCE(sk->sk_peek_off); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void sk_peek_offset_bwd(struct sock *sk, int val) | 
|  | { | 
|  | s32 off = READ_ONCE(sk->sk_peek_off); | 
|  |  | 
|  | if (unlikely(off >= 0)) { | 
|  | off = max_t(s32, off - val, 0); | 
|  | WRITE_ONCE(sk->sk_peek_off, off); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sk_peek_offset_fwd(struct sock *sk, int val) | 
|  | { | 
|  | sk_peek_offset_bwd(sk, -val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hashed lists helper routines | 
|  | */ | 
|  | static inline struct sock *sk_entry(const struct hlist_node *node) | 
|  | { | 
|  | return hlist_entry(node, struct sock, sk_node); | 
|  | } | 
|  |  | 
|  | static inline struct sock *__sk_head(const struct hlist_head *head) | 
|  | { | 
|  | return hlist_entry(head->first, struct sock, sk_node); | 
|  | } | 
|  |  | 
|  | static inline struct sock *sk_head(const struct hlist_head *head) | 
|  | { | 
|  | return hlist_empty(head) ? NULL : __sk_head(head); | 
|  | } | 
|  |  | 
|  | static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) | 
|  | { | 
|  | return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); | 
|  | } | 
|  |  | 
|  | static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) | 
|  | { | 
|  | return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); | 
|  | } | 
|  |  | 
|  | static inline struct sock *sk_next(const struct sock *sk) | 
|  | { | 
|  | return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); | 
|  | } | 
|  |  | 
|  | static inline struct sock *sk_nulls_next(const struct sock *sk) | 
|  | { | 
|  | return (!is_a_nulls(sk->sk_nulls_node.next)) ? | 
|  | hlist_nulls_entry(sk->sk_nulls_node.next, | 
|  | struct sock, sk_nulls_node) : | 
|  | NULL; | 
|  | } | 
|  |  | 
|  | static inline bool sk_unhashed(const struct sock *sk) | 
|  | { | 
|  | return hlist_unhashed(&sk->sk_node); | 
|  | } | 
|  |  | 
|  | static inline bool sk_hashed(const struct sock *sk) | 
|  | { | 
|  | return !sk_unhashed(sk); | 
|  | } | 
|  |  | 
|  | static inline void sk_node_init(struct hlist_node *node) | 
|  | { | 
|  | node->pprev = NULL; | 
|  | } | 
|  |  | 
|  | static inline void __sk_del_node(struct sock *sk) | 
|  | { | 
|  | __hlist_del(&sk->sk_node); | 
|  | } | 
|  |  | 
|  | /* NB: equivalent to hlist_del_init_rcu */ | 
|  | static inline bool __sk_del_node_init(struct sock *sk) | 
|  | { | 
|  | if (sk_hashed(sk)) { | 
|  | __sk_del_node(sk); | 
|  | sk_node_init(&sk->sk_node); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Grab socket reference count. This operation is valid only | 
|  | when sk is ALREADY grabbed f.e. it is found in hash table | 
|  | or a list and the lookup is made under lock preventing hash table | 
|  | modifications. | 
|  | */ | 
|  |  | 
|  | static __always_inline void sock_hold(struct sock *sk) | 
|  | { | 
|  | refcount_inc(&sk->sk_refcnt); | 
|  | } | 
|  |  | 
|  | /* Ungrab socket in the context, which assumes that socket refcnt | 
|  | cannot hit zero, f.e. it is true in context of any socketcall. | 
|  | */ | 
|  | static __always_inline void __sock_put(struct sock *sk) | 
|  | { | 
|  | refcount_dec(&sk->sk_refcnt); | 
|  | } | 
|  |  | 
|  | static inline bool sk_del_node_init(struct sock *sk) | 
|  | { | 
|  | bool rc = __sk_del_node_init(sk); | 
|  |  | 
|  | if (rc) { | 
|  | /* paranoid for a while -acme */ | 
|  | WARN_ON(refcount_read(&sk->sk_refcnt) == 1); | 
|  | __sock_put(sk); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk) | 
|  |  | 
|  | static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) | 
|  | { | 
|  | if (sk_hashed(sk)) { | 
|  | hlist_nulls_del_init_rcu(&sk->sk_nulls_node); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) | 
|  | { | 
|  | bool rc = __sk_nulls_del_node_init_rcu(sk); | 
|  |  | 
|  | if (rc) { | 
|  | /* paranoid for a while -acme */ | 
|  | WARN_ON(refcount_read(&sk->sk_refcnt) == 1); | 
|  | __sock_put(sk); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) | 
|  | { | 
|  | hlist_add_head(&sk->sk_node, list); | 
|  | } | 
|  |  | 
|  | static inline void sk_add_node(struct sock *sk, struct hlist_head *list) | 
|  | { | 
|  | sock_hold(sk); | 
|  | __sk_add_node(sk, list); | 
|  | } | 
|  |  | 
|  | static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) | 
|  | { | 
|  | sock_hold(sk); | 
|  | if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && | 
|  | sk->sk_family == AF_INET6) | 
|  | hlist_add_tail_rcu(&sk->sk_node, list); | 
|  | else | 
|  | hlist_add_head_rcu(&sk->sk_node, list); | 
|  | } | 
|  |  | 
|  | static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) | 
|  | { | 
|  | sock_hold(sk); | 
|  | hlist_add_tail_rcu(&sk->sk_node, list); | 
|  | } | 
|  |  | 
|  | static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) | 
|  | { | 
|  | hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); | 
|  | } | 
|  |  | 
|  | static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) | 
|  | { | 
|  | hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); | 
|  | } | 
|  |  | 
|  | static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) | 
|  | { | 
|  | sock_hold(sk); | 
|  | __sk_nulls_add_node_rcu(sk, list); | 
|  | } | 
|  |  | 
|  | static inline void __sk_del_bind_node(struct sock *sk) | 
|  | { | 
|  | __hlist_del(&sk->sk_bind_node); | 
|  | } | 
|  |  | 
|  | static inline void sk_add_bind_node(struct sock *sk, | 
|  | struct hlist_head *list) | 
|  | { | 
|  | hlist_add_head(&sk->sk_bind_node, list); | 
|  | } | 
|  |  | 
|  | #define sk_for_each(__sk, list) \ | 
|  | hlist_for_each_entry(__sk, list, sk_node) | 
|  | #define sk_for_each_rcu(__sk, list) \ | 
|  | hlist_for_each_entry_rcu(__sk, list, sk_node) | 
|  | #define sk_nulls_for_each(__sk, node, list) \ | 
|  | hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) | 
|  | #define sk_nulls_for_each_rcu(__sk, node, list) \ | 
|  | hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) | 
|  | #define sk_for_each_from(__sk) \ | 
|  | hlist_for_each_entry_from(__sk, sk_node) | 
|  | #define sk_nulls_for_each_from(__sk, node) \ | 
|  | if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ | 
|  | hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) | 
|  | #define sk_for_each_safe(__sk, tmp, list) \ | 
|  | hlist_for_each_entry_safe(__sk, tmp, list, sk_node) | 
|  | #define sk_for_each_bound(__sk, list) \ | 
|  | hlist_for_each_entry(__sk, list, sk_bind_node) | 
|  | #define sk_for_each_bound_safe(__sk, tmp, list) \ | 
|  | hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) | 
|  |  | 
|  | /** | 
|  | * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset | 
|  | * @tpos:	the type * to use as a loop cursor. | 
|  | * @pos:	the &struct hlist_node to use as a loop cursor. | 
|  | * @head:	the head for your list. | 
|  | * @offset:	offset of hlist_node within the struct. | 
|  | * | 
|  | */ | 
|  | #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \ | 
|  | for (pos = rcu_dereference(hlist_first_rcu(head));		       \ | 
|  | pos != NULL &&						       \ | 
|  | ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \ | 
|  | pos = rcu_dereference(hlist_next_rcu(pos))) | 
|  |  | 
|  | static inline struct user_namespace *sk_user_ns(const struct sock *sk) | 
|  | { | 
|  | /* Careful only use this in a context where these parameters | 
|  | * can not change and must all be valid, such as recvmsg from | 
|  | * userspace. | 
|  | */ | 
|  | return sk->sk_socket->file->f_cred->user_ns; | 
|  | } | 
|  |  | 
|  | /* Sock flags */ | 
|  | enum sock_flags { | 
|  | SOCK_DEAD, | 
|  | SOCK_DONE, | 
|  | SOCK_URGINLINE, | 
|  | SOCK_KEEPOPEN, | 
|  | SOCK_LINGER, | 
|  | SOCK_DESTROY, | 
|  | SOCK_BROADCAST, | 
|  | SOCK_TIMESTAMP, | 
|  | SOCK_ZAPPED, | 
|  | SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ | 
|  | SOCK_DBG, /* %SO_DEBUG setting */ | 
|  | SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ | 
|  | SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ | 
|  | SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ | 
|  | SOCK_MEMALLOC, /* VM depends on this socket for swapping */ | 
|  | SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */ | 
|  | SOCK_FASYNC, /* fasync() active */ | 
|  | SOCK_RXQ_OVFL, | 
|  | SOCK_ZEROCOPY, /* buffers from userspace */ | 
|  | SOCK_WIFI_STATUS, /* push wifi status to userspace */ | 
|  | SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. | 
|  | * Will use last 4 bytes of packet sent from | 
|  | * user-space instead. | 
|  | */ | 
|  | SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ | 
|  | SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ | 
|  | SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ | 
|  | SOCK_TXTIME, | 
|  | SOCK_XDP, /* XDP is attached */ | 
|  | SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ | 
|  | SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */ | 
|  | SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ | 
|  | SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ | 
|  | }; | 
|  |  | 
|  | #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) | 
|  | /* | 
|  | * The highest bit of sk_tsflags is reserved for kernel-internal | 
|  | * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that | 
|  | * SOF_TIMESTAMPING* values do not reach this reserved area | 
|  | */ | 
|  | #define SOCKCM_FLAG_TS_OPT_ID	BIT(31) | 
|  |  | 
|  | static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) | 
|  | { | 
|  | nsk->sk_flags = osk->sk_flags; | 
|  | } | 
|  |  | 
|  | static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) | 
|  | { | 
|  | __set_bit(flag, &sk->sk_flags); | 
|  | } | 
|  |  | 
|  | static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) | 
|  | { | 
|  | __clear_bit(flag, &sk->sk_flags); | 
|  | } | 
|  |  | 
|  | static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, | 
|  | int valbool) | 
|  | { | 
|  | if (valbool) | 
|  | sock_set_flag(sk, bit); | 
|  | else | 
|  | sock_reset_flag(sk, bit); | 
|  | } | 
|  |  | 
|  | static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) | 
|  | { | 
|  | return test_bit(flag, &sk->sk_flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET | 
|  | DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); | 
|  | static inline int sk_memalloc_socks(void) | 
|  | { | 
|  | return static_branch_unlikely(&memalloc_socks_key); | 
|  | } | 
|  |  | 
|  | void __receive_sock(struct file *file); | 
|  | #else | 
|  |  | 
|  | static inline int sk_memalloc_socks(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __receive_sock(struct file *file) | 
|  | { } | 
|  | #endif | 
|  |  | 
|  | static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) | 
|  | { | 
|  | return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); | 
|  | } | 
|  |  | 
|  | static inline void sk_acceptq_removed(struct sock *sk) | 
|  | { | 
|  | WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); | 
|  | } | 
|  |  | 
|  | static inline void sk_acceptq_added(struct sock *sk) | 
|  | { | 
|  | WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); | 
|  | } | 
|  |  | 
|  | /* Note: If you think the test should be: | 
|  | *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); | 
|  | * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") | 
|  | */ | 
|  | static inline bool sk_acceptq_is_full(const struct sock *sk) | 
|  | { | 
|  | return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute minimal free write space needed to queue new packets. | 
|  | */ | 
|  | static inline int sk_stream_min_wspace(const struct sock *sk) | 
|  | { | 
|  | return READ_ONCE(sk->sk_wmem_queued) >> 1; | 
|  | } | 
|  |  | 
|  | static inline int sk_stream_wspace(const struct sock *sk) | 
|  | { | 
|  | return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); | 
|  | } | 
|  |  | 
|  | static inline void sk_wmem_queued_add(struct sock *sk, int val) | 
|  | { | 
|  | WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); | 
|  | } | 
|  |  | 
|  | static inline void sk_forward_alloc_add(struct sock *sk, int val) | 
|  | { | 
|  | /* Paired with lockless reads of sk->sk_forward_alloc */ | 
|  | WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); | 
|  | } | 
|  |  | 
|  | void sk_stream_write_space(struct sock *sk); | 
|  |  | 
|  | /* OOB backlog add */ | 
|  | static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | /* dont let skb dst not refcounted, we are going to leave rcu lock */ | 
|  | skb_dst_force(skb); | 
|  |  | 
|  | if (!sk->sk_backlog.tail) | 
|  | WRITE_ONCE(sk->sk_backlog.head, skb); | 
|  | else | 
|  | sk->sk_backlog.tail->next = skb; | 
|  |  | 
|  | WRITE_ONCE(sk->sk_backlog.tail, skb); | 
|  | skb->next = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take into account size of receive queue and backlog queue | 
|  | * Do not take into account this skb truesize, | 
|  | * to allow even a single big packet to come. | 
|  | */ | 
|  | static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) | 
|  | { | 
|  | unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); | 
|  |  | 
|  | return qsize > limit; | 
|  | } | 
|  |  | 
|  | /* The per-socket spinlock must be held here. */ | 
|  | static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, | 
|  | unsigned int limit) | 
|  | { | 
|  | if (sk_rcvqueues_full(sk, limit)) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | /* | 
|  | * If the skb was allocated from pfmemalloc reserves, only | 
|  | * allow SOCK_MEMALLOC sockets to use it as this socket is | 
|  | * helping free memory | 
|  | */ | 
|  | if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | __sk_add_backlog(sk, skb); | 
|  | sk->sk_backlog.len += skb->truesize; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); | 
|  |  | 
|  | INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); | 
|  | INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); | 
|  |  | 
|  | static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | if (sk_memalloc_socks() && skb_pfmemalloc(skb)) | 
|  | return __sk_backlog_rcv(sk, skb); | 
|  |  | 
|  | return INDIRECT_CALL_INET(sk->sk_backlog_rcv, | 
|  | tcp_v6_do_rcv, | 
|  | tcp_v4_do_rcv, | 
|  | sk, skb); | 
|  | } | 
|  |  | 
|  | static inline void sk_incoming_cpu_update(struct sock *sk) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) | 
|  | WRITE_ONCE(sk->sk_incoming_cpu, cpu); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void sock_rps_save_rxhash(struct sock *sk, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_RPS | 
|  | /* The following WRITE_ONCE() is paired with the READ_ONCE() | 
|  | * here, and another one in sock_rps_record_flow(). | 
|  | */ | 
|  | if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) | 
|  | WRITE_ONCE(sk->sk_rxhash, skb->hash); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void sock_rps_reset_rxhash(struct sock *sk) | 
|  | { | 
|  | #ifdef CONFIG_RPS | 
|  | /* Paired with READ_ONCE() in sock_rps_record_flow() */ | 
|  | WRITE_ONCE(sk->sk_rxhash, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define sk_wait_event(__sk, __timeo, __condition, __wait)		\ | 
|  | ({	int __rc, __dis = __sk->sk_disconnects;			\ | 
|  | release_sock(__sk);					\ | 
|  | __rc = __condition;					\ | 
|  | if (!__rc) {						\ | 
|  | *(__timeo) = wait_woken(__wait,			\ | 
|  | TASK_INTERRUPTIBLE,	\ | 
|  | *(__timeo));		\ | 
|  | }							\ | 
|  | sched_annotate_sleep();					\ | 
|  | lock_sock(__sk);					\ | 
|  | __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ | 
|  | __rc;							\ | 
|  | }) | 
|  |  | 
|  | int sk_stream_wait_connect(struct sock *sk, long *timeo_p); | 
|  | int sk_stream_wait_memory(struct sock *sk, long *timeo_p); | 
|  | void sk_stream_wait_close(struct sock *sk, long timeo_p); | 
|  | int sk_stream_error(struct sock *sk, int flags, int err); | 
|  | void sk_stream_kill_queues(struct sock *sk); | 
|  | void sk_set_memalloc(struct sock *sk); | 
|  | void sk_clear_memalloc(struct sock *sk); | 
|  |  | 
|  | void __sk_flush_backlog(struct sock *sk); | 
|  |  | 
|  | static inline bool sk_flush_backlog(struct sock *sk) | 
|  | { | 
|  | if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { | 
|  | __sk_flush_backlog(sk); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); | 
|  |  | 
|  | struct request_sock_ops; | 
|  | struct timewait_sock_ops; | 
|  | struct inet_hashinfo; | 
|  | struct raw_hashinfo; | 
|  | struct smc_hashinfo; | 
|  | struct module; | 
|  | struct sk_psock; | 
|  |  | 
|  | /* | 
|  | * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes | 
|  | * un-modified. Special care is taken when initializing object to zero. | 
|  | */ | 
|  | static inline void sk_prot_clear_nulls(struct sock *sk, int size) | 
|  | { | 
|  | if (offsetof(struct sock, sk_node.next) != 0) | 
|  | memset(sk, 0, offsetof(struct sock, sk_node.next)); | 
|  | memset(&sk->sk_node.pprev, 0, | 
|  | size - offsetof(struct sock, sk_node.pprev)); | 
|  | } | 
|  |  | 
|  | struct proto_accept_arg { | 
|  | int flags; | 
|  | int err; | 
|  | int is_empty; | 
|  | bool kern; | 
|  | }; | 
|  |  | 
|  | /* Networking protocol blocks we attach to sockets. | 
|  | * socket layer -> transport layer interface | 
|  | */ | 
|  | struct proto { | 
|  | void			(*close)(struct sock *sk, | 
|  | long timeout); | 
|  | int			(*pre_connect)(struct sock *sk, | 
|  | struct sockaddr *uaddr, | 
|  | int addr_len); | 
|  | int			(*connect)(struct sock *sk, | 
|  | struct sockaddr *uaddr, | 
|  | int addr_len); | 
|  | int			(*disconnect)(struct sock *sk, int flags); | 
|  |  | 
|  | struct sock *		(*accept)(struct sock *sk, | 
|  | struct proto_accept_arg *arg); | 
|  |  | 
|  | int			(*ioctl)(struct sock *sk, int cmd, | 
|  | int *karg); | 
|  | int			(*init)(struct sock *sk); | 
|  | void			(*destroy)(struct sock *sk); | 
|  | void			(*shutdown)(struct sock *sk, int how); | 
|  | int			(*setsockopt)(struct sock *sk, int level, | 
|  | int optname, sockptr_t optval, | 
|  | unsigned int optlen); | 
|  | int			(*getsockopt)(struct sock *sk, int level, | 
|  | int optname, char __user *optval, | 
|  | int __user *option); | 
|  | void			(*keepalive)(struct sock *sk, int valbool); | 
|  | #ifdef CONFIG_COMPAT | 
|  | int			(*compat_ioctl)(struct sock *sk, | 
|  | unsigned int cmd, unsigned long arg); | 
|  | #endif | 
|  | int			(*sendmsg)(struct sock *sk, struct msghdr *msg, | 
|  | size_t len); | 
|  | int			(*recvmsg)(struct sock *sk, struct msghdr *msg, | 
|  | size_t len, int flags, int *addr_len); | 
|  | void			(*splice_eof)(struct socket *sock); | 
|  | int			(*bind)(struct sock *sk, | 
|  | struct sockaddr *addr, int addr_len); | 
|  | int			(*bind_add)(struct sock *sk, | 
|  | struct sockaddr *addr, int addr_len); | 
|  |  | 
|  | int			(*backlog_rcv) (struct sock *sk, | 
|  | struct sk_buff *skb); | 
|  | bool			(*bpf_bypass_getsockopt)(int level, | 
|  | int optname); | 
|  |  | 
|  | void		(*release_cb)(struct sock *sk); | 
|  |  | 
|  | /* Keeping track of sk's, looking them up, and port selection methods. */ | 
|  | int			(*hash)(struct sock *sk); | 
|  | void			(*unhash)(struct sock *sk); | 
|  | void			(*rehash)(struct sock *sk); | 
|  | int			(*get_port)(struct sock *sk, unsigned short snum); | 
|  | void			(*put_port)(struct sock *sk); | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | int			(*psock_update_sk_prot)(struct sock *sk, | 
|  | struct sk_psock *psock, | 
|  | bool restore); | 
|  | #endif | 
|  |  | 
|  | /* Keeping track of sockets in use */ | 
|  | #ifdef CONFIG_PROC_FS | 
|  | unsigned int		inuse_idx; | 
|  | #endif | 
|  |  | 
|  | bool			(*stream_memory_free)(const struct sock *sk, int wake); | 
|  | bool			(*sock_is_readable)(struct sock *sk); | 
|  | /* Memory pressure */ | 
|  | void			(*enter_memory_pressure)(struct sock *sk); | 
|  | void			(*leave_memory_pressure)(struct sock *sk); | 
|  | atomic_long_t		*memory_allocated;	/* Current allocated memory. */ | 
|  | int  __percpu		*per_cpu_fw_alloc; | 
|  | struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */ | 
|  |  | 
|  | /* | 
|  | * Pressure flag: try to collapse. | 
|  | * Technical note: it is used by multiple contexts non atomically. | 
|  | * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. | 
|  | * All the __sk_mem_schedule() is of this nature: accounting | 
|  | * is strict, actions are advisory and have some latency. | 
|  | */ | 
|  | unsigned long		*memory_pressure; | 
|  | long			*sysctl_mem; | 
|  |  | 
|  | int			*sysctl_wmem; | 
|  | int			*sysctl_rmem; | 
|  | u32			sysctl_wmem_offset; | 
|  | u32			sysctl_rmem_offset; | 
|  |  | 
|  | int			max_header; | 
|  | bool			no_autobind; | 
|  |  | 
|  | struct kmem_cache	*slab; | 
|  | unsigned int		obj_size; | 
|  | unsigned int		ipv6_pinfo_offset; | 
|  | slab_flags_t		slab_flags; | 
|  | unsigned int		useroffset;	/* Usercopy region offset */ | 
|  | unsigned int		usersize;	/* Usercopy region size */ | 
|  |  | 
|  | struct request_sock_ops	*rsk_prot; | 
|  | struct timewait_sock_ops *twsk_prot; | 
|  |  | 
|  | union { | 
|  | struct inet_hashinfo	*hashinfo; | 
|  | struct udp_table	*udp_table; | 
|  | struct raw_hashinfo	*raw_hash; | 
|  | struct smc_hashinfo	*smc_hash; | 
|  | } h; | 
|  |  | 
|  | struct module		*owner; | 
|  |  | 
|  | char			name[32]; | 
|  |  | 
|  | struct list_head	node; | 
|  | int			(*diag_destroy)(struct sock *sk, int err); | 
|  | } __randomize_layout; | 
|  |  | 
|  | int proto_register(struct proto *prot, int alloc_slab); | 
|  | void proto_unregister(struct proto *prot); | 
|  | int sock_load_diag_module(int family, int protocol); | 
|  |  | 
|  | INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); | 
|  |  | 
|  | static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) | 
|  | { | 
|  | if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) | 
|  | return false; | 
|  |  | 
|  | return sk->sk_prot->stream_memory_free ? | 
|  | INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, | 
|  | tcp_stream_memory_free, sk, wake) : true; | 
|  | } | 
|  |  | 
|  | static inline bool sk_stream_memory_free(const struct sock *sk) | 
|  | { | 
|  | return __sk_stream_memory_free(sk, 0); | 
|  | } | 
|  |  | 
|  | static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) | 
|  | { | 
|  | return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && | 
|  | __sk_stream_memory_free(sk, wake); | 
|  | } | 
|  |  | 
|  | static inline bool sk_stream_is_writeable(const struct sock *sk) | 
|  | { | 
|  | return __sk_stream_is_writeable(sk, 0); | 
|  | } | 
|  |  | 
|  | static inline int sk_under_cgroup_hierarchy(struct sock *sk, | 
|  | struct cgroup *ancestor) | 
|  | { | 
|  | #ifdef CONFIG_SOCK_CGROUP_DATA | 
|  | return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), | 
|  | ancestor); | 
|  | #else | 
|  | return -ENOTSUPP; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 | 
|  |  | 
|  | static inline void sk_sockets_allocated_dec(struct sock *sk) | 
|  | { | 
|  | percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, | 
|  | SK_ALLOC_PERCPU_COUNTER_BATCH); | 
|  | } | 
|  |  | 
|  | static inline void sk_sockets_allocated_inc(struct sock *sk) | 
|  | { | 
|  | percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, | 
|  | SK_ALLOC_PERCPU_COUNTER_BATCH); | 
|  | } | 
|  |  | 
|  | static inline u64 | 
|  | sk_sockets_allocated_read_positive(struct sock *sk) | 
|  | { | 
|  | return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | proto_sockets_allocated_sum_positive(struct proto *prot) | 
|  | { | 
|  | return percpu_counter_sum_positive(prot->sockets_allocated); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | #define PROTO_INUSE_NR	64	/* should be enough for the first time */ | 
|  | struct prot_inuse { | 
|  | int all; | 
|  | int val[PROTO_INUSE_NR]; | 
|  | }; | 
|  |  | 
|  | static inline void sock_prot_inuse_add(const struct net *net, | 
|  | const struct proto *prot, int val) | 
|  | { | 
|  | this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); | 
|  | } | 
|  |  | 
|  | static inline void sock_inuse_add(const struct net *net, int val) | 
|  | { | 
|  | this_cpu_add(net->core.prot_inuse->all, val); | 
|  | } | 
|  |  | 
|  | int sock_prot_inuse_get(struct net *net, struct proto *proto); | 
|  | int sock_inuse_get(struct net *net); | 
|  | #else | 
|  | static inline void sock_prot_inuse_add(const struct net *net, | 
|  | const struct proto *prot, int val) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sock_inuse_add(const struct net *net, int val) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* With per-bucket locks this operation is not-atomic, so that | 
|  | * this version is not worse. | 
|  | */ | 
|  | static inline int __sk_prot_rehash(struct sock *sk) | 
|  | { | 
|  | sk->sk_prot->unhash(sk); | 
|  | return sk->sk_prot->hash(sk); | 
|  | } | 
|  |  | 
|  | /* About 10 seconds */ | 
|  | #define SOCK_DESTROY_TIME (10*HZ) | 
|  |  | 
|  | /* Sockets 0-1023 can't be bound to unless you are superuser */ | 
|  | #define PROT_SOCK	1024 | 
|  |  | 
|  | #define SHUTDOWN_MASK	3 | 
|  | #define RCV_SHUTDOWN	1 | 
|  | #define SEND_SHUTDOWN	2 | 
|  |  | 
|  | #define SOCK_BINDADDR_LOCK	4 | 
|  | #define SOCK_BINDPORT_LOCK	8 | 
|  | /** | 
|  | * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time | 
|  | */ | 
|  | #define SOCK_CONNECT_BIND	16 | 
|  |  | 
|  | struct socket_alloc { | 
|  | struct socket socket; | 
|  | struct inode vfs_inode; | 
|  | }; | 
|  |  | 
|  | static inline struct socket *SOCKET_I(struct inode *inode) | 
|  | { | 
|  | return &container_of(inode, struct socket_alloc, vfs_inode)->socket; | 
|  | } | 
|  |  | 
|  | static inline struct inode *SOCK_INODE(struct socket *socket) | 
|  | { | 
|  | return &container_of(socket, struct socket_alloc, socket)->vfs_inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions for memory accounting | 
|  | */ | 
|  | int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); | 
|  | int __sk_mem_schedule(struct sock *sk, int size, int kind); | 
|  | void __sk_mem_reduce_allocated(struct sock *sk, int amount); | 
|  | void __sk_mem_reclaim(struct sock *sk, int amount); | 
|  |  | 
|  | #define SK_MEM_SEND	0 | 
|  | #define SK_MEM_RECV	1 | 
|  |  | 
|  | /* sysctl_mem values are in pages */ | 
|  | static inline long sk_prot_mem_limits(const struct sock *sk, int index) | 
|  | { | 
|  | return READ_ONCE(sk->sk_prot->sysctl_mem[index]); | 
|  | } | 
|  |  | 
|  | static inline int sk_mem_pages(int amt) | 
|  | { | 
|  | return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline bool sk_has_account(struct sock *sk) | 
|  | { | 
|  | /* return true if protocol supports memory accounting */ | 
|  | return !!sk->sk_prot->memory_allocated; | 
|  | } | 
|  |  | 
|  | static inline bool sk_wmem_schedule(struct sock *sk, int size) | 
|  | { | 
|  | int delta; | 
|  |  | 
|  | if (!sk_has_account(sk)) | 
|  | return true; | 
|  | delta = size - sk->sk_forward_alloc; | 
|  | return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) | 
|  | { | 
|  | int delta; | 
|  |  | 
|  | if (!sk_has_account(sk)) | 
|  | return true; | 
|  | delta = size - sk->sk_forward_alloc; | 
|  | return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || | 
|  | pfmemalloc; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) | 
|  | { | 
|  | return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); | 
|  | } | 
|  |  | 
|  | static inline int sk_unused_reserved_mem(const struct sock *sk) | 
|  | { | 
|  | int unused_mem; | 
|  |  | 
|  | if (likely(!sk->sk_reserved_mem)) | 
|  | return 0; | 
|  |  | 
|  | unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - | 
|  | atomic_read(&sk->sk_rmem_alloc); | 
|  |  | 
|  | return unused_mem > 0 ? unused_mem : 0; | 
|  | } | 
|  |  | 
|  | static inline void sk_mem_reclaim(struct sock *sk) | 
|  | { | 
|  | int reclaimable; | 
|  |  | 
|  | if (!sk_has_account(sk)) | 
|  | return; | 
|  |  | 
|  | reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); | 
|  |  | 
|  | if (reclaimable >= (int)PAGE_SIZE) | 
|  | __sk_mem_reclaim(sk, reclaimable); | 
|  | } | 
|  |  | 
|  | static inline void sk_mem_reclaim_final(struct sock *sk) | 
|  | { | 
|  | sk->sk_reserved_mem = 0; | 
|  | sk_mem_reclaim(sk); | 
|  | } | 
|  |  | 
|  | static inline void sk_mem_charge(struct sock *sk, int size) | 
|  | { | 
|  | if (!sk_has_account(sk)) | 
|  | return; | 
|  | sk_forward_alloc_add(sk, -size); | 
|  | } | 
|  |  | 
|  | static inline void sk_mem_uncharge(struct sock *sk, int size) | 
|  | { | 
|  | if (!sk_has_account(sk)) | 
|  | return; | 
|  | sk_forward_alloc_add(sk, size); | 
|  | sk_mem_reclaim(sk); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) | 
|  | static inline void sk_owner_set(struct sock *sk, struct module *owner) | 
|  | { | 
|  | __module_get(owner); | 
|  | sk->sk_owner = owner; | 
|  | } | 
|  |  | 
|  | static inline void sk_owner_clear(struct sock *sk) | 
|  | { | 
|  | sk->sk_owner = NULL; | 
|  | } | 
|  |  | 
|  | static inline void sk_owner_put(struct sock *sk) | 
|  | { | 
|  | module_put(sk->sk_owner); | 
|  | } | 
|  | #else | 
|  | static inline void sk_owner_set(struct sock *sk, struct module *owner) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sk_owner_clear(struct sock *sk) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sk_owner_put(struct sock *sk) | 
|  | { | 
|  | } | 
|  | #endif | 
|  | /* | 
|  | * Macro so as to not evaluate some arguments when | 
|  | * lockdep is not enabled. | 
|  | * | 
|  | * Mark both the sk_lock and the sk_lock.slock as a | 
|  | * per-address-family lock class. | 
|  | */ | 
|  | #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\ | 
|  | do {									\ | 
|  | sk_owner_set(sk, THIS_MODULE);					\ | 
|  | sk->sk_lock.owned = 0;						\ | 
|  | init_waitqueue_head(&sk->sk_lock.wq);				\ | 
|  | spin_lock_init(&(sk)->sk_lock.slock);				\ | 
|  | debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\ | 
|  | sizeof((sk)->sk_lock));		\ | 
|  | lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\ | 
|  | (skey), (sname));			\ | 
|  | lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\ | 
|  | } while (0) | 
|  |  | 
|  | static inline bool lockdep_sock_is_held(const struct sock *sk) | 
|  | { | 
|  | return lockdep_is_held(&sk->sk_lock) || | 
|  | lockdep_is_held(&sk->sk_lock.slock); | 
|  | } | 
|  |  | 
|  | void lock_sock_nested(struct sock *sk, int subclass); | 
|  |  | 
|  | static inline void lock_sock(struct sock *sk) | 
|  | { | 
|  | lock_sock_nested(sk, 0); | 
|  | } | 
|  |  | 
|  | void __lock_sock(struct sock *sk); | 
|  | void __release_sock(struct sock *sk); | 
|  | void release_sock(struct sock *sk); | 
|  |  | 
|  | /* BH context may only use the following locking interface. */ | 
|  | #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock)) | 
|  | #define bh_lock_sock_nested(__sk) \ | 
|  | spin_lock_nested(&((__sk)->sk_lock.slock), \ | 
|  | SINGLE_DEPTH_NESTING) | 
|  | #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock)) | 
|  |  | 
|  | bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); | 
|  |  | 
|  | /** | 
|  | * lock_sock_fast - fast version of lock_sock | 
|  | * @sk: socket | 
|  | * | 
|  | * This version should be used for very small section, where process won't block | 
|  | * return false if fast path is taken: | 
|  | * | 
|  | *   sk_lock.slock locked, owned = 0, BH disabled | 
|  | * | 
|  | * return true if slow path is taken: | 
|  | * | 
|  | *   sk_lock.slock unlocked, owned = 1, BH enabled | 
|  | */ | 
|  | static inline bool lock_sock_fast(struct sock *sk) | 
|  | { | 
|  | /* The sk_lock has mutex_lock() semantics here. */ | 
|  | mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); | 
|  |  | 
|  | return __lock_sock_fast(sk); | 
|  | } | 
|  |  | 
|  | /* fast socket lock variant for caller already holding a [different] socket lock */ | 
|  | static inline bool lock_sock_fast_nested(struct sock *sk) | 
|  | { | 
|  | mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); | 
|  |  | 
|  | return __lock_sock_fast(sk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unlock_sock_fast - complement of lock_sock_fast | 
|  | * @sk: socket | 
|  | * @slow: slow mode | 
|  | * | 
|  | * fast unlock socket for user context. | 
|  | * If slow mode is on, we call regular release_sock() | 
|  | */ | 
|  | static inline void unlock_sock_fast(struct sock *sk, bool slow) | 
|  | __releases(&sk->sk_lock.slock) | 
|  | { | 
|  | if (slow) { | 
|  | release_sock(sk); | 
|  | __release(&sk->sk_lock.slock); | 
|  | } else { | 
|  | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); | 
|  | spin_unlock_bh(&sk->sk_lock.slock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void sockopt_lock_sock(struct sock *sk); | 
|  | void sockopt_release_sock(struct sock *sk); | 
|  | bool sockopt_ns_capable(struct user_namespace *ns, int cap); | 
|  | bool sockopt_capable(int cap); | 
|  |  | 
|  | /* Used by processes to "lock" a socket state, so that | 
|  | * interrupts and bottom half handlers won't change it | 
|  | * from under us. It essentially blocks any incoming | 
|  | * packets, so that we won't get any new data or any | 
|  | * packets that change the state of the socket. | 
|  | * | 
|  | * While locked, BH processing will add new packets to | 
|  | * the backlog queue.  This queue is processed by the | 
|  | * owner of the socket lock right before it is released. | 
|  | * | 
|  | * Since ~2.3.5 it is also exclusive sleep lock serializing | 
|  | * accesses from user process context. | 
|  | */ | 
|  |  | 
|  | static inline void sock_owned_by_me(const struct sock *sk) | 
|  | { | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void sock_not_owned_by_me(const struct sock *sk) | 
|  | { | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline bool sock_owned_by_user(const struct sock *sk) | 
|  | { | 
|  | sock_owned_by_me(sk); | 
|  | return sk->sk_lock.owned; | 
|  | } | 
|  |  | 
|  | static inline bool sock_owned_by_user_nocheck(const struct sock *sk) | 
|  | { | 
|  | return sk->sk_lock.owned; | 
|  | } | 
|  |  | 
|  | static inline void sock_release_ownership(struct sock *sk) | 
|  | { | 
|  | DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); | 
|  | sk->sk_lock.owned = 0; | 
|  |  | 
|  | /* The sk_lock has mutex_unlock() semantics: */ | 
|  | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* no reclassification while locks are held */ | 
|  | static inline bool sock_allow_reclassification(const struct sock *csk) | 
|  | { | 
|  | struct sock *sk = (struct sock *)csk; | 
|  |  | 
|  | return !sock_owned_by_user_nocheck(sk) && | 
|  | !spin_is_locked(&sk->sk_lock.slock); | 
|  | } | 
|  |  | 
|  | struct sock *sk_alloc(struct net *net, int family, gfp_t priority, | 
|  | struct proto *prot, int kern); | 
|  | void sk_free(struct sock *sk); | 
|  | void sk_net_refcnt_upgrade(struct sock *sk); | 
|  | void sk_destruct(struct sock *sk); | 
|  | struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); | 
|  |  | 
|  | struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, | 
|  | gfp_t priority); | 
|  | void __sock_wfree(struct sk_buff *skb); | 
|  | void sock_wfree(struct sk_buff *skb); | 
|  | struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, | 
|  | gfp_t priority); | 
|  | void skb_orphan_partial(struct sk_buff *skb); | 
|  | void sock_rfree(struct sk_buff *skb); | 
|  | void sock_efree(struct sk_buff *skb); | 
|  | #ifdef CONFIG_INET | 
|  | void sock_edemux(struct sk_buff *skb); | 
|  | void sock_pfree(struct sk_buff *skb); | 
|  |  | 
|  | static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | skb_orphan(skb); | 
|  | if (refcount_inc_not_zero(&sk->sk_refcnt)) { | 
|  | skb->sk = sk; | 
|  | skb->destructor = sock_edemux; | 
|  | } | 
|  | } | 
|  | #else | 
|  | #define sock_edemux sock_efree | 
|  | #endif | 
|  |  | 
|  | int sk_setsockopt(struct sock *sk, int level, int optname, | 
|  | sockptr_t optval, unsigned int optlen); | 
|  | int sock_setsockopt(struct socket *sock, int level, int op, | 
|  | sockptr_t optval, unsigned int optlen); | 
|  | int do_sock_setsockopt(struct socket *sock, bool compat, int level, | 
|  | int optname, sockptr_t optval, int optlen); | 
|  | int do_sock_getsockopt(struct socket *sock, bool compat, int level, | 
|  | int optname, sockptr_t optval, sockptr_t optlen); | 
|  |  | 
|  | int sk_getsockopt(struct sock *sk, int level, int optname, | 
|  | sockptr_t optval, sockptr_t optlen); | 
|  | int sock_gettstamp(struct socket *sock, void __user *userstamp, | 
|  | bool timeval, bool time32); | 
|  | struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, | 
|  | unsigned long data_len, int noblock, | 
|  | int *errcode, int max_page_order); | 
|  |  | 
|  | static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, | 
|  | unsigned long size, | 
|  | int noblock, int *errcode) | 
|  | { | 
|  | return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); | 
|  | } | 
|  |  | 
|  | void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); | 
|  | void *sock_kmemdup(struct sock *sk, const void *src, | 
|  | int size, gfp_t priority); | 
|  | void sock_kfree_s(struct sock *sk, void *mem, int size); | 
|  | void sock_kzfree_s(struct sock *sk, void *mem, int size); | 
|  | void sk_send_sigurg(struct sock *sk); | 
|  |  | 
|  | static inline void sock_replace_proto(struct sock *sk, struct proto *proto) | 
|  | { | 
|  | if (sk->sk_socket) | 
|  | clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); | 
|  | WRITE_ONCE(sk->sk_prot, proto); | 
|  | } | 
|  |  | 
|  | struct sockcm_cookie { | 
|  | u64 transmit_time; | 
|  | u32 mark; | 
|  | u32 tsflags; | 
|  | u32 ts_opt_id; | 
|  | u32 priority; | 
|  | u32 dmabuf_id; | 
|  | }; | 
|  |  | 
|  | static inline void sockcm_init(struct sockcm_cookie *sockc, | 
|  | const struct sock *sk) | 
|  | { | 
|  | *sockc = (struct sockcm_cookie) { | 
|  | .mark = READ_ONCE(sk->sk_mark), | 
|  | .tsflags = READ_ONCE(sk->sk_tsflags), | 
|  | .priority = READ_ONCE(sk->sk_priority), | 
|  | }; | 
|  | } | 
|  |  | 
|  | int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, | 
|  | struct sockcm_cookie *sockc); | 
|  | int sock_cmsg_send(struct sock *sk, struct msghdr *msg, | 
|  | struct sockcm_cookie *sockc); | 
|  |  | 
|  | /* | 
|  | * Functions to fill in entries in struct proto_ops when a protocol | 
|  | * does not implement a particular function. | 
|  | */ | 
|  | int sock_no_bind(struct socket *, struct sockaddr *, int); | 
|  | int sock_no_connect(struct socket *, struct sockaddr *, int, int); | 
|  | int sock_no_socketpair(struct socket *, struct socket *); | 
|  | int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); | 
|  | int sock_no_getname(struct socket *, struct sockaddr *, int); | 
|  | int sock_no_ioctl(struct socket *, unsigned int, unsigned long); | 
|  | int sock_no_listen(struct socket *, int); | 
|  | int sock_no_shutdown(struct socket *, int); | 
|  | int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); | 
|  | int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); | 
|  | int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); | 
|  | int sock_no_mmap(struct file *file, struct socket *sock, | 
|  | struct vm_area_struct *vma); | 
|  |  | 
|  | /* | 
|  | * Functions to fill in entries in struct proto_ops when a protocol | 
|  | * uses the inet style. | 
|  | */ | 
|  | int sock_common_getsockopt(struct socket *sock, int level, int optname, | 
|  | char __user *optval, int __user *optlen); | 
|  | int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, | 
|  | int flags); | 
|  | int sock_common_setsockopt(struct socket *sock, int level, int optname, | 
|  | sockptr_t optval, unsigned int optlen); | 
|  |  | 
|  | void sk_common_release(struct sock *sk); | 
|  |  | 
|  | /* | 
|  | *	Default socket callbacks and setup code | 
|  | */ | 
|  |  | 
|  | /* Initialise core socket variables using an explicit uid. */ | 
|  | void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); | 
|  |  | 
|  | /* Initialise core socket variables. | 
|  | * Assumes struct socket *sock is embedded in a struct socket_alloc. | 
|  | */ | 
|  | void sock_init_data(struct socket *sock, struct sock *sk); | 
|  |  | 
|  | /* | 
|  | * Socket reference counting postulates. | 
|  | * | 
|  | * * Each user of socket SHOULD hold a reference count. | 
|  | * * Each access point to socket (an hash table bucket, reference from a list, | 
|  | *   running timer, skb in flight MUST hold a reference count. | 
|  | * * When reference count hits 0, it means it will never increase back. | 
|  | * * When reference count hits 0, it means that no references from | 
|  | *   outside exist to this socket and current process on current CPU | 
|  | *   is last user and may/should destroy this socket. | 
|  | * * sk_free is called from any context: process, BH, IRQ. When | 
|  | *   it is called, socket has no references from outside -> sk_free | 
|  | *   may release descendant resources allocated by the socket, but | 
|  | *   to the time when it is called, socket is NOT referenced by any | 
|  | *   hash tables, lists etc. | 
|  | * * Packets, delivered from outside (from network or from another process) | 
|  | *   and enqueued on receive/error queues SHOULD NOT grab reference count, | 
|  | *   when they sit in queue. Otherwise, packets will leak to hole, when | 
|  | *   socket is looked up by one cpu and unhasing is made by another CPU. | 
|  | *   It is true for udp/raw, netlink (leak to receive and error queues), tcp | 
|  | *   (leak to backlog). Packet socket does all the processing inside | 
|  | *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets | 
|  | *   use separate SMP lock, so that they are prone too. | 
|  | */ | 
|  |  | 
|  | /* Ungrab socket and destroy it, if it was the last reference. */ | 
|  | static inline void sock_put(struct sock *sk) | 
|  | { | 
|  | if (refcount_dec_and_test(&sk->sk_refcnt)) | 
|  | sk_free(sk); | 
|  | } | 
|  | /* Generic version of sock_put(), dealing with all sockets | 
|  | * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) | 
|  | */ | 
|  | void sock_gen_put(struct sock *sk); | 
|  |  | 
|  | int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, | 
|  | unsigned int trim_cap, bool refcounted); | 
|  | static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, | 
|  | const int nested) | 
|  | { | 
|  | return __sk_receive_skb(sk, skb, nested, 1, true); | 
|  | } | 
|  |  | 
|  | static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) | 
|  | { | 
|  | /* sk_tx_queue_mapping accept only upto a 16-bit value */ | 
|  | if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) | 
|  | return; | 
|  | /* Paired with READ_ONCE() in sk_tx_queue_get() and | 
|  | * other WRITE_ONCE() because socket lock might be not held. | 
|  | */ | 
|  | WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); | 
|  | } | 
|  |  | 
|  | #define NO_QUEUE_MAPPING	USHRT_MAX | 
|  |  | 
|  | static inline void sk_tx_queue_clear(struct sock *sk) | 
|  | { | 
|  | /* Paired with READ_ONCE() in sk_tx_queue_get() and | 
|  | * other WRITE_ONCE() because socket lock might be not held. | 
|  | */ | 
|  | WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); | 
|  | } | 
|  |  | 
|  | static inline int sk_tx_queue_get(const struct sock *sk) | 
|  | { | 
|  | if (sk) { | 
|  | /* Paired with WRITE_ONCE() in sk_tx_queue_clear() | 
|  | * and sk_tx_queue_set(). | 
|  | */ | 
|  | int val = READ_ONCE(sk->sk_tx_queue_mapping); | 
|  |  | 
|  | if (val != NO_QUEUE_MAPPING) | 
|  | return val; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline void __sk_rx_queue_set(struct sock *sk, | 
|  | const struct sk_buff *skb, | 
|  | bool force_set) | 
|  | { | 
|  | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING | 
|  | if (skb_rx_queue_recorded(skb)) { | 
|  | u16 rx_queue = skb_get_rx_queue(skb); | 
|  |  | 
|  | if (force_set || | 
|  | unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) | 
|  | WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | __sk_rx_queue_set(sk, skb, true); | 
|  | } | 
|  |  | 
|  | static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | __sk_rx_queue_set(sk, skb, false); | 
|  | } | 
|  |  | 
|  | static inline void sk_rx_queue_clear(struct sock *sk) | 
|  | { | 
|  | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING | 
|  | WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int sk_rx_queue_get(const struct sock *sk) | 
|  | { | 
|  | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING | 
|  | if (sk) { | 
|  | int res = READ_ONCE(sk->sk_rx_queue_mapping); | 
|  |  | 
|  | if (res != NO_QUEUE_MAPPING) | 
|  | return res; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline void sk_set_socket(struct sock *sk, struct socket *sock) | 
|  | { | 
|  | sk->sk_socket = sock; | 
|  | if (sock) { | 
|  | WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); | 
|  | WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); | 
|  | } else { | 
|  | /* Note: sk_uid is unchanged. */ | 
|  | WRITE_ONCE(sk->sk_ino, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline wait_queue_head_t *sk_sleep(struct sock *sk) | 
|  | { | 
|  | BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); | 
|  | return &rcu_dereference_raw(sk->sk_wq)->wait; | 
|  | } | 
|  | /* Detach socket from process context. | 
|  | * Announce socket dead, detach it from wait queue and inode. | 
|  | * Note that parent inode held reference count on this struct sock, | 
|  | * we do not release it in this function, because protocol | 
|  | * probably wants some additional cleanups or even continuing | 
|  | * to work with this socket (TCP). | 
|  | */ | 
|  | static inline void sock_orphan(struct sock *sk) | 
|  | { | 
|  | write_lock_bh(&sk->sk_callback_lock); | 
|  | sock_set_flag(sk, SOCK_DEAD); | 
|  | sk_set_socket(sk, NULL); | 
|  | sk->sk_wq  = NULL; | 
|  | write_unlock_bh(&sk->sk_callback_lock); | 
|  | } | 
|  |  | 
|  | static inline void sock_graft(struct sock *sk, struct socket *parent) | 
|  | { | 
|  | WARN_ON(parent->sk); | 
|  | write_lock_bh(&sk->sk_callback_lock); | 
|  | rcu_assign_pointer(sk->sk_wq, &parent->wq); | 
|  | parent->sk = sk; | 
|  | sk_set_socket(sk, parent); | 
|  | security_sock_graft(sk, parent); | 
|  | write_unlock_bh(&sk->sk_callback_lock); | 
|  | } | 
|  |  | 
|  | static inline unsigned long sock_i_ino(const struct sock *sk) | 
|  | { | 
|  | /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ | 
|  | return READ_ONCE(sk->sk_ino); | 
|  | } | 
|  |  | 
|  | static inline kuid_t sk_uid(const struct sock *sk) | 
|  | { | 
|  | /* Paired with WRITE_ONCE() in sockfs_setattr() */ | 
|  | return READ_ONCE(sk->sk_uid); | 
|  | } | 
|  |  | 
|  | static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) | 
|  | { | 
|  | return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); | 
|  | } | 
|  |  | 
|  | static inline u32 net_tx_rndhash(void) | 
|  | { | 
|  | u32 v = get_random_u32(); | 
|  |  | 
|  | return v ?: 1; | 
|  | } | 
|  |  | 
|  | static inline void sk_set_txhash(struct sock *sk) | 
|  | { | 
|  | /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ | 
|  | WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); | 
|  | } | 
|  |  | 
|  | static inline bool sk_rethink_txhash(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { | 
|  | sk_set_txhash(sk); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline struct dst_entry * | 
|  | __sk_dst_get(const struct sock *sk) | 
|  | { | 
|  | return rcu_dereference_check(sk->sk_dst_cache, | 
|  | lockdep_sock_is_held(sk)); | 
|  | } | 
|  |  | 
|  | static inline struct dst_entry * | 
|  | sk_dst_get(const struct sock *sk) | 
|  | { | 
|  | struct dst_entry *dst; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | dst = rcu_dereference(sk->sk_dst_cache); | 
|  | if (dst && !rcuref_get(&dst->__rcuref)) | 
|  | dst = NULL; | 
|  | rcu_read_unlock(); | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | static inline void __dst_negative_advice(struct sock *sk) | 
|  | { | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  |  | 
|  | if (dst && dst->ops->negative_advice) | 
|  | dst->ops->negative_advice(sk, dst); | 
|  | } | 
|  |  | 
|  | static inline void dst_negative_advice(struct sock *sk) | 
|  | { | 
|  | sk_rethink_txhash(sk); | 
|  | __dst_negative_advice(sk); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __sk_dst_set(struct sock *sk, struct dst_entry *dst) | 
|  | { | 
|  | struct dst_entry *old_dst; | 
|  |  | 
|  | sk_tx_queue_clear(sk); | 
|  | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); | 
|  | old_dst = rcu_dereference_protected(sk->sk_dst_cache, | 
|  | lockdep_sock_is_held(sk)); | 
|  | rcu_assign_pointer(sk->sk_dst_cache, dst); | 
|  | dst_release(old_dst); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | sk_dst_set(struct sock *sk, struct dst_entry *dst) | 
|  | { | 
|  | struct dst_entry *old_dst; | 
|  |  | 
|  | sk_tx_queue_clear(sk); | 
|  | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); | 
|  | old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); | 
|  | dst_release(old_dst); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __sk_dst_reset(struct sock *sk) | 
|  | { | 
|  | __sk_dst_set(sk, NULL); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | sk_dst_reset(struct sock *sk) | 
|  | { | 
|  | sk_dst_set(sk, NULL); | 
|  | } | 
|  |  | 
|  | struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); | 
|  |  | 
|  | struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); | 
|  |  | 
|  | static inline void sk_dst_confirm(struct sock *sk) | 
|  | { | 
|  | if (!READ_ONCE(sk->sk_dst_pending_confirm)) | 
|  | WRITE_ONCE(sk->sk_dst_pending_confirm, 1); | 
|  | } | 
|  |  | 
|  | static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) | 
|  | { | 
|  | if (skb_get_dst_pending_confirm(skb)) { | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) | 
|  | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); | 
|  | neigh_confirm(n); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool sk_mc_loop(const struct sock *sk); | 
|  |  | 
|  | static inline bool sk_can_gso(const struct sock *sk) | 
|  | { | 
|  | return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); | 
|  | } | 
|  |  | 
|  | void sk_setup_caps(struct sock *sk, struct dst_entry *dst); | 
|  |  | 
|  | static inline void sk_gso_disable(struct sock *sk) | 
|  | { | 
|  | sk->sk_gso_disabled = 1; | 
|  | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; | 
|  | } | 
|  |  | 
|  | static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, | 
|  | struct iov_iter *from, char *to, | 
|  | int copy, int offset) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_NONE) { | 
|  | __wsum csum = 0; | 
|  | if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) | 
|  | return -EFAULT; | 
|  | skb->csum = csum_block_add(skb->csum, csum, offset); | 
|  | } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { | 
|  | if (!copy_from_iter_full_nocache(to, copy, from)) | 
|  | return -EFAULT; | 
|  | } else if (!copy_from_iter_full(to, copy, from)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, | 
|  | struct iov_iter *from, int copy) | 
|  | { | 
|  | int err, offset = skb->len; | 
|  |  | 
|  | err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), | 
|  | copy, offset); | 
|  | if (err) | 
|  | __skb_trim(skb, offset); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, | 
|  | struct sk_buff *skb, | 
|  | struct page *page, | 
|  | int off, int copy) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, | 
|  | copy, skb->len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | skb_len_add(skb, copy); | 
|  | sk_wmem_queued_add(sk, copy); | 
|  | sk_mem_charge(sk, copy); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sk_wmem_alloc_get - returns write allocations | 
|  | * @sk: socket | 
|  | * | 
|  | * Return: sk_wmem_alloc minus initial offset of one | 
|  | */ | 
|  | static inline int sk_wmem_alloc_get(const struct sock *sk) | 
|  | { | 
|  | return refcount_read(&sk->sk_wmem_alloc) - 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sk_rmem_alloc_get - returns read allocations | 
|  | * @sk: socket | 
|  | * | 
|  | * Return: sk_rmem_alloc | 
|  | */ | 
|  | static inline int sk_rmem_alloc_get(const struct sock *sk) | 
|  | { | 
|  | return atomic_read(&sk->sk_rmem_alloc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sk_has_allocations - check if allocations are outstanding | 
|  | * @sk: socket | 
|  | * | 
|  | * Return: true if socket has write or read allocations | 
|  | */ | 
|  | static inline bool sk_has_allocations(const struct sock *sk) | 
|  | { | 
|  | return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skwq_has_sleeper - check if there are any waiting processes | 
|  | * @wq: struct socket_wq | 
|  | * | 
|  | * Return: true if socket_wq has waiting processes | 
|  | * | 
|  | * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory | 
|  | * barrier call. They were added due to the race found within the tcp code. | 
|  | * | 
|  | * Consider following tcp code paths:: | 
|  | * | 
|  | *   CPU1                CPU2 | 
|  | *   sys_select          receive packet | 
|  | *   ...                 ... | 
|  | *   __add_wait_queue    update tp->rcv_nxt | 
|  | *   ...                 ... | 
|  | *   tp->rcv_nxt check   sock_def_readable | 
|  | *   ...                 { | 
|  | *   schedule               rcu_read_lock(); | 
|  | *                          wq = rcu_dereference(sk->sk_wq); | 
|  | *                          if (wq && waitqueue_active(&wq->wait)) | 
|  | *                              wake_up_interruptible(&wq->wait) | 
|  | *                          ... | 
|  | *                       } | 
|  | * | 
|  | * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay | 
|  | * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1 | 
|  | * could then endup calling schedule and sleep forever if there are no more | 
|  | * data on the socket. | 
|  | * | 
|  | */ | 
|  | static inline bool skwq_has_sleeper(struct socket_wq *wq) | 
|  | { | 
|  | return wq && wq_has_sleeper(&wq->wait); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sock_poll_wait - wrapper for the poll_wait call. | 
|  | * @filp:           file | 
|  | * @sock:           socket to wait on | 
|  | * @p:              poll_table | 
|  | * | 
|  | * See the comments in the wq_has_sleeper function. | 
|  | */ | 
|  | static inline void sock_poll_wait(struct file *filp, struct socket *sock, | 
|  | poll_table *p) | 
|  | { | 
|  | /* Provides a barrier we need to be sure we are in sync | 
|  | * with the socket flags modification. | 
|  | * | 
|  | * This memory barrier is paired in the wq_has_sleeper. | 
|  | */ | 
|  | poll_wait(filp, &sock->wq.wait, p); | 
|  | } | 
|  |  | 
|  | static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | /* This pairs with WRITE_ONCE() in sk_set_txhash() */ | 
|  | u32 txhash = READ_ONCE(sk->sk_txhash); | 
|  |  | 
|  | if (txhash) { | 
|  | skb->l4_hash = 1; | 
|  | skb->hash = txhash; | 
|  | } | 
|  | } | 
|  |  | 
|  | void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); | 
|  |  | 
|  | /* | 
|  | *	Queue a received datagram if it will fit. Stream and sequenced | 
|  | *	protocols can't normally use this as they need to fit buffers in | 
|  | *	and play with them. | 
|  | * | 
|  | *	Inlined as it's very short and called for pretty much every | 
|  | *	packet ever received. | 
|  | */ | 
|  | static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | skb_orphan(skb); | 
|  | skb->sk = sk; | 
|  | skb->destructor = sock_rfree; | 
|  | atomic_add(skb->truesize, &sk->sk_rmem_alloc); | 
|  | sk_mem_charge(sk, skb->truesize); | 
|  | } | 
|  |  | 
|  | static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { | 
|  | skb_orphan(skb); | 
|  | skb->destructor = sock_efree; | 
|  | skb->sk = sk; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); | 
|  | if (skb) { | 
|  | if (sk_rmem_schedule(sk, skb, skb->truesize)) { | 
|  | skb_set_owner_r(skb, sk); | 
|  | return skb; | 
|  | } | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void skb_prepare_for_gro(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->destructor != sock_wfree) { | 
|  | skb_orphan(skb); | 
|  | return; | 
|  | } | 
|  | skb->slow_gro = 1; | 
|  | } | 
|  |  | 
|  | void sk_reset_timer(struct sock *sk, struct timer_list *timer, | 
|  | unsigned long expires); | 
|  |  | 
|  | void sk_stop_timer(struct sock *sk, struct timer_list *timer); | 
|  |  | 
|  | void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); | 
|  |  | 
|  | int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, | 
|  | struct sk_buff *skb, unsigned int flags, | 
|  | void (*destructor)(struct sock *sk, | 
|  | struct sk_buff *skb)); | 
|  | int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); | 
|  |  | 
|  | int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, | 
|  | enum skb_drop_reason *reason); | 
|  |  | 
|  | static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | return sock_queue_rcv_skb_reason(sk, skb, NULL); | 
|  | } | 
|  |  | 
|  | int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); | 
|  | struct sk_buff *sock_dequeue_err_skb(struct sock *sk); | 
|  |  | 
|  | /* | 
|  | *	Recover an error report and clear atomically | 
|  | */ | 
|  |  | 
|  | static inline int sock_error(struct sock *sk) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* Avoid an atomic operation for the common case. | 
|  | * This is racy since another cpu/thread can change sk_err under us. | 
|  | */ | 
|  | if (likely(data_race(!sk->sk_err))) | 
|  | return 0; | 
|  |  | 
|  | err = xchg(&sk->sk_err, 0); | 
|  | return -err; | 
|  | } | 
|  |  | 
|  | void sk_error_report(struct sock *sk); | 
|  |  | 
|  | static inline unsigned long sock_wspace(struct sock *sk) | 
|  | { | 
|  | int amt = 0; | 
|  |  | 
|  | if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { | 
|  | amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); | 
|  | if (amt < 0) | 
|  | amt = 0; | 
|  | } | 
|  | return amt; | 
|  | } | 
|  |  | 
|  | /* Note: | 
|  | *  We use sk->sk_wq_raw, from contexts knowing this | 
|  | *  pointer is not NULL and cannot disappear/change. | 
|  | */ | 
|  | static inline void sk_set_bit(int nr, struct sock *sk) | 
|  | { | 
|  | if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && | 
|  | !sock_flag(sk, SOCK_FASYNC)) | 
|  | return; | 
|  |  | 
|  | set_bit(nr, &sk->sk_wq_raw->flags); | 
|  | } | 
|  |  | 
|  | static inline void sk_clear_bit(int nr, struct sock *sk) | 
|  | { | 
|  | if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && | 
|  | !sock_flag(sk, SOCK_FASYNC)) | 
|  | return; | 
|  |  | 
|  | clear_bit(nr, &sk->sk_wq_raw->flags); | 
|  | } | 
|  |  | 
|  | static inline void sk_wake_async(const struct sock *sk, int how, int band) | 
|  | { | 
|  | if (sock_flag(sk, SOCK_FASYNC)) { | 
|  | rcu_read_lock(); | 
|  | sock_wake_async(rcu_dereference(sk->sk_wq), how, band); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) | 
|  | { | 
|  | if (unlikely(sock_flag(sk, SOCK_FASYNC))) | 
|  | sock_wake_async(rcu_dereference(sk->sk_wq), how, band); | 
|  | } | 
|  |  | 
|  | /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might | 
|  | * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. | 
|  | * Note: for send buffers, TCP works better if we can build two skbs at | 
|  | * minimum. | 
|  | */ | 
|  | #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) | 
|  |  | 
|  | #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2) | 
|  | #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE | 
|  |  | 
|  | static inline void sk_stream_moderate_sndbuf(struct sock *sk) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) | 
|  | return; | 
|  |  | 
|  | val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); | 
|  | val = max_t(u32, val, sk_unused_reserved_mem(sk)); | 
|  |  | 
|  | WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sk_page_frag - return an appropriate page_frag | 
|  | * @sk: socket | 
|  | * | 
|  | * Use the per task page_frag instead of the per socket one for | 
|  | * optimization when we know that we're in process context and own | 
|  | * everything that's associated with %current. | 
|  | * | 
|  | * Both direct reclaim and page faults can nest inside other | 
|  | * socket operations and end up recursing into sk_page_frag() | 
|  | * while it's already in use: explicitly avoid task page_frag | 
|  | * when users disable sk_use_task_frag. | 
|  | * | 
|  | * Return: a per task page_frag if context allows that, | 
|  | * otherwise a per socket one. | 
|  | */ | 
|  | static inline struct page_frag *sk_page_frag(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_use_task_frag) | 
|  | return ¤t->task_frag; | 
|  |  | 
|  | return &sk->sk_frag; | 
|  | } | 
|  |  | 
|  | bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); | 
|  |  | 
|  | /* | 
|  | *	Default write policy as shown to user space via poll/select/SIGIO | 
|  | */ | 
|  | static inline bool sock_writeable(const struct sock *sk) | 
|  | { | 
|  | return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); | 
|  | } | 
|  |  | 
|  | static inline gfp_t gfp_any(void) | 
|  | { | 
|  | return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; | 
|  | } | 
|  |  | 
|  | static inline gfp_t gfp_memcg_charge(void) | 
|  | { | 
|  | return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) | 
|  | { | 
|  | return sk->sk_memcg; | 
|  | } | 
|  |  | 
|  | static inline bool mem_cgroup_sk_enabled(const struct sock *sk) | 
|  | { | 
|  | return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); | 
|  | } | 
|  |  | 
|  | static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return !!memcg->tcpmem_pressure; | 
|  | #endif /* CONFIG_MEMCG_V1 */ | 
|  |  | 
|  | do { | 
|  | if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) | 
|  | return true; | 
|  | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #else | 
|  | static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline bool mem_cgroup_sk_enabled(const struct sock *sk) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) | 
|  | { | 
|  | return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); | 
|  | } | 
|  |  | 
|  | static inline long sock_sndtimeo(const struct sock *sk, bool noblock) | 
|  | { | 
|  | return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); | 
|  | } | 
|  |  | 
|  | static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) | 
|  | { | 
|  | int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); | 
|  |  | 
|  | return v ?: 1; | 
|  | } | 
|  |  | 
|  | /* Alas, with timeout socket operations are not restartable. | 
|  | * Compare this to poll(). | 
|  | */ | 
|  | static inline int sock_intr_errno(long timeo) | 
|  | { | 
|  | return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; | 
|  | } | 
|  |  | 
|  | struct sock_skb_cb { | 
|  | u32 dropcount; | 
|  | }; | 
|  |  | 
|  | /* Store sock_skb_cb at the end of skb->cb[] so protocol families | 
|  | * using skb->cb[] would keep using it directly and utilize its | 
|  | * alignment guarantee. | 
|  | */ | 
|  | #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ | 
|  | sizeof(struct sock_skb_cb)) | 
|  |  | 
|  | #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ | 
|  | SOCK_SKB_CB_OFFSET)) | 
|  |  | 
|  | #define sock_skb_cb_check_size(size) \ | 
|  | BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) | 
|  |  | 
|  | static inline void sk_drops_add(struct sock *sk, int segs) | 
|  | { | 
|  | struct numa_drop_counters *ndc = sk->sk_drop_counters; | 
|  |  | 
|  | if (ndc) | 
|  | numa_drop_add(ndc, segs); | 
|  | else | 
|  | atomic_add(segs, &sk->sk_drops); | 
|  | } | 
|  |  | 
|  | static inline void sk_drops_inc(struct sock *sk) | 
|  | { | 
|  | sk_drops_add(sk, 1); | 
|  | } | 
|  |  | 
|  | static inline int sk_drops_read(const struct sock *sk) | 
|  | { | 
|  | const struct numa_drop_counters *ndc = sk->sk_drop_counters; | 
|  |  | 
|  | if (ndc) { | 
|  | DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); | 
|  | return numa_drop_read(ndc); | 
|  | } | 
|  | return atomic_read(&sk->sk_drops); | 
|  | } | 
|  |  | 
|  | static inline void sk_drops_reset(struct sock *sk) | 
|  | { | 
|  | struct numa_drop_counters *ndc = sk->sk_drop_counters; | 
|  |  | 
|  | if (ndc) | 
|  | numa_drop_reset(ndc); | 
|  | atomic_set(&sk->sk_drops, 0); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? | 
|  | sk_drops_read(sk) : 0; | 
|  | } | 
|  |  | 
|  | static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); | 
|  |  | 
|  | sk_drops_add(sk, segs); | 
|  | } | 
|  |  | 
|  | static inline ktime_t sock_read_timestamp(struct sock *sk) | 
|  | { | 
|  | #if BITS_PER_LONG==32 | 
|  | unsigned int seq; | 
|  | ktime_t kt; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&sk->sk_stamp_seq); | 
|  | kt = sk->sk_stamp; | 
|  | } while (read_seqretry(&sk->sk_stamp_seq, seq)); | 
|  |  | 
|  | return kt; | 
|  | #else | 
|  | return READ_ONCE(sk->sk_stamp); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) | 
|  | { | 
|  | #if BITS_PER_LONG==32 | 
|  | write_seqlock(&sk->sk_stamp_seq); | 
|  | sk->sk_stamp = kt; | 
|  | write_sequnlock(&sk->sk_stamp_seq); | 
|  | #else | 
|  | WRITE_ONCE(sk->sk_stamp, kt); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, | 
|  | struct sk_buff *skb); | 
|  | void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, | 
|  | struct sk_buff *skb); | 
|  |  | 
|  | bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); | 
|  | int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, | 
|  | struct timespec64 *ts); | 
|  |  | 
|  | static inline void | 
|  | sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); | 
|  | u32 tsflags = READ_ONCE(sk->sk_tsflags); | 
|  | ktime_t kt = skb->tstamp; | 
|  | /* | 
|  | * generate control messages if | 
|  | * - receive time stamping in software requested | 
|  | * - software time stamp available and wanted | 
|  | * - hardware time stamps available and wanted | 
|  | */ | 
|  | if (sock_flag(sk, SOCK_RCVTSTAMP) || | 
|  | (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || | 
|  | (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || | 
|  | (hwtstamps->hwtstamp && | 
|  | (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) | 
|  | __sock_recv_timestamp(msg, sk, skb); | 
|  | else | 
|  | sock_write_timestamp(sk, kt); | 
|  |  | 
|  | if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) | 
|  | __sock_recv_wifi_status(msg, sk, skb); | 
|  | } | 
|  |  | 
|  | void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, | 
|  | struct sk_buff *skb); | 
|  |  | 
|  | #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) | 
|  | static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \ | 
|  | (1UL << SOCK_RCVTSTAMP)			| \ | 
|  | (1UL << SOCK_RCVMARK)			| \ | 
|  | (1UL << SOCK_RCVPRIORITY)			| \ | 
|  | (1UL << SOCK_TIMESTAMPING_ANY)) | 
|  | #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \ | 
|  | SOF_TIMESTAMPING_RAW_HARDWARE) | 
|  |  | 
|  | if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) | 
|  | __sock_recv_cmsgs(msg, sk, skb); | 
|  | else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) | 
|  | sock_write_timestamp(sk, skb->tstamp); | 
|  | else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) | 
|  | sock_write_timestamp(sk, 0); | 
|  | } | 
|  |  | 
|  | void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); | 
|  |  | 
|  | /** | 
|  | * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped | 
|  | * @sk:		socket sending this packet | 
|  | * @sockc:	pointer to socket cmsg cookie to get timestamping info | 
|  | * @tx_flags:	completed with instructions for time stamping | 
|  | * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno) | 
|  | * | 
|  | * Note: callers should take care of initial ``*tx_flags`` value (usually 0) | 
|  | */ | 
|  | static inline void _sock_tx_timestamp(struct sock *sk, | 
|  | const struct sockcm_cookie *sockc, | 
|  | __u8 *tx_flags, __u32 *tskey) | 
|  | { | 
|  | __u32 tsflags = sockc->tsflags; | 
|  |  | 
|  | if (unlikely(tsflags)) { | 
|  | __sock_tx_timestamp(tsflags, tx_flags); | 
|  | if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && | 
|  | tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { | 
|  | if (tsflags & SOCKCM_FLAG_TS_OPT_ID) | 
|  | *tskey = sockc->ts_opt_id; | 
|  | else | 
|  | *tskey = atomic_inc_return(&sk->sk_tskey) - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sock_tx_timestamp(struct sock *sk, | 
|  | const struct sockcm_cookie *sockc, | 
|  | __u8 *tx_flags) | 
|  | { | 
|  | _sock_tx_timestamp(sk, sockc, tx_flags, NULL); | 
|  | } | 
|  |  | 
|  | static inline void skb_setup_tx_timestamp(struct sk_buff *skb, | 
|  | const struct sockcm_cookie *sockc) | 
|  | { | 
|  | _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, | 
|  | &skb_shinfo(skb)->tskey); | 
|  | } | 
|  |  | 
|  | static inline bool sk_is_inet(const struct sock *sk) | 
|  | { | 
|  | int family = READ_ONCE(sk->sk_family); | 
|  |  | 
|  | return family == AF_INET || family == AF_INET6; | 
|  | } | 
|  |  | 
|  | static inline bool sk_is_tcp(const struct sock *sk) | 
|  | { | 
|  | return sk_is_inet(sk) && | 
|  | sk->sk_type == SOCK_STREAM && | 
|  | sk->sk_protocol == IPPROTO_TCP; | 
|  | } | 
|  |  | 
|  | static inline bool sk_is_udp(const struct sock *sk) | 
|  | { | 
|  | return sk_is_inet(sk) && | 
|  | sk->sk_type == SOCK_DGRAM && | 
|  | sk->sk_protocol == IPPROTO_UDP; | 
|  | } | 
|  |  | 
|  | static inline bool sk_is_unix(const struct sock *sk) | 
|  | { | 
|  | return sk->sk_family == AF_UNIX; | 
|  | } | 
|  |  | 
|  | static inline bool sk_is_stream_unix(const struct sock *sk) | 
|  | { | 
|  | return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; | 
|  | } | 
|  |  | 
|  | static inline bool sk_is_vsock(const struct sock *sk) | 
|  | { | 
|  | return sk->sk_family == AF_VSOCK; | 
|  | } | 
|  |  | 
|  | static inline bool sk_may_scm_recv(const struct sock *sk) | 
|  | { | 
|  | return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || | 
|  | sk->sk_family == AF_NETLINK || | 
|  | (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sk_eat_skb - Release a skb if it is no longer needed | 
|  | * @sk: socket to eat this skb from | 
|  | * @skb: socket buffer to eat | 
|  | * | 
|  | * This routine must be called with interrupts disabled or with the socket | 
|  | * locked so that the sk_buff queue operation is ok. | 
|  | */ | 
|  | static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | __skb_unlink(skb, &sk->sk_receive_queue); | 
|  | __kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | skb_sk_is_prefetched(struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_INET | 
|  | return skb->destructor == sock_pfree; | 
|  | #else | 
|  | return false; | 
|  | #endif /* CONFIG_INET */ | 
|  | } | 
|  |  | 
|  | /* This helper checks if a socket is a full socket, | 
|  | * ie _not_ a timewait or request socket. | 
|  | */ | 
|  | static inline bool sk_fullsock(const struct sock *sk) | 
|  | { | 
|  | return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | sk_is_refcounted(struct sock *sk) | 
|  | { | 
|  | /* Only full sockets have sk->sk_flags. */ | 
|  | return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | sk_requests_wifi_status(struct sock *sk) | 
|  | { | 
|  | return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); | 
|  | } | 
|  |  | 
|  | /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV | 
|  | * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) | 
|  | */ | 
|  | static inline bool sk_listener(const struct sock *sk) | 
|  | { | 
|  | return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); | 
|  | } | 
|  |  | 
|  | /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT | 
|  | * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) | 
|  | * TCP RST and ACK can be attached to TIME_WAIT. | 
|  | */ | 
|  | static inline bool sk_listener_or_tw(const struct sock *sk) | 
|  | { | 
|  | return (1 << READ_ONCE(sk->sk_state)) & | 
|  | (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); | 
|  | } | 
|  |  | 
|  | void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); | 
|  | int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, | 
|  | int type); | 
|  |  | 
|  | bool sk_ns_capable(const struct sock *sk, | 
|  | struct user_namespace *user_ns, int cap); | 
|  | bool sk_capable(const struct sock *sk, int cap); | 
|  | bool sk_net_capable(const struct sock *sk, int cap); | 
|  |  | 
|  | void sk_get_meminfo(const struct sock *sk, u32 *meminfo); | 
|  |  | 
|  | /* Take into consideration the size of the struct sk_buff overhead in the | 
|  | * determination of these values, since that is non-constant across | 
|  | * platforms.  This makes socket queueing behavior and performance | 
|  | * not depend upon such differences. | 
|  | */ | 
|  | #define _SK_MEM_PACKETS		256 | 
|  | #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256) | 
|  | #define SK_WMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) | 
|  | #define SK_RMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) | 
|  |  | 
|  | extern __u32 sysctl_wmem_max; | 
|  | extern __u32 sysctl_rmem_max; | 
|  |  | 
|  | extern __u32 sysctl_wmem_default; | 
|  | extern __u32 sysctl_rmem_default; | 
|  |  | 
|  | #define SKB_FRAG_PAGE_ORDER	get_order(32768) | 
|  | DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); | 
|  |  | 
|  | static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) | 
|  | { | 
|  | /* Does this proto have per netns sysctl_wmem ? */ | 
|  | if (proto->sysctl_wmem_offset) | 
|  | return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); | 
|  |  | 
|  | return READ_ONCE(*proto->sysctl_wmem); | 
|  | } | 
|  |  | 
|  | static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) | 
|  | { | 
|  | /* Does this proto have per netns sysctl_rmem ? */ | 
|  | if (proto->sysctl_rmem_offset) | 
|  | return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); | 
|  |  | 
|  | return READ_ONCE(*proto->sysctl_rmem); | 
|  | } | 
|  |  | 
|  | /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) | 
|  | * Some wifi drivers need to tweak it to get more chunks. | 
|  | * They can use this helper from their ndo_start_xmit() | 
|  | */ | 
|  | static inline void sk_pacing_shift_update(struct sock *sk, int val) | 
|  | { | 
|  | if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) | 
|  | return; | 
|  | WRITE_ONCE(sk->sk_pacing_shift, val); | 
|  | } | 
|  |  | 
|  | /* if a socket is bound to a device, check that the given device | 
|  | * index is either the same or that the socket is bound to an L3 | 
|  | * master device and the given device index is also enslaved to | 
|  | * that L3 master | 
|  | */ | 
|  | static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) | 
|  | { | 
|  | int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); | 
|  | int mdif; | 
|  |  | 
|  | if (!bound_dev_if || bound_dev_if == dif) | 
|  | return true; | 
|  |  | 
|  | mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); | 
|  | if (mdif && mdif == bound_dev_if) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void sock_def_readable(struct sock *sk); | 
|  |  | 
|  | int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); | 
|  | void sock_set_timestamp(struct sock *sk, int optname, bool valbool); | 
|  | int sock_set_timestamping(struct sock *sk, int optname, | 
|  | struct so_timestamping timestamping); | 
|  |  | 
|  | #if defined(CONFIG_CGROUP_BPF) | 
|  | void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); | 
|  | #else | 
|  | static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) | 
|  | { | 
|  | } | 
|  | #endif | 
|  | void sock_no_linger(struct sock *sk); | 
|  | void sock_set_keepalive(struct sock *sk); | 
|  | void sock_set_priority(struct sock *sk, u32 priority); | 
|  | void sock_set_rcvbuf(struct sock *sk, int val); | 
|  | void sock_set_mark(struct sock *sk, u32 val); | 
|  | void sock_set_reuseaddr(struct sock *sk); | 
|  | void sock_set_reuseport(struct sock *sk); | 
|  | void sock_set_sndtimeo(struct sock *sk, s64 secs); | 
|  |  | 
|  | int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); | 
|  |  | 
|  | int sock_get_timeout(long timeo, void *optval, bool old_timeval); | 
|  | int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, | 
|  | sockptr_t optval, int optlen, bool old_timeval); | 
|  |  | 
|  | int sock_ioctl_inout(struct sock *sk, unsigned int cmd, | 
|  | void __user *arg, void *karg, size_t size); | 
|  | int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); | 
|  | static inline bool sk_is_readable(struct sock *sk) | 
|  | { | 
|  | const struct proto *prot = READ_ONCE(sk->sk_prot); | 
|  |  | 
|  | if (prot->sock_is_readable) | 
|  | return prot->sock_is_readable(sk); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #endif	/* _SOCK_H */ |