|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/fs/buffer.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 2002  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | 
|  | * | 
|  | * Removed a lot of unnecessary code and simplified things now that | 
|  | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | 
|  | * | 
|  | * Speed up hash, lru, and free list operations.  Use gfp() for allocating | 
|  | * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM | 
|  | * | 
|  | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | 
|  | * | 
|  | * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/iomap.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <trace/events/block.h> | 
|  | #include <linux/fscrypt.h> | 
|  | #include <linux/fsverity.h> | 
|  | #include <linux/sched/isolation.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | 
|  | static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, | 
|  | enum rw_hint hint, struct writeback_control *wbc); | 
|  |  | 
|  | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | 
|  |  | 
|  | inline void touch_buffer(struct buffer_head *bh) | 
|  | { | 
|  | trace_block_touch_buffer(bh); | 
|  | folio_mark_accessed(bh->b_folio); | 
|  | } | 
|  | EXPORT_SYMBOL(touch_buffer); | 
|  |  | 
|  | void __lock_buffer(struct buffer_head *bh) | 
|  | { | 
|  | wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  | EXPORT_SYMBOL(__lock_buffer); | 
|  |  | 
|  | void unlock_buffer(struct buffer_head *bh) | 
|  | { | 
|  | clear_bit_unlock(BH_Lock, &bh->b_state); | 
|  | smp_mb__after_atomic(); | 
|  | wake_up_bit(&bh->b_state, BH_Lock); | 
|  | } | 
|  | EXPORT_SYMBOL(unlock_buffer); | 
|  |  | 
|  | /* | 
|  | * Returns if the folio has dirty or writeback buffers. If all the buffers | 
|  | * are unlocked and clean then the folio_test_dirty information is stale. If | 
|  | * any of the buffers are locked, it is assumed they are locked for IO. | 
|  | */ | 
|  | void buffer_check_dirty_writeback(struct folio *folio, | 
|  | bool *dirty, bool *writeback) | 
|  | { | 
|  | struct buffer_head *head, *bh; | 
|  | *dirty = false; | 
|  | *writeback = false; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  |  | 
|  | head = folio_buffers(folio); | 
|  | if (!head) | 
|  | return; | 
|  |  | 
|  | if (folio_test_writeback(folio)) | 
|  | *writeback = true; | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | if (buffer_locked(bh)) | 
|  | *writeback = true; | 
|  |  | 
|  | if (buffer_dirty(bh)) | 
|  | *dirty = true; | 
|  |  | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Block until a buffer comes unlocked.  This doesn't stop it | 
|  | * from becoming locked again - you have to lock it yourself | 
|  | * if you want to preserve its state. | 
|  | */ | 
|  | void __wait_on_buffer(struct buffer_head * bh) | 
|  | { | 
|  | wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  | EXPORT_SYMBOL(__wait_on_buffer); | 
|  |  | 
|  | static void buffer_io_error(struct buffer_head *bh, char *msg) | 
|  | { | 
|  | if (!test_bit(BH_Quiet, &bh->b_state)) | 
|  | printk_ratelimited(KERN_ERR | 
|  | "Buffer I/O error on dev %pg, logical block %llu%s\n", | 
|  | bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * End-of-IO handler helper function which does not touch the bh after | 
|  | * unlocking it. | 
|  | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | 
|  | * a race there is benign: unlock_buffer() only use the bh's address for | 
|  | * hashing after unlocking the buffer, so it doesn't actually touch the bh | 
|  | * itself. | 
|  | */ | 
|  | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | if (uptodate) { | 
|  | set_buffer_uptodate(bh); | 
|  | } else { | 
|  | /* This happens, due to failed read-ahead attempts. */ | 
|  | clear_buffer_uptodate(bh); | 
|  | } | 
|  | unlock_buffer(bh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Default synchronous end-of-IO handler..  Just mark it up-to-date and | 
|  | * unlock the buffer. | 
|  | */ | 
|  | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | put_bh(bh); | 
|  | __end_buffer_read_notouch(bh, uptodate); | 
|  | } | 
|  | EXPORT_SYMBOL(end_buffer_read_sync); | 
|  |  | 
|  | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | if (uptodate) { | 
|  | set_buffer_uptodate(bh); | 
|  | } else { | 
|  | buffer_io_error(bh, ", lost sync page write"); | 
|  | mark_buffer_write_io_error(bh); | 
|  | clear_buffer_uptodate(bh); | 
|  | } | 
|  | unlock_buffer(bh); | 
|  | put_bh(bh); | 
|  | } | 
|  | EXPORT_SYMBOL(end_buffer_write_sync); | 
|  |  | 
|  | static struct buffer_head * | 
|  | __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic) | 
|  | { | 
|  | struct address_space *bd_mapping = bdev->bd_mapping; | 
|  | const int blkbits = bd_mapping->host->i_blkbits; | 
|  | struct buffer_head *ret = NULL; | 
|  | pgoff_t index; | 
|  | struct buffer_head *bh; | 
|  | struct buffer_head *head; | 
|  | struct folio *folio; | 
|  | int all_mapped = 1; | 
|  | static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); | 
|  |  | 
|  | index = ((loff_t)block << blkbits) / PAGE_SIZE; | 
|  | folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); | 
|  | if (IS_ERR(folio)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Folio lock protects the buffers. Callers that cannot block | 
|  | * will fallback to serializing vs try_to_free_buffers() via | 
|  | * the i_private_lock. | 
|  | */ | 
|  | if (atomic) | 
|  | spin_lock(&bd_mapping->i_private_lock); | 
|  | else | 
|  | folio_lock(folio); | 
|  |  | 
|  | head = folio_buffers(folio); | 
|  | if (!head) | 
|  | goto out_unlock; | 
|  | /* | 
|  | * Upon a noref migration, the folio lock serializes here; | 
|  | * otherwise bail. | 
|  | */ | 
|  | if (test_bit_acquire(BH_Migrate, &head->b_state)) { | 
|  | WARN_ON(!atomic); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | if (!buffer_mapped(bh)) | 
|  | all_mapped = 0; | 
|  | else if (bh->b_blocknr == block) { | 
|  | ret = bh; | 
|  | get_bh(bh); | 
|  | goto out_unlock; | 
|  | } | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  |  | 
|  | /* we might be here because some of the buffers on this page are | 
|  | * not mapped.  This is due to various races between | 
|  | * file io on the block device and getblk.  It gets dealt with | 
|  | * elsewhere, don't buffer_error if we had some unmapped buffers | 
|  | */ | 
|  | ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); | 
|  | if (all_mapped && __ratelimit(&last_warned)) { | 
|  | printk("__find_get_block_slow() failed. block=%llu, " | 
|  | "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " | 
|  | "device %pg blocksize: %d\n", | 
|  | (unsigned long long)block, | 
|  | (unsigned long long)bh->b_blocknr, | 
|  | bh->b_state, bh->b_size, bdev, | 
|  | 1 << blkbits); | 
|  | } | 
|  | out_unlock: | 
|  | if (atomic) | 
|  | spin_unlock(&bd_mapping->i_private_lock); | 
|  | else | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct buffer_head *first; | 
|  | struct buffer_head *tmp; | 
|  | struct folio *folio; | 
|  | int folio_uptodate = 1; | 
|  |  | 
|  | BUG_ON(!buffer_async_read(bh)); | 
|  |  | 
|  | folio = bh->b_folio; | 
|  | if (uptodate) { | 
|  | set_buffer_uptodate(bh); | 
|  | } else { | 
|  | clear_buffer_uptodate(bh); | 
|  | buffer_io_error(bh, ", async page read"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Be _very_ careful from here on. Bad things can happen if | 
|  | * two buffer heads end IO at almost the same time and both | 
|  | * decide that the page is now completely done. | 
|  | */ | 
|  | first = folio_buffers(folio); | 
|  | spin_lock_irqsave(&first->b_uptodate_lock, flags); | 
|  | clear_buffer_async_read(bh); | 
|  | unlock_buffer(bh); | 
|  | tmp = bh; | 
|  | do { | 
|  | if (!buffer_uptodate(tmp)) | 
|  | folio_uptodate = 0; | 
|  | if (buffer_async_read(tmp)) { | 
|  | BUG_ON(!buffer_locked(tmp)); | 
|  | goto still_busy; | 
|  | } | 
|  | tmp = tmp->b_this_page; | 
|  | } while (tmp != bh); | 
|  | spin_unlock_irqrestore(&first->b_uptodate_lock, flags); | 
|  |  | 
|  | folio_end_read(folio, folio_uptodate); | 
|  | return; | 
|  |  | 
|  | still_busy: | 
|  | spin_unlock_irqrestore(&first->b_uptodate_lock, flags); | 
|  | } | 
|  |  | 
|  | struct postprocess_bh_ctx { | 
|  | struct work_struct work; | 
|  | struct buffer_head *bh; | 
|  | }; | 
|  |  | 
|  | static void verify_bh(struct work_struct *work) | 
|  | { | 
|  | struct postprocess_bh_ctx *ctx = | 
|  | container_of(work, struct postprocess_bh_ctx, work); | 
|  | struct buffer_head *bh = ctx->bh; | 
|  | bool valid; | 
|  |  | 
|  | valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); | 
|  | end_buffer_async_read(bh, valid); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | static bool need_fsverity(struct buffer_head *bh) | 
|  | { | 
|  | struct folio *folio = bh->b_folio; | 
|  | struct inode *inode = folio->mapping->host; | 
|  |  | 
|  | return fsverity_active(inode) && | 
|  | /* needed by ext4 */ | 
|  | folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void decrypt_bh(struct work_struct *work) | 
|  | { | 
|  | struct postprocess_bh_ctx *ctx = | 
|  | container_of(work, struct postprocess_bh_ctx, work); | 
|  | struct buffer_head *bh = ctx->bh; | 
|  | int err; | 
|  |  | 
|  | err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, | 
|  | bh_offset(bh)); | 
|  | if (err == 0 && need_fsverity(bh)) { | 
|  | /* | 
|  | * We use different work queues for decryption and for verity | 
|  | * because verity may require reading metadata pages that need | 
|  | * decryption, and we shouldn't recurse to the same workqueue. | 
|  | */ | 
|  | INIT_WORK(&ctx->work, verify_bh); | 
|  | fsverity_enqueue_verify_work(&ctx->work); | 
|  | return; | 
|  | } | 
|  | end_buffer_async_read(bh, err == 0); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * I/O completion handler for block_read_full_folio() - pages | 
|  | * which come unlocked at the end of I/O. | 
|  | */ | 
|  | static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | struct inode *inode = bh->b_folio->mapping->host; | 
|  | bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); | 
|  | bool verify = need_fsverity(bh); | 
|  |  | 
|  | /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ | 
|  | if (uptodate && (decrypt || verify)) { | 
|  | struct postprocess_bh_ctx *ctx = | 
|  | kmalloc(sizeof(*ctx), GFP_ATOMIC); | 
|  |  | 
|  | if (ctx) { | 
|  | ctx->bh = bh; | 
|  | if (decrypt) { | 
|  | INIT_WORK(&ctx->work, decrypt_bh); | 
|  | fscrypt_enqueue_decrypt_work(&ctx->work); | 
|  | } else { | 
|  | INIT_WORK(&ctx->work, verify_bh); | 
|  | fsverity_enqueue_verify_work(&ctx->work); | 
|  | } | 
|  | return; | 
|  | } | 
|  | uptodate = 0; | 
|  | } | 
|  | end_buffer_async_read(bh, uptodate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Completion handler for block_write_full_folio() - folios which are unlocked | 
|  | * during I/O, and which have the writeback flag cleared upon I/O completion. | 
|  | */ | 
|  | static void end_buffer_async_write(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct buffer_head *first; | 
|  | struct buffer_head *tmp; | 
|  | struct folio *folio; | 
|  |  | 
|  | BUG_ON(!buffer_async_write(bh)); | 
|  |  | 
|  | folio = bh->b_folio; | 
|  | if (uptodate) { | 
|  | set_buffer_uptodate(bh); | 
|  | } else { | 
|  | buffer_io_error(bh, ", lost async page write"); | 
|  | mark_buffer_write_io_error(bh); | 
|  | clear_buffer_uptodate(bh); | 
|  | } | 
|  |  | 
|  | first = folio_buffers(folio); | 
|  | spin_lock_irqsave(&first->b_uptodate_lock, flags); | 
|  |  | 
|  | clear_buffer_async_write(bh); | 
|  | unlock_buffer(bh); | 
|  | tmp = bh->b_this_page; | 
|  | while (tmp != bh) { | 
|  | if (buffer_async_write(tmp)) { | 
|  | BUG_ON(!buffer_locked(tmp)); | 
|  | goto still_busy; | 
|  | } | 
|  | tmp = tmp->b_this_page; | 
|  | } | 
|  | spin_unlock_irqrestore(&first->b_uptodate_lock, flags); | 
|  | folio_end_writeback(folio); | 
|  | return; | 
|  |  | 
|  | still_busy: | 
|  | spin_unlock_irqrestore(&first->b_uptodate_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a page's buffers are under async readin (end_buffer_async_read | 
|  | * completion) then there is a possibility that another thread of | 
|  | * control could lock one of the buffers after it has completed | 
|  | * but while some of the other buffers have not completed.  This | 
|  | * locked buffer would confuse end_buffer_async_read() into not unlocking | 
|  | * the page.  So the absence of BH_Async_Read tells end_buffer_async_read() | 
|  | * that this buffer is not under async I/O. | 
|  | * | 
|  | * The page comes unlocked when it has no locked buffer_async buffers | 
|  | * left. | 
|  | * | 
|  | * PageLocked prevents anyone starting new async I/O reads any of | 
|  | * the buffers. | 
|  | * | 
|  | * PageWriteback is used to prevent simultaneous writeout of the same | 
|  | * page. | 
|  | * | 
|  | * PageLocked prevents anyone from starting writeback of a page which is | 
|  | * under read I/O (PageWriteback is only ever set against a locked page). | 
|  | */ | 
|  | static void mark_buffer_async_read(struct buffer_head *bh) | 
|  | { | 
|  | bh->b_end_io = end_buffer_async_read_io; | 
|  | set_buffer_async_read(bh); | 
|  | } | 
|  |  | 
|  | static void mark_buffer_async_write_endio(struct buffer_head *bh, | 
|  | bh_end_io_t *handler) | 
|  | { | 
|  | bh->b_end_io = handler; | 
|  | set_buffer_async_write(bh); | 
|  | } | 
|  |  | 
|  | void mark_buffer_async_write(struct buffer_head *bh) | 
|  | { | 
|  | mark_buffer_async_write_endio(bh, end_buffer_async_write); | 
|  | } | 
|  | EXPORT_SYMBOL(mark_buffer_async_write); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * fs/buffer.c contains helper functions for buffer-backed address space's | 
|  | * fsync functions.  A common requirement for buffer-based filesystems is | 
|  | * that certain data from the backing blockdev needs to be written out for | 
|  | * a successful fsync().  For example, ext2 indirect blocks need to be | 
|  | * written back and waited upon before fsync() returns. | 
|  | * | 
|  | * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), | 
|  | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | 
|  | * management of a list of dependent buffers at ->i_mapping->i_private_list. | 
|  | * | 
|  | * Locking is a little subtle: try_to_free_buffers() will remove buffers | 
|  | * from their controlling inode's queue when they are being freed.  But | 
|  | * try_to_free_buffers() will be operating against the *blockdev* mapping | 
|  | * at the time, not against the S_ISREG file which depends on those buffers. | 
|  | * So the locking for i_private_list is via the i_private_lock in the address_space | 
|  | * which backs the buffers.  Which is different from the address_space | 
|  | * against which the buffers are listed.  So for a particular address_space, | 
|  | * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact, | 
|  | * mapping->i_private_list will always be protected by the backing blockdev's | 
|  | * ->i_private_lock. | 
|  | * | 
|  | * Which introduces a requirement: all buffers on an address_space's | 
|  | * ->i_private_list must be from the same address_space: the blockdev's. | 
|  | * | 
|  | * address_spaces which do not place buffers at ->i_private_list via these | 
|  | * utility functions are free to use i_private_lock and i_private_list for | 
|  | * whatever they want.  The only requirement is that list_empty(i_private_list) | 
|  | * be true at clear_inode() time. | 
|  | * | 
|  | * FIXME: clear_inode should not call invalidate_inode_buffers().  The | 
|  | * filesystems should do that.  invalidate_inode_buffers() should just go | 
|  | * BUG_ON(!list_empty). | 
|  | * | 
|  | * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should | 
|  | * take an address_space, not an inode.  And it should be called | 
|  | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | 
|  | * queued up. | 
|  | * | 
|  | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | 
|  | * list if it is already on a list.  Because if the buffer is on a list, | 
|  | * it *must* already be on the right one.  If not, the filesystem is being | 
|  | * silly.  This will save a ton of locking.  But first we have to ensure | 
|  | * that buffers are taken *off* the old inode's list when they are freed | 
|  | * (presumably in truncate).  That requires careful auditing of all | 
|  | * filesystems (do it inside bforget()).  It could also be done by bringing | 
|  | * b_inode back. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The buffer's backing address_space's i_private_lock must be held | 
|  | */ | 
|  | static void __remove_assoc_queue(struct buffer_head *bh) | 
|  | { | 
|  | list_del_init(&bh->b_assoc_buffers); | 
|  | WARN_ON(!bh->b_assoc_map); | 
|  | bh->b_assoc_map = NULL; | 
|  | } | 
|  |  | 
|  | int inode_has_buffers(struct inode *inode) | 
|  | { | 
|  | return !list_empty(&inode->i_data.i_private_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * osync is designed to support O_SYNC io.  It waits synchronously for | 
|  | * all already-submitted IO to complete, but does not queue any new | 
|  | * writes to the disk. | 
|  | * | 
|  | * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer | 
|  | * as you dirty the buffers, and then use osync_inode_buffers to wait for | 
|  | * completion.  Any other dirty buffers which are not yet queued for | 
|  | * write will not be flushed to disk by the osync. | 
|  | */ | 
|  | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | struct list_head *p; | 
|  | int err = 0; | 
|  |  | 
|  | spin_lock(lock); | 
|  | repeat: | 
|  | list_for_each_prev(p, list) { | 
|  | bh = BH_ENTRY(p); | 
|  | if (buffer_locked(bh)) { | 
|  | get_bh(bh); | 
|  | spin_unlock(lock); | 
|  | wait_on_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) | 
|  | err = -EIO; | 
|  | brelse(bh); | 
|  | spin_lock(lock); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | spin_unlock(lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers | 
|  | * @mapping: the mapping which wants those buffers written | 
|  | * | 
|  | * Starts I/O against the buffers at mapping->i_private_list, and waits upon | 
|  | * that I/O. | 
|  | * | 
|  | * Basically, this is a convenience function for fsync(). | 
|  | * @mapping is a file or directory which needs those buffers to be written for | 
|  | * a successful fsync(). | 
|  | */ | 
|  | int sync_mapping_buffers(struct address_space *mapping) | 
|  | { | 
|  | struct address_space *buffer_mapping = mapping->i_private_data; | 
|  |  | 
|  | if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) | 
|  | return 0; | 
|  |  | 
|  | return fsync_buffers_list(&buffer_mapping->i_private_lock, | 
|  | &mapping->i_private_list); | 
|  | } | 
|  | EXPORT_SYMBOL(sync_mapping_buffers); | 
|  |  | 
|  | /** | 
|  | * generic_buffers_fsync_noflush - generic buffer fsync implementation | 
|  | * for simple filesystems with no inode lock | 
|  | * | 
|  | * @file:	file to synchronize | 
|  | * @start:	start offset in bytes | 
|  | * @end:	end offset in bytes (inclusive) | 
|  | * @datasync:	only synchronize essential metadata if true | 
|  | * | 
|  | * This is a generic implementation of the fsync method for simple | 
|  | * filesystems which track all non-inode metadata in the buffers list | 
|  | * hanging off the address_space structure. | 
|  | */ | 
|  | int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, | 
|  | bool datasync) | 
|  | { | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | int err; | 
|  | int ret; | 
|  |  | 
|  | err = file_write_and_wait_range(file, start, end); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | ret = sync_mapping_buffers(inode->i_mapping); | 
|  | if (!(inode->i_state & I_DIRTY_ALL)) | 
|  | goto out; | 
|  | if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) | 
|  | goto out; | 
|  |  | 
|  | err = sync_inode_metadata(inode, 1); | 
|  | if (ret == 0) | 
|  | ret = err; | 
|  |  | 
|  | out: | 
|  | /* check and advance again to catch errors after syncing out buffers */ | 
|  | err = file_check_and_advance_wb_err(file); | 
|  | if (ret == 0) | 
|  | ret = err; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_buffers_fsync_noflush); | 
|  |  | 
|  | /** | 
|  | * generic_buffers_fsync - generic buffer fsync implementation | 
|  | * for simple filesystems with no inode lock | 
|  | * | 
|  | * @file:	file to synchronize | 
|  | * @start:	start offset in bytes | 
|  | * @end:	end offset in bytes (inclusive) | 
|  | * @datasync:	only synchronize essential metadata if true | 
|  | * | 
|  | * This is a generic implementation of the fsync method for simple | 
|  | * filesystems which track all non-inode metadata in the buffers list | 
|  | * hanging off the address_space structure. This also makes sure that | 
|  | * a device cache flush operation is called at the end. | 
|  | */ | 
|  | int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, | 
|  | bool datasync) | 
|  | { | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | int ret; | 
|  |  | 
|  | ret = generic_buffers_fsync_noflush(file, start, end, datasync); | 
|  | if (!ret) | 
|  | ret = blkdev_issue_flush(inode->i_sb->s_bdev); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_buffers_fsync); | 
|  |  | 
|  | /* | 
|  | * Called when we've recently written block `bblock', and it is known that | 
|  | * `bblock' was for a buffer_boundary() buffer.  This means that the block at | 
|  | * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's | 
|  | * dirty, schedule it for IO.  So that indirects merge nicely with their data. | 
|  | */ | 
|  | void write_boundary_block(struct block_device *bdev, | 
|  | sector_t bblock, unsigned blocksize) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize); | 
|  | if (bh) { | 
|  | if (buffer_dirty(bh)) | 
|  | write_dirty_buffer(bh, 0); | 
|  | put_bh(bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct address_space *buffer_mapping = bh->b_folio->mapping; | 
|  |  | 
|  | mark_buffer_dirty(bh); | 
|  | if (!mapping->i_private_data) { | 
|  | mapping->i_private_data = buffer_mapping; | 
|  | } else { | 
|  | BUG_ON(mapping->i_private_data != buffer_mapping); | 
|  | } | 
|  | if (!bh->b_assoc_map) { | 
|  | spin_lock(&buffer_mapping->i_private_lock); | 
|  | list_move_tail(&bh->b_assoc_buffers, | 
|  | &mapping->i_private_list); | 
|  | bh->b_assoc_map = mapping; | 
|  | spin_unlock(&buffer_mapping->i_private_lock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(mark_buffer_dirty_inode); | 
|  |  | 
|  | /** | 
|  | * block_dirty_folio - Mark a folio as dirty. | 
|  | * @mapping: The address space containing this folio. | 
|  | * @folio: The folio to mark dirty. | 
|  | * | 
|  | * Filesystems which use buffer_heads can use this function as their | 
|  | * ->dirty_folio implementation.  Some filesystems need to do a little | 
|  | * work before calling this function.  Filesystems which do not use | 
|  | * buffer_heads should call filemap_dirty_folio() instead. | 
|  | * | 
|  | * If the folio has buffers, the uptodate buffers are set dirty, to | 
|  | * preserve dirty-state coherency between the folio and the buffers. | 
|  | * Buffers added to a dirty folio are created dirty. | 
|  | * | 
|  | * The buffers are dirtied before the folio is dirtied.  There's a small | 
|  | * race window in which writeback may see the folio cleanness but not the | 
|  | * buffer dirtiness.  That's fine.  If this code were to set the folio | 
|  | * dirty before the buffers, writeback could clear the folio dirty flag, | 
|  | * see a bunch of clean buffers and we'd end up with dirty buffers/clean | 
|  | * folio on the dirty folio list. | 
|  | * | 
|  | * We use i_private_lock to lock against try_to_free_buffers() while | 
|  | * using the folio's buffer list.  This also prevents clean buffers | 
|  | * being added to the folio after it was set dirty. | 
|  | * | 
|  | * Context: May only be called from process context.  Does not sleep. | 
|  | * Caller must ensure that @folio cannot be truncated during this call, | 
|  | * typically by holding the folio lock or having a page in the folio | 
|  | * mapped and holding the page table lock. | 
|  | * | 
|  | * Return: True if the folio was dirtied; false if it was already dirtied. | 
|  | */ | 
|  | bool block_dirty_folio(struct address_space *mapping, struct folio *folio) | 
|  | { | 
|  | struct buffer_head *head; | 
|  | bool newly_dirty; | 
|  |  | 
|  | spin_lock(&mapping->i_private_lock); | 
|  | head = folio_buffers(folio); | 
|  | if (head) { | 
|  | struct buffer_head *bh = head; | 
|  |  | 
|  | do { | 
|  | set_buffer_dirty(bh); | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | } | 
|  | /* | 
|  | * Lock out page's memcg migration to keep PageDirty | 
|  | * synchronized with per-memcg dirty page counters. | 
|  | */ | 
|  | newly_dirty = !folio_test_set_dirty(folio); | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  |  | 
|  | if (newly_dirty) | 
|  | __folio_mark_dirty(folio, mapping, 1); | 
|  |  | 
|  | if (newly_dirty) | 
|  | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
|  |  | 
|  | return newly_dirty; | 
|  | } | 
|  | EXPORT_SYMBOL(block_dirty_folio); | 
|  |  | 
|  | /* | 
|  | * Write out and wait upon a list of buffers. | 
|  | * | 
|  | * We have conflicting pressures: we want to make sure that all | 
|  | * initially dirty buffers get waited on, but that any subsequently | 
|  | * dirtied buffers don't.  After all, we don't want fsync to last | 
|  | * forever if somebody is actively writing to the file. | 
|  | * | 
|  | * Do this in two main stages: first we copy dirty buffers to a | 
|  | * temporary inode list, queueing the writes as we go.  Then we clean | 
|  | * up, waiting for those writes to complete. | 
|  | * | 
|  | * During this second stage, any subsequent updates to the file may end | 
|  | * up refiling the buffer on the original inode's dirty list again, so | 
|  | * there is a chance we will end up with a buffer queued for write but | 
|  | * not yet completed on that list.  So, as a final cleanup we go through | 
|  | * the osync code to catch these locked, dirty buffers without requeuing | 
|  | * any newly dirty buffers for write. | 
|  | */ | 
|  | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | struct address_space *mapping; | 
|  | int err = 0, err2; | 
|  | struct blk_plug plug; | 
|  | LIST_HEAD(tmp); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | spin_lock(lock); | 
|  | while (!list_empty(list)) { | 
|  | bh = BH_ENTRY(list->next); | 
|  | mapping = bh->b_assoc_map; | 
|  | __remove_assoc_queue(bh); | 
|  | /* Avoid race with mark_buffer_dirty_inode() which does | 
|  | * a lockless check and we rely on seeing the dirty bit */ | 
|  | smp_mb(); | 
|  | if (buffer_dirty(bh) || buffer_locked(bh)) { | 
|  | list_add(&bh->b_assoc_buffers, &tmp); | 
|  | bh->b_assoc_map = mapping; | 
|  | if (buffer_dirty(bh)) { | 
|  | get_bh(bh); | 
|  | spin_unlock(lock); | 
|  | /* | 
|  | * Ensure any pending I/O completes so that | 
|  | * write_dirty_buffer() actually writes the | 
|  | * current contents - it is a noop if I/O is | 
|  | * still in flight on potentially older | 
|  | * contents. | 
|  | */ | 
|  | write_dirty_buffer(bh, REQ_SYNC); | 
|  |  | 
|  | /* | 
|  | * Kick off IO for the previous mapping. Note | 
|  | * that we will not run the very last mapping, | 
|  | * wait_on_buffer() will do that for us | 
|  | * through sync_buffer(). | 
|  | */ | 
|  | brelse(bh); | 
|  | spin_lock(lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(lock); | 
|  | blk_finish_plug(&plug); | 
|  | spin_lock(lock); | 
|  |  | 
|  | while (!list_empty(&tmp)) { | 
|  | bh = BH_ENTRY(tmp.prev); | 
|  | get_bh(bh); | 
|  | mapping = bh->b_assoc_map; | 
|  | __remove_assoc_queue(bh); | 
|  | /* Avoid race with mark_buffer_dirty_inode() which does | 
|  | * a lockless check and we rely on seeing the dirty bit */ | 
|  | smp_mb(); | 
|  | if (buffer_dirty(bh)) { | 
|  | list_add(&bh->b_assoc_buffers, | 
|  | &mapping->i_private_list); | 
|  | bh->b_assoc_map = mapping; | 
|  | } | 
|  | spin_unlock(lock); | 
|  | wait_on_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) | 
|  | err = -EIO; | 
|  | brelse(bh); | 
|  | spin_lock(lock); | 
|  | } | 
|  |  | 
|  | spin_unlock(lock); | 
|  | err2 = osync_buffers_list(lock, list); | 
|  | if (err) | 
|  | return err; | 
|  | else | 
|  | return err2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invalidate any and all dirty buffers on a given inode.  We are | 
|  | * probably unmounting the fs, but that doesn't mean we have already | 
|  | * done a sync().  Just drop the buffers from the inode list. | 
|  | * | 
|  | * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which | 
|  | * assumes that all the buffers are against the blockdev. | 
|  | */ | 
|  | void invalidate_inode_buffers(struct inode *inode) | 
|  | { | 
|  | if (inode_has_buffers(inode)) { | 
|  | struct address_space *mapping = &inode->i_data; | 
|  | struct list_head *list = &mapping->i_private_list; | 
|  | struct address_space *buffer_mapping = mapping->i_private_data; | 
|  |  | 
|  | spin_lock(&buffer_mapping->i_private_lock); | 
|  | while (!list_empty(list)) | 
|  | __remove_assoc_queue(BH_ENTRY(list->next)); | 
|  | spin_unlock(&buffer_mapping->i_private_lock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(invalidate_inode_buffers); | 
|  |  | 
|  | /* | 
|  | * Remove any clean buffers from the inode's buffer list.  This is called | 
|  | * when we're trying to free the inode itself.  Those buffers can pin it. | 
|  | * | 
|  | * Returns true if all buffers were removed. | 
|  | */ | 
|  | int remove_inode_buffers(struct inode *inode) | 
|  | { | 
|  | int ret = 1; | 
|  |  | 
|  | if (inode_has_buffers(inode)) { | 
|  | struct address_space *mapping = &inode->i_data; | 
|  | struct list_head *list = &mapping->i_private_list; | 
|  | struct address_space *buffer_mapping = mapping->i_private_data; | 
|  |  | 
|  | spin_lock(&buffer_mapping->i_private_lock); | 
|  | while (!list_empty(list)) { | 
|  | struct buffer_head *bh = BH_ENTRY(list->next); | 
|  | if (buffer_dirty(bh)) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | __remove_assoc_queue(bh); | 
|  | } | 
|  | spin_unlock(&buffer_mapping->i_private_lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the appropriate buffers when given a folio for data area and | 
|  | * the size of each buffer.. Use the bh->b_this_page linked list to | 
|  | * follow the buffers created.  Return NULL if unable to create more | 
|  | * buffers. | 
|  | * | 
|  | * The retry flag is used to differentiate async IO (paging, swapping) | 
|  | * which may not fail from ordinary buffer allocations. | 
|  | */ | 
|  | struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct buffer_head *bh, *head; | 
|  | long offset; | 
|  | struct mem_cgroup *memcg, *old_memcg; | 
|  |  | 
|  | /* The folio lock pins the memcg */ | 
|  | memcg = folio_memcg(folio); | 
|  | old_memcg = set_active_memcg(memcg); | 
|  |  | 
|  | head = NULL; | 
|  | offset = folio_size(folio); | 
|  | while ((offset -= size) >= 0) { | 
|  | bh = alloc_buffer_head(gfp); | 
|  | if (!bh) | 
|  | goto no_grow; | 
|  |  | 
|  | bh->b_this_page = head; | 
|  | bh->b_blocknr = -1; | 
|  | head = bh; | 
|  |  | 
|  | bh->b_size = size; | 
|  |  | 
|  | /* Link the buffer to its folio */ | 
|  | folio_set_bh(bh, folio, offset); | 
|  | } | 
|  | out: | 
|  | set_active_memcg(old_memcg); | 
|  | return head; | 
|  | /* | 
|  | * In case anything failed, we just free everything we got. | 
|  | */ | 
|  | no_grow: | 
|  | if (head) { | 
|  | do { | 
|  | bh = head; | 
|  | head = head->b_this_page; | 
|  | free_buffer_head(bh); | 
|  | } while (head); | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(folio_alloc_buffers); | 
|  |  | 
|  | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) | 
|  | { | 
|  | gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; | 
|  |  | 
|  | return folio_alloc_buffers(page_folio(page), size, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(alloc_page_buffers); | 
|  |  | 
|  | static inline void link_dev_buffers(struct folio *folio, | 
|  | struct buffer_head *head) | 
|  | { | 
|  | struct buffer_head *bh, *tail; | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | tail = bh; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh); | 
|  | tail->b_this_page = head; | 
|  | folio_attach_private(folio, head); | 
|  | } | 
|  |  | 
|  | static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) | 
|  | { | 
|  | sector_t retval = ~((sector_t)0); | 
|  | loff_t sz = bdev_nr_bytes(bdev); | 
|  |  | 
|  | if (sz) { | 
|  | unsigned int sizebits = blksize_bits(size); | 
|  | retval = (sz >> sizebits); | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise the state of a blockdev folio's buffers. | 
|  | */ | 
|  | static sector_t folio_init_buffers(struct folio *folio, | 
|  | struct block_device *bdev, unsigned size) | 
|  | { | 
|  | struct buffer_head *head = folio_buffers(folio); | 
|  | struct buffer_head *bh = head; | 
|  | bool uptodate = folio_test_uptodate(folio); | 
|  | sector_t block = div_u64(folio_pos(folio), size); | 
|  | sector_t end_block = blkdev_max_block(bdev, size); | 
|  |  | 
|  | do { | 
|  | if (!buffer_mapped(bh)) { | 
|  | bh->b_end_io = NULL; | 
|  | bh->b_private = NULL; | 
|  | bh->b_bdev = bdev; | 
|  | bh->b_blocknr = block; | 
|  | if (uptodate) | 
|  | set_buffer_uptodate(bh); | 
|  | if (block < end_block) | 
|  | set_buffer_mapped(bh); | 
|  | } | 
|  | block++; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  |  | 
|  | /* | 
|  | * Caller needs to validate requested block against end of device. | 
|  | */ | 
|  | return end_block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the page-cache folio that contains the requested block. | 
|  | * | 
|  | * This is used purely for blockdev mappings. | 
|  | * | 
|  | * Returns false if we have a failure which cannot be cured by retrying | 
|  | * without sleeping.  Returns true if we succeeded, or the caller should retry. | 
|  | */ | 
|  | static bool grow_dev_folio(struct block_device *bdev, sector_t block, | 
|  | pgoff_t index, unsigned size, gfp_t gfp) | 
|  | { | 
|  | struct address_space *mapping = bdev->bd_mapping; | 
|  | struct folio *folio; | 
|  | struct buffer_head *bh; | 
|  | sector_t end_block = 0; | 
|  |  | 
|  | folio = __filemap_get_folio(mapping, index, | 
|  | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); | 
|  | if (IS_ERR(folio)) | 
|  | return false; | 
|  |  | 
|  | bh = folio_buffers(folio); | 
|  | if (bh) { | 
|  | if (bh->b_size == size) { | 
|  | end_block = folio_init_buffers(folio, bdev, size); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrying may succeed; for example the folio may finish | 
|  | * writeback, or buffers may be cleaned.  This should not | 
|  | * happen very often; maybe we have old buffers attached to | 
|  | * this blockdev's page cache and we're trying to change | 
|  | * the block size? | 
|  | */ | 
|  | if (!try_to_free_buffers(folio)) { | 
|  | end_block = ~0ULL; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); | 
|  | if (!bh) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * Link the folio to the buffers and initialise them.  Take the | 
|  | * lock to be atomic wrt __find_get_block(), which does not | 
|  | * run under the folio lock. | 
|  | */ | 
|  | spin_lock(&mapping->i_private_lock); | 
|  | link_dev_buffers(folio, bh); | 
|  | end_block = folio_init_buffers(folio, bdev, size); | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | unlock: | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | return block < end_block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create buffers for the specified block device block's folio.  If | 
|  | * that folio was dirty, the buffers are set dirty also.  Returns false | 
|  | * if we've hit a permanent error. | 
|  | */ | 
|  | static bool grow_buffers(struct block_device *bdev, sector_t block, | 
|  | unsigned size, gfp_t gfp) | 
|  | { | 
|  | loff_t pos; | 
|  |  | 
|  | /* | 
|  | * Check for a block which lies outside our maximum possible | 
|  | * pagecache index. | 
|  | */ | 
|  | if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { | 
|  | printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", | 
|  | __func__, (unsigned long long)block, | 
|  | bdev); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Create a folio with the proper size buffers */ | 
|  | return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); | 
|  | } | 
|  |  | 
|  | static struct buffer_head * | 
|  | __getblk_slow(struct block_device *bdev, sector_t block, | 
|  | unsigned size, gfp_t gfp) | 
|  | { | 
|  | bool blocking = gfpflags_allow_blocking(gfp); | 
|  |  | 
|  | if (WARN_ON_ONCE(!IS_ALIGNED(size, bdev_logical_block_size(bdev)))) { | 
|  | printk(KERN_ERR "getblk(): block size %d not aligned to logical block size %d\n", | 
|  | size, bdev_logical_block_size(bdev)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | if (!grow_buffers(bdev, block, size, gfp)) | 
|  | return NULL; | 
|  |  | 
|  | if (blocking) | 
|  | bh = __find_get_block_nonatomic(bdev, block, size); | 
|  | else | 
|  | bh = __find_get_block(bdev, block, size); | 
|  | if (bh) | 
|  | return bh; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The relationship between dirty buffers and dirty pages: | 
|  | * | 
|  | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | 
|  | * the page is tagged dirty in the page cache. | 
|  | * | 
|  | * At all times, the dirtiness of the buffers represents the dirtiness of | 
|  | * subsections of the page.  If the page has buffers, the page dirty bit is | 
|  | * merely a hint about the true dirty state. | 
|  | * | 
|  | * When a page is set dirty in its entirety, all its buffers are marked dirty | 
|  | * (if the page has buffers). | 
|  | * | 
|  | * When a buffer is marked dirty, its page is dirtied, but the page's other | 
|  | * buffers are not. | 
|  | * | 
|  | * Also.  When blockdev buffers are explicitly read with bread(), they | 
|  | * individually become uptodate.  But their backing page remains not | 
|  | * uptodate - even if all of its buffers are uptodate.  A subsequent | 
|  | * block_read_full_folio() against that folio will discover all the uptodate | 
|  | * buffers, will set the folio uptodate and will perform no I/O. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * mark_buffer_dirty - mark a buffer_head as needing writeout | 
|  | * @bh: the buffer_head to mark dirty | 
|  | * | 
|  | * mark_buffer_dirty() will set the dirty bit against the buffer, then set | 
|  | * its backing page dirty, then tag the page as dirty in the page cache | 
|  | * and then attach the address_space's inode to its superblock's dirty | 
|  | * inode list. | 
|  | * | 
|  | * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock, | 
|  | * i_pages lock and mapping->host->i_lock. | 
|  | */ | 
|  | void mark_buffer_dirty(struct buffer_head *bh) | 
|  | { | 
|  | WARN_ON_ONCE(!buffer_uptodate(bh)); | 
|  |  | 
|  | trace_block_dirty_buffer(bh); | 
|  |  | 
|  | /* | 
|  | * Very *carefully* optimize the it-is-already-dirty case. | 
|  | * | 
|  | * Don't let the final "is it dirty" escape to before we | 
|  | * perhaps modified the buffer. | 
|  | */ | 
|  | if (buffer_dirty(bh)) { | 
|  | smp_mb(); | 
|  | if (buffer_dirty(bh)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!test_set_buffer_dirty(bh)) { | 
|  | struct folio *folio = bh->b_folio; | 
|  | struct address_space *mapping = NULL; | 
|  |  | 
|  | if (!folio_test_set_dirty(folio)) { | 
|  | mapping = folio->mapping; | 
|  | if (mapping) | 
|  | __folio_mark_dirty(folio, mapping, 0); | 
|  | } | 
|  | if (mapping) | 
|  | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(mark_buffer_dirty); | 
|  |  | 
|  | void mark_buffer_write_io_error(struct buffer_head *bh) | 
|  | { | 
|  | set_buffer_write_io_error(bh); | 
|  | /* FIXME: do we need to set this in both places? */ | 
|  | if (bh->b_folio && bh->b_folio->mapping) | 
|  | mapping_set_error(bh->b_folio->mapping, -EIO); | 
|  | if (bh->b_assoc_map) | 
|  | mapping_set_error(bh->b_assoc_map, -EIO); | 
|  | } | 
|  | EXPORT_SYMBOL(mark_buffer_write_io_error); | 
|  |  | 
|  | /** | 
|  | * __brelse - Release a buffer. | 
|  | * @bh: The buffer to release. | 
|  | * | 
|  | * This variant of brelse() can be called if @bh is guaranteed to not be NULL. | 
|  | */ | 
|  | void __brelse(struct buffer_head *bh) | 
|  | { | 
|  | if (atomic_read(&bh->b_count)) { | 
|  | put_bh(bh); | 
|  | return; | 
|  | } | 
|  | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); | 
|  | } | 
|  | EXPORT_SYMBOL(__brelse); | 
|  |  | 
|  | /** | 
|  | * __bforget - Discard any dirty data in a buffer. | 
|  | * @bh: The buffer to forget. | 
|  | * | 
|  | * This variant of bforget() can be called if @bh is guaranteed to not | 
|  | * be NULL. | 
|  | */ | 
|  | void __bforget(struct buffer_head *bh) | 
|  | { | 
|  | clear_buffer_dirty(bh); | 
|  | if (bh->b_assoc_map) { | 
|  | struct address_space *buffer_mapping = bh->b_folio->mapping; | 
|  |  | 
|  | spin_lock(&buffer_mapping->i_private_lock); | 
|  | list_del_init(&bh->b_assoc_buffers); | 
|  | bh->b_assoc_map = NULL; | 
|  | spin_unlock(&buffer_mapping->i_private_lock); | 
|  | } | 
|  | __brelse(bh); | 
|  | } | 
|  | EXPORT_SYMBOL(__bforget); | 
|  |  | 
|  | static struct buffer_head *__bread_slow(struct buffer_head *bh) | 
|  | { | 
|  | lock_buffer(bh); | 
|  | if (buffer_uptodate(bh)) { | 
|  | unlock_buffer(bh); | 
|  | return bh; | 
|  | } else { | 
|  | get_bh(bh); | 
|  | bh->b_end_io = end_buffer_read_sync; | 
|  | submit_bh(REQ_OP_READ, bh); | 
|  | wait_on_buffer(bh); | 
|  | if (buffer_uptodate(bh)) | 
|  | return bh; | 
|  | } | 
|  | brelse(bh); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block(). | 
|  | * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their | 
|  | * refcount elevated by one when they're in an LRU.  A buffer can only appear | 
|  | * once in a particular CPU's LRU.  A single buffer can be present in multiple | 
|  | * CPU's LRUs at the same time. | 
|  | * | 
|  | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | 
|  | * sb_find_get_block(). | 
|  | * | 
|  | * The LRUs themselves only need locking against invalidate_bh_lrus.  We use | 
|  | * a local interrupt disable for that. | 
|  | */ | 
|  |  | 
|  | #define BH_LRU_SIZE	16 | 
|  |  | 
|  | struct bh_lru { | 
|  | struct buffer_head *bhs[BH_LRU_SIZE]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define bh_lru_lock()	local_irq_disable() | 
|  | #define bh_lru_unlock()	local_irq_enable() | 
|  | #else | 
|  | #define bh_lru_lock()	preempt_disable() | 
|  | #define bh_lru_unlock()	preempt_enable() | 
|  | #endif | 
|  |  | 
|  | static inline void check_irqs_on(void) | 
|  | { | 
|  | #ifdef irqs_disabled | 
|  | BUG_ON(irqs_disabled()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is | 
|  | * inserted at the front, and the buffer_head at the back if any is evicted. | 
|  | * Or, if already in the LRU it is moved to the front. | 
|  | */ | 
|  | static void bh_lru_install(struct buffer_head *bh) | 
|  | { | 
|  | struct buffer_head *evictee = bh; | 
|  | struct bh_lru *b; | 
|  | int i; | 
|  |  | 
|  | check_irqs_on(); | 
|  | bh_lru_lock(); | 
|  |  | 
|  | /* | 
|  | * the refcount of buffer_head in bh_lru prevents dropping the | 
|  | * attached page(i.e., try_to_free_buffers) so it could cause | 
|  | * failing page migration. | 
|  | * Skip putting upcoming bh into bh_lru until migration is done. | 
|  | */ | 
|  | if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { | 
|  | bh_lru_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | b = this_cpu_ptr(&bh_lrus); | 
|  | for (i = 0; i < BH_LRU_SIZE; i++) { | 
|  | swap(evictee, b->bhs[i]); | 
|  | if (evictee == bh) { | 
|  | bh_lru_unlock(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | get_bh(bh); | 
|  | bh_lru_unlock(); | 
|  | brelse(evictee); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up the bh in this cpu's LRU.  If it's there, move it to the head. | 
|  | */ | 
|  | static struct buffer_head * | 
|  | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) | 
|  | { | 
|  | struct buffer_head *ret = NULL; | 
|  | unsigned int i; | 
|  |  | 
|  | check_irqs_on(); | 
|  | bh_lru_lock(); | 
|  | if (cpu_is_isolated(smp_processor_id())) { | 
|  | bh_lru_unlock(); | 
|  | return NULL; | 
|  | } | 
|  | for (i = 0; i < BH_LRU_SIZE; i++) { | 
|  | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); | 
|  |  | 
|  | if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && | 
|  | bh->b_size == size) { | 
|  | if (i) { | 
|  | while (i) { | 
|  | __this_cpu_write(bh_lrus.bhs[i], | 
|  | __this_cpu_read(bh_lrus.bhs[i - 1])); | 
|  | i--; | 
|  | } | 
|  | __this_cpu_write(bh_lrus.bhs[0], bh); | 
|  | } | 
|  | get_bh(bh); | 
|  | ret = bh; | 
|  | break; | 
|  | } | 
|  | } | 
|  | bh_lru_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a pagecache lookup for the matching buffer.  If it's there, refresh | 
|  | * it in the LRU and mark it as accessed.  If it is not present then return | 
|  | * NULL. Atomic context callers may also return NULL if the buffer is being | 
|  | * migrated; similarly the page is not marked accessed either. | 
|  | */ | 
|  | static struct buffer_head * | 
|  | find_get_block_common(struct block_device *bdev, sector_t block, | 
|  | unsigned size, bool atomic) | 
|  | { | 
|  | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | 
|  |  | 
|  | if (bh == NULL) { | 
|  | /* __find_get_block_slow will mark the page accessed */ | 
|  | bh = __find_get_block_slow(bdev, block, atomic); | 
|  | if (bh) | 
|  | bh_lru_install(bh); | 
|  | } else | 
|  | touch_buffer(bh); | 
|  |  | 
|  | return bh; | 
|  | } | 
|  |  | 
|  | struct buffer_head * | 
|  | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) | 
|  | { | 
|  | return find_get_block_common(bdev, block, size, true); | 
|  | } | 
|  | EXPORT_SYMBOL(__find_get_block); | 
|  |  | 
|  | /* same as __find_get_block() but allows sleeping contexts */ | 
|  | struct buffer_head * | 
|  | __find_get_block_nonatomic(struct block_device *bdev, sector_t block, | 
|  | unsigned size) | 
|  | { | 
|  | return find_get_block_common(bdev, block, size, false); | 
|  | } | 
|  | EXPORT_SYMBOL(__find_get_block_nonatomic); | 
|  |  | 
|  | /** | 
|  | * bdev_getblk - Get a buffer_head in a block device's buffer cache. | 
|  | * @bdev: The block device. | 
|  | * @block: The block number. | 
|  | * @size: The size of buffer_heads for this @bdev. | 
|  | * @gfp: The memory allocation flags to use. | 
|  | * | 
|  | * The returned buffer head has its reference count incremented, but is | 
|  | * not locked.  The caller should call brelse() when it has finished | 
|  | * with the buffer.  The buffer may not be uptodate.  If needed, the | 
|  | * caller can bring it uptodate either by reading it or overwriting it. | 
|  | * | 
|  | * Return: The buffer head, or NULL if memory could not be allocated. | 
|  | */ | 
|  | struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, | 
|  | unsigned size, gfp_t gfp) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | if (gfpflags_allow_blocking(gfp)) | 
|  | bh = __find_get_block_nonatomic(bdev, block, size); | 
|  | else | 
|  | bh = __find_get_block(bdev, block, size); | 
|  |  | 
|  | might_alloc(gfp); | 
|  | if (bh) | 
|  | return bh; | 
|  |  | 
|  | return __getblk_slow(bdev, block, size, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(bdev_getblk); | 
|  |  | 
|  | /* | 
|  | * Do async read-ahead on a buffer.. | 
|  | */ | 
|  | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) | 
|  | { | 
|  | struct buffer_head *bh = bdev_getblk(bdev, block, size, | 
|  | GFP_NOWAIT | __GFP_MOVABLE); | 
|  |  | 
|  | if (likely(bh)) { | 
|  | bh_readahead(bh, REQ_RAHEAD); | 
|  | brelse(bh); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__breadahead); | 
|  |  | 
|  | /** | 
|  | * __bread_gfp() - Read a block. | 
|  | * @bdev: The block device to read from. | 
|  | * @block: Block number in units of block size. | 
|  | * @size: The block size of this device in bytes. | 
|  | * @gfp: Not page allocation flags; see below. | 
|  | * | 
|  | * You are not expected to call this function.  You should use one of | 
|  | * sb_bread(), sb_bread_unmovable() or __bread(). | 
|  | * | 
|  | * Read a specified block, and return the buffer head that refers to it. | 
|  | * If @gfp is 0, the memory will be allocated using the block device's | 
|  | * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be | 
|  | * allocated from a movable area.  Do not pass in a complete set of | 
|  | * GFP flags. | 
|  | * | 
|  | * The returned buffer head has its refcount increased.  The caller should | 
|  | * call brelse() when it has finished with the buffer. | 
|  | * | 
|  | * Context: May sleep waiting for I/O. | 
|  | * Return: NULL if the block was unreadable. | 
|  | */ | 
|  | struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, | 
|  | unsigned size, gfp_t gfp) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); | 
|  |  | 
|  | /* | 
|  | * Prefer looping in the allocator rather than here, at least that | 
|  | * code knows what it's doing. | 
|  | */ | 
|  | gfp |= __GFP_NOFAIL; | 
|  |  | 
|  | bh = bdev_getblk(bdev, block, size, gfp); | 
|  |  | 
|  | if (likely(bh) && !buffer_uptodate(bh)) | 
|  | bh = __bread_slow(bh); | 
|  | return bh; | 
|  | } | 
|  | EXPORT_SYMBOL(__bread_gfp); | 
|  |  | 
|  | static void __invalidate_bh_lrus(struct bh_lru *b) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BH_LRU_SIZE; i++) { | 
|  | brelse(b->bhs[i]); | 
|  | b->bhs[i] = NULL; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * invalidate_bh_lrus() is called rarely - but not only at unmount. | 
|  | * This doesn't race because it runs in each cpu either in irq | 
|  | * or with preempt disabled. | 
|  | */ | 
|  | static void invalidate_bh_lru(void *arg) | 
|  | { | 
|  | struct bh_lru *b = &get_cpu_var(bh_lrus); | 
|  |  | 
|  | __invalidate_bh_lrus(b); | 
|  | put_cpu_var(bh_lrus); | 
|  | } | 
|  |  | 
|  | bool has_bh_in_lru(int cpu, void *dummy) | 
|  | { | 
|  | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BH_LRU_SIZE; i++) { | 
|  | if (b->bhs[i]) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void invalidate_bh_lrus(void) | 
|  | { | 
|  | on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); | 
|  |  | 
|  | /* | 
|  | * It's called from workqueue context so we need a bh_lru_lock to close | 
|  | * the race with preemption/irq. | 
|  | */ | 
|  | void invalidate_bh_lrus_cpu(void) | 
|  | { | 
|  | struct bh_lru *b; | 
|  |  | 
|  | bh_lru_lock(); | 
|  | b = this_cpu_ptr(&bh_lrus); | 
|  | __invalidate_bh_lrus(b); | 
|  | bh_lru_unlock(); | 
|  | } | 
|  |  | 
|  | void folio_set_bh(struct buffer_head *bh, struct folio *folio, | 
|  | unsigned long offset) | 
|  | { | 
|  | bh->b_folio = folio; | 
|  | BUG_ON(offset >= folio_size(folio)); | 
|  | if (folio_test_highmem(folio)) | 
|  | /* | 
|  | * This catches illegal uses and preserves the offset: | 
|  | */ | 
|  | bh->b_data = (char *)(0 + offset); | 
|  | else | 
|  | bh->b_data = folio_address(folio) + offset; | 
|  | } | 
|  | EXPORT_SYMBOL(folio_set_bh); | 
|  |  | 
|  | /* | 
|  | * Called when truncating a buffer on a page completely. | 
|  | */ | 
|  |  | 
|  | /* Bits that are cleared during an invalidate */ | 
|  | #define BUFFER_FLAGS_DISCARD \ | 
|  | (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ | 
|  | 1 << BH_Delay | 1 << BH_Unwritten) | 
|  |  | 
|  | static void discard_buffer(struct buffer_head * bh) | 
|  | { | 
|  | unsigned long b_state; | 
|  |  | 
|  | lock_buffer(bh); | 
|  | clear_buffer_dirty(bh); | 
|  | bh->b_bdev = NULL; | 
|  | b_state = READ_ONCE(bh->b_state); | 
|  | do { | 
|  | } while (!try_cmpxchg_relaxed(&bh->b_state, &b_state, | 
|  | b_state & ~BUFFER_FLAGS_DISCARD)); | 
|  | unlock_buffer(bh); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. | 
|  | * @folio: The folio which is affected. | 
|  | * @offset: start of the range to invalidate | 
|  | * @length: length of the range to invalidate | 
|  | * | 
|  | * block_invalidate_folio() is called when all or part of the folio has been | 
|  | * invalidated by a truncate operation. | 
|  | * | 
|  | * block_invalidate_folio() does not have to release all buffers, but it must | 
|  | * ensure that no dirty buffer is left outside @offset and that no I/O | 
|  | * is underway against any of the blocks which are outside the truncation | 
|  | * point.  Because the caller is about to free (and possibly reuse) those | 
|  | * blocks on-disk. | 
|  | */ | 
|  | void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) | 
|  | { | 
|  | struct buffer_head *head, *bh, *next; | 
|  | size_t curr_off = 0; | 
|  | size_t stop = length + offset; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  |  | 
|  | /* | 
|  | * Check for overflow | 
|  | */ | 
|  | BUG_ON(stop > folio_size(folio) || stop < length); | 
|  |  | 
|  | head = folio_buffers(folio); | 
|  | if (!head) | 
|  | return; | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | size_t next_off = curr_off + bh->b_size; | 
|  | next = bh->b_this_page; | 
|  |  | 
|  | /* | 
|  | * Are we still fully in range ? | 
|  | */ | 
|  | if (next_off > stop) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * is this block fully invalidated? | 
|  | */ | 
|  | if (offset <= curr_off) | 
|  | discard_buffer(bh); | 
|  | curr_off = next_off; | 
|  | bh = next; | 
|  | } while (bh != head); | 
|  |  | 
|  | /* | 
|  | * We release buffers only if the entire folio is being invalidated. | 
|  | * The get_block cached value has been unconditionally invalidated, | 
|  | * so real IO is not possible anymore. | 
|  | */ | 
|  | if (length == folio_size(folio)) | 
|  | filemap_release_folio(folio, 0); | 
|  | out: | 
|  | folio_clear_mappedtodisk(folio); | 
|  | } | 
|  | EXPORT_SYMBOL(block_invalidate_folio); | 
|  |  | 
|  | /* | 
|  | * We attach and possibly dirty the buffers atomically wrt | 
|  | * block_dirty_folio() via i_private_lock.  try_to_free_buffers | 
|  | * is already excluded via the folio lock. | 
|  | */ | 
|  | struct buffer_head *create_empty_buffers(struct folio *folio, | 
|  | unsigned long blocksize, unsigned long b_state) | 
|  | { | 
|  | struct buffer_head *bh, *head, *tail; | 
|  | gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; | 
|  |  | 
|  | head = folio_alloc_buffers(folio, blocksize, gfp); | 
|  | bh = head; | 
|  | do { | 
|  | bh->b_state |= b_state; | 
|  | tail = bh; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh); | 
|  | tail->b_this_page = head; | 
|  |  | 
|  | spin_lock(&folio->mapping->i_private_lock); | 
|  | if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { | 
|  | bh = head; | 
|  | do { | 
|  | if (folio_test_dirty(folio)) | 
|  | set_buffer_dirty(bh); | 
|  | if (folio_test_uptodate(folio)) | 
|  | set_buffer_uptodate(bh); | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | } | 
|  | folio_attach_private(folio, head); | 
|  | spin_unlock(&folio->mapping->i_private_lock); | 
|  |  | 
|  | return head; | 
|  | } | 
|  | EXPORT_SYMBOL(create_empty_buffers); | 
|  |  | 
|  | /** | 
|  | * clean_bdev_aliases: clean a range of buffers in block device | 
|  | * @bdev: Block device to clean buffers in | 
|  | * @block: Start of a range of blocks to clean | 
|  | * @len: Number of blocks to clean | 
|  | * | 
|  | * We are taking a range of blocks for data and we don't want writeback of any | 
|  | * buffer-cache aliases starting from return from this function and until the | 
|  | * moment when something will explicitly mark the buffer dirty (hopefully that | 
|  | * will not happen until we will free that block ;-) We don't even need to mark | 
|  | * it not-uptodate - nobody can expect anything from a newly allocated buffer | 
|  | * anyway. We used to use unmap_buffer() for such invalidation, but that was | 
|  | * wrong. We definitely don't want to mark the alias unmapped, for example - it | 
|  | * would confuse anyone who might pick it with bread() afterwards... | 
|  | * | 
|  | * Also..  Note that bforget() doesn't lock the buffer.  So there can be | 
|  | * writeout I/O going on against recently-freed buffers.  We don't wait on that | 
|  | * I/O in bforget() - it's more efficient to wait on the I/O only if we really | 
|  | * need to.  That happens here. | 
|  | */ | 
|  | void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) | 
|  | { | 
|  | struct address_space *bd_mapping = bdev->bd_mapping; | 
|  | const int blkbits = bd_mapping->host->i_blkbits; | 
|  | struct folio_batch fbatch; | 
|  | pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; | 
|  | pgoff_t end; | 
|  | int i, count; | 
|  | struct buffer_head *bh; | 
|  | struct buffer_head *head; | 
|  |  | 
|  | end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; | 
|  | folio_batch_init(&fbatch); | 
|  | while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { | 
|  | count = folio_batch_count(&fbatch); | 
|  | for (i = 0; i < count; i++) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  |  | 
|  | if (!folio_buffers(folio)) | 
|  | continue; | 
|  | /* | 
|  | * We use folio lock instead of bd_mapping->i_private_lock | 
|  | * to pin buffers here since we can afford to sleep and | 
|  | * it scales better than a global spinlock lock. | 
|  | */ | 
|  | folio_lock(folio); | 
|  | /* Recheck when the folio is locked which pins bhs */ | 
|  | head = folio_buffers(folio); | 
|  | if (!head) | 
|  | goto unlock_page; | 
|  | bh = head; | 
|  | do { | 
|  | if (!buffer_mapped(bh) || (bh->b_blocknr < block)) | 
|  | goto next; | 
|  | if (bh->b_blocknr >= block + len) | 
|  | break; | 
|  | clear_buffer_dirty(bh); | 
|  | wait_on_buffer(bh); | 
|  | clear_buffer_req(bh); | 
|  | next: | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | unlock_page: | 
|  | folio_unlock(folio); | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | cond_resched(); | 
|  | /* End of range already reached? */ | 
|  | if (index > end || !index) | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(clean_bdev_aliases); | 
|  |  | 
|  | static struct buffer_head *folio_create_buffers(struct folio *folio, | 
|  | struct inode *inode, | 
|  | unsigned int b_state) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  |  | 
|  | bh = folio_buffers(folio); | 
|  | if (!bh) | 
|  | bh = create_empty_buffers(folio, | 
|  | 1 << READ_ONCE(inode->i_blkbits), b_state); | 
|  | return bh; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! All mapped/uptodate combinations are valid: | 
|  | * | 
|  | *	Mapped	Uptodate	Meaning | 
|  | * | 
|  | *	No	No		"unknown" - must do get_block() | 
|  | *	No	Yes		"hole" - zero-filled | 
|  | *	Yes	No		"allocated" - allocated on disk, not read in | 
|  | *	Yes	Yes		"valid" - allocated and up-to-date in memory. | 
|  | * | 
|  | * "Dirty" is valid only with the last case (mapped+uptodate). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * While block_write_full_folio is writing back the dirty buffers under | 
|  | * the page lock, whoever dirtied the buffers may decide to clean them | 
|  | * again at any time.  We handle that by only looking at the buffer | 
|  | * state inside lock_buffer(). | 
|  | * | 
|  | * If block_write_full_folio() is called for regular writeback | 
|  | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | 
|  | * locked buffer.   This only can happen if someone has written the buffer | 
|  | * directly, with submit_bh().  At the address_space level PageWriteback | 
|  | * prevents this contention from occurring. | 
|  | * | 
|  | * If block_write_full_folio() is called with wbc->sync_mode == | 
|  | * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this | 
|  | * causes the writes to be flagged as synchronous writes. | 
|  | */ | 
|  | int __block_write_full_folio(struct inode *inode, struct folio *folio, | 
|  | get_block_t *get_block, struct writeback_control *wbc) | 
|  | { | 
|  | int err; | 
|  | sector_t block; | 
|  | sector_t last_block; | 
|  | struct buffer_head *bh, *head; | 
|  | size_t blocksize; | 
|  | int nr_underway = 0; | 
|  | blk_opf_t write_flags = wbc_to_write_flags(wbc); | 
|  |  | 
|  | head = folio_create_buffers(folio, inode, | 
|  | (1 << BH_Dirty) | (1 << BH_Uptodate)); | 
|  |  | 
|  | /* | 
|  | * Be very careful.  We have no exclusion from block_dirty_folio | 
|  | * here, and the (potentially unmapped) buffers may become dirty at | 
|  | * any time.  If a buffer becomes dirty here after we've inspected it | 
|  | * then we just miss that fact, and the folio stays dirty. | 
|  | * | 
|  | * Buffers outside i_size may be dirtied by block_dirty_folio; | 
|  | * handle that here by just cleaning them. | 
|  | */ | 
|  |  | 
|  | bh = head; | 
|  | blocksize = bh->b_size; | 
|  |  | 
|  | block = div_u64(folio_pos(folio), blocksize); | 
|  | last_block = div_u64(i_size_read(inode) - 1, blocksize); | 
|  |  | 
|  | /* | 
|  | * Get all the dirty buffers mapped to disk addresses and | 
|  | * handle any aliases from the underlying blockdev's mapping. | 
|  | */ | 
|  | do { | 
|  | if (block > last_block) { | 
|  | /* | 
|  | * mapped buffers outside i_size will occur, because | 
|  | * this folio can be outside i_size when there is a | 
|  | * truncate in progress. | 
|  | */ | 
|  | /* | 
|  | * The buffer was zeroed by block_write_full_folio() | 
|  | */ | 
|  | clear_buffer_dirty(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && | 
|  | buffer_dirty(bh)) { | 
|  | WARN_ON(bh->b_size != blocksize); | 
|  | err = get_block(inode, block, bh, 1); | 
|  | if (err) | 
|  | goto recover; | 
|  | clear_buffer_delay(bh); | 
|  | if (buffer_new(bh)) { | 
|  | /* blockdev mappings never come here */ | 
|  | clear_buffer_new(bh); | 
|  | clean_bdev_bh_alias(bh); | 
|  | } | 
|  | } | 
|  | bh = bh->b_this_page; | 
|  | block++; | 
|  | } while (bh != head); | 
|  |  | 
|  | do { | 
|  | if (!buffer_mapped(bh)) | 
|  | continue; | 
|  | /* | 
|  | * If it's a fully non-blocking write attempt and we cannot | 
|  | * lock the buffer then redirty the folio.  Note that this can | 
|  | * potentially cause a busy-wait loop from writeback threads | 
|  | * and kswapd activity, but those code paths have their own | 
|  | * higher-level throttling. | 
|  | */ | 
|  | if (wbc->sync_mode != WB_SYNC_NONE) { | 
|  | lock_buffer(bh); | 
|  | } else if (!trylock_buffer(bh)) { | 
|  | folio_redirty_for_writepage(wbc, folio); | 
|  | continue; | 
|  | } | 
|  | if (test_clear_buffer_dirty(bh)) { | 
|  | mark_buffer_async_write_endio(bh, | 
|  | end_buffer_async_write); | 
|  | } else { | 
|  | unlock_buffer(bh); | 
|  | } | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | /* | 
|  | * The folio and its buffers are protected by the writeback flag, | 
|  | * so we can drop the bh refcounts early. | 
|  | */ | 
|  | BUG_ON(folio_test_writeback(folio)); | 
|  | folio_start_writeback(folio); | 
|  |  | 
|  | do { | 
|  | struct buffer_head *next = bh->b_this_page; | 
|  | if (buffer_async_write(bh)) { | 
|  | submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, | 
|  | inode->i_write_hint, wbc); | 
|  | nr_underway++; | 
|  | } | 
|  | bh = next; | 
|  | } while (bh != head); | 
|  | folio_unlock(folio); | 
|  |  | 
|  | err = 0; | 
|  | done: | 
|  | if (nr_underway == 0) { | 
|  | /* | 
|  | * The folio was marked dirty, but the buffers were | 
|  | * clean.  Someone wrote them back by hand with | 
|  | * write_dirty_buffer/submit_bh.  A rare case. | 
|  | */ | 
|  | folio_end_writeback(folio); | 
|  |  | 
|  | /* | 
|  | * The folio and buffer_heads can be released at any time from | 
|  | * here on. | 
|  | */ | 
|  | } | 
|  | return err; | 
|  |  | 
|  | recover: | 
|  | /* | 
|  | * ENOSPC, or some other error.  We may already have added some | 
|  | * blocks to the file, so we need to write these out to avoid | 
|  | * exposing stale data. | 
|  | * The folio is currently locked and not marked for writeback | 
|  | */ | 
|  | bh = head; | 
|  | /* Recovery: lock and submit the mapped buffers */ | 
|  | do { | 
|  | if (buffer_mapped(bh) && buffer_dirty(bh) && | 
|  | !buffer_delay(bh)) { | 
|  | lock_buffer(bh); | 
|  | mark_buffer_async_write_endio(bh, | 
|  | end_buffer_async_write); | 
|  | } else { | 
|  | /* | 
|  | * The buffer may have been set dirty during | 
|  | * attachment to a dirty folio. | 
|  | */ | 
|  | clear_buffer_dirty(bh); | 
|  | } | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | BUG_ON(folio_test_writeback(folio)); | 
|  | mapping_set_error(folio->mapping, err); | 
|  | folio_start_writeback(folio); | 
|  | do { | 
|  | struct buffer_head *next = bh->b_this_page; | 
|  | if (buffer_async_write(bh)) { | 
|  | clear_buffer_dirty(bh); | 
|  | submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, | 
|  | inode->i_write_hint, wbc); | 
|  | nr_underway++; | 
|  | } | 
|  | bh = next; | 
|  | } while (bh != head); | 
|  | folio_unlock(folio); | 
|  | goto done; | 
|  | } | 
|  | EXPORT_SYMBOL(__block_write_full_folio); | 
|  |  | 
|  | /* | 
|  | * If a folio has any new buffers, zero them out here, and mark them uptodate | 
|  | * and dirty so they'll be written out (in order to prevent uninitialised | 
|  | * block data from leaking). And clear the new bit. | 
|  | */ | 
|  | void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) | 
|  | { | 
|  | size_t block_start, block_end; | 
|  | struct buffer_head *head, *bh; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  | head = folio_buffers(folio); | 
|  | if (!head) | 
|  | return; | 
|  |  | 
|  | bh = head; | 
|  | block_start = 0; | 
|  | do { | 
|  | block_end = block_start + bh->b_size; | 
|  |  | 
|  | if (buffer_new(bh)) { | 
|  | if (block_end > from && block_start < to) { | 
|  | if (!folio_test_uptodate(folio)) { | 
|  | size_t start, xend; | 
|  |  | 
|  | start = max(from, block_start); | 
|  | xend = min(to, block_end); | 
|  |  | 
|  | folio_zero_segment(folio, start, xend); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  |  | 
|  | clear_buffer_new(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | block_start = block_end; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_zero_new_buffers); | 
|  |  | 
|  | static int | 
|  | iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, | 
|  | const struct iomap *iomap) | 
|  | { | 
|  | loff_t offset = (loff_t)block << inode->i_blkbits; | 
|  |  | 
|  | bh->b_bdev = iomap->bdev; | 
|  |  | 
|  | /* | 
|  | * Block points to offset in file we need to map, iomap contains | 
|  | * the offset at which the map starts. If the map ends before the | 
|  | * current block, then do not map the buffer and let the caller | 
|  | * handle it. | 
|  | */ | 
|  | if (offset >= iomap->offset + iomap->length) | 
|  | return -EIO; | 
|  |  | 
|  | switch (iomap->type) { | 
|  | case IOMAP_HOLE: | 
|  | /* | 
|  | * If the buffer is not up to date or beyond the current EOF, | 
|  | * we need to mark it as new to ensure sub-block zeroing is | 
|  | * executed if necessary. | 
|  | */ | 
|  | if (!buffer_uptodate(bh) || | 
|  | (offset >= i_size_read(inode))) | 
|  | set_buffer_new(bh); | 
|  | return 0; | 
|  | case IOMAP_DELALLOC: | 
|  | if (!buffer_uptodate(bh) || | 
|  | (offset >= i_size_read(inode))) | 
|  | set_buffer_new(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | set_buffer_mapped(bh); | 
|  | set_buffer_delay(bh); | 
|  | return 0; | 
|  | case IOMAP_UNWRITTEN: | 
|  | /* | 
|  | * For unwritten regions, we always need to ensure that regions | 
|  | * in the block we are not writing to are zeroed. Mark the | 
|  | * buffer as new to ensure this. | 
|  | */ | 
|  | set_buffer_new(bh); | 
|  | set_buffer_unwritten(bh); | 
|  | fallthrough; | 
|  | case IOMAP_MAPPED: | 
|  | if ((iomap->flags & IOMAP_F_NEW) || | 
|  | offset >= i_size_read(inode)) { | 
|  | /* | 
|  | * This can happen if truncating the block device races | 
|  | * with the check in the caller as i_size updates on | 
|  | * block devices aren't synchronized by i_rwsem for | 
|  | * block devices. | 
|  | */ | 
|  | if (S_ISBLK(inode->i_mode)) | 
|  | return -EIO; | 
|  | set_buffer_new(bh); | 
|  | } | 
|  | bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> | 
|  | inode->i_blkbits; | 
|  | set_buffer_mapped(bh); | 
|  | return 0; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, | 
|  | get_block_t *get_block, const struct iomap *iomap) | 
|  | { | 
|  | size_t from = offset_in_folio(folio, pos); | 
|  | size_t to = from + len; | 
|  | struct inode *inode = folio->mapping->host; | 
|  | size_t block_start, block_end; | 
|  | sector_t block; | 
|  | int err = 0; | 
|  | size_t blocksize; | 
|  | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  | BUG_ON(to > folio_size(folio)); | 
|  | BUG_ON(from > to); | 
|  |  | 
|  | head = folio_create_buffers(folio, inode, 0); | 
|  | blocksize = head->b_size; | 
|  | block = div_u64(folio_pos(folio), blocksize); | 
|  |  | 
|  | for (bh = head, block_start = 0; bh != head || !block_start; | 
|  | block++, block_start=block_end, bh = bh->b_this_page) { | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end <= from || block_start >= to) { | 
|  | if (folio_test_uptodate(folio)) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (buffer_new(bh)) | 
|  | clear_buffer_new(bh); | 
|  | if (!buffer_mapped(bh)) { | 
|  | WARN_ON(bh->b_size != blocksize); | 
|  | if (get_block) | 
|  | err = get_block(inode, block, bh, 1); | 
|  | else | 
|  | err = iomap_to_bh(inode, block, bh, iomap); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | if (buffer_new(bh)) { | 
|  | clean_bdev_bh_alias(bh); | 
|  | if (folio_test_uptodate(folio)) { | 
|  | clear_buffer_new(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | continue; | 
|  | } | 
|  | if (block_end > to || block_start < from) | 
|  | folio_zero_segments(folio, | 
|  | to, block_end, | 
|  | block_start, from); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (folio_test_uptodate(folio)) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | 
|  | !buffer_unwritten(bh) && | 
|  | (block_start < from || block_end > to)) { | 
|  | bh_read_nowait(bh, 0); | 
|  | *wait_bh++=bh; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If we issued read requests - let them complete. | 
|  | */ | 
|  | while(wait_bh > wait) { | 
|  | wait_on_buffer(*--wait_bh); | 
|  | if (!buffer_uptodate(*wait_bh)) | 
|  | err = -EIO; | 
|  | } | 
|  | if (unlikely(err)) | 
|  | folio_zero_new_buffers(folio, from, to); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, | 
|  | get_block_t *get_block) | 
|  | { | 
|  | return __block_write_begin_int(folio, pos, len, get_block, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(__block_write_begin); | 
|  |  | 
|  | void block_commit_write(struct folio *folio, size_t from, size_t to) | 
|  | { | 
|  | size_t block_start, block_end; | 
|  | bool partial = false; | 
|  | unsigned blocksize; | 
|  | struct buffer_head *bh, *head; | 
|  |  | 
|  | bh = head = folio_buffers(folio); | 
|  | if (!bh) | 
|  | return; | 
|  | blocksize = bh->b_size; | 
|  |  | 
|  | block_start = 0; | 
|  | do { | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end <= from || block_start >= to) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | partial = true; | 
|  | } else { | 
|  | set_buffer_uptodate(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | } | 
|  | if (buffer_new(bh)) | 
|  | clear_buffer_new(bh); | 
|  |  | 
|  | block_start = block_end; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  |  | 
|  | /* | 
|  | * If this is a partial write which happened to make all buffers | 
|  | * uptodate then we can optimize away a bogus read_folio() for | 
|  | * the next read(). Here we 'discover' whether the folio went | 
|  | * uptodate as a result of this (potentially partial) write. | 
|  | */ | 
|  | if (!partial) | 
|  | folio_mark_uptodate(folio); | 
|  | } | 
|  | EXPORT_SYMBOL(block_commit_write); | 
|  |  | 
|  | /* | 
|  | * block_write_begin takes care of the basic task of block allocation and | 
|  | * bringing partial write blocks uptodate first. | 
|  | * | 
|  | * The filesystem needs to handle block truncation upon failure. | 
|  | */ | 
|  | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, | 
|  | struct folio **foliop, get_block_t *get_block) | 
|  | { | 
|  | pgoff_t index = pos >> PAGE_SHIFT; | 
|  | struct folio *folio; | 
|  | int status; | 
|  |  | 
|  | folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, | 
|  | mapping_gfp_mask(mapping)); | 
|  | if (IS_ERR(folio)) | 
|  | return PTR_ERR(folio); | 
|  |  | 
|  | status = __block_write_begin_int(folio, pos, len, get_block, NULL); | 
|  | if (unlikely(status)) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | folio = NULL; | 
|  | } | 
|  |  | 
|  | *foliop = folio; | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL(block_write_begin); | 
|  |  | 
|  | int block_write_end(loff_t pos, unsigned len, unsigned copied, | 
|  | struct folio *folio) | 
|  | { | 
|  | size_t start = pos - folio_pos(folio); | 
|  |  | 
|  | if (unlikely(copied < len)) { | 
|  | /* | 
|  | * The buffers that were written will now be uptodate, so | 
|  | * we don't have to worry about a read_folio reading them | 
|  | * and overwriting a partial write. However if we have | 
|  | * encountered a short write and only partially written | 
|  | * into a buffer, it will not be marked uptodate, so a | 
|  | * read_folio might come in and destroy our partial write. | 
|  | * | 
|  | * Do the simplest thing, and just treat any short write to a | 
|  | * non uptodate folio as a zero-length write, and force the | 
|  | * caller to redo the whole thing. | 
|  | */ | 
|  | if (!folio_test_uptodate(folio)) | 
|  | copied = 0; | 
|  |  | 
|  | folio_zero_new_buffers(folio, start+copied, start+len); | 
|  | } | 
|  | flush_dcache_folio(folio); | 
|  |  | 
|  | /* This could be a short (even 0-length) commit */ | 
|  | block_commit_write(folio, start, start + copied); | 
|  |  | 
|  | return copied; | 
|  | } | 
|  | EXPORT_SYMBOL(block_write_end); | 
|  |  | 
|  | int generic_write_end(const struct kiocb *iocb, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct folio *folio, void *fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | loff_t old_size = inode->i_size; | 
|  | bool i_size_changed = false; | 
|  |  | 
|  | copied = block_write_end(pos, len, copied, folio); | 
|  |  | 
|  | /* | 
|  | * No need to use i_size_read() here, the i_size cannot change under us | 
|  | * because we hold i_rwsem. | 
|  | * | 
|  | * But it's important to update i_size while still holding folio lock: | 
|  | * page writeout could otherwise come in and zero beyond i_size. | 
|  | */ | 
|  | if (pos + copied > inode->i_size) { | 
|  | i_size_write(inode, pos + copied); | 
|  | i_size_changed = true; | 
|  | } | 
|  |  | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | if (old_size < pos) | 
|  | pagecache_isize_extended(inode, old_size, pos); | 
|  | /* | 
|  | * Don't mark the inode dirty under page lock. First, it unnecessarily | 
|  | * makes the holding time of page lock longer. Second, it forces lock | 
|  | * ordering of page lock and transaction start for journaling | 
|  | * filesystems. | 
|  | */ | 
|  | if (i_size_changed) | 
|  | mark_inode_dirty(inode); | 
|  | return copied; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_write_end); | 
|  |  | 
|  | /* | 
|  | * block_is_partially_uptodate checks whether buffers within a folio are | 
|  | * uptodate or not. | 
|  | * | 
|  | * Returns true if all buffers which correspond to the specified part | 
|  | * of the folio are uptodate. | 
|  | */ | 
|  | bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) | 
|  | { | 
|  | unsigned block_start, block_end, blocksize; | 
|  | unsigned to; | 
|  | struct buffer_head *bh, *head; | 
|  | bool ret = true; | 
|  |  | 
|  | head = folio_buffers(folio); | 
|  | if (!head) | 
|  | return false; | 
|  | blocksize = head->b_size; | 
|  | to = min_t(unsigned, folio_size(folio) - from, count); | 
|  | to = from + to; | 
|  | if (from < blocksize && to > folio_size(folio) - blocksize) | 
|  | return false; | 
|  |  | 
|  | bh = head; | 
|  | block_start = 0; | 
|  | do { | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end > from && block_start < to) { | 
|  | if (!buffer_uptodate(bh)) { | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  | if (block_end >= to) | 
|  | break; | 
|  | } | 
|  | block_start = block_end; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(block_is_partially_uptodate); | 
|  |  | 
|  | /* | 
|  | * Generic "read_folio" function for block devices that have the normal | 
|  | * get_block functionality. This is most of the block device filesystems. | 
|  | * Reads the folio asynchronously --- the unlock_buffer() and | 
|  | * set/clear_buffer_uptodate() functions propagate buffer state into the | 
|  | * folio once IO has completed. | 
|  | */ | 
|  | int block_read_full_folio(struct folio *folio, get_block_t *get_block) | 
|  | { | 
|  | struct inode *inode = folio->mapping->host; | 
|  | sector_t iblock, lblock; | 
|  | struct buffer_head *bh, *head, *prev = NULL; | 
|  | size_t blocksize; | 
|  | int fully_mapped = 1; | 
|  | bool page_error = false; | 
|  | loff_t limit = i_size_read(inode); | 
|  |  | 
|  | /* This is needed for ext4. */ | 
|  | if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) | 
|  | limit = inode->i_sb->s_maxbytes; | 
|  |  | 
|  | head = folio_create_buffers(folio, inode, 0); | 
|  | blocksize = head->b_size; | 
|  |  | 
|  | iblock = div_u64(folio_pos(folio), blocksize); | 
|  | lblock = div_u64(limit + blocksize - 1, blocksize); | 
|  | bh = head; | 
|  |  | 
|  | do { | 
|  | if (buffer_uptodate(bh)) | 
|  | continue; | 
|  |  | 
|  | if (!buffer_mapped(bh)) { | 
|  | int err = 0; | 
|  |  | 
|  | fully_mapped = 0; | 
|  | if (iblock < lblock) { | 
|  | WARN_ON(bh->b_size != blocksize); | 
|  | err = get_block(inode, iblock, bh, 0); | 
|  | if (err) | 
|  | page_error = true; | 
|  | } | 
|  | if (!buffer_mapped(bh)) { | 
|  | folio_zero_range(folio, bh_offset(bh), | 
|  | blocksize); | 
|  | if (!err) | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * get_block() might have updated the buffer | 
|  | * synchronously | 
|  | */ | 
|  | if (buffer_uptodate(bh)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lock_buffer(bh); | 
|  | if (buffer_uptodate(bh)) { | 
|  | unlock_buffer(bh); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mark_buffer_async_read(bh); | 
|  | if (prev) | 
|  | submit_bh(REQ_OP_READ, prev); | 
|  | prev = bh; | 
|  | } while (iblock++, (bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (fully_mapped) | 
|  | folio_set_mappedtodisk(folio); | 
|  |  | 
|  | /* | 
|  | * All buffers are uptodate or get_block() returned an error | 
|  | * when trying to map them - we must finish the read because | 
|  | * end_buffer_async_read() will never be called on any buffer | 
|  | * in this folio. | 
|  | */ | 
|  | if (prev) | 
|  | submit_bh(REQ_OP_READ, prev); | 
|  | else | 
|  | folio_end_read(folio, !page_error); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(block_read_full_folio); | 
|  |  | 
|  | /* utility function for filesystems that need to do work on expanding | 
|  | * truncates.  Uses filesystem pagecache writes to allow the filesystem to | 
|  | * deal with the hole. | 
|  | */ | 
|  | int generic_cont_expand_simple(struct inode *inode, loff_t size) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  | struct folio *folio; | 
|  | void *fsdata = NULL; | 
|  | int err; | 
|  |  | 
|  | err = inode_newsize_ok(inode, size); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); | 
|  | BUG_ON(err > 0); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_cont_expand_simple); | 
|  |  | 
|  | static int cont_expand_zero(const struct kiocb *iocb, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, loff_t *bytes) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | const struct address_space_operations *aops = mapping->a_ops; | 
|  | unsigned int blocksize = i_blocksize(inode); | 
|  | struct folio *folio; | 
|  | void *fsdata = NULL; | 
|  | pgoff_t index, curidx; | 
|  | loff_t curpos; | 
|  | unsigned zerofrom, offset, len; | 
|  | int err = 0; | 
|  |  | 
|  | index = pos >> PAGE_SHIFT; | 
|  | offset = pos & ~PAGE_MASK; | 
|  |  | 
|  | while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { | 
|  | zerofrom = curpos & ~PAGE_MASK; | 
|  | if (zerofrom & (blocksize-1)) { | 
|  | *bytes |= (blocksize-1); | 
|  | (*bytes)++; | 
|  | } | 
|  | len = PAGE_SIZE - zerofrom; | 
|  |  | 
|  | err = aops->write_begin(iocb, mapping, curpos, len, | 
|  | &folio, &fsdata); | 
|  | if (err) | 
|  | goto out; | 
|  | folio_zero_range(folio, offset_in_folio(folio, curpos), len); | 
|  | err = aops->write_end(iocb, mapping, curpos, len, len, | 
|  | folio, fsdata); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | BUG_ON(err != len); | 
|  | err = 0; | 
|  |  | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | err = -EINTR; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* page covers the boundary, find the boundary offset */ | 
|  | if (index == curidx) { | 
|  | zerofrom = curpos & ~PAGE_MASK; | 
|  | /* if we will expand the thing last block will be filled */ | 
|  | if (offset <= zerofrom) { | 
|  | goto out; | 
|  | } | 
|  | if (zerofrom & (blocksize-1)) { | 
|  | *bytes |= (blocksize-1); | 
|  | (*bytes)++; | 
|  | } | 
|  | len = offset - zerofrom; | 
|  |  | 
|  | err = aops->write_begin(iocb, mapping, curpos, len, | 
|  | &folio, &fsdata); | 
|  | if (err) | 
|  | goto out; | 
|  | folio_zero_range(folio, offset_in_folio(folio, curpos), len); | 
|  | err = aops->write_end(iocb, mapping, curpos, len, len, | 
|  | folio, fsdata); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | BUG_ON(err != len); | 
|  | err = 0; | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For moronic filesystems that do not allow holes in file. | 
|  | * We may have to extend the file. | 
|  | */ | 
|  | int cont_write_begin(const struct kiocb *iocb, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, struct folio **foliop, | 
|  | void **fsdata, get_block_t *get_block, loff_t *bytes) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | unsigned int blocksize = i_blocksize(inode); | 
|  | unsigned int zerofrom; | 
|  | int err; | 
|  |  | 
|  | err = cont_expand_zero(iocb, mapping, pos, bytes); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | zerofrom = *bytes & ~PAGE_MASK; | 
|  | if (pos+len > *bytes && zerofrom & (blocksize-1)) { | 
|  | *bytes |= (blocksize-1); | 
|  | (*bytes)++; | 
|  | } | 
|  |  | 
|  | return block_write_begin(mapping, pos, len, foliop, get_block); | 
|  | } | 
|  | EXPORT_SYMBOL(cont_write_begin); | 
|  |  | 
|  | /* | 
|  | * block_page_mkwrite() is not allowed to change the file size as it gets | 
|  | * called from a page fault handler when a page is first dirtied. Hence we must | 
|  | * be careful to check for EOF conditions here. We set the page up correctly | 
|  | * for a written page which means we get ENOSPC checking when writing into | 
|  | * holes and correct delalloc and unwritten extent mapping on filesystems that | 
|  | * support these features. | 
|  | * | 
|  | * We are not allowed to take the i_rwsem here so we have to play games to | 
|  | * protect against truncate races as the page could now be beyond EOF.  Because | 
|  | * truncate writes the inode size before removing pages, once we have the | 
|  | * page lock we can determine safely if the page is beyond EOF. If it is not | 
|  | * beyond EOF, then the page is guaranteed safe against truncation until we | 
|  | * unlock the page. | 
|  | * | 
|  | * Direct callers of this function should protect against filesystem freezing | 
|  | * using sb_start_pagefault() - sb_end_pagefault() functions. | 
|  | */ | 
|  | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, | 
|  | get_block_t get_block) | 
|  | { | 
|  | struct folio *folio = page_folio(vmf->page); | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | unsigned long end; | 
|  | loff_t size; | 
|  | int ret; | 
|  |  | 
|  | folio_lock(folio); | 
|  | size = i_size_read(inode); | 
|  | if ((folio->mapping != inode->i_mapping) || | 
|  | (folio_pos(folio) >= size)) { | 
|  | /* We overload EFAULT to mean page got truncated */ | 
|  | ret = -EFAULT; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | end = folio_size(folio); | 
|  | /* folio is wholly or partially inside EOF */ | 
|  | if (folio_pos(folio) + end > size) | 
|  | end = size - folio_pos(folio); | 
|  |  | 
|  | ret = __block_write_begin_int(folio, 0, end, get_block, NULL); | 
|  | if (unlikely(ret)) | 
|  | goto out_unlock; | 
|  |  | 
|  | block_commit_write(folio, 0, end); | 
|  |  | 
|  | folio_mark_dirty(folio); | 
|  | folio_wait_stable(folio); | 
|  | return 0; | 
|  | out_unlock: | 
|  | folio_unlock(folio); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(block_page_mkwrite); | 
|  |  | 
|  | int block_truncate_page(struct address_space *mapping, | 
|  | loff_t from, get_block_t *get_block) | 
|  | { | 
|  | pgoff_t index = from >> PAGE_SHIFT; | 
|  | unsigned blocksize; | 
|  | sector_t iblock; | 
|  | size_t offset, length, pos; | 
|  | struct inode *inode = mapping->host; | 
|  | struct folio *folio; | 
|  | struct buffer_head *bh; | 
|  | int err = 0; | 
|  |  | 
|  | blocksize = i_blocksize(inode); | 
|  | length = from & (blocksize - 1); | 
|  |  | 
|  | /* Block boundary? Nothing to do */ | 
|  | if (!length) | 
|  | return 0; | 
|  |  | 
|  | length = blocksize - length; | 
|  | iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; | 
|  |  | 
|  | folio = filemap_grab_folio(mapping, index); | 
|  | if (IS_ERR(folio)) | 
|  | return PTR_ERR(folio); | 
|  |  | 
|  | bh = folio_buffers(folio); | 
|  | if (!bh) | 
|  | bh = create_empty_buffers(folio, blocksize, 0); | 
|  |  | 
|  | /* Find the buffer that contains "offset" */ | 
|  | offset = offset_in_folio(folio, from); | 
|  | pos = blocksize; | 
|  | while (offset >= pos) { | 
|  | bh = bh->b_this_page; | 
|  | iblock++; | 
|  | pos += blocksize; | 
|  | } | 
|  |  | 
|  | if (!buffer_mapped(bh)) { | 
|  | WARN_ON(bh->b_size != blocksize); | 
|  | err = get_block(inode, iblock, bh, 0); | 
|  | if (err) | 
|  | goto unlock; | 
|  | /* unmapped? It's a hole - nothing to do */ | 
|  | if (!buffer_mapped(bh)) | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Ok, it's mapped. Make sure it's up-to-date */ | 
|  | if (folio_test_uptodate(folio)) | 
|  | set_buffer_uptodate(bh); | 
|  |  | 
|  | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { | 
|  | err = bh_read(bh, 0); | 
|  | /* Uhhuh. Read error. Complain and punt. */ | 
|  | if (err < 0) | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | folio_zero_range(folio, offset, length); | 
|  | mark_buffer_dirty(bh); | 
|  |  | 
|  | unlock: | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(block_truncate_page); | 
|  |  | 
|  | /* | 
|  | * The generic write folio function for buffer-backed address_spaces | 
|  | */ | 
|  | int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, | 
|  | void *get_block) | 
|  | { | 
|  | struct inode * const inode = folio->mapping->host; | 
|  | loff_t i_size = i_size_read(inode); | 
|  |  | 
|  | /* Is the folio fully inside i_size? */ | 
|  | if (folio_pos(folio) + folio_size(folio) <= i_size) | 
|  | return __block_write_full_folio(inode, folio, get_block, wbc); | 
|  |  | 
|  | /* Is the folio fully outside i_size? (truncate in progress) */ | 
|  | if (folio_pos(folio) >= i_size) { | 
|  | folio_unlock(folio); | 
|  | return 0; /* don't care */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The folio straddles i_size.  It must be zeroed out on each and every | 
|  | * writeback invocation because it may be mmapped.  "A file is mapped | 
|  | * in multiples of the page size.  For a file that is not a multiple of | 
|  | * the page size, the remaining memory is zeroed when mapped, and | 
|  | * writes to that region are not written out to the file." | 
|  | */ | 
|  | folio_zero_segment(folio, offset_in_folio(folio, i_size), | 
|  | folio_size(folio)); | 
|  | return __block_write_full_folio(inode, folio, get_block, wbc); | 
|  | } | 
|  |  | 
|  | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, | 
|  | get_block_t *get_block) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | struct buffer_head tmp = { | 
|  | .b_size = i_blocksize(inode), | 
|  | }; | 
|  |  | 
|  | get_block(inode, block, &tmp, 0); | 
|  | return tmp.b_blocknr; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_block_bmap); | 
|  |  | 
|  | static void end_bio_bh_io_sync(struct bio *bio) | 
|  | { | 
|  | struct buffer_head *bh = bio->bi_private; | 
|  |  | 
|  | if (unlikely(bio_flagged(bio, BIO_QUIET))) | 
|  | set_bit(BH_Quiet, &bh->b_state); | 
|  |  | 
|  | bh->b_end_io(bh, !bio->bi_status); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, | 
|  | enum rw_hint write_hint, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | const enum req_op op = opf & REQ_OP_MASK; | 
|  | struct bio *bio; | 
|  |  | 
|  | BUG_ON(!buffer_locked(bh)); | 
|  | BUG_ON(!buffer_mapped(bh)); | 
|  | BUG_ON(!bh->b_end_io); | 
|  | BUG_ON(buffer_delay(bh)); | 
|  | BUG_ON(buffer_unwritten(bh)); | 
|  |  | 
|  | /* | 
|  | * Only clear out a write error when rewriting | 
|  | */ | 
|  | if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) | 
|  | clear_buffer_write_io_error(bh); | 
|  |  | 
|  | if (buffer_meta(bh)) | 
|  | opf |= REQ_META; | 
|  | if (buffer_prio(bh)) | 
|  | opf |= REQ_PRIO; | 
|  |  | 
|  | bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); | 
|  |  | 
|  | fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); | 
|  |  | 
|  | bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); | 
|  | bio->bi_write_hint = write_hint; | 
|  |  | 
|  | bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh)); | 
|  |  | 
|  | bio->bi_end_io = end_bio_bh_io_sync; | 
|  | bio->bi_private = bh; | 
|  |  | 
|  | /* Take care of bh's that straddle the end of the device */ | 
|  | guard_bio_eod(bio); | 
|  |  | 
|  | if (wbc) { | 
|  | wbc_init_bio(wbc, bio); | 
|  | wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size); | 
|  | } | 
|  |  | 
|  | submit_bio(bio); | 
|  | } | 
|  |  | 
|  | void submit_bh(blk_opf_t opf, struct buffer_head *bh) | 
|  | { | 
|  | submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(submit_bh); | 
|  |  | 
|  | void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) | 
|  | { | 
|  | lock_buffer(bh); | 
|  | if (!test_clear_buffer_dirty(bh)) { | 
|  | unlock_buffer(bh); | 
|  | return; | 
|  | } | 
|  | bh->b_end_io = end_buffer_write_sync; | 
|  | get_bh(bh); | 
|  | submit_bh(REQ_OP_WRITE | op_flags, bh); | 
|  | } | 
|  | EXPORT_SYMBOL(write_dirty_buffer); | 
|  |  | 
|  | /* | 
|  | * For a data-integrity writeout, we need to wait upon any in-progress I/O | 
|  | * and then start new I/O and then wait upon it.  The caller must have a ref on | 
|  | * the buffer_head. | 
|  | */ | 
|  | int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) | 
|  | { | 
|  | WARN_ON(atomic_read(&bh->b_count) < 1); | 
|  | lock_buffer(bh); | 
|  | if (test_clear_buffer_dirty(bh)) { | 
|  | /* | 
|  | * The bh should be mapped, but it might not be if the | 
|  | * device was hot-removed. Not much we can do but fail the I/O. | 
|  | */ | 
|  | if (!buffer_mapped(bh)) { | 
|  | unlock_buffer(bh); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | get_bh(bh); | 
|  | bh->b_end_io = end_buffer_write_sync; | 
|  | submit_bh(REQ_OP_WRITE | op_flags, bh); | 
|  | wait_on_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) | 
|  | return -EIO; | 
|  | } else { | 
|  | unlock_buffer(bh); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__sync_dirty_buffer); | 
|  |  | 
|  | int sync_dirty_buffer(struct buffer_head *bh) | 
|  | { | 
|  | return __sync_dirty_buffer(bh, REQ_SYNC); | 
|  | } | 
|  | EXPORT_SYMBOL(sync_dirty_buffer); | 
|  |  | 
|  | static inline int buffer_busy(struct buffer_head *bh) | 
|  | { | 
|  | return atomic_read(&bh->b_count) | | 
|  | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) | 
|  | { | 
|  | struct buffer_head *head = folio_buffers(folio); | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | if (buffer_busy(bh)) | 
|  | goto failed; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  |  | 
|  | do { | 
|  | struct buffer_head *next = bh->b_this_page; | 
|  |  | 
|  | if (bh->b_assoc_map) | 
|  | __remove_assoc_queue(bh); | 
|  | bh = next; | 
|  | } while (bh != head); | 
|  | *buffers_to_free = head; | 
|  | folio_detach_private(folio); | 
|  | return true; | 
|  | failed: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_free_buffers - Release buffers attached to this folio. | 
|  | * @folio: The folio. | 
|  | * | 
|  | * If any buffers are in use (dirty, under writeback, elevated refcount), | 
|  | * no buffers will be freed. | 
|  | * | 
|  | * If the folio is dirty but all the buffers are clean then we need to | 
|  | * be sure to mark the folio clean as well.  This is because the folio | 
|  | * may be against a block device, and a later reattachment of buffers | 
|  | * to a dirty folio will set *all* buffers dirty.  Which would corrupt | 
|  | * filesystem data on the same device. | 
|  | * | 
|  | * The same applies to regular filesystem folios: if all the buffers are | 
|  | * clean then we set the folio clean and proceed.  To do that, we require | 
|  | * total exclusion from block_dirty_folio().  That is obtained with | 
|  | * i_private_lock. | 
|  | * | 
|  | * Exclusion against try_to_free_buffers may be obtained by either | 
|  | * locking the folio or by holding its mapping's i_private_lock. | 
|  | * | 
|  | * Context: Process context.  @folio must be locked.  Will not sleep. | 
|  | * Return: true if all buffers attached to this folio were freed. | 
|  | */ | 
|  | bool try_to_free_buffers(struct folio *folio) | 
|  | { | 
|  | struct address_space * const mapping = folio->mapping; | 
|  | struct buffer_head *buffers_to_free = NULL; | 
|  | bool ret = 0; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  | if (folio_test_writeback(folio)) | 
|  | return false; | 
|  |  | 
|  | if (mapping == NULL) {		/* can this still happen? */ | 
|  | ret = drop_buffers(folio, &buffers_to_free); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | spin_lock(&mapping->i_private_lock); | 
|  | ret = drop_buffers(folio, &buffers_to_free); | 
|  |  | 
|  | /* | 
|  | * If the filesystem writes its buffers by hand (eg ext3) | 
|  | * then we can have clean buffers against a dirty folio.  We | 
|  | * clean the folio here; otherwise the VM will never notice | 
|  | * that the filesystem did any IO at all. | 
|  | * | 
|  | * Also, during truncate, discard_buffer will have marked all | 
|  | * the folio's buffers clean.  We discover that here and clean | 
|  | * the folio also. | 
|  | * | 
|  | * i_private_lock must be held over this entire operation in order | 
|  | * to synchronise against block_dirty_folio and prevent the | 
|  | * dirty bit from being lost. | 
|  | */ | 
|  | if (ret) | 
|  | folio_cancel_dirty(folio); | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | out: | 
|  | if (buffers_to_free) { | 
|  | struct buffer_head *bh = buffers_to_free; | 
|  |  | 
|  | do { | 
|  | struct buffer_head *next = bh->b_this_page; | 
|  | free_buffer_head(bh); | 
|  | bh = next; | 
|  | } while (bh != buffers_to_free); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(try_to_free_buffers); | 
|  |  | 
|  | /* | 
|  | * Buffer-head allocation | 
|  | */ | 
|  | static struct kmem_cache *bh_cachep __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * Once the number of bh's in the machine exceeds this level, we start | 
|  | * stripping them in writeback. | 
|  | */ | 
|  | static unsigned long max_buffer_heads __ro_after_init; | 
|  |  | 
|  | int buffer_heads_over_limit; | 
|  |  | 
|  | struct bh_accounting { | 
|  | int nr;			/* Number of live bh's */ | 
|  | int ratelimit;		/* Limit cacheline bouncing */ | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | 
|  |  | 
|  | static void recalc_bh_state(void) | 
|  | { | 
|  | int i; | 
|  | int tot = 0; | 
|  |  | 
|  | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) | 
|  | return; | 
|  | __this_cpu_write(bh_accounting.ratelimit, 0); | 
|  | for_each_online_cpu(i) | 
|  | tot += per_cpu(bh_accounting, i).nr; | 
|  | buffer_heads_over_limit = (tot > max_buffer_heads); | 
|  | } | 
|  |  | 
|  | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) | 
|  | { | 
|  | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); | 
|  | if (ret) { | 
|  | INIT_LIST_HEAD(&ret->b_assoc_buffers); | 
|  | spin_lock_init(&ret->b_uptodate_lock); | 
|  | preempt_disable(); | 
|  | __this_cpu_inc(bh_accounting.nr); | 
|  | recalc_bh_state(); | 
|  | preempt_enable(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_buffer_head); | 
|  |  | 
|  | void free_buffer_head(struct buffer_head *bh) | 
|  | { | 
|  | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | 
|  | kmem_cache_free(bh_cachep, bh); | 
|  | preempt_disable(); | 
|  | __this_cpu_dec(bh_accounting.nr); | 
|  | recalc_bh_state(); | 
|  | preempt_enable(); | 
|  | } | 
|  | EXPORT_SYMBOL(free_buffer_head); | 
|  |  | 
|  | static int buffer_exit_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | int i; | 
|  | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | 
|  |  | 
|  | for (i = 0; i < BH_LRU_SIZE; i++) { | 
|  | brelse(b->bhs[i]); | 
|  | b->bhs[i] = NULL; | 
|  | } | 
|  | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); | 
|  | per_cpu(bh_accounting, cpu).nr = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bh_uptodate_or_lock - Test whether the buffer is uptodate | 
|  | * @bh: struct buffer_head | 
|  | * | 
|  | * Return true if the buffer is up-to-date and false, | 
|  | * with the buffer locked, if not. | 
|  | */ | 
|  | int bh_uptodate_or_lock(struct buffer_head *bh) | 
|  | { | 
|  | if (!buffer_uptodate(bh)) { | 
|  | lock_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) | 
|  | return 0; | 
|  | unlock_buffer(bh); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(bh_uptodate_or_lock); | 
|  |  | 
|  | /** | 
|  | * __bh_read - Submit read for a locked buffer | 
|  | * @bh: struct buffer_head | 
|  | * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ | 
|  | * @wait: wait until reading finish | 
|  | * | 
|  | * Returns zero on success or don't wait, and -EIO on error. | 
|  | */ | 
|  | int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!buffer_locked(bh)); | 
|  |  | 
|  | get_bh(bh); | 
|  | bh->b_end_io = end_buffer_read_sync; | 
|  | submit_bh(REQ_OP_READ | op_flags, bh); | 
|  | if (wait) { | 
|  | wait_on_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) | 
|  | ret = -EIO; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__bh_read); | 
|  |  | 
|  | /** | 
|  | * __bh_read_batch - Submit read for a batch of unlocked buffers | 
|  | * @nr: entry number of the buffer batch | 
|  | * @bhs: a batch of struct buffer_head | 
|  | * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ | 
|  | * @force_lock: force to get a lock on the buffer if set, otherwise drops any | 
|  | *              buffer that cannot lock. | 
|  | * | 
|  | * Returns zero on success or don't wait, and -EIO on error. | 
|  | */ | 
|  | void __bh_read_batch(int nr, struct buffer_head *bhs[], | 
|  | blk_opf_t op_flags, bool force_lock) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | struct buffer_head *bh = bhs[i]; | 
|  |  | 
|  | if (buffer_uptodate(bh)) | 
|  | continue; | 
|  |  | 
|  | if (force_lock) | 
|  | lock_buffer(bh); | 
|  | else | 
|  | if (!trylock_buffer(bh)) | 
|  | continue; | 
|  |  | 
|  | if (buffer_uptodate(bh)) { | 
|  | unlock_buffer(bh); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bh->b_end_io = end_buffer_read_sync; | 
|  | get_bh(bh); | 
|  | submit_bh(REQ_OP_READ | op_flags, bh); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__bh_read_batch); | 
|  |  | 
|  | void __init buffer_init(void) | 
|  | { | 
|  | unsigned long nrpages; | 
|  | int ret; | 
|  |  | 
|  | bh_cachep = KMEM_CACHE(buffer_head, | 
|  | SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); | 
|  | /* | 
|  | * Limit the bh occupancy to 10% of ZONE_NORMAL | 
|  | */ | 
|  | nrpages = (nr_free_buffer_pages() * 10) / 100; | 
|  | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | 
|  | ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", | 
|  | NULL, buffer_exit_cpu_dead); | 
|  | WARN_ON(ret < 0); | 
|  | } |