|  | /* | 
|  | * Copyright (c) 2007, 2020 Oracle and/or its affiliates. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | * | 
|  | */ | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ | 
|  |  | 
|  | #include "rds.h" | 
|  |  | 
|  | /* | 
|  | * XXX | 
|  | *  - build with sparse | 
|  | *  - should we detect duplicate keys on a socket?  hmm. | 
|  | *  - an rdma is an mlock, apply rlimit? | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * get the number of pages by looking at the page indices that the start and | 
|  | * end addresses fall in. | 
|  | * | 
|  | * Returns 0 if the vec is invalid.  It is invalid if the number of bytes | 
|  | * causes the address to wrap or overflows an unsigned int.  This comes | 
|  | * from being stored in the 'length' member of 'struct scatterlist'. | 
|  | */ | 
|  | static unsigned int rds_pages_in_vec(struct rds_iovec *vec) | 
|  | { | 
|  | if ((vec->addr + vec->bytes <= vec->addr) || | 
|  | (vec->bytes > (u64)UINT_MAX)) | 
|  | return 0; | 
|  |  | 
|  | return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - | 
|  | (vec->addr >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, | 
|  | struct rds_mr *insert) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct rds_mr *mr; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | mr = rb_entry(parent, struct rds_mr, r_rb_node); | 
|  |  | 
|  | if (key < mr->r_key) | 
|  | p = &(*p)->rb_left; | 
|  | else if (key > mr->r_key) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return mr; | 
|  | } | 
|  |  | 
|  | if (insert) { | 
|  | rb_link_node(&insert->r_rb_node, parent, p); | 
|  | rb_insert_color(&insert->r_rb_node, root); | 
|  | kref_get(&insert->r_kref); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Destroy the transport-specific part of a MR. | 
|  | */ | 
|  | static void rds_destroy_mr(struct rds_mr *mr) | 
|  | { | 
|  | struct rds_sock *rs = mr->r_sock; | 
|  | void *trans_private = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | rdsdebug("RDS: destroy mr key is %x refcnt %u\n", | 
|  | mr->r_key, kref_read(&mr->r_kref)); | 
|  |  | 
|  | spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
|  | if (!RB_EMPTY_NODE(&mr->r_rb_node)) | 
|  | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); | 
|  | trans_private = mr->r_trans_private; | 
|  | mr->r_trans_private = NULL; | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  |  | 
|  | if (trans_private) | 
|  | mr->r_trans->free_mr(trans_private, mr->r_invalidate); | 
|  | } | 
|  |  | 
|  | void __rds_put_mr_final(struct kref *kref) | 
|  | { | 
|  | struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref); | 
|  |  | 
|  | rds_destroy_mr(mr); | 
|  | kfree(mr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By the time this is called we can't have any more ioctls called on | 
|  | * the socket so we don't need to worry about racing with others. | 
|  | */ | 
|  | void rds_rdma_drop_keys(struct rds_sock *rs) | 
|  | { | 
|  | struct rds_mr *mr; | 
|  | struct rb_node *node; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Release any MRs associated with this socket */ | 
|  | spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
|  | while ((node = rb_first(&rs->rs_rdma_keys))) { | 
|  | mr = rb_entry(node, struct rds_mr, r_rb_node); | 
|  | if (mr->r_trans == rs->rs_transport) | 
|  | mr->r_invalidate = 0; | 
|  | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); | 
|  | RB_CLEAR_NODE(&mr->r_rb_node); | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  | kref_put(&mr->r_kref, __rds_put_mr_final); | 
|  | spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
|  | } | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  |  | 
|  | if (rs->rs_transport && rs->rs_transport->flush_mrs) | 
|  | rs->rs_transport->flush_mrs(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to pin user pages. | 
|  | */ | 
|  | static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, | 
|  | struct page **pages, int write) | 
|  | { | 
|  | unsigned int gup_flags = FOLL_LONGTERM; | 
|  | int ret; | 
|  |  | 
|  | if (write) | 
|  | gup_flags |= FOLL_WRITE; | 
|  |  | 
|  | ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages); | 
|  | if (ret >= 0 && ret < nr_pages) { | 
|  | unpin_user_pages(pages, ret); | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, | 
|  | u64 *cookie_ret, struct rds_mr **mr_ret, | 
|  | struct rds_conn_path *cp) | 
|  | { | 
|  | struct rds_mr *mr = NULL, *found; | 
|  | struct scatterlist *sg = NULL; | 
|  | unsigned int nr_pages; | 
|  | struct page **pages = NULL; | 
|  | void *trans_private; | 
|  | unsigned long flags; | 
|  | rds_rdma_cookie_t cookie; | 
|  | unsigned int nents = 0; | 
|  | int need_odp = 0; | 
|  | long i; | 
|  | int ret; | 
|  |  | 
|  | if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) { | 
|  | ret = -ENOTCONN; /* XXX not a great errno */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!rs->rs_transport->get_mr) { | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* If the combination of the addr and size requested for this memory | 
|  | * region causes an integer overflow, return error. | 
|  | */ | 
|  | if (((args->vec.addr + args->vec.bytes) < args->vec.addr) || | 
|  | PAGE_ALIGN(args->vec.addr + args->vec.bytes) < | 
|  | (args->vec.addr + args->vec.bytes)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!can_do_mlock()) { | 
|  | ret = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nr_pages = rds_pages_in_vec(&args->vec); | 
|  | if (nr_pages == 0) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Restrict the size of mr irrespective of underlying transport | 
|  | * To account for unaligned mr regions, subtract one from nr_pages | 
|  | */ | 
|  | if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { | 
|  | ret = -EMSGSIZE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", | 
|  | args->vec.addr, args->vec.bytes, nr_pages); | 
|  |  | 
|  | /* XXX clamp nr_pages to limit the size of this alloc? */ | 
|  | pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); | 
|  | if (!pages) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); | 
|  | if (!mr) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kref_init(&mr->r_kref); | 
|  | RB_CLEAR_NODE(&mr->r_rb_node); | 
|  | mr->r_trans = rs->rs_transport; | 
|  | mr->r_sock = rs; | 
|  |  | 
|  | if (args->flags & RDS_RDMA_USE_ONCE) | 
|  | mr->r_use_once = 1; | 
|  | if (args->flags & RDS_RDMA_INVALIDATE) | 
|  | mr->r_invalidate = 1; | 
|  | if (args->flags & RDS_RDMA_READWRITE) | 
|  | mr->r_write = 1; | 
|  |  | 
|  | /* | 
|  | * Pin the pages that make up the user buffer and transfer the page | 
|  | * pointers to the mr's sg array.  We check to see if we've mapped | 
|  | * the whole region after transferring the partial page references | 
|  | * to the sg array so that we can have one page ref cleanup path. | 
|  | * | 
|  | * For now we have no flag that tells us whether the mapping is | 
|  | * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to | 
|  | * the zero page. | 
|  | */ | 
|  | ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); | 
|  | if (ret == -EOPNOTSUPP) { | 
|  | need_odp = 1; | 
|  | } else if (ret <= 0) { | 
|  | goto out; | 
|  | } else { | 
|  | nents = ret; | 
|  | sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL); | 
|  | if (!sg) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | WARN_ON(!nents); | 
|  | sg_init_table(sg, nents); | 
|  |  | 
|  | /* Stick all pages into the scatterlist */ | 
|  | for (i = 0 ; i < nents; i++) | 
|  | sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); | 
|  |  | 
|  | rdsdebug("RDS: trans_private nents is %u\n", nents); | 
|  | } | 
|  | /* Obtain a transport specific MR. If this succeeds, the | 
|  | * s/g list is now owned by the MR. | 
|  | * Note that dma_map() implies that pending writes are | 
|  | * flushed to RAM, so no dma_sync is needed here. */ | 
|  | trans_private = rs->rs_transport->get_mr( | 
|  | sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL, | 
|  | args->vec.addr, args->vec.bytes, | 
|  | need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED); | 
|  |  | 
|  | if (IS_ERR(trans_private)) { | 
|  | /* In ODP case, we don't GUP pages, so don't need | 
|  | * to release anything. | 
|  | */ | 
|  | if (!need_odp) { | 
|  | unpin_user_pages(pages, nr_pages); | 
|  | kfree(sg); | 
|  | } | 
|  | ret = PTR_ERR(trans_private); | 
|  | /* Trigger connection so that its ready for the next retry */ | 
|  | if (ret == -ENODEV && cp) | 
|  | rds_conn_connect_if_down(cp->cp_conn); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mr->r_trans_private = trans_private; | 
|  |  | 
|  | rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", | 
|  | mr->r_key, (void *)(unsigned long) args->cookie_addr); | 
|  |  | 
|  | /* The user may pass us an unaligned address, but we can only | 
|  | * map page aligned regions. So we keep the offset, and build | 
|  | * a 64bit cookie containing <R_Key, offset> and pass that | 
|  | * around. */ | 
|  | if (need_odp) | 
|  | cookie = rds_rdma_make_cookie(mr->r_key, 0); | 
|  | else | 
|  | cookie = rds_rdma_make_cookie(mr->r_key, | 
|  | args->vec.addr & ~PAGE_MASK); | 
|  | if (cookie_ret) | 
|  | *cookie_ret = cookie; | 
|  |  | 
|  | if (args->cookie_addr && | 
|  | put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) { | 
|  | if (!need_odp) { | 
|  | unpin_user_pages(pages, nr_pages); | 
|  | kfree(sg); | 
|  | } | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Inserting the new MR into the rbtree bumps its | 
|  | * reference count. */ | 
|  | spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
|  | found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  |  | 
|  | BUG_ON(found && found != mr); | 
|  |  | 
|  | rdsdebug("RDS: get_mr key is %x\n", mr->r_key); | 
|  | if (mr_ret) { | 
|  | kref_get(&mr->r_kref); | 
|  | *mr_ret = mr; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | kfree(pages); | 
|  | if (mr) | 
|  | kref_put(&mr->r_kref, __rds_put_mr_final); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen) | 
|  | { | 
|  | struct rds_get_mr_args args; | 
|  |  | 
|  | if (optlen != sizeof(struct rds_get_mr_args)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return __rds_rdma_map(rs, &args, NULL, NULL, NULL); | 
|  | } | 
|  |  | 
|  | int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen) | 
|  | { | 
|  | struct rds_get_mr_for_dest_args args; | 
|  | struct rds_get_mr_args new_args; | 
|  |  | 
|  | if (optlen != sizeof(struct rds_get_mr_for_dest_args)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_sockptr(&args, optval, | 
|  | sizeof(struct rds_get_mr_for_dest_args))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Initially, just behave like get_mr(). | 
|  | * TODO: Implement get_mr as wrapper around this | 
|  | *	 and deprecate it. | 
|  | */ | 
|  | new_args.vec = args.vec; | 
|  | new_args.cookie_addr = args.cookie_addr; | 
|  | new_args.flags = args.flags; | 
|  |  | 
|  | return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the MR indicated by the given R_Key | 
|  | */ | 
|  | int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen) | 
|  | { | 
|  | struct rds_free_mr_args args; | 
|  | struct rds_mr *mr; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (optlen != sizeof(struct rds_free_mr_args)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Special case - a null cookie means flush all unused MRs */ | 
|  | if (args.cookie == 0) { | 
|  | if (!rs->rs_transport || !rs->rs_transport->flush_mrs) | 
|  | return -EINVAL; | 
|  | rs->rs_transport->flush_mrs(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Look up the MR given its R_key and remove it from the rbtree | 
|  | * so nobody else finds it. | 
|  | * This should also prevent races with rds_rdma_unuse. | 
|  | */ | 
|  | spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
|  | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); | 
|  | if (mr) { | 
|  | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); | 
|  | RB_CLEAR_NODE(&mr->r_rb_node); | 
|  | if (args.flags & RDS_RDMA_INVALIDATE) | 
|  | mr->r_invalidate = 1; | 
|  | } | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  |  | 
|  | if (!mr) | 
|  | return -EINVAL; | 
|  |  | 
|  | kref_put(&mr->r_kref, __rds_put_mr_final); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when we receive an extension header that | 
|  | * tells us this MR was used. It allows us to implement | 
|  | * use_once semantics | 
|  | */ | 
|  | void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) | 
|  | { | 
|  | struct rds_mr *mr; | 
|  | unsigned long flags; | 
|  | int zot_me = 0; | 
|  |  | 
|  | spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
|  | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); | 
|  | if (!mr) { | 
|  | pr_debug("rds: trying to unuse MR with unknown r_key %u!\n", | 
|  | r_key); | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get a reference so that the MR won't go away before calling | 
|  | * sync_mr() below. | 
|  | */ | 
|  | kref_get(&mr->r_kref); | 
|  |  | 
|  | /* If it is going to be freed, remove it from the tree now so | 
|  | * that no other thread can find it and free it. | 
|  | */ | 
|  | if (mr->r_use_once || force) { | 
|  | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); | 
|  | RB_CLEAR_NODE(&mr->r_rb_node); | 
|  | zot_me = 1; | 
|  | } | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  |  | 
|  | /* May have to issue a dma_sync on this memory region. | 
|  | * Note we could avoid this if the operation was a RDMA READ, | 
|  | * but at this point we can't tell. */ | 
|  | if (mr->r_trans->sync_mr) | 
|  | mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); | 
|  |  | 
|  | /* Release the reference held above. */ | 
|  | kref_put(&mr->r_kref, __rds_put_mr_final); | 
|  |  | 
|  | /* If the MR was marked as invalidate, this will | 
|  | * trigger an async flush. */ | 
|  | if (zot_me) | 
|  | kref_put(&mr->r_kref, __rds_put_mr_final); | 
|  | } | 
|  |  | 
|  | void rds_rdma_free_op(struct rm_rdma_op *ro) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (ro->op_odp_mr) { | 
|  | kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final); | 
|  | } else { | 
|  | for (i = 0; i < ro->op_nents; i++) { | 
|  | struct page *page = sg_page(&ro->op_sg[i]); | 
|  |  | 
|  | /* Mark page dirty if it was possibly modified, which | 
|  | * is the case for a RDMA_READ which copies from remote | 
|  | * to local memory | 
|  | */ | 
|  | unpin_user_pages_dirty_lock(&page, 1, !ro->op_write); | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(ro->op_notifier); | 
|  | ro->op_notifier = NULL; | 
|  | ro->op_active = 0; | 
|  | ro->op_odp_mr = NULL; | 
|  | } | 
|  |  | 
|  | void rds_atomic_free_op(struct rm_atomic_op *ao) | 
|  | { | 
|  | struct page *page = sg_page(ao->op_sg); | 
|  |  | 
|  | /* Mark page dirty if it was possibly modified, which | 
|  | * is the case for a RDMA_READ which copies from remote | 
|  | * to local memory */ | 
|  | unpin_user_pages_dirty_lock(&page, 1, true); | 
|  |  | 
|  | kfree(ao->op_notifier); | 
|  | ao->op_notifier = NULL; | 
|  | ao->op_active = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Count the number of pages needed to describe an incoming iovec array. | 
|  | */ | 
|  | static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs) | 
|  | { | 
|  | int tot_pages = 0; | 
|  | unsigned int nr_pages; | 
|  | unsigned int i; | 
|  |  | 
|  | /* figure out the number of pages in the vector */ | 
|  | for (i = 0; i < nr_iovecs; i++) { | 
|  | nr_pages = rds_pages_in_vec(&iov[i]); | 
|  | if (nr_pages == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | tot_pages += nr_pages; | 
|  |  | 
|  | /* | 
|  | * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, | 
|  | * so tot_pages cannot overflow without first going negative. | 
|  | */ | 
|  | if (tot_pages < 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return tot_pages; | 
|  | } | 
|  |  | 
|  | int rds_rdma_extra_size(struct rds_rdma_args *args, | 
|  | struct rds_iov_vector *iov) | 
|  | { | 
|  | struct rds_iovec *vec; | 
|  | struct rds_iovec __user *local_vec; | 
|  | int tot_pages = 0; | 
|  | unsigned int nr_pages; | 
|  | unsigned int i; | 
|  |  | 
|  | local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; | 
|  |  | 
|  | if (args->nr_local == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (args->nr_local > UIO_MAXIOV) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | iov->iov = kcalloc(args->nr_local, | 
|  | sizeof(struct rds_iovec), | 
|  | GFP_KERNEL); | 
|  | if (!iov->iov) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vec = &iov->iov[0]; | 
|  |  | 
|  | if (copy_from_user(vec, local_vec, args->nr_local * | 
|  | sizeof(struct rds_iovec))) | 
|  | return -EFAULT; | 
|  | iov->len = args->nr_local; | 
|  |  | 
|  | /* figure out the number of pages in the vector */ | 
|  | for (i = 0; i < args->nr_local; i++, vec++) { | 
|  |  | 
|  | nr_pages = rds_pages_in_vec(vec); | 
|  | if (nr_pages == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | tot_pages += nr_pages; | 
|  |  | 
|  | /* | 
|  | * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1, | 
|  | * so tot_pages cannot overflow without first going negative. | 
|  | */ | 
|  | if (tot_pages < 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return tot_pages * sizeof(struct scatterlist); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The application asks for a RDMA transfer. | 
|  | * Extract all arguments and set up the rdma_op | 
|  | */ | 
|  | int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, | 
|  | struct cmsghdr *cmsg, | 
|  | struct rds_iov_vector *vec) | 
|  | { | 
|  | struct rds_rdma_args *args; | 
|  | struct rm_rdma_op *op = &rm->rdma; | 
|  | int nr_pages; | 
|  | unsigned int nr_bytes; | 
|  | struct page **pages = NULL; | 
|  | struct rds_iovec *iovs; | 
|  | unsigned int i, j; | 
|  | int ret = 0; | 
|  | bool odp_supported = true; | 
|  |  | 
|  | if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) | 
|  | || rm->rdma.op_active) | 
|  | return -EINVAL; | 
|  |  | 
|  | args = CMSG_DATA(cmsg); | 
|  |  | 
|  | if (ipv6_addr_any(&rs->rs_bound_addr)) { | 
|  | ret = -ENOTCONN; /* XXX not a great errno */ | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | if (args->nr_local > UIO_MAXIOV) { | 
|  | ret = -EMSGSIZE; | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | if (vec->len != args->nr_local) { | 
|  | ret = -EINVAL; | 
|  | goto out_ret; | 
|  | } | 
|  | /* odp-mr is not supported for multiple requests within one message */ | 
|  | if (args->nr_local != 1) | 
|  | odp_supported = false; | 
|  |  | 
|  | iovs = vec->iov; | 
|  |  | 
|  | nr_pages = rds_rdma_pages(iovs, args->nr_local); | 
|  | if (nr_pages < 0) { | 
|  | ret = -EINVAL; | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); | 
|  | if (!pages) { | 
|  | ret = -ENOMEM; | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | op->op_write = !!(args->flags & RDS_RDMA_READWRITE); | 
|  | op->op_fence = !!(args->flags & RDS_RDMA_FENCE); | 
|  | op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); | 
|  | op->op_silent = !!(args->flags & RDS_RDMA_SILENT); | 
|  | op->op_active = 1; | 
|  | op->op_recverr = rs->rs_recverr; | 
|  | op->op_odp_mr = NULL; | 
|  |  | 
|  | WARN_ON(!nr_pages); | 
|  | op->op_sg = rds_message_alloc_sgs(rm, nr_pages); | 
|  | if (IS_ERR(op->op_sg)) { | 
|  | ret = PTR_ERR(op->op_sg); | 
|  | goto out_pages; | 
|  | } | 
|  |  | 
|  | if (op->op_notify || op->op_recverr) { | 
|  | /* We allocate an uninitialized notifier here, because | 
|  | * we don't want to do that in the completion handler. We | 
|  | * would have to use GFP_ATOMIC there, and don't want to deal | 
|  | * with failed allocations. | 
|  | */ | 
|  | op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); | 
|  | if (!op->op_notifier) { | 
|  | ret = -ENOMEM; | 
|  | goto out_pages; | 
|  | } | 
|  | op->op_notifier->n_user_token = args->user_token; | 
|  | op->op_notifier->n_status = RDS_RDMA_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* The cookie contains the R_Key of the remote memory region, and | 
|  | * optionally an offset into it. This is how we implement RDMA into | 
|  | * unaligned memory. | 
|  | * When setting up the RDMA, we need to add that offset to the | 
|  | * destination address (which is really an offset into the MR) | 
|  | * FIXME: We may want to move this into ib_rdma.c | 
|  | */ | 
|  | op->op_rkey = rds_rdma_cookie_key(args->cookie); | 
|  | op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); | 
|  |  | 
|  | nr_bytes = 0; | 
|  |  | 
|  | rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", | 
|  | (unsigned long long)args->nr_local, | 
|  | (unsigned long long)args->remote_vec.addr, | 
|  | op->op_rkey); | 
|  |  | 
|  | for (i = 0; i < args->nr_local; i++) { | 
|  | struct rds_iovec *iov = &iovs[i]; | 
|  | /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */ | 
|  | unsigned int nr = rds_pages_in_vec(iov); | 
|  |  | 
|  | rs->rs_user_addr = iov->addr; | 
|  | rs->rs_user_bytes = iov->bytes; | 
|  |  | 
|  | /* If it's a WRITE operation, we want to pin the pages for reading. | 
|  | * If it's a READ operation, we need to pin the pages for writing. | 
|  | */ | 
|  | ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write); | 
|  | if ((!odp_supported && ret <= 0) || | 
|  | (odp_supported && ret <= 0 && ret != -EOPNOTSUPP)) | 
|  | goto out_pages; | 
|  |  | 
|  | if (ret == -EOPNOTSUPP) { | 
|  | struct rds_mr *local_odp_mr; | 
|  |  | 
|  | if (!rs->rs_transport->get_mr) { | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out_pages; | 
|  | } | 
|  | local_odp_mr = | 
|  | kzalloc(sizeof(*local_odp_mr), GFP_KERNEL); | 
|  | if (!local_odp_mr) { | 
|  | ret = -ENOMEM; | 
|  | goto out_pages; | 
|  | } | 
|  | RB_CLEAR_NODE(&local_odp_mr->r_rb_node); | 
|  | kref_init(&local_odp_mr->r_kref); | 
|  | local_odp_mr->r_trans = rs->rs_transport; | 
|  | local_odp_mr->r_sock = rs; | 
|  | local_odp_mr->r_trans_private = | 
|  | rs->rs_transport->get_mr( | 
|  | NULL, 0, rs, &local_odp_mr->r_key, NULL, | 
|  | iov->addr, iov->bytes, ODP_VIRTUAL); | 
|  | if (IS_ERR(local_odp_mr->r_trans_private)) { | 
|  | ret = PTR_ERR(local_odp_mr->r_trans_private); | 
|  | rdsdebug("get_mr ret %d %p\"", ret, | 
|  | local_odp_mr->r_trans_private); | 
|  | kfree(local_odp_mr); | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out_pages; | 
|  | } | 
|  | rdsdebug("Need odp; local_odp_mr %p trans_private %p\n", | 
|  | local_odp_mr, local_odp_mr->r_trans_private); | 
|  | op->op_odp_mr = local_odp_mr; | 
|  | op->op_odp_addr = iov->addr; | 
|  | } | 
|  |  | 
|  | rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n", | 
|  | nr_bytes, nr, iov->bytes, iov->addr); | 
|  |  | 
|  | nr_bytes += iov->bytes; | 
|  |  | 
|  | for (j = 0; j < nr; j++) { | 
|  | unsigned int offset = iov->addr & ~PAGE_MASK; | 
|  | struct scatterlist *sg; | 
|  |  | 
|  | sg = &op->op_sg[op->op_nents + j]; | 
|  | sg_set_page(sg, pages[j], | 
|  | min_t(unsigned int, iov->bytes, PAGE_SIZE - offset), | 
|  | offset); | 
|  |  | 
|  | sg_dma_len(sg) = sg->length; | 
|  | rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n", | 
|  | sg->offset, sg->length, iov->addr, iov->bytes); | 
|  |  | 
|  | iov->addr += sg->length; | 
|  | iov->bytes -= sg->length; | 
|  | } | 
|  |  | 
|  | op->op_nents += nr; | 
|  | } | 
|  |  | 
|  | if (nr_bytes > args->remote_vec.bytes) { | 
|  | rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", | 
|  | nr_bytes, | 
|  | (unsigned int) args->remote_vec.bytes); | 
|  | ret = -EINVAL; | 
|  | goto out_pages; | 
|  | } | 
|  | op->op_bytes = nr_bytes; | 
|  | ret = 0; | 
|  |  | 
|  | out_pages: | 
|  | kfree(pages); | 
|  | out_ret: | 
|  | if (ret) | 
|  | rds_rdma_free_op(op); | 
|  | else | 
|  | rds_stats_inc(s_send_rdma); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The application wants us to pass an RDMA destination (aka MR) | 
|  | * to the remote | 
|  | */ | 
|  | int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, | 
|  | struct cmsghdr *cmsg) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rds_mr *mr; | 
|  | u32 r_key; | 
|  | int err = 0; | 
|  |  | 
|  | if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || | 
|  | rm->m_rdma_cookie != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); | 
|  |  | 
|  | /* We are reusing a previously mapped MR here. Most likely, the | 
|  | * application has written to the buffer, so we need to explicitly | 
|  | * flush those writes to RAM. Otherwise the HCA may not see them | 
|  | * when doing a DMA from that buffer. | 
|  | */ | 
|  | r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); | 
|  |  | 
|  | spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
|  | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); | 
|  | if (!mr) | 
|  | err = -EINVAL;	/* invalid r_key */ | 
|  | else | 
|  | kref_get(&mr->r_kref); | 
|  | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
|  |  | 
|  | if (mr) { | 
|  | mr->r_trans->sync_mr(mr->r_trans_private, | 
|  | DMA_TO_DEVICE); | 
|  | rm->rdma.op_rdma_mr = mr; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The application passes us an address range it wants to enable RDMA | 
|  | * to/from. We map the area, and save the <R_Key,offset> pair | 
|  | * in rm->m_rdma_cookie. This causes it to be sent along to the peer | 
|  | * in an extension header. | 
|  | */ | 
|  | int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, | 
|  | struct cmsghdr *cmsg) | 
|  | { | 
|  | if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || | 
|  | rm->m_rdma_cookie != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, | 
|  | &rm->rdma.op_rdma_mr, rm->m_conn_path); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in rds_message for an atomic request. | 
|  | */ | 
|  | int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm, | 
|  | struct cmsghdr *cmsg) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct rds_atomic_args *args; | 
|  | int ret = 0; | 
|  |  | 
|  | if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args)) | 
|  | || rm->atomic.op_active) | 
|  | return -EINVAL; | 
|  |  | 
|  | args = CMSG_DATA(cmsg); | 
|  |  | 
|  | /* Nonmasked & masked cmsg ops converted to masked hw ops */ | 
|  | switch (cmsg->cmsg_type) { | 
|  | case RDS_CMSG_ATOMIC_FADD: | 
|  | rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; | 
|  | rm->atomic.op_m_fadd.add = args->fadd.add; | 
|  | rm->atomic.op_m_fadd.nocarry_mask = 0; | 
|  | break; | 
|  | case RDS_CMSG_MASKED_ATOMIC_FADD: | 
|  | rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD; | 
|  | rm->atomic.op_m_fadd.add = args->m_fadd.add; | 
|  | rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask; | 
|  | break; | 
|  | case RDS_CMSG_ATOMIC_CSWP: | 
|  | rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; | 
|  | rm->atomic.op_m_cswp.compare = args->cswp.compare; | 
|  | rm->atomic.op_m_cswp.swap = args->cswp.swap; | 
|  | rm->atomic.op_m_cswp.compare_mask = ~0; | 
|  | rm->atomic.op_m_cswp.swap_mask = ~0; | 
|  | break; | 
|  | case RDS_CMSG_MASKED_ATOMIC_CSWP: | 
|  | rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP; | 
|  | rm->atomic.op_m_cswp.compare = args->m_cswp.compare; | 
|  | rm->atomic.op_m_cswp.swap = args->m_cswp.swap; | 
|  | rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask; | 
|  | rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask; | 
|  | break; | 
|  | default: | 
|  | BUG(); /* should never happen */ | 
|  | } | 
|  |  | 
|  | rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); | 
|  | rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT); | 
|  | rm->atomic.op_active = 1; | 
|  | rm->atomic.op_recverr = rs->rs_recverr; | 
|  | rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1); | 
|  | if (IS_ERR(rm->atomic.op_sg)) { | 
|  | ret = PTR_ERR(rm->atomic.op_sg); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* verify 8 byte-aligned */ | 
|  | if (args->local_addr & 0x7) { | 
|  | ret = -EFAULT; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = rds_pin_pages(args->local_addr, 1, &page, 1); | 
|  | if (ret != 1) | 
|  | goto err; | 
|  | ret = 0; | 
|  |  | 
|  | sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr)); | 
|  |  | 
|  | if (rm->atomic.op_notify || rm->atomic.op_recverr) { | 
|  | /* We allocate an uninitialized notifier here, because | 
|  | * we don't want to do that in the completion handler. We | 
|  | * would have to use GFP_ATOMIC there, and don't want to deal | 
|  | * with failed allocations. | 
|  | */ | 
|  | rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL); | 
|  | if (!rm->atomic.op_notifier) { | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | rm->atomic.op_notifier->n_user_token = args->user_token; | 
|  | rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS; | 
|  | } | 
|  |  | 
|  | rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie); | 
|  | rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie); | 
|  |  | 
|  | return ret; | 
|  | err: | 
|  | if (page) | 
|  | unpin_user_page(page); | 
|  | rm->atomic.op_active = 0; | 
|  | kfree(rm->atomic.op_notifier); | 
|  |  | 
|  | return ret; | 
|  | } |