|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * Maple Tree implementation | 
|  | * Copyright (c) 2018-2022 Oracle Corporation | 
|  | * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> | 
|  | *	    Matthew Wilcox <willy@infradead.org> | 
|  | * Copyright (c) 2023 ByteDance | 
|  | * Author: Peng Zhang <zhangpeng.00@bytedance.com> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * DOC: Interesting implementation details of the Maple Tree | 
|  | * | 
|  | * Each node type has a number of slots for entries and a number of slots for | 
|  | * pivots.  In the case of dense nodes, the pivots are implied by the position | 
|  | * and are simply the slot index + the minimum of the node. | 
|  | * | 
|  | * In regular B-Tree terms, pivots are called keys.  The term pivot is used to | 
|  | * indicate that the tree is specifying ranges.  Pivots may appear in the | 
|  | * subtree with an entry attached to the value whereas keys are unique to a | 
|  | * specific position of a B-tree.  Pivot values are inclusive of the slot with | 
|  | * the same index. | 
|  | * | 
|  | * | 
|  | * The following illustrates the layout of a range64 nodes slots and pivots. | 
|  | * | 
|  | * | 
|  | *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | | 
|  | *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬ | 
|  | *           │   │   │   │     │    │    │    │    └─ Implied maximum | 
|  | *           │   │   │   │     │    │    │    └─ Pivot 14 | 
|  | *           │   │   │   │     │    │    └─ Pivot 13 | 
|  | *           │   │   │   │     │    └─ Pivot 12 | 
|  | *           │   │   │   │     └─ Pivot 11 | 
|  | *           │   │   │   └─ Pivot 2 | 
|  | *           │   │   └─ Pivot 1 | 
|  | *           │   └─ Pivot 0 | 
|  | *           └─  Implied minimum | 
|  | * | 
|  | * Slot contents: | 
|  | *  Internal (non-leaf) nodes contain pointers to other nodes. | 
|  | *  Leaf nodes contain entries. | 
|  | * | 
|  | * The location of interest is often referred to as an offset.  All offsets have | 
|  | * a slot, but the last offset has an implied pivot from the node above (or | 
|  | * UINT_MAX for the root node. | 
|  | * | 
|  | * Ranges complicate certain write activities.  When modifying any of | 
|  | * the B-tree variants, it is known that one entry will either be added or | 
|  | * deleted.  When modifying the Maple Tree, one store operation may overwrite | 
|  | * the entire data set, or one half of the tree, or the middle half of the tree. | 
|  | * | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <linux/maple_tree.h> | 
|  | #include <linux/xarray.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/limits.h> | 
|  | #include <asm/barrier.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/maple_tree.h> | 
|  |  | 
|  | /* | 
|  | * Kernel pointer hashing renders much of the maple tree dump useless as tagged | 
|  | * pointers get hashed to arbitrary values. | 
|  | * | 
|  | * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is | 
|  | * permissible to bypass this. Otherwise remain cautious and retain the hashing. | 
|  | * | 
|  | * Userland doesn't know about %px so also use %p there. | 
|  | */ | 
|  | #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE) | 
|  | #define PTR_FMT "%px" | 
|  | #else | 
|  | #define PTR_FMT "%p" | 
|  | #endif | 
|  |  | 
|  | #define MA_ROOT_PARENT 1 | 
|  |  | 
|  | /* | 
|  | * Maple state flags | 
|  | * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation | 
|  | */ | 
|  | #define MA_STATE_PREALLOC	1 | 
|  |  | 
|  | #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) | 
|  | #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) | 
|  | #define ma_mnode_ptr(x) ((struct maple_node *)(x)) | 
|  | #define ma_enode_ptr(x) ((struct maple_enode *)(x)) | 
|  | static struct kmem_cache *maple_node_cache; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | static const unsigned long mt_max[] = { | 
|  | [maple_dense]		= MAPLE_NODE_SLOTS, | 
|  | [maple_leaf_64]		= ULONG_MAX, | 
|  | [maple_range_64]	= ULONG_MAX, | 
|  | [maple_arange_64]	= ULONG_MAX, | 
|  | }; | 
|  | #define mt_node_max(x) mt_max[mte_node_type(x)] | 
|  | #endif | 
|  |  | 
|  | static const unsigned char mt_slots[] = { | 
|  | [maple_dense]		= MAPLE_NODE_SLOTS, | 
|  | [maple_leaf_64]		= MAPLE_RANGE64_SLOTS, | 
|  | [maple_range_64]	= MAPLE_RANGE64_SLOTS, | 
|  | [maple_arange_64]	= MAPLE_ARANGE64_SLOTS, | 
|  | }; | 
|  | #define mt_slot_count(x) mt_slots[mte_node_type(x)] | 
|  |  | 
|  | static const unsigned char mt_pivots[] = { | 
|  | [maple_dense]		= 0, | 
|  | [maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1, | 
|  | [maple_range_64]	= MAPLE_RANGE64_SLOTS - 1, | 
|  | [maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1, | 
|  | }; | 
|  | #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] | 
|  |  | 
|  | static const unsigned char mt_min_slots[] = { | 
|  | [maple_dense]		= MAPLE_NODE_SLOTS / 2, | 
|  | [maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2, | 
|  | [maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2, | 
|  | [maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1, | 
|  | }; | 
|  | #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] | 
|  |  | 
|  | #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2) | 
|  | #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1) | 
|  |  | 
|  | struct maple_big_node { | 
|  | unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; | 
|  | union { | 
|  | struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; | 
|  | struct { | 
|  | unsigned long padding[MAPLE_BIG_NODE_GAPS]; | 
|  | unsigned long gap[MAPLE_BIG_NODE_GAPS]; | 
|  | }; | 
|  | }; | 
|  | unsigned char b_end; | 
|  | enum maple_type type; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The maple_subtree_state is used to build a tree to replace a segment of an | 
|  | * existing tree in a more atomic way.  Any walkers of the older tree will hit a | 
|  | * dead node and restart on updates. | 
|  | */ | 
|  | struct maple_subtree_state { | 
|  | struct ma_state *orig_l;	/* Original left side of subtree */ | 
|  | struct ma_state *orig_r;	/* Original right side of subtree */ | 
|  | struct ma_state *l;		/* New left side of subtree */ | 
|  | struct ma_state *m;		/* New middle of subtree (rare) */ | 
|  | struct ma_state *r;		/* New right side of subtree */ | 
|  | struct ma_topiary *free;	/* nodes to be freed */ | 
|  | struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */ | 
|  | struct maple_big_node *bn; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_KASAN_STACK | 
|  | /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ | 
|  | #define noinline_for_kasan noinline_for_stack | 
|  | #else | 
|  | #define noinline_for_kasan inline | 
|  | #endif | 
|  |  | 
|  | /* Functions */ | 
|  | static inline struct maple_node *mt_alloc_one(gfp_t gfp) | 
|  | { | 
|  | return kmem_cache_alloc(maple_node_cache, gfp); | 
|  | } | 
|  |  | 
|  | static inline void mt_free_bulk(size_t size, void __rcu **nodes) | 
|  | { | 
|  | kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); | 
|  | } | 
|  |  | 
|  | static void mt_return_sheaf(struct slab_sheaf *sheaf) | 
|  | { | 
|  | kmem_cache_return_sheaf(maple_node_cache, GFP_NOWAIT, sheaf); | 
|  | } | 
|  |  | 
|  | static struct slab_sheaf *mt_get_sheaf(gfp_t gfp, int count) | 
|  | { | 
|  | return kmem_cache_prefill_sheaf(maple_node_cache, gfp, count); | 
|  | } | 
|  |  | 
|  | static int mt_refill_sheaf(gfp_t gfp, struct slab_sheaf **sheaf, | 
|  | unsigned int size) | 
|  | { | 
|  | return kmem_cache_refill_sheaf(maple_node_cache, gfp, sheaf, size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_free_rcu() - Use rcu callback to free a maple node | 
|  | * @node: The node to free | 
|  | * | 
|  | * The maple tree uses the parent pointer to indicate this node is no longer in | 
|  | * use and will be freed. | 
|  | */ | 
|  | static void ma_free_rcu(struct maple_node *node) | 
|  | { | 
|  | WARN_ON(node->parent != ma_parent_ptr(node)); | 
|  | kfree_rcu(node, rcu); | 
|  | } | 
|  |  | 
|  | static void mt_set_height(struct maple_tree *mt, unsigned char height) | 
|  | { | 
|  | unsigned int new_flags = mt->ma_flags; | 
|  |  | 
|  | new_flags &= ~MT_FLAGS_HEIGHT_MASK; | 
|  | MT_BUG_ON(mt, height > MAPLE_HEIGHT_MAX); | 
|  | new_flags |= height << MT_FLAGS_HEIGHT_OFFSET; | 
|  | mt->ma_flags = new_flags; | 
|  | } | 
|  |  | 
|  | static unsigned int mas_mt_height(struct ma_state *mas) | 
|  | { | 
|  | return mt_height(mas->tree); | 
|  | } | 
|  |  | 
|  | static inline unsigned int mt_attr(struct maple_tree *mt) | 
|  | { | 
|  | return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; | 
|  | } | 
|  |  | 
|  | static __always_inline enum maple_type mte_node_type( | 
|  | const struct maple_enode *entry) | 
|  | { | 
|  | return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & | 
|  | MAPLE_NODE_TYPE_MASK; | 
|  | } | 
|  |  | 
|  | static __always_inline bool ma_is_dense(const enum maple_type type) | 
|  | { | 
|  | return type < maple_leaf_64; | 
|  | } | 
|  |  | 
|  | static __always_inline bool ma_is_leaf(const enum maple_type type) | 
|  | { | 
|  | return type < maple_range_64; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mte_is_leaf(const struct maple_enode *entry) | 
|  | { | 
|  | return ma_is_leaf(mte_node_type(entry)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We also reserve values with the bottom two bits set to '10' which are | 
|  | * below 4096 | 
|  | */ | 
|  | static __always_inline bool mt_is_reserved(const void *entry) | 
|  | { | 
|  | return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && | 
|  | xa_is_internal(entry); | 
|  | } | 
|  |  | 
|  | static __always_inline void mas_set_err(struct ma_state *mas, long err) | 
|  | { | 
|  | mas->node = MA_ERROR(err); | 
|  | mas->status = ma_error; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mas_is_ptr(const struct ma_state *mas) | 
|  | { | 
|  | return mas->status == ma_root; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mas_is_start(const struct ma_state *mas) | 
|  | { | 
|  | return mas->status == ma_start; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mas_is_none(const struct ma_state *mas) | 
|  | { | 
|  | return mas->status == ma_none; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mas_is_paused(const struct ma_state *mas) | 
|  | { | 
|  | return mas->status == ma_pause; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mas_is_overflow(struct ma_state *mas) | 
|  | { | 
|  | return mas->status == ma_overflow; | 
|  | } | 
|  |  | 
|  | static inline bool mas_is_underflow(struct ma_state *mas) | 
|  | { | 
|  | return mas->status == ma_underflow; | 
|  | } | 
|  |  | 
|  | static __always_inline struct maple_node *mte_to_node( | 
|  | const struct maple_enode *entry) | 
|  | { | 
|  | return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_to_mat() - Convert a maple encoded node to a maple topiary node. | 
|  | * @entry: The maple encoded node | 
|  | * | 
|  | * Return: a maple topiary pointer | 
|  | */ | 
|  | static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) | 
|  | { | 
|  | return (struct maple_topiary *) | 
|  | ((unsigned long)entry & ~MAPLE_NODE_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_mn() - Get the maple state node. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Return: the maple node (not encoded - bare pointer). | 
|  | */ | 
|  | static inline struct maple_node *mas_mn(const struct ma_state *mas) | 
|  | { | 
|  | return mte_to_node(mas->node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_set_node_dead() - Set a maple encoded node as dead. | 
|  | * @mn: The maple encoded node. | 
|  | */ | 
|  | static inline void mte_set_node_dead(struct maple_enode *mn) | 
|  | { | 
|  | mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); | 
|  | smp_wmb(); /* Needed for RCU */ | 
|  | } | 
|  |  | 
|  | /* Bit 1 indicates the root is a node */ | 
|  | #define MAPLE_ROOT_NODE			0x02 | 
|  | /* maple_type stored bit 3-6 */ | 
|  | #define MAPLE_ENODE_TYPE_SHIFT		0x03 | 
|  | /* Bit 2 means a NULL somewhere below */ | 
|  | #define MAPLE_ENODE_NULL		0x04 | 
|  |  | 
|  | static inline struct maple_enode *mt_mk_node(const struct maple_node *node, | 
|  | enum maple_type type) | 
|  | { | 
|  | return (void *)((unsigned long)node | | 
|  | (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); | 
|  | } | 
|  |  | 
|  | static inline void *mte_mk_root(const struct maple_enode *node) | 
|  | { | 
|  | return (void *)((unsigned long)node | MAPLE_ROOT_NODE); | 
|  | } | 
|  |  | 
|  | static inline void *mte_safe_root(const struct maple_enode *node) | 
|  | { | 
|  | return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); | 
|  | } | 
|  |  | 
|  | static inline void __maybe_unused *mte_set_full(const struct maple_enode *node) | 
|  | { | 
|  | return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); | 
|  | } | 
|  |  | 
|  | static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node) | 
|  | { | 
|  | return (void *)((unsigned long)node | MAPLE_ENODE_NULL); | 
|  | } | 
|  |  | 
|  | static inline bool __maybe_unused mte_has_null(const struct maple_enode *node) | 
|  | { | 
|  | return (unsigned long)node & MAPLE_ENODE_NULL; | 
|  | } | 
|  |  | 
|  | static __always_inline bool ma_is_root(struct maple_node *node) | 
|  | { | 
|  | return ((unsigned long)node->parent & MA_ROOT_PARENT); | 
|  | } | 
|  |  | 
|  | static __always_inline bool mte_is_root(const struct maple_enode *node) | 
|  | { | 
|  | return ma_is_root(mte_to_node(node)); | 
|  | } | 
|  |  | 
|  | static inline bool mas_is_root_limits(const struct ma_state *mas) | 
|  | { | 
|  | return !mas->min && mas->max == ULONG_MAX; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mt_is_alloc(struct maple_tree *mt) | 
|  | { | 
|  | return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The Parent Pointer | 
|  | * Excluding root, the parent pointer is 256B aligned like all other tree nodes. | 
|  | * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16 | 
|  | * bit values need an extra bit to store the offset.  This extra bit comes from | 
|  | * a reuse of the last bit in the node type.  This is possible by using bit 1 to | 
|  | * indicate if bit 2 is part of the type or the slot. | 
|  | * | 
|  | * Node types: | 
|  | *  0b??1 = Root | 
|  | *  0b?00 = 16 bit nodes | 
|  | *  0b010 = 32 bit nodes | 
|  | *  0b110 = 64 bit nodes | 
|  | * | 
|  | * Slot size and alignment | 
|  | *  0b??1 : Root | 
|  | *  0b?00 : 16 bit values, type in 0-1, slot in 2-7 | 
|  | *  0b010 : 32 bit values, type in 0-2, slot in 3-7 | 
|  | *  0b110 : 64 bit values, type in 0-2, slot in 3-7 | 
|  | */ | 
|  |  | 
|  | #define MAPLE_PARENT_ROOT		0x01 | 
|  |  | 
|  | #define MAPLE_PARENT_SLOT_SHIFT		0x03 | 
|  | #define MAPLE_PARENT_SLOT_MASK		0xF8 | 
|  |  | 
|  | #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02 | 
|  | #define MAPLE_PARENT_16B_SLOT_MASK	0xFC | 
|  |  | 
|  | #define MAPLE_PARENT_RANGE64		0x06 | 
|  | #define MAPLE_PARENT_RANGE32		0x02 | 
|  | #define MAPLE_PARENT_NOT_RANGE16	0x02 | 
|  |  | 
|  | /* | 
|  | * mte_parent_shift() - Get the parent shift for the slot storage. | 
|  | * @parent: The parent pointer cast as an unsigned long | 
|  | * Return: The shift into that pointer to the star to of the slot | 
|  | */ | 
|  | static inline unsigned long mte_parent_shift(unsigned long parent) | 
|  | { | 
|  | /* Note bit 1 == 0 means 16B */ | 
|  | if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) | 
|  | return MAPLE_PARENT_SLOT_SHIFT; | 
|  |  | 
|  | return MAPLE_PARENT_16B_SLOT_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_parent_slot_mask() - Get the slot mask for the parent. | 
|  | * @parent: The parent pointer cast as an unsigned long. | 
|  | * Return: The slot mask for that parent. | 
|  | */ | 
|  | static inline unsigned long mte_parent_slot_mask(unsigned long parent) | 
|  | { | 
|  | /* Note bit 1 == 0 means 16B */ | 
|  | if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) | 
|  | return MAPLE_PARENT_SLOT_MASK; | 
|  |  | 
|  | return MAPLE_PARENT_16B_SLOT_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_parent_type() - Return the maple_type of the parent from the stored | 
|  | * parent type. | 
|  | * @mas: The maple state | 
|  | * @enode: The maple_enode to extract the parent's enum | 
|  | * Return: The node->parent maple_type | 
|  | */ | 
|  | static inline | 
|  | enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) | 
|  | { | 
|  | unsigned long p_type; | 
|  |  | 
|  | p_type = (unsigned long)mte_to_node(enode)->parent; | 
|  | if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) | 
|  | return 0; | 
|  |  | 
|  | p_type &= MAPLE_NODE_MASK; | 
|  | p_type &= ~mte_parent_slot_mask(p_type); | 
|  | switch (p_type) { | 
|  | case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ | 
|  | if (mt_is_alloc(mas->tree)) | 
|  | return maple_arange_64; | 
|  | return maple_range_64; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_set_parent() - Set the parent node and encode the slot | 
|  | * @mas: The maple state | 
|  | * @enode: The encoded maple node. | 
|  | * @parent: The encoded maple node that is the parent of @enode. | 
|  | * @slot: The slot that @enode resides in @parent. | 
|  | * | 
|  | * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the | 
|  | * parent type. | 
|  | */ | 
|  | static inline | 
|  | void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, | 
|  | const struct maple_enode *parent, unsigned char slot) | 
|  | { | 
|  | unsigned long val = (unsigned long)parent; | 
|  | unsigned long shift; | 
|  | unsigned long type; | 
|  | enum maple_type p_type = mte_node_type(parent); | 
|  |  | 
|  | MAS_BUG_ON(mas, p_type == maple_dense); | 
|  | MAS_BUG_ON(mas, p_type == maple_leaf_64); | 
|  |  | 
|  | switch (p_type) { | 
|  | case maple_range_64: | 
|  | case maple_arange_64: | 
|  | shift = MAPLE_PARENT_SLOT_SHIFT; | 
|  | type = MAPLE_PARENT_RANGE64; | 
|  | break; | 
|  | default: | 
|  | case maple_dense: | 
|  | case maple_leaf_64: | 
|  | shift = type = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ | 
|  | val |= (slot << shift) | type; | 
|  | mte_to_node(enode)->parent = ma_parent_ptr(val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_parent_slot() - get the parent slot of @enode. | 
|  | * @enode: The encoded maple node. | 
|  | * | 
|  | * Return: The slot in the parent node where @enode resides. | 
|  | */ | 
|  | static __always_inline | 
|  | unsigned int mte_parent_slot(const struct maple_enode *enode) | 
|  | { | 
|  | unsigned long val = (unsigned long)mte_to_node(enode)->parent; | 
|  |  | 
|  | if (unlikely(val & MA_ROOT_PARENT)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost | 
|  | * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT | 
|  | */ | 
|  | return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_parent() - Get the parent of @node. | 
|  | * @enode: The encoded maple node. | 
|  | * | 
|  | * Return: The parent maple node. | 
|  | */ | 
|  | static __always_inline | 
|  | struct maple_node *mte_parent(const struct maple_enode *enode) | 
|  | { | 
|  | return (void *)((unsigned long) | 
|  | (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_dead_node() - check if the @enode is dead. | 
|  | * @enode: The encoded maple node | 
|  | * | 
|  | * Return: true if dead, false otherwise. | 
|  | */ | 
|  | static __always_inline bool ma_dead_node(const struct maple_node *node) | 
|  | { | 
|  | struct maple_node *parent; | 
|  |  | 
|  | /* Do not reorder reads from the node prior to the parent check */ | 
|  | smp_rmb(); | 
|  | parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); | 
|  | return (parent == node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_dead_node() - check if the @enode is dead. | 
|  | * @enode: The encoded maple node | 
|  | * | 
|  | * Return: true if dead, false otherwise. | 
|  | */ | 
|  | static __always_inline bool mte_dead_node(const struct maple_enode *enode) | 
|  | { | 
|  | struct maple_node *node; | 
|  |  | 
|  | node = mte_to_node(enode); | 
|  | return ma_dead_node(node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_pivots() - Get a pointer to the maple node pivots. | 
|  | * @node: the maple node | 
|  | * @type: the node type | 
|  | * | 
|  | * In the event of a dead node, this array may be %NULL | 
|  | * | 
|  | * Return: A pointer to the maple node pivots | 
|  | */ | 
|  | static inline unsigned long *ma_pivots(struct maple_node *node, | 
|  | enum maple_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case maple_arange_64: | 
|  | return node->ma64.pivot; | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | return node->mr64.pivot; | 
|  | case maple_dense: | 
|  | return NULL; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_gaps() - Get a pointer to the maple node gaps. | 
|  | * @node: the maple node | 
|  | * @type: the node type | 
|  | * | 
|  | * Return: A pointer to the maple node gaps | 
|  | */ | 
|  | static inline unsigned long *ma_gaps(struct maple_node *node, | 
|  | enum maple_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case maple_arange_64: | 
|  | return node->ma64.gap; | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | case maple_dense: | 
|  | return NULL; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_safe_pivot() - get the pivot at @piv or mas->max. | 
|  | * @mas: The maple state | 
|  | * @pivots: The pointer to the maple node pivots | 
|  | * @piv: The pivot to fetch | 
|  | * @type: The maple node type | 
|  | * | 
|  | * Return: The pivot at @piv within the limit of the @pivots array, @mas->max | 
|  | * otherwise. | 
|  | */ | 
|  | static __always_inline unsigned long | 
|  | mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, | 
|  | unsigned char piv, enum maple_type type) | 
|  | { | 
|  | if (piv >= mt_pivots[type]) | 
|  | return mas->max; | 
|  |  | 
|  | return pivots[piv]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_safe_min() - Return the minimum for a given offset. | 
|  | * @mas: The maple state | 
|  | * @pivots: The pointer to the maple node pivots | 
|  | * @offset: The offset into the pivot array | 
|  | * | 
|  | * Return: The minimum range value that is contained in @offset. | 
|  | */ | 
|  | static inline unsigned long | 
|  | mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) | 
|  | { | 
|  | if (likely(offset)) | 
|  | return pivots[offset - 1] + 1; | 
|  |  | 
|  | return mas->min; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_set_pivot() - Set a pivot to a value in an encoded maple node. | 
|  | * @mn: The encoded maple node | 
|  | * @piv: The pivot offset | 
|  | * @val: The value of the pivot | 
|  | */ | 
|  | static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, | 
|  | unsigned long val) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(mn); | 
|  | enum maple_type type = mte_node_type(mn); | 
|  |  | 
|  | BUG_ON(piv >= mt_pivots[type]); | 
|  | switch (type) { | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | node->mr64.pivot[piv] = val; | 
|  | break; | 
|  | case maple_arange_64: | 
|  | node->ma64.pivot[piv] = val; | 
|  | break; | 
|  | case maple_dense: | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_slots() - Get a pointer to the maple node slots. | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | * | 
|  | * Return: A pointer to the maple node slots | 
|  | */ | 
|  | static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) | 
|  | { | 
|  | switch (mt) { | 
|  | case maple_arange_64: | 
|  | return mn->ma64.slot; | 
|  | case maple_range_64: | 
|  | case maple_leaf_64: | 
|  | return mn->mr64.slot; | 
|  | case maple_dense: | 
|  | return mn->slot; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline bool mt_write_locked(const struct maple_tree *mt) | 
|  | { | 
|  | return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : | 
|  | lockdep_is_held(&mt->ma_lock); | 
|  | } | 
|  |  | 
|  | static __always_inline bool mt_locked(const struct maple_tree *mt) | 
|  | { | 
|  | return mt_external_lock(mt) ? mt_lock_is_held(mt) : | 
|  | lockdep_is_held(&mt->ma_lock); | 
|  | } | 
|  |  | 
|  | static __always_inline void *mt_slot(const struct maple_tree *mt, | 
|  | void __rcu **slots, unsigned char offset) | 
|  | { | 
|  | return rcu_dereference_check(slots[offset], mt_locked(mt)); | 
|  | } | 
|  |  | 
|  | static __always_inline void *mt_slot_locked(struct maple_tree *mt, | 
|  | void __rcu **slots, unsigned char offset) | 
|  | { | 
|  | return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); | 
|  | } | 
|  | /* | 
|  | * mas_slot_locked() - Get the slot value when holding the maple tree lock. | 
|  | * @mas: The maple state | 
|  | * @slots: The pointer to the slots | 
|  | * @offset: The offset into the slots array to fetch | 
|  | * | 
|  | * Return: The entry stored in @slots at the @offset. | 
|  | */ | 
|  | static __always_inline void *mas_slot_locked(struct ma_state *mas, | 
|  | void __rcu **slots, unsigned char offset) | 
|  | { | 
|  | return mt_slot_locked(mas->tree, slots, offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_slot() - Get the slot value when not holding the maple tree lock. | 
|  | * @mas: The maple state | 
|  | * @slots: The pointer to the slots | 
|  | * @offset: The offset into the slots array to fetch | 
|  | * | 
|  | * Return: The entry stored in @slots at the @offset | 
|  | */ | 
|  | static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, | 
|  | unsigned char offset) | 
|  | { | 
|  | return mt_slot(mas->tree, slots, offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_root() - Get the maple tree root. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Return: The pointer to the root of the tree | 
|  | */ | 
|  | static __always_inline void *mas_root(struct ma_state *mas) | 
|  | { | 
|  | return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); | 
|  | } | 
|  |  | 
|  | static inline void *mt_root_locked(struct maple_tree *mt) | 
|  | { | 
|  | return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_root_locked() - Get the maple tree root when holding the maple tree lock. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Return: The pointer to the root of the tree | 
|  | */ | 
|  | static inline void *mas_root_locked(struct ma_state *mas) | 
|  | { | 
|  | return mt_root_locked(mas->tree); | 
|  | } | 
|  |  | 
|  | static inline struct maple_metadata *ma_meta(struct maple_node *mn, | 
|  | enum maple_type mt) | 
|  | { | 
|  | switch (mt) { | 
|  | case maple_arange_64: | 
|  | return &mn->ma64.meta; | 
|  | default: | 
|  | return &mn->mr64.meta; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_set_meta() - Set the metadata information of a node. | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | * @offset: The offset of the highest sub-gap in this node. | 
|  | * @end: The end of the data in this node. | 
|  | */ | 
|  | static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, | 
|  | unsigned char offset, unsigned char end) | 
|  | { | 
|  | struct maple_metadata *meta = ma_meta(mn, mt); | 
|  |  | 
|  | meta->gap = offset; | 
|  | meta->end = end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mt_clear_meta() - clear the metadata information of a node, if it exists | 
|  | * @mt: The maple tree | 
|  | * @mn: The maple node | 
|  | * @type: The maple node type | 
|  | */ | 
|  | static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, | 
|  | enum maple_type type) | 
|  | { | 
|  | struct maple_metadata *meta; | 
|  | unsigned long *pivots; | 
|  | void __rcu **slots; | 
|  | void *next; | 
|  |  | 
|  | switch (type) { | 
|  | case maple_range_64: | 
|  | pivots = mn->mr64.pivot; | 
|  | if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { | 
|  | slots = mn->mr64.slot; | 
|  | next = mt_slot_locked(mt, slots, | 
|  | MAPLE_RANGE64_SLOTS - 1); | 
|  | if (unlikely((mte_to_node(next) && | 
|  | mte_node_type(next)))) | 
|  | return; /* no metadata, could be node */ | 
|  | } | 
|  | fallthrough; | 
|  | case maple_arange_64: | 
|  | meta = ma_meta(mn, type); | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | meta->gap = 0; | 
|  | meta->end = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_meta_end() - Get the data end of a node from the metadata | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | */ | 
|  | static inline unsigned char ma_meta_end(struct maple_node *mn, | 
|  | enum maple_type mt) | 
|  | { | 
|  | struct maple_metadata *meta = ma_meta(mn, mt); | 
|  |  | 
|  | return meta->end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_meta_gap() - Get the largest gap location of a node from the metadata | 
|  | * @mn: The maple node | 
|  | */ | 
|  | static inline unsigned char ma_meta_gap(struct maple_node *mn) | 
|  | { | 
|  | return mn->ma64.meta.gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_set_meta_gap() - Set the largest gap location in a nodes metadata | 
|  | * @mn: The maple node | 
|  | * @mt: The maple node type | 
|  | * @offset: The location of the largest gap. | 
|  | */ | 
|  | static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, | 
|  | unsigned char offset) | 
|  | { | 
|  |  | 
|  | struct maple_metadata *meta = ma_meta(mn, mt); | 
|  |  | 
|  | meta->gap = offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. | 
|  | * @mat: the ma_topiary, a linked list of dead nodes. | 
|  | * @dead_enode: the node to be marked as dead and added to the tail of the list | 
|  | * | 
|  | * Add the @dead_enode to the linked list in @mat. | 
|  | */ | 
|  | static inline void mat_add(struct ma_topiary *mat, | 
|  | struct maple_enode *dead_enode) | 
|  | { | 
|  | mte_set_node_dead(dead_enode); | 
|  | mte_to_mat(dead_enode)->next = NULL; | 
|  | if (!mat->tail) { | 
|  | mat->tail = mat->head = dead_enode; | 
|  | return; | 
|  | } | 
|  |  | 
|  | mte_to_mat(mat->tail)->next = dead_enode; | 
|  | mat->tail = dead_enode; | 
|  | } | 
|  |  | 
|  | static void mt_free_walk(struct rcu_head *head); | 
|  | static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, | 
|  | bool free); | 
|  | /* | 
|  | * mas_mat_destroy() - Free all nodes and subtrees in a dead list. | 
|  | * @mas: the maple state | 
|  | * @mat: the ma_topiary linked list of dead nodes to free. | 
|  | * | 
|  | * Destroy walk a dead list. | 
|  | */ | 
|  | static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) | 
|  | { | 
|  | struct maple_enode *next; | 
|  | struct maple_node *node; | 
|  | bool in_rcu = mt_in_rcu(mas->tree); | 
|  |  | 
|  | while (mat->head) { | 
|  | next = mte_to_mat(mat->head)->next; | 
|  | node = mte_to_node(mat->head); | 
|  | mt_destroy_walk(mat->head, mas->tree, !in_rcu); | 
|  | if (in_rcu) | 
|  | call_rcu(&node->rcu, mt_free_walk); | 
|  | mat->head = next; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * mas_descend() - Descend into the slot stored in the ma_state. | 
|  | * @mas: the maple state. | 
|  | * | 
|  | * Note: Not RCU safe, only use in write side or debug code. | 
|  | */ | 
|  | static inline void mas_descend(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type type; | 
|  | unsigned long *pivots; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | type = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  |  | 
|  | if (mas->offset) | 
|  | mas->min = pivots[mas->offset - 1] + 1; | 
|  | mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); | 
|  | mas->node = mas_slot(mas, slots, mas->offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_ascend() - Walk up a level of the tree. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Sets the @mas->max and @mas->min for the parent node of mas->node.  This | 
|  | * may cause several levels of walking up to find the correct min and max. | 
|  | * May find a dead node which will cause a premature return. | 
|  | * Return: 1 on dead node, 0 otherwise | 
|  | */ | 
|  | static int mas_ascend(struct ma_state *mas) | 
|  | { | 
|  | struct maple_enode *p_enode; /* parent enode. */ | 
|  | struct maple_enode *a_enode; /* ancestor enode. */ | 
|  | struct maple_node *a_node; /* ancestor node. */ | 
|  | struct maple_node *p_node; /* parent node. */ | 
|  | unsigned char a_slot; | 
|  | enum maple_type a_type; | 
|  | unsigned long min, max; | 
|  | unsigned long *pivots; | 
|  | bool set_max = false, set_min = false; | 
|  |  | 
|  | a_node = mas_mn(mas); | 
|  | if (ma_is_root(a_node)) { | 
|  | mas->offset = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p_node = mte_parent(mas->node); | 
|  | if (unlikely(a_node == p_node)) | 
|  | return 1; | 
|  |  | 
|  | a_type = mas_parent_type(mas, mas->node); | 
|  | mas->offset = mte_parent_slot(mas->node); | 
|  | a_enode = mt_mk_node(p_node, a_type); | 
|  |  | 
|  | /* Check to make sure all parent information is still accurate */ | 
|  | if (p_node != mte_parent(mas->node)) | 
|  | return 1; | 
|  |  | 
|  | mas->node = a_enode; | 
|  |  | 
|  | if (mte_is_root(a_enode)) { | 
|  | mas->max = ULONG_MAX; | 
|  | mas->min = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | min = 0; | 
|  | max = ULONG_MAX; | 
|  |  | 
|  | /* | 
|  | * !mas->offset implies that parent node min == mas->min. | 
|  | * mas->offset > 0 implies that we need to walk up to find the | 
|  | * implied pivot min. | 
|  | */ | 
|  | if (!mas->offset) { | 
|  | min = mas->min; | 
|  | set_min = true; | 
|  | } | 
|  |  | 
|  | if (mas->max == ULONG_MAX) | 
|  | set_max = true; | 
|  |  | 
|  | do { | 
|  | p_enode = a_enode; | 
|  | a_type = mas_parent_type(mas, p_enode); | 
|  | a_node = mte_parent(p_enode); | 
|  | a_slot = mte_parent_slot(p_enode); | 
|  | a_enode = mt_mk_node(a_node, a_type); | 
|  | pivots = ma_pivots(a_node, a_type); | 
|  |  | 
|  | if (unlikely(ma_dead_node(a_node))) | 
|  | return 1; | 
|  |  | 
|  | if (!set_min && a_slot) { | 
|  | set_min = true; | 
|  | min = pivots[a_slot - 1] + 1; | 
|  | } | 
|  |  | 
|  | if (!set_max && a_slot < mt_pivots[a_type]) { | 
|  | set_max = true; | 
|  | max = pivots[a_slot]; | 
|  | } | 
|  |  | 
|  | if (unlikely(ma_dead_node(a_node))) | 
|  | return 1; | 
|  |  | 
|  | if (unlikely(ma_is_root(a_node))) | 
|  | break; | 
|  |  | 
|  | } while (!set_min || !set_max); | 
|  |  | 
|  | mas->max = max; | 
|  | mas->min = min; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_pop_node() - Get a previously allocated maple node from the maple state. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Return: A pointer to a maple node. | 
|  | */ | 
|  | static __always_inline struct maple_node *mas_pop_node(struct ma_state *mas) | 
|  | { | 
|  | struct maple_node *ret; | 
|  |  | 
|  | if (mas->alloc) { | 
|  | ret = mas->alloc; | 
|  | mas->alloc = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(!mas->sheaf)) | 
|  | return NULL; | 
|  |  | 
|  | ret = kmem_cache_alloc_from_sheaf(maple_node_cache, GFP_NOWAIT, mas->sheaf); | 
|  |  | 
|  | out: | 
|  | memset(ret, 0, sizeof(*ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_alloc_nodes() - Allocate nodes into a maple state | 
|  | * @mas: The maple state | 
|  | * @gfp: The GFP Flags | 
|  | */ | 
|  | static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) | 
|  | { | 
|  | if (!mas->node_request) | 
|  | return; | 
|  |  | 
|  | if (mas->node_request == 1) { | 
|  | if (mas->sheaf) | 
|  | goto use_sheaf; | 
|  |  | 
|  | if (mas->alloc) | 
|  | return; | 
|  |  | 
|  | mas->alloc = mt_alloc_one(gfp); | 
|  | if (!mas->alloc) | 
|  | goto error; | 
|  |  | 
|  | mas->node_request = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | use_sheaf: | 
|  | if (unlikely(mas->alloc)) { | 
|  | kfree(mas->alloc); | 
|  | mas->alloc = NULL; | 
|  | } | 
|  |  | 
|  | if (mas->sheaf) { | 
|  | unsigned long refill; | 
|  |  | 
|  | refill = mas->node_request; | 
|  | if (kmem_cache_sheaf_size(mas->sheaf) >= refill) { | 
|  | mas->node_request = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (mt_refill_sheaf(gfp, &mas->sheaf, refill)) | 
|  | goto error; | 
|  |  | 
|  | mas->node_request = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | mas->sheaf = mt_get_sheaf(gfp, mas->node_request); | 
|  | if (likely(mas->sheaf)) { | 
|  | mas->node_request = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | error: | 
|  | mas_set_err(mas, -ENOMEM); | 
|  | } | 
|  |  | 
|  | static inline void mas_empty_nodes(struct ma_state *mas) | 
|  | { | 
|  | mas->node_request = 0; | 
|  | if (mas->sheaf) { | 
|  | mt_return_sheaf(mas->sheaf); | 
|  | mas->sheaf = NULL; | 
|  | } | 
|  |  | 
|  | if (mas->alloc) { | 
|  | kfree(mas->alloc); | 
|  | mas->alloc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_free() - Free an encoded maple node | 
|  | * @mas: The maple state | 
|  | * @used: The encoded maple node to free. | 
|  | * | 
|  | * Uses rcu free if necessary, pushes @used back on the maple state allocations | 
|  | * otherwise. | 
|  | */ | 
|  | static inline void mas_free(struct ma_state *mas, struct maple_enode *used) | 
|  | { | 
|  | ma_free_rcu(mte_to_node(used)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_start() - Sets up maple state for operations. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * If mas->status == ma_start, then set the min, max and depth to | 
|  | * defaults. | 
|  | * | 
|  | * Return: | 
|  | * - If mas->node is an error or not mas_start, return NULL. | 
|  | * - If it's an empty tree:     NULL & mas->status == ma_none | 
|  | * - If it's a single entry:    The entry & mas->status == ma_root | 
|  | * - If it's a tree:            NULL & mas->status == ma_active | 
|  | */ | 
|  | static inline struct maple_enode *mas_start(struct ma_state *mas) | 
|  | { | 
|  | if (likely(mas_is_start(mas))) { | 
|  | struct maple_enode *root; | 
|  |  | 
|  | mas->min = 0; | 
|  | mas->max = ULONG_MAX; | 
|  |  | 
|  | retry: | 
|  | mas->depth = 0; | 
|  | root = mas_root(mas); | 
|  | /* Tree with nodes */ | 
|  | if (likely(xa_is_node(root))) { | 
|  | mas->depth = 0; | 
|  | mas->status = ma_active; | 
|  | mas->node = mte_safe_root(root); | 
|  | mas->offset = 0; | 
|  | if (mte_dead_node(mas->node)) | 
|  | goto retry; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | mas->node = NULL; | 
|  | /* empty tree */ | 
|  | if (unlikely(!root)) { | 
|  | mas->status = ma_none; | 
|  | mas->offset = MAPLE_NODE_SLOTS; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Single entry tree */ | 
|  | mas->status = ma_root; | 
|  | mas->offset = MAPLE_NODE_SLOTS; | 
|  |  | 
|  | /* Single entry tree. */ | 
|  | if (mas->index > 0) | 
|  | return NULL; | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_data_end() - Find the end of the data in a node. | 
|  | * @node: The maple node | 
|  | * @type: The maple node type | 
|  | * @pivots: The array of pivots in the node | 
|  | * @max: The maximum value in the node | 
|  | * | 
|  | * Uses metadata to find the end of the data when possible. | 
|  | * Return: The zero indexed last slot with data (may be null). | 
|  | */ | 
|  | static __always_inline unsigned char ma_data_end(struct maple_node *node, | 
|  | enum maple_type type, unsigned long *pivots, unsigned long max) | 
|  | { | 
|  | unsigned char offset; | 
|  |  | 
|  | if (!pivots) | 
|  | return 0; | 
|  |  | 
|  | if (type == maple_arange_64) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | offset = mt_pivots[type] - 1; | 
|  | if (likely(!pivots[offset])) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | if (likely(pivots[offset] == max)) | 
|  | return offset; | 
|  |  | 
|  | return mt_pivots[type]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_data_end() - Find the end of the data (slot). | 
|  | * @mas: the maple state | 
|  | * | 
|  | * This method is optimized to check the metadata of a node if the node type | 
|  | * supports data end metadata. | 
|  | * | 
|  | * Return: The zero indexed last slot with data (may be null). | 
|  | */ | 
|  | static inline unsigned char mas_data_end(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type type; | 
|  | struct maple_node *node; | 
|  | unsigned char offset; | 
|  | unsigned long *pivots; | 
|  |  | 
|  | type = mte_node_type(mas->node); | 
|  | node = mas_mn(mas); | 
|  | if (type == maple_arange_64) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | pivots = ma_pivots(node, type); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 0; | 
|  |  | 
|  | offset = mt_pivots[type] - 1; | 
|  | if (likely(!pivots[offset])) | 
|  | return ma_meta_end(node, type); | 
|  |  | 
|  | if (likely(pivots[offset] == mas->max)) | 
|  | return offset; | 
|  |  | 
|  | return mt_pivots[type]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_leaf_max_gap() - Returns the largest gap in a leaf node | 
|  | * @mas: the maple state | 
|  | * | 
|  | * Return: The maximum gap in the leaf. | 
|  | */ | 
|  | static unsigned long mas_leaf_max_gap(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type mt; | 
|  | unsigned long pstart, gap, max_gap; | 
|  | struct maple_node *mn; | 
|  | unsigned long *pivots; | 
|  | void __rcu **slots; | 
|  | unsigned char i; | 
|  | unsigned char max_piv; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | mn = mas_mn(mas); | 
|  | slots = ma_slots(mn, mt); | 
|  | max_gap = 0; | 
|  | if (unlikely(ma_is_dense(mt))) { | 
|  | gap = 0; | 
|  | for (i = 0; i < mt_slots[mt]; i++) { | 
|  | if (slots[i]) { | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | gap = 0; | 
|  | } else { | 
|  | gap++; | 
|  | } | 
|  | } | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | return max_gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the first implied pivot optimizes the loop below and slot 1 may | 
|  | * be skipped if there is a gap in slot 0. | 
|  | */ | 
|  | pivots = ma_pivots(mn, mt); | 
|  | if (likely(!slots[0])) { | 
|  | max_gap = pivots[0] - mas->min + 1; | 
|  | i = 2; | 
|  | } else { | 
|  | i = 1; | 
|  | } | 
|  |  | 
|  | /* reduce max_piv as the special case is checked before the loop */ | 
|  | max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; | 
|  | /* | 
|  | * Check end implied pivot which can only be a gap on the right most | 
|  | * node. | 
|  | */ | 
|  | if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { | 
|  | gap = ULONG_MAX - pivots[max_piv]; | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  |  | 
|  | if (max_gap > pivots[max_piv] - mas->min) | 
|  | return max_gap; | 
|  | } | 
|  |  | 
|  | for (; i <= max_piv; i++) { | 
|  | /* data == no gap. */ | 
|  | if (likely(slots[i])) | 
|  | continue; | 
|  |  | 
|  | pstart = pivots[i - 1]; | 
|  | gap = pivots[i] - pstart; | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  |  | 
|  | /* There cannot be two gaps in a row. */ | 
|  | i++; | 
|  | } | 
|  | return max_gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) | 
|  | * @node: The maple node | 
|  | * @gaps: The pointer to the gaps | 
|  | * @mt: The maple node type | 
|  | * @off: Pointer to store the offset location of the gap. | 
|  | * | 
|  | * Uses the metadata data end to scan backwards across set gaps. | 
|  | * | 
|  | * Return: The maximum gap value | 
|  | */ | 
|  | static inline unsigned long | 
|  | ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, | 
|  | unsigned char *off) | 
|  | { | 
|  | unsigned char offset, i; | 
|  | unsigned long max_gap = 0; | 
|  |  | 
|  | i = offset = ma_meta_end(node, mt); | 
|  | do { | 
|  | if (gaps[i] > max_gap) { | 
|  | max_gap = gaps[i]; | 
|  | offset = i; | 
|  | } | 
|  | } while (i--); | 
|  |  | 
|  | *off = offset; | 
|  | return max_gap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Return: The gap value. | 
|  | */ | 
|  | static inline unsigned long mas_max_gap(struct ma_state *mas) | 
|  | { | 
|  | unsigned long *gaps; | 
|  | unsigned char offset; | 
|  | enum maple_type mt; | 
|  | struct maple_node *node; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | if (ma_is_leaf(mt)) | 
|  | return mas_leaf_max_gap(mas); | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | MAS_BUG_ON(mas, mt != maple_arange_64); | 
|  | offset = ma_meta_gap(node); | 
|  | gaps = ma_gaps(node, mt); | 
|  | return gaps[offset]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_parent_gap() - Set the parent gap and any gaps above, as needed | 
|  | * @mas: The maple state | 
|  | * @offset: The gap offset in the parent to set | 
|  | * @new: The new gap value. | 
|  | * | 
|  | * Set the parent gap then continue to set the gap upwards, using the metadata | 
|  | * of the parent to see if it is necessary to check the node above. | 
|  | */ | 
|  | static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, | 
|  | unsigned long new) | 
|  | { | 
|  | unsigned long meta_gap = 0; | 
|  | struct maple_node *pnode; | 
|  | struct maple_enode *penode; | 
|  | unsigned long *pgaps; | 
|  | unsigned char meta_offset; | 
|  | enum maple_type pmt; | 
|  |  | 
|  | pnode = mte_parent(mas->node); | 
|  | pmt = mas_parent_type(mas, mas->node); | 
|  | penode = mt_mk_node(pnode, pmt); | 
|  | pgaps = ma_gaps(pnode, pmt); | 
|  |  | 
|  | ascend: | 
|  | MAS_BUG_ON(mas, pmt != maple_arange_64); | 
|  | meta_offset = ma_meta_gap(pnode); | 
|  | meta_gap = pgaps[meta_offset]; | 
|  |  | 
|  | pgaps[offset] = new; | 
|  |  | 
|  | if (meta_gap == new) | 
|  | return; | 
|  |  | 
|  | if (offset != meta_offset) { | 
|  | if (meta_gap > new) | 
|  | return; | 
|  |  | 
|  | ma_set_meta_gap(pnode, pmt, offset); | 
|  | } else if (new < meta_gap) { | 
|  | new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); | 
|  | ma_set_meta_gap(pnode, pmt, meta_offset); | 
|  | } | 
|  |  | 
|  | if (ma_is_root(pnode)) | 
|  | return; | 
|  |  | 
|  | /* Go to the parent node. */ | 
|  | pnode = mte_parent(penode); | 
|  | pmt = mas_parent_type(mas, penode); | 
|  | pgaps = ma_gaps(pnode, pmt); | 
|  | offset = mte_parent_slot(penode); | 
|  | penode = mt_mk_node(pnode, pmt); | 
|  | goto ascend; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_update_gap() - Update a nodes gaps and propagate up if necessary. | 
|  | * @mas: the maple state. | 
|  | */ | 
|  | static inline void mas_update_gap(struct ma_state *mas) | 
|  | { | 
|  | unsigned char pslot; | 
|  | unsigned long p_gap; | 
|  | unsigned long max_gap; | 
|  |  | 
|  | if (!mt_is_alloc(mas->tree)) | 
|  | return; | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return; | 
|  |  | 
|  | max_gap = mas_max_gap(mas); | 
|  |  | 
|  | pslot = mte_parent_slot(mas->node); | 
|  | p_gap = ma_gaps(mte_parent(mas->node), | 
|  | mas_parent_type(mas, mas->node))[pslot]; | 
|  |  | 
|  | if (p_gap != max_gap) | 
|  | mas_parent_gap(mas, pslot, max_gap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_adopt_children() - Set the parent pointer of all nodes in @parent to | 
|  | * @parent with the slot encoded. | 
|  | * @mas: the maple state (for the tree) | 
|  | * @parent: the maple encoded node containing the children. | 
|  | */ | 
|  | static inline void mas_adopt_children(struct ma_state *mas, | 
|  | struct maple_enode *parent) | 
|  | { | 
|  | enum maple_type type = mte_node_type(parent); | 
|  | struct maple_node *node = mte_to_node(parent); | 
|  | void __rcu **slots = ma_slots(node, type); | 
|  | unsigned long *pivots = ma_pivots(node, type); | 
|  | struct maple_enode *child; | 
|  | unsigned char offset; | 
|  |  | 
|  | offset = ma_data_end(node, type, pivots, mas->max); | 
|  | do { | 
|  | child = mas_slot_locked(mas, slots, offset); | 
|  | mas_set_parent(mas, child, parent, offset); | 
|  | } while (offset--); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old | 
|  | * node as dead. | 
|  | * @mas: the maple state with the new node | 
|  | * @old_enode: The old maple encoded node to replace. | 
|  | * @new_height: if we are inserting a root node, update the height of the tree | 
|  | */ | 
|  | static inline void mas_put_in_tree(struct ma_state *mas, | 
|  | struct maple_enode *old_enode, char new_height) | 
|  | __must_hold(mas->tree->ma_lock) | 
|  | { | 
|  | unsigned char offset; | 
|  | void __rcu **slots; | 
|  |  | 
|  | if (mte_is_root(mas->node)) { | 
|  | mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); | 
|  | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); | 
|  | mt_set_height(mas->tree, new_height); | 
|  | } else { | 
|  |  | 
|  | offset = mte_parent_slot(mas->node); | 
|  | slots = ma_slots(mte_parent(mas->node), | 
|  | mas_parent_type(mas, mas->node)); | 
|  | rcu_assign_pointer(slots[offset], mas->node); | 
|  | } | 
|  |  | 
|  | mte_set_node_dead(old_enode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_replace_node() - Replace a node by putting it in the tree, marking it | 
|  | * dead, and freeing it. | 
|  | * the parent encoding to locate the maple node in the tree. | 
|  | * @mas: the ma_state with @mas->node pointing to the new node. | 
|  | * @old_enode: The old maple encoded node. | 
|  | * @new_height: The new height of the tree as a result of the operation | 
|  | */ | 
|  | static inline void mas_replace_node(struct ma_state *mas, | 
|  | struct maple_enode *old_enode, unsigned char new_height) | 
|  | __must_hold(mas->tree->ma_lock) | 
|  | { | 
|  | mas_put_in_tree(mas, old_enode, new_height); | 
|  | mas_free(mas, old_enode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_find_child() - Find a child who has the parent @mas->node. | 
|  | * @mas: the maple state with the parent. | 
|  | * @child: the maple state to store the child. | 
|  | */ | 
|  | static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) | 
|  | __must_hold(mas->tree->ma_lock) | 
|  | { | 
|  | enum maple_type mt; | 
|  | unsigned char offset; | 
|  | unsigned char end; | 
|  | unsigned long *pivots; | 
|  | struct maple_enode *entry; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | node = mas_mn(mas); | 
|  | slots = ma_slots(node, mt); | 
|  | pivots = ma_pivots(node, mt); | 
|  | end = ma_data_end(node, mt, pivots, mas->max); | 
|  | for (offset = mas->offset; offset <= end; offset++) { | 
|  | entry = mas_slot_locked(mas, slots, offset); | 
|  | if (mte_parent(entry) == node) { | 
|  | *child = *mas; | 
|  | mas->offset = offset + 1; | 
|  | child->offset = offset; | 
|  | mas_descend(child); | 
|  | child->offset = 0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_shift_right() - Shift the data in mab right. Note, does not clean out the | 
|  | * old data or set b_node->b_end. | 
|  | * @b_node: the maple_big_node | 
|  | * @shift: the shift count | 
|  | */ | 
|  | static inline void mab_shift_right(struct maple_big_node *b_node, | 
|  | unsigned char shift) | 
|  | { | 
|  | unsigned long size = b_node->b_end * sizeof(unsigned long); | 
|  |  | 
|  | memmove(b_node->pivot + shift, b_node->pivot, size); | 
|  | memmove(b_node->slot + shift, b_node->slot, size); | 
|  | if (b_node->type == maple_arange_64) | 
|  | memmove(b_node->gap + shift, b_node->gap, size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_middle_node() - Check if a middle node is needed (unlikely) | 
|  | * @b_node: the maple_big_node that contains the data. | 
|  | * @split: the potential split location | 
|  | * @slot_count: the size that can be stored in a single node being considered. | 
|  | * | 
|  | * Return: true if a middle node is required. | 
|  | */ | 
|  | static inline bool mab_middle_node(struct maple_big_node *b_node, int split, | 
|  | unsigned char slot_count) | 
|  | { | 
|  | unsigned char size = b_node->b_end; | 
|  |  | 
|  | if (size >= 2 * slot_count) | 
|  | return true; | 
|  |  | 
|  | if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_no_null_split() - ensure the split doesn't fall on a NULL | 
|  | * @b_node: the maple_big_node with the data | 
|  | * @split: the suggested split location | 
|  | * @slot_count: the number of slots in the node being considered. | 
|  | * | 
|  | * Return: the split location. | 
|  | */ | 
|  | static inline int mab_no_null_split(struct maple_big_node *b_node, | 
|  | unsigned char split, unsigned char slot_count) | 
|  | { | 
|  | if (!b_node->slot[split]) { | 
|  | /* | 
|  | * If the split is less than the max slot && the right side will | 
|  | * still be sufficient, then increment the split on NULL. | 
|  | */ | 
|  | if ((split < slot_count - 1) && | 
|  | (b_node->b_end - split) > (mt_min_slots[b_node->type])) | 
|  | split++; | 
|  | else | 
|  | split--; | 
|  | } | 
|  | return split; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_calc_split() - Calculate the split location and if there needs to be two | 
|  | * splits. | 
|  | * @mas: The maple state | 
|  | * @bn: The maple_big_node with the data | 
|  | * @mid_split: The second split, if required.  0 otherwise. | 
|  | * | 
|  | * Return: The first split location.  The middle split is set in @mid_split. | 
|  | */ | 
|  | static inline int mab_calc_split(struct ma_state *mas, | 
|  | struct maple_big_node *bn, unsigned char *mid_split) | 
|  | { | 
|  | unsigned char b_end = bn->b_end; | 
|  | int split = b_end / 2; /* Assume equal split. */ | 
|  | unsigned char slot_count = mt_slots[bn->type]; | 
|  |  | 
|  | /* | 
|  | * To support gap tracking, all NULL entries are kept together and a node cannot | 
|  | * end on a NULL entry, with the exception of the left-most leaf.  The | 
|  | * limitation means that the split of a node must be checked for this condition | 
|  | * and be able to put more data in one direction or the other. | 
|  | * | 
|  | * Although extremely rare, it is possible to enter what is known as the 3-way | 
|  | * split scenario.  The 3-way split comes about by means of a store of a range | 
|  | * that overwrites the end and beginning of two full nodes.  The result is a set | 
|  | * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can | 
|  | * also be located in different parent nodes which are also full.  This can | 
|  | * carry upwards all the way to the root in the worst case. | 
|  | */ | 
|  | if (unlikely(mab_middle_node(bn, split, slot_count))) { | 
|  | split = b_end / 3; | 
|  | *mid_split = split * 2; | 
|  | } else { | 
|  | *mid_split = 0; | 
|  | } | 
|  |  | 
|  | /* Avoid ending a node on a NULL entry */ | 
|  | split = mab_no_null_split(bn, split, slot_count); | 
|  |  | 
|  | if (unlikely(*mid_split)) | 
|  | *mid_split = mab_no_null_split(bn, *mid_split, slot_count); | 
|  |  | 
|  | return split; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node | 
|  | * and set @b_node->b_end to the next free slot. | 
|  | * @mas: The maple state | 
|  | * @mas_start: The starting slot to copy | 
|  | * @mas_end: The end slot to copy (inclusively) | 
|  | * @b_node: The maple_big_node to place the data | 
|  | * @mab_start: The starting location in maple_big_node to store the data. | 
|  | */ | 
|  | static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, | 
|  | unsigned char mas_end, struct maple_big_node *b_node, | 
|  | unsigned char mab_start) | 
|  | { | 
|  | enum maple_type mt; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  | unsigned long *pivots, *gaps; | 
|  | int i = mas_start, j = mab_start; | 
|  | unsigned char piv_end; | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, mt); | 
|  | if (!i) { | 
|  | b_node->pivot[j] = pivots[i++]; | 
|  | if (unlikely(i > mas_end)) | 
|  | goto complete; | 
|  | j++; | 
|  | } | 
|  |  | 
|  | piv_end = min(mas_end, mt_pivots[mt]); | 
|  | for (; i < piv_end; i++, j++) { | 
|  | b_node->pivot[j] = pivots[i]; | 
|  | if (unlikely(!b_node->pivot[j])) | 
|  | goto complete; | 
|  |  | 
|  | if (unlikely(mas->max == b_node->pivot[j])) | 
|  | goto complete; | 
|  | } | 
|  |  | 
|  | b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); | 
|  |  | 
|  | complete: | 
|  | b_node->b_end = ++j; | 
|  | j -= mab_start; | 
|  | slots = ma_slots(node, mt); | 
|  | memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); | 
|  | if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { | 
|  | gaps = ma_gaps(node, mt); | 
|  | memcpy(b_node->gap + mab_start, gaps + mas_start, | 
|  | sizeof(unsigned long) * j); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_leaf_set_meta() - Set the metadata of a leaf if possible. | 
|  | * @node: The maple node | 
|  | * @mt: The maple type | 
|  | * @end: The node end | 
|  | */ | 
|  | static inline void mas_leaf_set_meta(struct maple_node *node, | 
|  | enum maple_type mt, unsigned char end) | 
|  | { | 
|  | if (end < mt_slots[mt] - 1) | 
|  | ma_set_meta(node, mt, 0, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. | 
|  | * @b_node: the maple_big_node that has the data | 
|  | * @mab_start: the start location in @b_node. | 
|  | * @mab_end: The end location in @b_node (inclusively) | 
|  | * @mas: The maple state with the maple encoded node. | 
|  | */ | 
|  | static inline void mab_mas_cp(struct maple_big_node *b_node, | 
|  | unsigned char mab_start, unsigned char mab_end, | 
|  | struct ma_state *mas, bool new_max) | 
|  | { | 
|  | int i, j = 0; | 
|  | enum maple_type mt = mte_node_type(mas->node); | 
|  | struct maple_node *node = mte_to_node(mas->node); | 
|  | void __rcu **slots = ma_slots(node, mt); | 
|  | unsigned long *pivots = ma_pivots(node, mt); | 
|  | unsigned long *gaps = NULL; | 
|  | unsigned char end; | 
|  |  | 
|  | if (mab_end - mab_start > mt_pivots[mt]) | 
|  | mab_end--; | 
|  |  | 
|  | if (!pivots[mt_pivots[mt] - 1]) | 
|  | slots[mt_pivots[mt]] = NULL; | 
|  |  | 
|  | i = mab_start; | 
|  | do { | 
|  | pivots[j++] = b_node->pivot[i++]; | 
|  | } while (i <= mab_end && likely(b_node->pivot[i])); | 
|  |  | 
|  | memcpy(slots, b_node->slot + mab_start, | 
|  | sizeof(void *) * (i - mab_start)); | 
|  |  | 
|  | if (new_max) | 
|  | mas->max = b_node->pivot[i - 1]; | 
|  |  | 
|  | end = j - 1; | 
|  | if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { | 
|  | unsigned long max_gap = 0; | 
|  | unsigned char offset = 0; | 
|  |  | 
|  | gaps = ma_gaps(node, mt); | 
|  | do { | 
|  | gaps[--j] = b_node->gap[--i]; | 
|  | if (gaps[j] > max_gap) { | 
|  | offset = j; | 
|  | max_gap = gaps[j]; | 
|  | } | 
|  | } while (j); | 
|  |  | 
|  | ma_set_meta(node, mt, offset, end); | 
|  | } else { | 
|  | mas_leaf_set_meta(node, mt, end); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_store_b_node() - Store an @entry into the b_node while also copying the | 
|  | * data from a maple encoded node. | 
|  | * @wr_mas: the maple write state | 
|  | * @b_node: the maple_big_node to fill with data | 
|  | * @offset_end: the offset to end copying | 
|  | * | 
|  | * Return: The actual end of the data stored in @b_node | 
|  | */ | 
|  | static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, | 
|  | struct maple_big_node *b_node, unsigned char offset_end) | 
|  | { | 
|  | unsigned char slot; | 
|  | unsigned char b_end; | 
|  | /* Possible underflow of piv will wrap back to 0 before use. */ | 
|  | unsigned long piv; | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | b_node->type = wr_mas->type; | 
|  | b_end = 0; | 
|  | slot = mas->offset; | 
|  | if (slot) { | 
|  | /* Copy start data up to insert. */ | 
|  | mas_mab_cp(mas, 0, slot - 1, b_node, 0); | 
|  | b_end = b_node->b_end; | 
|  | piv = b_node->pivot[b_end - 1]; | 
|  | } else | 
|  | piv = mas->min - 1; | 
|  |  | 
|  | if (piv + 1 < mas->index) { | 
|  | /* Handle range starting after old range */ | 
|  | b_node->slot[b_end] = wr_mas->content; | 
|  | if (!wr_mas->content) | 
|  | b_node->gap[b_end] = mas->index - 1 - piv; | 
|  | b_node->pivot[b_end++] = mas->index - 1; | 
|  | } | 
|  |  | 
|  | /* Store the new entry. */ | 
|  | mas->offset = b_end; | 
|  | b_node->slot[b_end] = wr_mas->entry; | 
|  | b_node->pivot[b_end] = mas->last; | 
|  |  | 
|  | /* Appended. */ | 
|  | if (mas->last >= mas->max) | 
|  | goto b_end; | 
|  |  | 
|  | /* Handle new range ending before old range ends */ | 
|  | piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); | 
|  | if (piv > mas->last) { | 
|  | if (offset_end != slot) | 
|  | wr_mas->content = mas_slot_locked(mas, wr_mas->slots, | 
|  | offset_end); | 
|  |  | 
|  | b_node->slot[++b_end] = wr_mas->content; | 
|  | if (!wr_mas->content) | 
|  | b_node->gap[b_end] = piv - mas->last + 1; | 
|  | b_node->pivot[b_end] = piv; | 
|  | } | 
|  |  | 
|  | slot = offset_end + 1; | 
|  | if (slot > mas->end) | 
|  | goto b_end; | 
|  |  | 
|  | /* Copy end data to the end of the node. */ | 
|  | mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end); | 
|  | b_node->b_end--; | 
|  | return; | 
|  |  | 
|  | b_end: | 
|  | b_node->b_end = b_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_prev_sibling() - Find the previous node with the same parent. | 
|  | * @mas: the maple state | 
|  | * | 
|  | * Return: True if there is a previous sibling, false otherwise. | 
|  | */ | 
|  | static inline bool mas_prev_sibling(struct ma_state *mas) | 
|  | { | 
|  | unsigned int p_slot = mte_parent_slot(mas->node); | 
|  |  | 
|  | /* For root node, p_slot is set to 0 by mte_parent_slot(). */ | 
|  | if (!p_slot) | 
|  | return false; | 
|  |  | 
|  | mas_ascend(mas); | 
|  | mas->offset = p_slot - 1; | 
|  | mas_descend(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_next_sibling() - Find the next node with the same parent. | 
|  | * @mas: the maple state | 
|  | * | 
|  | * Return: true if there is a next sibling, false otherwise. | 
|  | */ | 
|  | static inline bool mas_next_sibling(struct ma_state *mas) | 
|  | { | 
|  | MA_STATE(parent, mas->tree, mas->index, mas->last); | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return false; | 
|  |  | 
|  | parent = *mas; | 
|  | mas_ascend(&parent); | 
|  | parent.offset = mte_parent_slot(mas->node) + 1; | 
|  | if (parent.offset > mas_data_end(&parent)) | 
|  | return false; | 
|  |  | 
|  | *mas = parent; | 
|  | mas_descend(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_node_or_none() - Set the enode and state. | 
|  | * @mas: the maple state | 
|  | * @enode: The encoded maple node. | 
|  | * | 
|  | * Set the node to the enode and the status. | 
|  | */ | 
|  | static inline void mas_node_or_none(struct ma_state *mas, | 
|  | struct maple_enode *enode) | 
|  | { | 
|  | if (enode) { | 
|  | mas->node = enode; | 
|  | mas->status = ma_active; | 
|  | } else { | 
|  | mas->node = NULL; | 
|  | mas->status = ma_none; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_node_walk() - Find the correct offset for the index in the @mas. | 
|  | *                      If @mas->index cannot be found within the containing | 
|  | *                      node, we traverse to the last entry in the node. | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Uses mas_slot_locked() and does not need to worry about dead nodes. | 
|  | */ | 
|  | static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char count, offset; | 
|  |  | 
|  | if (unlikely(ma_is_dense(wr_mas->type))) { | 
|  | wr_mas->r_max = wr_mas->r_min = mas->index; | 
|  | mas->offset = mas->index = mas->min; | 
|  | return; | 
|  | } | 
|  |  | 
|  | wr_mas->node = mas_mn(wr_mas->mas); | 
|  | wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); | 
|  | count = mas->end = ma_data_end(wr_mas->node, wr_mas->type, | 
|  | wr_mas->pivots, mas->max); | 
|  | offset = mas->offset; | 
|  |  | 
|  | while (offset < count && mas->index > wr_mas->pivots[offset]) | 
|  | offset++; | 
|  |  | 
|  | wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; | 
|  | wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); | 
|  | wr_mas->offset_end = mas->offset = offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_rebalance_next() - Rebalance against the next node | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline void mast_rebalance_next(struct maple_subtree_state *mast) | 
|  | { | 
|  | unsigned char b_end = mast->bn->b_end; | 
|  |  | 
|  | mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), | 
|  | mast->bn, b_end); | 
|  | mast->orig_r->last = mast->orig_r->max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_rebalance_prev() - Rebalance against the previous node | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline void mast_rebalance_prev(struct maple_subtree_state *mast) | 
|  | { | 
|  | unsigned char end = mas_data_end(mast->orig_l) + 1; | 
|  | unsigned char b_end = mast->bn->b_end; | 
|  |  | 
|  | mab_shift_right(mast->bn, end); | 
|  | mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); | 
|  | mast->l->min = mast->orig_l->min; | 
|  | mast->orig_l->index = mast->orig_l->min; | 
|  | mast->bn->b_end = end + b_end; | 
|  | mast->l->offset += end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring | 
|  | * the node to the right.  Checking the nodes to the right then the left at each | 
|  | * level upwards until root is reached. | 
|  | * Data is copied into the @mast->bn. | 
|  | * @mast: The maple_subtree_state. | 
|  | */ | 
|  | static inline | 
|  | bool mast_spanning_rebalance(struct maple_subtree_state *mast) | 
|  | { | 
|  | struct ma_state r_tmp = *mast->orig_r; | 
|  | struct ma_state l_tmp = *mast->orig_l; | 
|  | unsigned char depth = 0; | 
|  |  | 
|  | do { | 
|  | mas_ascend(mast->orig_r); | 
|  | mas_ascend(mast->orig_l); | 
|  | depth++; | 
|  | if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { | 
|  | mast->orig_r->offset++; | 
|  | do { | 
|  | mas_descend(mast->orig_r); | 
|  | mast->orig_r->offset = 0; | 
|  | } while (--depth); | 
|  |  | 
|  | mast_rebalance_next(mast); | 
|  | *mast->orig_l = l_tmp; | 
|  | return true; | 
|  | } else if (mast->orig_l->offset != 0) { | 
|  | mast->orig_l->offset--; | 
|  | do { | 
|  | mas_descend(mast->orig_l); | 
|  | mast->orig_l->offset = | 
|  | mas_data_end(mast->orig_l); | 
|  | } while (--depth); | 
|  |  | 
|  | mast_rebalance_prev(mast); | 
|  | *mast->orig_r = r_tmp; | 
|  | return true; | 
|  | } | 
|  | } while (!mte_is_root(mast->orig_r->node)); | 
|  |  | 
|  | *mast->orig_r = r_tmp; | 
|  | *mast->orig_l = l_tmp; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_ascend() - Ascend the original left and right maple states. | 
|  | * @mast: the maple subtree state. | 
|  | * | 
|  | * Ascend the original left and right sides.  Set the offsets to point to the | 
|  | * data already in the new tree (@mast->l and @mast->r). | 
|  | */ | 
|  | static inline void mast_ascend(struct maple_subtree_state *mast) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mast->orig_r,  NULL); | 
|  | mas_ascend(mast->orig_l); | 
|  | mas_ascend(mast->orig_r); | 
|  |  | 
|  | mast->orig_r->offset = 0; | 
|  | mast->orig_r->index = mast->r->max; | 
|  | /* last should be larger than or equal to index */ | 
|  | if (mast->orig_r->last < mast->orig_r->index) | 
|  | mast->orig_r->last = mast->orig_r->index; | 
|  |  | 
|  | wr_mas.type = mte_node_type(mast->orig_r->node); | 
|  | mas_wr_node_walk(&wr_mas); | 
|  | /* Set up the left side of things */ | 
|  | mast->orig_l->offset = 0; | 
|  | mast->orig_l->index = mast->l->min; | 
|  | wr_mas.mas = mast->orig_l; | 
|  | wr_mas.type = mte_node_type(mast->orig_l->node); | 
|  | mas_wr_node_walk(&wr_mas); | 
|  |  | 
|  | mast->bn->type = wr_mas.type; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_new_ma_node() - Create and return a new maple node.  Helper function. | 
|  | * @mas: the maple state with the allocations. | 
|  | * @b_node: the maple_big_node with the type encoding. | 
|  | * | 
|  | * Use the node type from the maple_big_node to allocate a new node from the | 
|  | * ma_state.  This function exists mainly for code readability. | 
|  | * | 
|  | * Return: A new maple encoded node | 
|  | */ | 
|  | static inline struct maple_enode | 
|  | *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) | 
|  | { | 
|  | return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_mab_to_node() - Set up right and middle nodes | 
|  | * | 
|  | * @mas: the maple state that contains the allocations. | 
|  | * @b_node: the node which contains the data. | 
|  | * @left: The pointer which will have the left node | 
|  | * @right: The pointer which may have the right node | 
|  | * @middle: the pointer which may have the middle node (rare) | 
|  | * @mid_split: the split location for the middle node | 
|  | * | 
|  | * Return: the split of left. | 
|  | */ | 
|  | static inline unsigned char mas_mab_to_node(struct ma_state *mas, | 
|  | struct maple_big_node *b_node, struct maple_enode **left, | 
|  | struct maple_enode **right, struct maple_enode **middle, | 
|  | unsigned char *mid_split) | 
|  | { | 
|  | unsigned char split = 0; | 
|  | unsigned char slot_count = mt_slots[b_node->type]; | 
|  |  | 
|  | *left = mas_new_ma_node(mas, b_node); | 
|  | *right = NULL; | 
|  | *middle = NULL; | 
|  | *mid_split = 0; | 
|  |  | 
|  | if (b_node->b_end < slot_count) { | 
|  | split = b_node->b_end; | 
|  | } else { | 
|  | split = mab_calc_split(mas, b_node, mid_split); | 
|  | *right = mas_new_ma_node(mas, b_node); | 
|  | } | 
|  |  | 
|  | if (*mid_split) | 
|  | *middle = mas_new_ma_node(mas, b_node); | 
|  |  | 
|  | return split; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end | 
|  | * pointer. | 
|  | * @b_node: the big node to add the entry | 
|  | * @mas: the maple state to get the pivot (mas->max) | 
|  | * @entry: the entry to add, if NULL nothing happens. | 
|  | */ | 
|  | static inline void mab_set_b_end(struct maple_big_node *b_node, | 
|  | struct ma_state *mas, | 
|  | void *entry) | 
|  | { | 
|  | if (!entry) | 
|  | return; | 
|  |  | 
|  | b_node->slot[b_node->b_end] = entry; | 
|  | if (mt_is_alloc(mas->tree)) | 
|  | b_node->gap[b_node->b_end] = mas_max_gap(mas); | 
|  | b_node->pivot[b_node->b_end++] = mas->max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent | 
|  | * of @mas->node to either @left or @right, depending on @slot and @split | 
|  | * | 
|  | * @mas: the maple state with the node that needs a parent | 
|  | * @left: possible parent 1 | 
|  | * @right: possible parent 2 | 
|  | * @slot: the slot the mas->node was placed | 
|  | * @split: the split location between @left and @right | 
|  | */ | 
|  | static inline void mas_set_split_parent(struct ma_state *mas, | 
|  | struct maple_enode *left, | 
|  | struct maple_enode *right, | 
|  | unsigned char *slot, unsigned char split) | 
|  | { | 
|  | if (mas_is_none(mas)) | 
|  | return; | 
|  |  | 
|  | if ((*slot) <= split) | 
|  | mas_set_parent(mas, mas->node, left, *slot); | 
|  | else if (right) | 
|  | mas_set_parent(mas, mas->node, right, (*slot) - split - 1); | 
|  |  | 
|  | (*slot)++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_mid_split_check() - Check if the next node passes the mid-split | 
|  | * @l: Pointer to left encoded maple node. | 
|  | * @m: Pointer to middle encoded maple node. | 
|  | * @r: Pointer to right encoded maple node. | 
|  | * @slot: The offset | 
|  | * @split: The split location. | 
|  | * @mid_split: The middle split. | 
|  | */ | 
|  | static inline void mte_mid_split_check(struct maple_enode **l, | 
|  | struct maple_enode **r, | 
|  | struct maple_enode *right, | 
|  | unsigned char slot, | 
|  | unsigned char *split, | 
|  | unsigned char mid_split) | 
|  | { | 
|  | if (*r == right) | 
|  | return; | 
|  |  | 
|  | if (slot < mid_split) | 
|  | return; | 
|  |  | 
|  | *l = *r; | 
|  | *r = right; | 
|  | *split = mid_split; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_set_split_parents() - Helper function to set three nodes parents.  Slot | 
|  | * is taken from @mast->l. | 
|  | * @mast: the maple subtree state | 
|  | * @left: the left node | 
|  | * @right: the right node | 
|  | * @split: the split location. | 
|  | */ | 
|  | static inline void mast_set_split_parents(struct maple_subtree_state *mast, | 
|  | struct maple_enode *left, | 
|  | struct maple_enode *middle, | 
|  | struct maple_enode *right, | 
|  | unsigned char split, | 
|  | unsigned char mid_split) | 
|  | { | 
|  | unsigned char slot; | 
|  | struct maple_enode *l = left; | 
|  | struct maple_enode *r = right; | 
|  |  | 
|  | if (mas_is_none(mast->l)) | 
|  | return; | 
|  |  | 
|  | if (middle) | 
|  | r = middle; | 
|  |  | 
|  | slot = mast->l->offset; | 
|  |  | 
|  | mte_mid_split_check(&l, &r, right, slot, &split, mid_split); | 
|  | mas_set_split_parent(mast->l, l, r, &slot, split); | 
|  |  | 
|  | mte_mid_split_check(&l, &r, right, slot, &split, mid_split); | 
|  | mas_set_split_parent(mast->m, l, r, &slot, split); | 
|  |  | 
|  | mte_mid_split_check(&l, &r, right, slot, &split, mid_split); | 
|  | mas_set_split_parent(mast->r, l, r, &slot, split); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_topiary_node() - Dispose of a single node | 
|  | * @mas: The maple state for pushing nodes | 
|  | * @in_rcu: If the tree is in rcu mode | 
|  | * | 
|  | * The node will either be RCU freed or pushed back on the maple state. | 
|  | */ | 
|  | static inline void mas_topiary_node(struct ma_state *mas, | 
|  | struct ma_state *tmp_mas, bool in_rcu) | 
|  | { | 
|  | struct maple_node *tmp; | 
|  | struct maple_enode *enode; | 
|  |  | 
|  | if (mas_is_none(tmp_mas)) | 
|  | return; | 
|  |  | 
|  | enode = tmp_mas->node; | 
|  | tmp = mte_to_node(enode); | 
|  | mte_set_node_dead(enode); | 
|  | ma_free_rcu(tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_topiary_replace() - Replace the data with new data, then repair the | 
|  | * parent links within the new tree.  Iterate over the dead sub-tree and collect | 
|  | * the dead subtrees and topiary the nodes that are no longer of use. | 
|  | * | 
|  | * The new tree will have up to three children with the correct parent.  Keep | 
|  | * track of the new entries as they need to be followed to find the next level | 
|  | * of new entries. | 
|  | * | 
|  | * The old tree will have up to three children with the old parent.  Keep track | 
|  | * of the old entries as they may have more nodes below replaced.  Nodes within | 
|  | * [index, last] are dead subtrees, others need to be freed and followed. | 
|  | * | 
|  | * @mas: The maple state pointing at the new data | 
|  | * @old_enode: The maple encoded node being replaced | 
|  | * @new_height: The new height of the tree as a result of the operation | 
|  | * | 
|  | */ | 
|  | static inline void mas_topiary_replace(struct ma_state *mas, | 
|  | struct maple_enode *old_enode, unsigned char new_height) | 
|  | { | 
|  | struct ma_state tmp[3], tmp_next[3]; | 
|  | MA_TOPIARY(subtrees, mas->tree); | 
|  | bool in_rcu; | 
|  | int i, n; | 
|  |  | 
|  | /* Place data in tree & then mark node as old */ | 
|  | mas_put_in_tree(mas, old_enode, new_height); | 
|  |  | 
|  | /* Update the parent pointers in the tree */ | 
|  | tmp[0] = *mas; | 
|  | tmp[0].offset = 0; | 
|  | tmp[1].status = ma_none; | 
|  | tmp[2].status = ma_none; | 
|  | while (!mte_is_leaf(tmp[0].node)) { | 
|  | n = 0; | 
|  | for (i = 0; i < 3; i++) { | 
|  | if (mas_is_none(&tmp[i])) | 
|  | continue; | 
|  |  | 
|  | while (n < 3) { | 
|  | if (!mas_find_child(&tmp[i], &tmp_next[n])) | 
|  | break; | 
|  | n++; | 
|  | } | 
|  |  | 
|  | mas_adopt_children(&tmp[i], tmp[i].node); | 
|  | } | 
|  |  | 
|  | if (MAS_WARN_ON(mas, n == 0)) | 
|  | break; | 
|  |  | 
|  | while (n < 3) | 
|  | tmp_next[n++].status = ma_none; | 
|  |  | 
|  | for (i = 0; i < 3; i++) | 
|  | tmp[i] = tmp_next[i]; | 
|  | } | 
|  |  | 
|  | /* Collect the old nodes that need to be discarded */ | 
|  | if (mte_is_leaf(old_enode)) | 
|  | return mas_free(mas, old_enode); | 
|  |  | 
|  | tmp[0] = *mas; | 
|  | tmp[0].offset = 0; | 
|  | tmp[0].node = old_enode; | 
|  | tmp[1].status = ma_none; | 
|  | tmp[2].status = ma_none; | 
|  | in_rcu = mt_in_rcu(mas->tree); | 
|  | do { | 
|  | n = 0; | 
|  | for (i = 0; i < 3; i++) { | 
|  | if (mas_is_none(&tmp[i])) | 
|  | continue; | 
|  |  | 
|  | while (n < 3) { | 
|  | if (!mas_find_child(&tmp[i], &tmp_next[n])) | 
|  | break; | 
|  |  | 
|  | if ((tmp_next[n].min >= tmp_next->index) && | 
|  | (tmp_next[n].max <= tmp_next->last)) { | 
|  | mat_add(&subtrees, tmp_next[n].node); | 
|  | tmp_next[n].status = ma_none; | 
|  | } else { | 
|  | n++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MAS_WARN_ON(mas, n == 0)) | 
|  | break; | 
|  |  | 
|  | while (n < 3) | 
|  | tmp_next[n++].status = ma_none; | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | mas_topiary_node(mas, &tmp[i], in_rcu); | 
|  | tmp[i] = tmp_next[i]; | 
|  | } | 
|  | } while (!mte_is_leaf(tmp[0].node)); | 
|  |  | 
|  | for (i = 0; i < 3; i++) | 
|  | mas_topiary_node(mas, &tmp[i], in_rcu); | 
|  |  | 
|  | mas_mat_destroy(mas, &subtrees); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wmb_replace() - Write memory barrier and replace | 
|  | * @mas: The maple state | 
|  | * @old_enode: The old maple encoded node that is being replaced. | 
|  | * @new_height: The new height of the tree as a result of the operation | 
|  | * | 
|  | * Updates gap as necessary. | 
|  | */ | 
|  | static inline void mas_wmb_replace(struct ma_state *mas, | 
|  | struct maple_enode *old_enode, unsigned char new_height) | 
|  | { | 
|  | /* Insert the new data in the tree */ | 
|  | mas_topiary_replace(mas, old_enode, new_height); | 
|  |  | 
|  | if (mte_is_leaf(mas->node)) | 
|  | return; | 
|  |  | 
|  | mas_update_gap(mas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_cp_to_nodes() - Copy data out to nodes. | 
|  | * @mast: The maple subtree state | 
|  | * @left: The left encoded maple node | 
|  | * @middle: The middle encoded maple node | 
|  | * @right: The right encoded maple node | 
|  | * @split: The location to split between left and (middle ? middle : right) | 
|  | * @mid_split: The location to split between middle and right. | 
|  | */ | 
|  | static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, | 
|  | struct maple_enode *left, struct maple_enode *middle, | 
|  | struct maple_enode *right, unsigned char split, unsigned char mid_split) | 
|  | { | 
|  | bool new_lmax = true; | 
|  |  | 
|  | mas_node_or_none(mast->l, left); | 
|  | mas_node_or_none(mast->m, middle); | 
|  | mas_node_or_none(mast->r, right); | 
|  |  | 
|  | mast->l->min = mast->orig_l->min; | 
|  | if (split == mast->bn->b_end) { | 
|  | mast->l->max = mast->orig_r->max; | 
|  | new_lmax = false; | 
|  | } | 
|  |  | 
|  | mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); | 
|  |  | 
|  | if (middle) { | 
|  | mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); | 
|  | mast->m->min = mast->bn->pivot[split] + 1; | 
|  | split = mid_split; | 
|  | } | 
|  |  | 
|  | mast->r->max = mast->orig_r->max; | 
|  | if (right) { | 
|  | mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); | 
|  | mast->r->min = mast->bn->pivot[split] + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_combine_cp_left - Copy in the original left side of the tree into the | 
|  | * combined data set in the maple subtree state big node. | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline void mast_combine_cp_left(struct maple_subtree_state *mast) | 
|  | { | 
|  | unsigned char l_slot = mast->orig_l->offset; | 
|  |  | 
|  | if (!l_slot) | 
|  | return; | 
|  |  | 
|  | mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_combine_cp_right: Copy in the original right side of the tree into the | 
|  | * combined data set in the maple subtree state big node. | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline void mast_combine_cp_right(struct maple_subtree_state *mast) | 
|  | { | 
|  | if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) | 
|  | return; | 
|  |  | 
|  | mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, | 
|  | mt_slot_count(mast->orig_r->node), mast->bn, | 
|  | mast->bn->b_end); | 
|  | mast->orig_r->last = mast->orig_r->max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_sufficient: Check if the maple subtree state has enough data in the big | 
|  | * node to create at least one sufficient node | 
|  | * @mast: the maple subtree state | 
|  | */ | 
|  | static inline bool mast_sufficient(struct maple_subtree_state *mast) | 
|  | { | 
|  | if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_overflow: Check if there is too much data in the subtree state for a | 
|  | * single node. | 
|  | * @mast: The maple subtree state | 
|  | */ | 
|  | static inline bool mast_overflow(struct maple_subtree_state *mast) | 
|  | { | 
|  | if (mast->bn->b_end > mt_slot_count(mast->orig_l->node)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void *mtree_range_walk(struct ma_state *mas) | 
|  | { | 
|  | unsigned long *pivots; | 
|  | unsigned char offset; | 
|  | struct maple_node *node; | 
|  | struct maple_enode *next, *last; | 
|  | enum maple_type type; | 
|  | void __rcu **slots; | 
|  | unsigned char end; | 
|  | unsigned long max, min; | 
|  | unsigned long prev_max, prev_min; | 
|  |  | 
|  | next = mas->node; | 
|  | min = mas->min; | 
|  | max = mas->max; | 
|  | do { | 
|  | last = next; | 
|  | node = mte_to_node(next); | 
|  | type = mte_node_type(next); | 
|  | pivots = ma_pivots(node, type); | 
|  | end = ma_data_end(node, type, pivots, max); | 
|  | prev_min = min; | 
|  | prev_max = max; | 
|  | if (pivots[0] >= mas->index) { | 
|  | offset = 0; | 
|  | max = pivots[0]; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | offset = 1; | 
|  | while (offset < end) { | 
|  | if (pivots[offset] >= mas->index) { | 
|  | max = pivots[offset]; | 
|  | break; | 
|  | } | 
|  | offset++; | 
|  | } | 
|  |  | 
|  | min = pivots[offset - 1] + 1; | 
|  | next: | 
|  | slots = ma_slots(node, type); | 
|  | next = mt_slot(mas->tree, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | goto dead_node; | 
|  | } while (!ma_is_leaf(type)); | 
|  |  | 
|  | mas->end = end; | 
|  | mas->offset = offset; | 
|  | mas->index = min; | 
|  | mas->last = max; | 
|  | mas->min = prev_min; | 
|  | mas->max = prev_max; | 
|  | mas->node = last; | 
|  | return (void *)next; | 
|  |  | 
|  | dead_node: | 
|  | mas_reset(mas); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. | 
|  | * @mas: The starting maple state | 
|  | * @mast: The maple_subtree_state, keeps track of 4 maple states. | 
|  | * @count: The estimated count of iterations needed. | 
|  | * | 
|  | * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root | 
|  | * is hit.  First @b_node is split into two entries which are inserted into the | 
|  | * next iteration of the loop.  @b_node is returned populated with the final | 
|  | * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the | 
|  | * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last | 
|  | * to account of what has been copied into the new sub-tree.  The update of | 
|  | * orig_l_mas->last is used in mas_consume to find the slots that will need to | 
|  | * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of | 
|  | * the new sub-tree in case the sub-tree becomes the full tree. | 
|  | */ | 
|  | static void mas_spanning_rebalance(struct ma_state *mas, | 
|  | struct maple_subtree_state *mast, unsigned char count) | 
|  | { | 
|  | unsigned char split, mid_split; | 
|  | unsigned char slot = 0; | 
|  | unsigned char new_height = 0; /* used if node is a new root */ | 
|  | struct maple_enode *left = NULL, *middle = NULL, *right = NULL; | 
|  | struct maple_enode *old_enode; | 
|  |  | 
|  | MA_STATE(l_mas, mas->tree, mas->index, mas->index); | 
|  | MA_STATE(r_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(m_mas, mas->tree, mas->index, mas->index); | 
|  |  | 
|  | /* | 
|  | * The tree needs to be rebalanced and leaves need to be kept at the same level. | 
|  | * Rebalancing is done by use of the ``struct maple_topiary``. | 
|  | */ | 
|  | mast->l = &l_mas; | 
|  | mast->m = &m_mas; | 
|  | mast->r = &r_mas; | 
|  | l_mas.status = r_mas.status = m_mas.status = ma_none; | 
|  |  | 
|  | /* Check if this is not root and has sufficient data.  */ | 
|  | if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && | 
|  | unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) | 
|  | mast_spanning_rebalance(mast); | 
|  |  | 
|  | /* | 
|  | * Each level of the tree is examined and balanced, pushing data to the left or | 
|  | * right, or rebalancing against left or right nodes is employed to avoid | 
|  | * rippling up the tree to limit the amount of churn.  Once a new sub-section of | 
|  | * the tree is created, there may be a mix of new and old nodes.  The old nodes | 
|  | * will have the incorrect parent pointers and currently be in two trees: the | 
|  | * original tree and the partially new tree.  To remedy the parent pointers in | 
|  | * the old tree, the new data is swapped into the active tree and a walk down | 
|  | * the tree is performed and the parent pointers are updated. | 
|  | * See mas_topiary_replace() for more information. | 
|  | */ | 
|  | while (count--) { | 
|  | mast->bn->b_end--; | 
|  | mast->bn->type = mte_node_type(mast->orig_l->node); | 
|  | split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, | 
|  | &mid_split); | 
|  | mast_set_split_parents(mast, left, middle, right, split, | 
|  | mid_split); | 
|  | mast_cp_to_nodes(mast, left, middle, right, split, mid_split); | 
|  | new_height++; | 
|  |  | 
|  | /* | 
|  | * Copy data from next level in the tree to mast->bn from next | 
|  | * iteration | 
|  | */ | 
|  | memset(mast->bn, 0, sizeof(struct maple_big_node)); | 
|  | mast->bn->type = mte_node_type(left); | 
|  |  | 
|  | /* Root already stored in l->node. */ | 
|  | if (mas_is_root_limits(mast->l)) | 
|  | goto new_root; | 
|  |  | 
|  | mast_ascend(mast); | 
|  | mast_combine_cp_left(mast); | 
|  | l_mas.offset = mast->bn->b_end; | 
|  | mab_set_b_end(mast->bn, &l_mas, left); | 
|  | mab_set_b_end(mast->bn, &m_mas, middle); | 
|  | mab_set_b_end(mast->bn, &r_mas, right); | 
|  |  | 
|  | /* Copy anything necessary out of the right node. */ | 
|  | mast_combine_cp_right(mast); | 
|  | mast->orig_l->last = mast->orig_l->max; | 
|  |  | 
|  | if (mast_sufficient(mast)) { | 
|  | if (mast_overflow(mast)) | 
|  | continue; | 
|  |  | 
|  | if (mast->orig_l->node == mast->orig_r->node) { | 
|  | /* | 
|  | * The data in b_node should be stored in one | 
|  | * node and in the tree | 
|  | */ | 
|  | slot = mast->l->offset; | 
|  | break; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* May be a new root stored in mast->bn */ | 
|  | if (mas_is_root_limits(mast->orig_l)) | 
|  | break; | 
|  |  | 
|  | mast_spanning_rebalance(mast); | 
|  |  | 
|  | /* rebalancing from other nodes may require another loop. */ | 
|  | if (!count) | 
|  | count++; | 
|  | } | 
|  |  | 
|  | l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), | 
|  | mte_node_type(mast->orig_l->node)); | 
|  |  | 
|  | mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); | 
|  | new_height++; | 
|  | mas_set_parent(mas, left, l_mas.node, slot); | 
|  | if (middle) | 
|  | mas_set_parent(mas, middle, l_mas.node, ++slot); | 
|  |  | 
|  | if (right) | 
|  | mas_set_parent(mas, right, l_mas.node, ++slot); | 
|  |  | 
|  | if (mas_is_root_limits(mast->l)) { | 
|  | new_root: | 
|  | mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); | 
|  | while (!mte_is_root(mast->orig_l->node)) | 
|  | mast_ascend(mast); | 
|  | } else { | 
|  | mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; | 
|  | } | 
|  |  | 
|  | old_enode = mast->orig_l->node; | 
|  | mas->depth = l_mas.depth; | 
|  | mas->node = l_mas.node; | 
|  | mas->min = l_mas.min; | 
|  | mas->max = l_mas.max; | 
|  | mas->offset = l_mas.offset; | 
|  | mas_wmb_replace(mas, old_enode, new_height); | 
|  | mtree_range_walk(mas); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_rebalance() - Rebalance a given node. | 
|  | * @mas: The maple state | 
|  | * @b_node: The big maple node. | 
|  | * | 
|  | * Rebalance two nodes into a single node or two new nodes that are sufficient. | 
|  | * Continue upwards until tree is sufficient. | 
|  | */ | 
|  | static inline void mas_rebalance(struct ma_state *mas, | 
|  | struct maple_big_node *b_node) | 
|  | { | 
|  | char empty_count = mas_mt_height(mas); | 
|  | struct maple_subtree_state mast; | 
|  | unsigned char shift, b_end = ++b_node->b_end; | 
|  |  | 
|  | MA_STATE(l_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(r_mas, mas->tree, mas->index, mas->last); | 
|  |  | 
|  | trace_ma_op(__func__, mas); | 
|  |  | 
|  | /* | 
|  | * Rebalancing occurs if a node is insufficient.  Data is rebalanced | 
|  | * against the node to the right if it exists, otherwise the node to the | 
|  | * left of this node is rebalanced against this node.  If rebalancing | 
|  | * causes just one node to be produced instead of two, then the parent | 
|  | * is also examined and rebalanced if it is insufficient.  Every level | 
|  | * tries to combine the data in the same way.  If one node contains the | 
|  | * entire range of the tree, then that node is used as a new root node. | 
|  | */ | 
|  |  | 
|  | mast.orig_l = &l_mas; | 
|  | mast.orig_r = &r_mas; | 
|  | mast.bn = b_node; | 
|  | mast.bn->type = mte_node_type(mas->node); | 
|  |  | 
|  | l_mas = r_mas = *mas; | 
|  |  | 
|  | if (mas_next_sibling(&r_mas)) { | 
|  | mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); | 
|  | r_mas.last = r_mas.index = r_mas.max; | 
|  | } else { | 
|  | mas_prev_sibling(&l_mas); | 
|  | shift = mas_data_end(&l_mas) + 1; | 
|  | mab_shift_right(b_node, shift); | 
|  | mas->offset += shift; | 
|  | mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); | 
|  | b_node->b_end = shift + b_end; | 
|  | l_mas.index = l_mas.last = l_mas.min; | 
|  | } | 
|  |  | 
|  | return mas_spanning_rebalance(mas, &mast, empty_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_split_final_node() - Split the final node in a subtree operation. | 
|  | * @mast: the maple subtree state | 
|  | * @mas: The maple state | 
|  | */ | 
|  | static inline void mas_split_final_node(struct maple_subtree_state *mast, | 
|  | struct ma_state *mas) | 
|  | { | 
|  | struct maple_enode *ancestor; | 
|  |  | 
|  | if (mte_is_root(mas->node)) { | 
|  | if (mt_is_alloc(mas->tree)) | 
|  | mast->bn->type = maple_arange_64; | 
|  | else | 
|  | mast->bn->type = maple_range_64; | 
|  | } | 
|  | /* | 
|  | * Only a single node is used here, could be root. | 
|  | * The Big_node data should just fit in a single node. | 
|  | */ | 
|  | ancestor = mas_new_ma_node(mas, mast->bn); | 
|  | mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); | 
|  | mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); | 
|  | mte_to_node(ancestor)->parent = mas_mn(mas)->parent; | 
|  |  | 
|  | mast->l->node = ancestor; | 
|  | mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); | 
|  | mas->offset = mast->bn->b_end - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_fill_bnode() - Copy data into the big node in the subtree state | 
|  | * @mast: The maple subtree state | 
|  | * @mas: the maple state | 
|  | * @skip: The number of entries to skip for new nodes insertion. | 
|  | */ | 
|  | static inline void mast_fill_bnode(struct maple_subtree_state *mast, | 
|  | struct ma_state *mas, | 
|  | unsigned char skip) | 
|  | { | 
|  | bool cp = true; | 
|  | unsigned char split; | 
|  |  | 
|  | memset(mast->bn, 0, sizeof(struct maple_big_node)); | 
|  |  | 
|  | if (mte_is_root(mas->node)) { | 
|  | cp = false; | 
|  | } else { | 
|  | mas_ascend(mas); | 
|  | mas->offset = mte_parent_slot(mas->node); | 
|  | } | 
|  |  | 
|  | if (cp && mast->l->offset) | 
|  | mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); | 
|  |  | 
|  | split = mast->bn->b_end; | 
|  | mab_set_b_end(mast->bn, mast->l, mast->l->node); | 
|  | mast->r->offset = mast->bn->b_end; | 
|  | mab_set_b_end(mast->bn, mast->r, mast->r->node); | 
|  | if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) | 
|  | cp = false; | 
|  |  | 
|  | if (cp) | 
|  | mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, | 
|  | mast->bn, mast->bn->b_end); | 
|  |  | 
|  | mast->bn->b_end--; | 
|  | mast->bn->type = mte_node_type(mas->node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mast_split_data() - Split the data in the subtree state big node into regular | 
|  | * nodes. | 
|  | * @mast: The maple subtree state | 
|  | * @mas: The maple state | 
|  | * @split: The location to split the big node | 
|  | */ | 
|  | static inline void mast_split_data(struct maple_subtree_state *mast, | 
|  | struct ma_state *mas, unsigned char split) | 
|  | { | 
|  | unsigned char p_slot; | 
|  |  | 
|  | mab_mas_cp(mast->bn, 0, split, mast->l, true); | 
|  | mte_set_pivot(mast->r->node, 0, mast->r->max); | 
|  | mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); | 
|  | mast->l->offset = mte_parent_slot(mas->node); | 
|  | mast->l->max = mast->bn->pivot[split]; | 
|  | mast->r->min = mast->l->max + 1; | 
|  | if (mte_is_leaf(mas->node)) | 
|  | return; | 
|  |  | 
|  | p_slot = mast->orig_l->offset; | 
|  | mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, | 
|  | &p_slot, split); | 
|  | mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, | 
|  | &p_slot, split); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_push_data() - Instead of splitting a node, it is beneficial to push the | 
|  | * data to the right or left node if there is room. | 
|  | * @mas: The maple state | 
|  | * @mast: The maple subtree state | 
|  | * @left: Push left or not. | 
|  | * | 
|  | * Keeping the height of the tree low means faster lookups. | 
|  | * | 
|  | * Return: True if pushed, false otherwise. | 
|  | */ | 
|  | static inline bool mas_push_data(struct ma_state *mas, | 
|  | struct maple_subtree_state *mast, bool left) | 
|  | { | 
|  | unsigned char slot_total = mast->bn->b_end; | 
|  | unsigned char end, space, split; | 
|  |  | 
|  | MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); | 
|  | tmp_mas = *mas; | 
|  | tmp_mas.depth = mast->l->depth; | 
|  |  | 
|  | if (left && !mas_prev_sibling(&tmp_mas)) | 
|  | return false; | 
|  | else if (!left && !mas_next_sibling(&tmp_mas)) | 
|  | return false; | 
|  |  | 
|  | end = mas_data_end(&tmp_mas); | 
|  | slot_total += end; | 
|  | space = 2 * mt_slot_count(mas->node) - 2; | 
|  | /* -2 instead of -1 to ensure there isn't a triple split */ | 
|  | if (ma_is_leaf(mast->bn->type)) | 
|  | space--; | 
|  |  | 
|  | if (mas->max == ULONG_MAX) | 
|  | space--; | 
|  |  | 
|  | if (slot_total >= space) | 
|  | return false; | 
|  |  | 
|  | /* Get the data; Fill mast->bn */ | 
|  | mast->bn->b_end++; | 
|  | if (left) { | 
|  | mab_shift_right(mast->bn, end + 1); | 
|  | mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); | 
|  | mast->bn->b_end = slot_total + 1; | 
|  | } else { | 
|  | mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); | 
|  | } | 
|  |  | 
|  | /* Configure mast for splitting of mast->bn */ | 
|  | split = mt_slots[mast->bn->type] - 2; | 
|  | if (left) { | 
|  | /*  Switch mas to prev node  */ | 
|  | *mas = tmp_mas; | 
|  | /* Start using mast->l for the left side. */ | 
|  | tmp_mas.node = mast->l->node; | 
|  | *mast->l = tmp_mas; | 
|  | } else { | 
|  | tmp_mas.node = mast->r->node; | 
|  | *mast->r = tmp_mas; | 
|  | split = slot_total - split; | 
|  | } | 
|  | split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); | 
|  | /* Update parent slot for split calculation. */ | 
|  | if (left) | 
|  | mast->orig_l->offset += end + 1; | 
|  |  | 
|  | mast_split_data(mast, mas, split); | 
|  | mast_fill_bnode(mast, mas, 2); | 
|  | mas_split_final_node(mast, mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_split() - Split data that is too big for one node into two. | 
|  | * @mas: The maple state | 
|  | * @b_node: The maple big node | 
|  | */ | 
|  | static void mas_split(struct ma_state *mas, struct maple_big_node *b_node) | 
|  | { | 
|  | struct maple_subtree_state mast; | 
|  | int height = 0; | 
|  | unsigned int orig_height = mas_mt_height(mas); | 
|  | unsigned char mid_split, split = 0; | 
|  | struct maple_enode *old; | 
|  |  | 
|  | /* | 
|  | * Splitting is handled differently from any other B-tree; the Maple | 
|  | * Tree splits upwards.  Splitting up means that the split operation | 
|  | * occurs when the walk of the tree hits the leaves and not on the way | 
|  | * down.  The reason for splitting up is that it is impossible to know | 
|  | * how much space will be needed until the leaf is (or leaves are) | 
|  | * reached.  Since overwriting data is allowed and a range could | 
|  | * overwrite more than one range or result in changing one entry into 3 | 
|  | * entries, it is impossible to know if a split is required until the | 
|  | * data is examined. | 
|  | * | 
|  | * Splitting is a balancing act between keeping allocations to a minimum | 
|  | * and avoiding a 'jitter' event where a tree is expanded to make room | 
|  | * for an entry followed by a contraction when the entry is removed.  To | 
|  | * accomplish the balance, there are empty slots remaining in both left | 
|  | * and right nodes after a split. | 
|  | */ | 
|  | MA_STATE(l_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(r_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); | 
|  | MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); | 
|  |  | 
|  | trace_ma_op(__func__, mas); | 
|  |  | 
|  | mast.l = &l_mas; | 
|  | mast.r = &r_mas; | 
|  | mast.orig_l = &prev_l_mas; | 
|  | mast.orig_r = &prev_r_mas; | 
|  | mast.bn = b_node; | 
|  |  | 
|  | while (height++ <= orig_height) { | 
|  | if (mt_slots[b_node->type] > b_node->b_end) { | 
|  | mas_split_final_node(&mast, mas); | 
|  | break; | 
|  | } | 
|  |  | 
|  | l_mas = r_mas = *mas; | 
|  | l_mas.node = mas_new_ma_node(mas, b_node); | 
|  | r_mas.node = mas_new_ma_node(mas, b_node); | 
|  | /* | 
|  | * Another way that 'jitter' is avoided is to terminate a split up early if the | 
|  | * left or right node has space to spare.  This is referred to as "pushing left" | 
|  | * or "pushing right" and is similar to the B* tree, except the nodes left or | 
|  | * right can rarely be reused due to RCU, but the ripple upwards is halted which | 
|  | * is a significant savings. | 
|  | */ | 
|  | /* Try to push left. */ | 
|  | if (mas_push_data(mas, &mast, true)) { | 
|  | height++; | 
|  | break; | 
|  | } | 
|  | /* Try to push right. */ | 
|  | if (mas_push_data(mas, &mast, false)) { | 
|  | height++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | split = mab_calc_split(mas, b_node, &mid_split); | 
|  | mast_split_data(&mast, mas, split); | 
|  | /* | 
|  | * Usually correct, mab_mas_cp in the above call overwrites | 
|  | * r->max. | 
|  | */ | 
|  | mast.r->max = mas->max; | 
|  | mast_fill_bnode(&mast, mas, 1); | 
|  | prev_l_mas = *mast.l; | 
|  | prev_r_mas = *mast.r; | 
|  | } | 
|  |  | 
|  | /* Set the original node as dead */ | 
|  | old = mas->node; | 
|  | mas->node = l_mas.node; | 
|  | mas_wmb_replace(mas, old, height); | 
|  | mtree_range_walk(mas); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_commit_b_node() - Commit the big node into the tree. | 
|  | * @wr_mas: The maple write state | 
|  | * @b_node: The maple big node | 
|  | */ | 
|  | static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas, | 
|  | struct maple_big_node *b_node) | 
|  | { | 
|  | enum store_type type = wr_mas->mas->store_type; | 
|  |  | 
|  | WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store); | 
|  |  | 
|  | if (type == wr_rebalance) | 
|  | return mas_rebalance(wr_mas->mas, b_node); | 
|  |  | 
|  | return mas_split(wr_mas->mas, b_node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_root_expand() - Expand a root to a node | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store into the tree | 
|  | */ | 
|  | static inline void mas_root_expand(struct ma_state *mas, void *entry) | 
|  | { | 
|  | void *contents = mas_root_locked(mas); | 
|  | enum maple_type type = maple_leaf_64; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  | unsigned long *pivots; | 
|  | int slot = 0; | 
|  |  | 
|  | node = mas_pop_node(mas); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | node->parent = ma_parent_ptr(mas_tree_parent(mas)); | 
|  | mas->node = mt_mk_node(node, type); | 
|  | mas->status = ma_active; | 
|  |  | 
|  | if (mas->index) { | 
|  | if (contents) { | 
|  | rcu_assign_pointer(slots[slot], contents); | 
|  | if (likely(mas->index > 1)) | 
|  | slot++; | 
|  | } | 
|  | pivots[slot++] = mas->index - 1; | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(slots[slot], entry); | 
|  | mas->offset = slot; | 
|  | pivots[slot] = mas->last; | 
|  | if (mas->last != ULONG_MAX) | 
|  | pivots[++slot] = ULONG_MAX; | 
|  |  | 
|  | mt_set_height(mas->tree, 1); | 
|  | ma_set_meta(node, maple_leaf_64, 0, slot); | 
|  | /* swap the new root into the tree */ | 
|  | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_store_root() - Storing value into root. | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store. | 
|  | * | 
|  | * There is no root node now and we are storing a value into the root - this | 
|  | * function either assigns the pointer or expands into a node. | 
|  | */ | 
|  | static inline void mas_store_root(struct ma_state *mas, void *entry) | 
|  | { | 
|  | if (!entry) { | 
|  | if (!mas->index) | 
|  | rcu_assign_pointer(mas->tree->ma_root, NULL); | 
|  | } else if (likely((mas->last != 0) || (mas->index != 0))) | 
|  | mas_root_expand(mas, entry); | 
|  | else if (((unsigned long) (entry) & 3) == 2) | 
|  | mas_root_expand(mas, entry); | 
|  | else { | 
|  | rcu_assign_pointer(mas->tree->ma_root, entry); | 
|  | mas->status = ma_start; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_is_span_wr() - Check if the write needs to be treated as a write that | 
|  | * spans the node. | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Spanning writes are writes that start in one node and end in another OR if | 
|  | * the write of a %NULL will cause the node to end with a %NULL. | 
|  | * | 
|  | * Return: True if this is a spanning write, false otherwise. | 
|  | */ | 
|  | static bool mas_is_span_wr(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | unsigned long max = wr_mas->r_max; | 
|  | unsigned long last = wr_mas->mas->last; | 
|  | enum maple_type type = wr_mas->type; | 
|  | void *entry = wr_mas->entry; | 
|  |  | 
|  | /* Contained in this pivot, fast path */ | 
|  | if (last < max) | 
|  | return false; | 
|  |  | 
|  | if (ma_is_leaf(type)) { | 
|  | max = wr_mas->mas->max; | 
|  | if (last < max) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (last == max) { | 
|  | /* | 
|  | * The last entry of leaf node cannot be NULL unless it is the | 
|  | * rightmost node (writing ULONG_MAX), otherwise it spans slots. | 
|  | */ | 
|  | if (entry || last == ULONG_MAX) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | wr_mas->type = mte_node_type(wr_mas->mas->node); | 
|  | mas_wr_node_walk(wr_mas); | 
|  | wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | wr_mas->mas->max = wr_mas->r_max; | 
|  | wr_mas->mas->min = wr_mas->r_min; | 
|  | wr_mas->mas->node = wr_mas->content; | 
|  | wr_mas->mas->offset = 0; | 
|  | wr_mas->mas->depth++; | 
|  | } | 
|  | /* | 
|  | * mas_wr_walk() - Walk the tree for a write. | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Uses mas_slot_locked() and does not need to worry about dead nodes. | 
|  | * | 
|  | * Return: True if it's contained in a node, false on spanning write. | 
|  | */ | 
|  | static bool mas_wr_walk(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | while (true) { | 
|  | mas_wr_walk_descend(wr_mas); | 
|  | if (unlikely(mas_is_span_wr(wr_mas))) | 
|  | return false; | 
|  |  | 
|  | wr_mas->content = mas_slot_locked(mas, wr_mas->slots, | 
|  | mas->offset); | 
|  | if (ma_is_leaf(wr_mas->type)) | 
|  | return true; | 
|  |  | 
|  | if (mas->end < mt_slots[wr_mas->type] - 1) | 
|  | wr_mas->vacant_height = mas->depth + 1; | 
|  |  | 
|  | if (ma_is_root(mas_mn(mas))) { | 
|  | /* root needs more than 2 entries to be sufficient + 1 */ | 
|  | if (mas->end > 2) | 
|  | wr_mas->sufficient_height = 1; | 
|  | } else if (mas->end > mt_min_slots[wr_mas->type] + 1) | 
|  | wr_mas->sufficient_height = mas->depth + 1; | 
|  |  | 
|  | mas_wr_walk_traverse(wr_mas); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void mas_wr_walk_index(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | while (true) { | 
|  | mas_wr_walk_descend(wr_mas); | 
|  | wr_mas->content = mas_slot_locked(mas, wr_mas->slots, | 
|  | mas->offset); | 
|  | if (ma_is_leaf(wr_mas->type)) | 
|  | return; | 
|  | mas_wr_walk_traverse(wr_mas); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. | 
|  | * @l_wr_mas: The left maple write state | 
|  | * @r_wr_mas: The right maple write state | 
|  | */ | 
|  | static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, | 
|  | struct ma_wr_state *r_wr_mas) | 
|  | { | 
|  | struct ma_state *r_mas = r_wr_mas->mas; | 
|  | struct ma_state *l_mas = l_wr_mas->mas; | 
|  | unsigned char l_slot; | 
|  |  | 
|  | l_slot = l_mas->offset; | 
|  | if (!l_wr_mas->content) | 
|  | l_mas->index = l_wr_mas->r_min; | 
|  |  | 
|  | if ((l_mas->index == l_wr_mas->r_min) && | 
|  | (l_slot && | 
|  | !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { | 
|  | if (l_slot > 1) | 
|  | l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; | 
|  | else | 
|  | l_mas->index = l_mas->min; | 
|  |  | 
|  | l_mas->offset = l_slot - 1; | 
|  | } | 
|  |  | 
|  | if (!r_wr_mas->content) { | 
|  | if (r_mas->last < r_wr_mas->r_max) | 
|  | r_mas->last = r_wr_mas->r_max; | 
|  | r_mas->offset++; | 
|  | } else if ((r_mas->last == r_wr_mas->r_max) && | 
|  | (r_mas->last < r_mas->max) && | 
|  | !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { | 
|  | r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, | 
|  | r_wr_mas->type, r_mas->offset + 1); | 
|  | r_mas->offset++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void *mas_state_walk(struct ma_state *mas) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | entry = mas_start(mas); | 
|  | if (mas_is_none(mas)) | 
|  | return NULL; | 
|  |  | 
|  | if (mas_is_ptr(mas)) | 
|  | return entry; | 
|  |  | 
|  | return mtree_range_walk(mas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up | 
|  | * to date. | 
|  | * | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Note: Leaves mas in undesirable state. | 
|  | * Return: The entry for @mas->index or %NULL on dead node. | 
|  | */ | 
|  | static inline void *mtree_lookup_walk(struct ma_state *mas) | 
|  | { | 
|  | unsigned long *pivots; | 
|  | unsigned char offset; | 
|  | struct maple_node *node; | 
|  | struct maple_enode *next; | 
|  | enum maple_type type; | 
|  | void __rcu **slots; | 
|  | unsigned char end; | 
|  |  | 
|  | next = mas->node; | 
|  | do { | 
|  | node = mte_to_node(next); | 
|  | type = mte_node_type(next); | 
|  | pivots = ma_pivots(node, type); | 
|  | end = mt_pivots[type]; | 
|  | offset = 0; | 
|  | do { | 
|  | if (pivots[offset] >= mas->index) | 
|  | break; | 
|  | } while (++offset < end); | 
|  |  | 
|  | slots = ma_slots(node, type); | 
|  | next = mt_slot(mas->tree, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | goto dead_node; | 
|  | } while (!ma_is_leaf(type)); | 
|  |  | 
|  | return (void *)next; | 
|  |  | 
|  | dead_node: | 
|  | mas_reset(mas); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); | 
|  | /* | 
|  | * mas_new_root() - Create a new root node that only contains the entry passed | 
|  | * in. | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store. | 
|  | * | 
|  | * Only valid when the index == 0 and the last == ULONG_MAX | 
|  | */ | 
|  | static inline void mas_new_root(struct ma_state *mas, void *entry) | 
|  | { | 
|  | struct maple_enode *root = mas_root_locked(mas); | 
|  | enum maple_type type = maple_leaf_64; | 
|  | struct maple_node *node; | 
|  | void __rcu **slots; | 
|  | unsigned long *pivots; | 
|  |  | 
|  | WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX); | 
|  |  | 
|  | if (!entry) { | 
|  | mt_set_height(mas->tree, 0); | 
|  | rcu_assign_pointer(mas->tree->ma_root, entry); | 
|  | mas->status = ma_start; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | node = mas_pop_node(mas); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | node->parent = ma_parent_ptr(mas_tree_parent(mas)); | 
|  | mas->node = mt_mk_node(node, type); | 
|  | mas->status = ma_active; | 
|  | rcu_assign_pointer(slots[0], entry); | 
|  | pivots[0] = mas->last; | 
|  | mt_set_height(mas->tree, 1); | 
|  | rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); | 
|  |  | 
|  | done: | 
|  | if (xa_is_node(root)) | 
|  | mte_destroy_walk(root, mas->tree); | 
|  |  | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * mas_wr_spanning_store() - Create a subtree with the store operation completed | 
|  | * and new nodes where necessary, then place the sub-tree in the actual tree. | 
|  | * Note that mas is expected to point to the node which caused the store to | 
|  | * span. | 
|  | * @wr_mas: The maple write state | 
|  | */ | 
|  | static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct maple_subtree_state mast; | 
|  | struct maple_big_node b_node; | 
|  | struct ma_state *mas; | 
|  | unsigned char height; | 
|  |  | 
|  | /* Left and Right side of spanning store */ | 
|  | MA_STATE(l_mas, NULL, 0, 0); | 
|  | MA_STATE(r_mas, NULL, 0, 0); | 
|  | MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); | 
|  | MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); | 
|  |  | 
|  | /* | 
|  | * A store operation that spans multiple nodes is called a spanning | 
|  | * store and is handled early in the store call stack by the function | 
|  | * mas_is_span_wr().  When a spanning store is identified, the maple | 
|  | * state is duplicated.  The first maple state walks the left tree path | 
|  | * to ``index``, the duplicate walks the right tree path to ``last``. | 
|  | * The data in the two nodes are combined into a single node, two nodes, | 
|  | * or possibly three nodes (see the 3-way split above).  A ``NULL`` | 
|  | * written to the last entry of a node is considered a spanning store as | 
|  | * a rebalance is required for the operation to complete and an overflow | 
|  | * of data may happen. | 
|  | */ | 
|  | mas = wr_mas->mas; | 
|  | trace_ma_op(__func__, mas); | 
|  |  | 
|  | if (unlikely(!mas->index && mas->last == ULONG_MAX)) | 
|  | return mas_new_root(mas, wr_mas->entry); | 
|  | /* | 
|  | * Node rebalancing may occur due to this store, so there may be three new | 
|  | * entries per level plus a new root. | 
|  | */ | 
|  | height = mas_mt_height(mas); | 
|  |  | 
|  | /* | 
|  | * Set up right side.  Need to get to the next offset after the spanning | 
|  | * store to ensure it's not NULL and to combine both the next node and | 
|  | * the node with the start together. | 
|  | */ | 
|  | r_mas = *mas; | 
|  | /* Avoid overflow, walk to next slot in the tree. */ | 
|  | if (r_mas.last + 1) | 
|  | r_mas.last++; | 
|  |  | 
|  | r_mas.index = r_mas.last; | 
|  | mas_wr_walk_index(&r_wr_mas); | 
|  | r_mas.last = r_mas.index = mas->last; | 
|  |  | 
|  | /* Set up left side. */ | 
|  | l_mas = *mas; | 
|  | mas_wr_walk_index(&l_wr_mas); | 
|  |  | 
|  | if (!wr_mas->entry) { | 
|  | mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); | 
|  | mas->offset = l_mas.offset; | 
|  | mas->index = l_mas.index; | 
|  | mas->last = l_mas.last = r_mas.last; | 
|  | } | 
|  |  | 
|  | /* expanding NULLs may make this cover the entire range */ | 
|  | if (!l_mas.index && r_mas.last == ULONG_MAX) { | 
|  | mas_set_range(mas, 0, ULONG_MAX); | 
|  | return mas_new_root(mas, wr_mas->entry); | 
|  | } | 
|  |  | 
|  | memset(&b_node, 0, sizeof(struct maple_big_node)); | 
|  | /* Copy l_mas and store the value in b_node. */ | 
|  | mas_store_b_node(&l_wr_mas, &b_node, l_mas.end); | 
|  | /* Copy r_mas into b_node if there is anything to copy. */ | 
|  | if (r_mas.max > r_mas.last) | 
|  | mas_mab_cp(&r_mas, r_mas.offset, r_mas.end, | 
|  | &b_node, b_node.b_end + 1); | 
|  | else | 
|  | b_node.b_end++; | 
|  |  | 
|  | /* Stop spanning searches by searching for just index. */ | 
|  | l_mas.index = l_mas.last = mas->index; | 
|  |  | 
|  | mast.bn = &b_node; | 
|  | mast.orig_l = &l_mas; | 
|  | mast.orig_r = &r_mas; | 
|  | /* Combine l_mas and r_mas and split them up evenly again. */ | 
|  | return mas_spanning_rebalance(mas, &mast, height + 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_node_store() - Attempt to store the value in a node | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Attempts to reuse the node, but may allocate. | 
|  | */ | 
|  | static inline void mas_wr_node_store(struct ma_wr_state *wr_mas, | 
|  | unsigned char new_end) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | void __rcu **dst_slots; | 
|  | unsigned long *dst_pivots; | 
|  | unsigned char dst_offset, offset_end = wr_mas->offset_end; | 
|  | struct maple_node reuse, *newnode; | 
|  | unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; | 
|  | bool in_rcu = mt_in_rcu(mas->tree); | 
|  | unsigned char height = mas_mt_height(mas); | 
|  |  | 
|  | if (mas->last == wr_mas->end_piv) | 
|  | offset_end++; /* don't copy this offset */ | 
|  |  | 
|  | /* set up node. */ | 
|  | if (in_rcu) { | 
|  | newnode = mas_pop_node(mas); | 
|  | } else { | 
|  | memset(&reuse, 0, sizeof(struct maple_node)); | 
|  | newnode = &reuse; | 
|  | } | 
|  |  | 
|  | newnode->parent = mas_mn(mas)->parent; | 
|  | dst_pivots = ma_pivots(newnode, wr_mas->type); | 
|  | dst_slots = ma_slots(newnode, wr_mas->type); | 
|  | /* Copy from start to insert point */ | 
|  | memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); | 
|  | memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); | 
|  |  | 
|  | /* Handle insert of new range starting after old range */ | 
|  | if (wr_mas->r_min < mas->index) { | 
|  | rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); | 
|  | dst_pivots[mas->offset++] = mas->index - 1; | 
|  | } | 
|  |  | 
|  | /* Store the new entry and range end. */ | 
|  | if (mas->offset < node_pivots) | 
|  | dst_pivots[mas->offset] = mas->last; | 
|  | rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); | 
|  |  | 
|  | /* | 
|  | * this range wrote to the end of the node or it overwrote the rest of | 
|  | * the data | 
|  | */ | 
|  | if (offset_end > mas->end) | 
|  | goto done; | 
|  |  | 
|  | dst_offset = mas->offset + 1; | 
|  | /* Copy to the end of node if necessary. */ | 
|  | copy_size = mas->end - offset_end + 1; | 
|  | memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, | 
|  | sizeof(void *) * copy_size); | 
|  | memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, | 
|  | sizeof(unsigned long) * (copy_size - 1)); | 
|  |  | 
|  | if (new_end < node_pivots) | 
|  | dst_pivots[new_end] = mas->max; | 
|  |  | 
|  | done: | 
|  | mas_leaf_set_meta(newnode, maple_leaf_64, new_end); | 
|  | if (in_rcu) { | 
|  | struct maple_enode *old_enode = mas->node; | 
|  |  | 
|  | mas->node = mt_mk_node(newnode, wr_mas->type); | 
|  | mas_replace_node(mas, old_enode, height); | 
|  | } else { | 
|  | memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); | 
|  | } | 
|  | trace_ma_write(__func__, mas, 0, wr_mas->entry); | 
|  | mas_update_gap(mas); | 
|  | mas->end = new_end; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_slot_store: Attempt to store a value in a slot. | 
|  | * @wr_mas: the maple write state | 
|  | */ | 
|  | static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char offset = mas->offset; | 
|  | void __rcu **slots = wr_mas->slots; | 
|  | bool gap = false; | 
|  |  | 
|  | gap |= !mt_slot_locked(mas->tree, slots, offset); | 
|  | gap |= !mt_slot_locked(mas->tree, slots, offset + 1); | 
|  |  | 
|  | if (wr_mas->offset_end - offset == 1) { | 
|  | if (mas->index == wr_mas->r_min) { | 
|  | /* Overwriting the range and a part of the next one */ | 
|  | rcu_assign_pointer(slots[offset], wr_mas->entry); | 
|  | wr_mas->pivots[offset] = mas->last; | 
|  | } else { | 
|  | /* Overwriting a part of the range and the next one */ | 
|  | rcu_assign_pointer(slots[offset + 1], wr_mas->entry); | 
|  | wr_mas->pivots[offset] = mas->index - 1; | 
|  | mas->offset++; /* Keep mas accurate. */ | 
|  | } | 
|  | } else { | 
|  | WARN_ON_ONCE(mt_in_rcu(mas->tree)); | 
|  | /* | 
|  | * Expand the range, only partially overwriting the previous and | 
|  | * next ranges | 
|  | */ | 
|  | gap |= !mt_slot_locked(mas->tree, slots, offset + 2); | 
|  | rcu_assign_pointer(slots[offset + 1], wr_mas->entry); | 
|  | wr_mas->pivots[offset] = mas->index - 1; | 
|  | wr_mas->pivots[offset + 1] = mas->last; | 
|  | mas->offset++; /* Keep mas accurate. */ | 
|  | } | 
|  |  | 
|  | trace_ma_write(__func__, mas, 0, wr_mas->entry); | 
|  | /* | 
|  | * Only update gap when the new entry is empty or there is an empty | 
|  | * entry in the original two ranges. | 
|  | */ | 
|  | if (!wr_mas->entry || gap) | 
|  | mas_update_gap(mas); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | if (!wr_mas->slots[wr_mas->offset_end]) { | 
|  | /* If this one is null, the next and prev are not */ | 
|  | mas->last = wr_mas->end_piv; | 
|  | } else { | 
|  | /* Check next slot(s) if we are overwriting the end */ | 
|  | if ((mas->last == wr_mas->end_piv) && | 
|  | (mas->end != wr_mas->offset_end) && | 
|  | !wr_mas->slots[wr_mas->offset_end + 1]) { | 
|  | wr_mas->offset_end++; | 
|  | if (wr_mas->offset_end == mas->end) | 
|  | mas->last = mas->max; | 
|  | else | 
|  | mas->last = wr_mas->pivots[wr_mas->offset_end]; | 
|  | wr_mas->end_piv = mas->last; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!wr_mas->content) { | 
|  | /* If this one is null, the next and prev are not */ | 
|  | mas->index = wr_mas->r_min; | 
|  | } else { | 
|  | /* Check prev slot if we are overwriting the start */ | 
|  | if (mas->index == wr_mas->r_min && mas->offset && | 
|  | !wr_mas->slots[mas->offset - 1]) { | 
|  | mas->offset--; | 
|  | wr_mas->r_min = mas->index = | 
|  | mas_safe_min(mas, wr_mas->pivots, mas->offset); | 
|  | wr_mas->r_max = wr_mas->pivots[mas->offset]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | while ((wr_mas->offset_end < wr_mas->mas->end) && | 
|  | (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) | 
|  | wr_mas->offset_end++; | 
|  |  | 
|  | if (wr_mas->offset_end < wr_mas->mas->end) | 
|  | wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; | 
|  | else | 
|  | wr_mas->end_piv = wr_mas->mas->max; | 
|  | } | 
|  |  | 
|  | static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char new_end = mas->end + 2; | 
|  |  | 
|  | new_end -= wr_mas->offset_end - mas->offset; | 
|  | if (wr_mas->r_min == mas->index) | 
|  | new_end--; | 
|  |  | 
|  | if (wr_mas->end_piv == mas->last) | 
|  | new_end--; | 
|  |  | 
|  | return new_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_append: Attempt to append | 
|  | * @wr_mas: the maple write state | 
|  | * @new_end: The end of the node after the modification | 
|  | * | 
|  | * This is currently unsafe in rcu mode since the end of the node may be cached | 
|  | * by readers while the node contents may be updated which could result in | 
|  | * inaccurate information. | 
|  | */ | 
|  | static inline void mas_wr_append(struct ma_wr_state *wr_mas, | 
|  | unsigned char new_end) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | void __rcu **slots; | 
|  | unsigned char end = mas->end; | 
|  |  | 
|  | if (new_end < mt_pivots[wr_mas->type]) { | 
|  | wr_mas->pivots[new_end] = wr_mas->pivots[end]; | 
|  | ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end); | 
|  | } | 
|  |  | 
|  | slots = wr_mas->slots; | 
|  | if (new_end == end + 1) { | 
|  | if (mas->last == wr_mas->r_max) { | 
|  | /* Append to end of range */ | 
|  | rcu_assign_pointer(slots[new_end], wr_mas->entry); | 
|  | wr_mas->pivots[end] = mas->index - 1; | 
|  | mas->offset = new_end; | 
|  | } else { | 
|  | /* Append to start of range */ | 
|  | rcu_assign_pointer(slots[new_end], wr_mas->content); | 
|  | wr_mas->pivots[end] = mas->last; | 
|  | rcu_assign_pointer(slots[end], wr_mas->entry); | 
|  | } | 
|  | } else { | 
|  | /* Append to the range without touching any boundaries. */ | 
|  | rcu_assign_pointer(slots[new_end], wr_mas->content); | 
|  | wr_mas->pivots[end + 1] = mas->last; | 
|  | rcu_assign_pointer(slots[end + 1], wr_mas->entry); | 
|  | wr_mas->pivots[end] = mas->index - 1; | 
|  | mas->offset = end + 1; | 
|  | } | 
|  |  | 
|  | if (!wr_mas->content || !wr_mas->entry) | 
|  | mas_update_gap(mas); | 
|  |  | 
|  | mas->end = new_end; | 
|  | trace_ma_write(__func__, mas, new_end, wr_mas->entry); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_bnode() - Slow path for a modification. | 
|  | * @wr_mas: The write maple state | 
|  | * | 
|  | * This is where split, rebalance end up. | 
|  | */ | 
|  | static void mas_wr_bnode(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct maple_big_node b_node; | 
|  |  | 
|  | trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); | 
|  | memset(&b_node, 0, sizeof(struct maple_big_node)); | 
|  | mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); | 
|  | mas_commit_b_node(wr_mas, &b_node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_store_entry() - Internal call to store a value | 
|  | * @wr_mas: The maple write state | 
|  | */ | 
|  | static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char new_end = mas_wr_new_end(wr_mas); | 
|  |  | 
|  | switch (mas->store_type) { | 
|  | case wr_exact_fit: | 
|  | rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); | 
|  | if (!!wr_mas->entry ^ !!wr_mas->content) | 
|  | mas_update_gap(mas); | 
|  | break; | 
|  | case wr_append: | 
|  | mas_wr_append(wr_mas, new_end); | 
|  | break; | 
|  | case wr_slot_store: | 
|  | mas_wr_slot_store(wr_mas); | 
|  | break; | 
|  | case wr_node_store: | 
|  | mas_wr_node_store(wr_mas, new_end); | 
|  | break; | 
|  | case wr_spanning_store: | 
|  | mas_wr_spanning_store(wr_mas); | 
|  | break; | 
|  | case wr_split_store: | 
|  | case wr_rebalance: | 
|  | mas_wr_bnode(wr_mas); | 
|  | break; | 
|  | case wr_new_root: | 
|  | mas_new_root(mas, wr_mas->entry); | 
|  | break; | 
|  | case wr_store_root: | 
|  | mas_store_root(mas, wr_mas->entry); | 
|  | break; | 
|  | case wr_invalid: | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | if (!mas_is_active(mas)) { | 
|  | if (mas_is_start(mas)) | 
|  | goto set_content; | 
|  |  | 
|  | if (unlikely(mas_is_paused(mas))) | 
|  | goto reset; | 
|  |  | 
|  | if (unlikely(mas_is_none(mas))) | 
|  | goto reset; | 
|  |  | 
|  | if (unlikely(mas_is_overflow(mas))) | 
|  | goto reset; | 
|  |  | 
|  | if (unlikely(mas_is_underflow(mas))) | 
|  | goto reset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A less strict version of mas_is_span_wr() where we allow spanning | 
|  | * writes within this node.  This is to stop partial walks in | 
|  | * mas_prealloc() from being reset. | 
|  | */ | 
|  | if (mas->last > mas->max) | 
|  | goto reset; | 
|  |  | 
|  | if (wr_mas->entry) | 
|  | goto set_content; | 
|  |  | 
|  | if (mte_is_leaf(mas->node) && mas->last == mas->max) | 
|  | goto reset; | 
|  |  | 
|  | goto set_content; | 
|  |  | 
|  | reset: | 
|  | mas_reset(mas); | 
|  | set_content: | 
|  | wr_mas->content = mas_start(mas); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_prealloc_calc() - Calculate number of nodes needed for a | 
|  | * given store oepration | 
|  | * @wr_mas: The maple write state | 
|  | * @entry: The entry to store into the tree | 
|  | * | 
|  | * Return: Number of nodes required for preallocation. | 
|  | */ | 
|  | static inline void mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char height = mas_mt_height(mas); | 
|  | int ret = height * 3 + 1; | 
|  | unsigned char delta = height - wr_mas->vacant_height; | 
|  |  | 
|  | switch (mas->store_type) { | 
|  | case wr_exact_fit: | 
|  | case wr_append: | 
|  | case wr_slot_store: | 
|  | ret = 0; | 
|  | break; | 
|  | case wr_spanning_store: | 
|  | if (wr_mas->sufficient_height < wr_mas->vacant_height) | 
|  | ret = (height - wr_mas->sufficient_height) * 3 + 1; | 
|  | else | 
|  | ret = delta * 3 + 1; | 
|  | break; | 
|  | case wr_split_store: | 
|  | ret = delta * 2 + 1; | 
|  | break; | 
|  | case wr_rebalance: | 
|  | if (wr_mas->sufficient_height < wr_mas->vacant_height) | 
|  | ret = (height - wr_mas->sufficient_height) * 2 + 1; | 
|  | else | 
|  | ret = delta * 2 + 1; | 
|  | break; | 
|  | case wr_node_store: | 
|  | ret = mt_in_rcu(mas->tree) ? 1 : 0; | 
|  | break; | 
|  | case wr_new_root: | 
|  | ret = 1; | 
|  | break; | 
|  | case wr_store_root: | 
|  | if (likely((mas->last != 0) || (mas->index != 0))) | 
|  | ret = 1; | 
|  | else if (((unsigned long) (entry) & 3) == 2) | 
|  | ret = 1; | 
|  | else | 
|  | ret = 0; | 
|  | break; | 
|  | case wr_invalid: | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | mas->node_request = ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_wr_store_type() - Determine the store type for a given | 
|  | * store operation. | 
|  | * @wr_mas: The maple write state | 
|  | * | 
|  | * Return: the type of store needed for the operation | 
|  | */ | 
|  | static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  | unsigned char new_end; | 
|  |  | 
|  | if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) | 
|  | return wr_store_root; | 
|  |  | 
|  | if (unlikely(!mas_wr_walk(wr_mas))) | 
|  | return wr_spanning_store; | 
|  |  | 
|  | /* At this point, we are at the leaf node that needs to be altered. */ | 
|  | mas_wr_end_piv(wr_mas); | 
|  | if (!wr_mas->entry) | 
|  | mas_wr_extend_null(wr_mas); | 
|  |  | 
|  | if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last)) | 
|  | return wr_exact_fit; | 
|  |  | 
|  | if (unlikely(!mas->index && mas->last == ULONG_MAX)) | 
|  | return wr_new_root; | 
|  |  | 
|  | new_end = mas_wr_new_end(wr_mas); | 
|  | /* Potential spanning rebalance collapsing a node */ | 
|  | if (new_end < mt_min_slots[wr_mas->type]) { | 
|  | if (!mte_is_root(mas->node)) | 
|  | return  wr_rebalance; | 
|  | return wr_node_store; | 
|  | } | 
|  |  | 
|  | if (new_end >= mt_slots[wr_mas->type]) | 
|  | return wr_split_store; | 
|  |  | 
|  | if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end)) | 
|  | return wr_append; | 
|  |  | 
|  | if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) || | 
|  | (wr_mas->offset_end - mas->offset == 1))) | 
|  | return wr_slot_store; | 
|  |  | 
|  | return wr_node_store; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_wr_preallocate() - Preallocate enough nodes for a store operation | 
|  | * @wr_mas: The maple write state | 
|  | * @entry: The entry that will be stored | 
|  | * | 
|  | */ | 
|  | static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry) | 
|  | { | 
|  | struct ma_state *mas = wr_mas->mas; | 
|  |  | 
|  | mas_wr_prealloc_setup(wr_mas); | 
|  | mas->store_type = mas_wr_store_type(wr_mas); | 
|  | mas_prealloc_calc(wr_mas, entry); | 
|  | if (!mas->node_request) | 
|  | return; | 
|  |  | 
|  | mas_alloc_nodes(mas, GFP_NOWAIT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_insert() - Internal call to insert a value | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store | 
|  | * | 
|  | * Return: %NULL or the contents that already exists at the requested index | 
|  | * otherwise.  The maple state needs to be checked for error conditions. | 
|  | */ | 
|  | static inline void *mas_insert(struct ma_state *mas, void *entry) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | /* | 
|  | * Inserting a new range inserts either 0, 1, or 2 pivots within the | 
|  | * tree.  If the insert fits exactly into an existing gap with a value | 
|  | * of NULL, then the slot only needs to be written with the new value. | 
|  | * If the range being inserted is adjacent to another range, then only a | 
|  | * single pivot needs to be inserted (as well as writing the entry).  If | 
|  | * the new range is within a gap but does not touch any other ranges, | 
|  | * then two pivots need to be inserted: the start - 1, and the end.  As | 
|  | * usual, the entry must be written.  Most operations require a new node | 
|  | * to be allocated and replace an existing node to ensure RCU safety, | 
|  | * when in RCU mode.  The exception to requiring a newly allocated node | 
|  | * is when inserting at the end of a node (appending).  When done | 
|  | * carefully, appending can reuse the node in place. | 
|  | */ | 
|  | wr_mas.content = mas_start(mas); | 
|  | if (wr_mas.content) | 
|  | goto exists; | 
|  |  | 
|  | mas_wr_preallocate(&wr_mas, entry); | 
|  | if (mas_is_err(mas)) | 
|  | return NULL; | 
|  |  | 
|  | /* spanning writes always overwrite something */ | 
|  | if (mas->store_type == wr_spanning_store) | 
|  | goto exists; | 
|  |  | 
|  | /* At this point, we are at the leaf node that needs to be altered. */ | 
|  | if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) { | 
|  | wr_mas.offset_end = mas->offset; | 
|  | wr_mas.end_piv = wr_mas.r_max; | 
|  |  | 
|  | if (wr_mas.content || (mas->last > wr_mas.r_max)) | 
|  | goto exists; | 
|  | } | 
|  |  | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | return wr_mas.content; | 
|  |  | 
|  | exists: | 
|  | mas_set_err(mas, -EEXIST); | 
|  | return wr_mas.content; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_alloc_cyclic() - Internal call to find somewhere to store an entry | 
|  | * @mas: The maple state. | 
|  | * @startp: Pointer to ID. | 
|  | * @range_lo: Lower bound of range to search. | 
|  | * @range_hi: Upper bound of range to search. | 
|  | * @entry: The entry to store. | 
|  | * @next: Pointer to next ID to allocate. | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * Return: 0 if the allocation succeeded without wrapping, 1 if the | 
|  | * allocation succeeded after wrapping, or -EBUSY if there are no | 
|  | * free entries. | 
|  | */ | 
|  | int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, | 
|  | void *entry, unsigned long range_lo, unsigned long range_hi, | 
|  | unsigned long *next, gfp_t gfp) | 
|  | { | 
|  | unsigned long min = range_lo; | 
|  | int ret = 0; | 
|  |  | 
|  | range_lo = max(min, *next); | 
|  | ret = mas_empty_area(mas, range_lo, range_hi, 1); | 
|  | if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) { | 
|  | mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED; | 
|  | ret = 1; | 
|  | } | 
|  | if (ret < 0 && range_lo > min) { | 
|  | mas_reset(mas); | 
|  | ret = mas_empty_area(mas, min, range_hi, 1); | 
|  | if (ret == 0) | 
|  | ret = 1; | 
|  | } | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | do { | 
|  | mas_insert(mas, entry); | 
|  | } while (mas_nomem(mas, gfp)); | 
|  | if (mas_is_err(mas)) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | *startp = mas->index; | 
|  | *next = *startp + 1; | 
|  | if (*next == 0) | 
|  | mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED; | 
|  |  | 
|  | mas_destroy(mas); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mas_alloc_cyclic); | 
|  |  | 
|  | static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) | 
|  | { | 
|  | retry: | 
|  | mas_set(mas, index); | 
|  | mas_state_walk(mas); | 
|  | if (mas_is_start(mas)) | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, | 
|  | struct maple_node *node, const unsigned long index) | 
|  | { | 
|  | if (unlikely(ma_dead_node(node))) { | 
|  | mas_rewalk(mas, index); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_prev_node() - Find the prev non-null entry at the same level in the | 
|  | * tree.  The prev value will be mas->node[mas->offset] or the status will be | 
|  | * ma_none. | 
|  | * @mas: The maple state | 
|  | * @min: The lower limit to search | 
|  | * | 
|  | * The prev node value will be mas->node[mas->offset] or the status will be | 
|  | * ma_none. | 
|  | * Return: 1 if the node is dead, 0 otherwise. | 
|  | */ | 
|  | static int mas_prev_node(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | enum maple_type mt; | 
|  | int offset, level; | 
|  | void __rcu **slots; | 
|  | struct maple_node *node; | 
|  | unsigned long *pivots; | 
|  | unsigned long max; | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | if (!mas->min) | 
|  | goto no_entry; | 
|  |  | 
|  | max = mas->min - 1; | 
|  | if (max < min) | 
|  | goto no_entry; | 
|  |  | 
|  | level = 0; | 
|  | do { | 
|  | if (ma_is_root(node)) | 
|  | goto no_entry; | 
|  |  | 
|  | /* Walk up. */ | 
|  | if (unlikely(mas_ascend(mas))) | 
|  | return 1; | 
|  | offset = mas->offset; | 
|  | level++; | 
|  | node = mas_mn(mas); | 
|  | } while (!offset); | 
|  |  | 
|  | offset--; | 
|  | mt = mte_node_type(mas->node); | 
|  | while (level > 1) { | 
|  | level--; | 
|  | slots = ma_slots(node, mt); | 
|  | mas->node = mas_slot(mas, slots, offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mt = mte_node_type(mas->node); | 
|  | node = mas_mn(mas); | 
|  | pivots = ma_pivots(node, mt); | 
|  | offset = ma_data_end(node, mt, pivots, max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | slots = ma_slots(node, mt); | 
|  | mas->node = mas_slot(mas, slots, offset); | 
|  | pivots = ma_pivots(node, mt); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | if (likely(offset)) | 
|  | mas->min = pivots[offset - 1] + 1; | 
|  | mas->max = max; | 
|  | mas->offset = mas_data_end(mas); | 
|  | if (unlikely(mte_dead_node(mas->node))) | 
|  | return 1; | 
|  |  | 
|  | mas->end = mas->offset; | 
|  | return 0; | 
|  |  | 
|  | no_entry: | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->status = ma_underflow; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_prev_slot() - Get the entry in the previous slot | 
|  | * | 
|  | * @mas: The maple state | 
|  | * @min: The minimum starting range | 
|  | * @empty: Can be empty | 
|  | * | 
|  | * Return: The entry in the previous slot which is possibly NULL | 
|  | */ | 
|  | static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) | 
|  | { | 
|  | void *entry; | 
|  | void __rcu **slots; | 
|  | unsigned long pivot; | 
|  | enum maple_type type; | 
|  | unsigned long *pivots; | 
|  | struct maple_node *node; | 
|  | unsigned long save_point = mas->index; | 
|  |  | 
|  | retry: | 
|  | node = mas_mn(mas); | 
|  | type = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, type); | 
|  | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) | 
|  | goto retry; | 
|  |  | 
|  | if (mas->min <= min) { | 
|  | pivot = mas_safe_min(mas, pivots, mas->offset); | 
|  |  | 
|  | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) | 
|  | goto retry; | 
|  |  | 
|  | if (pivot <= min) | 
|  | goto underflow; | 
|  | } | 
|  |  | 
|  | again: | 
|  | if (likely(mas->offset)) { | 
|  | mas->offset--; | 
|  | mas->last = mas->index - 1; | 
|  | mas->index = mas_safe_min(mas, pivots, mas->offset); | 
|  | } else  { | 
|  | if (mas->index <= min) | 
|  | goto underflow; | 
|  |  | 
|  | if (mas_prev_node(mas, min)) { | 
|  | mas_rewalk(mas, save_point); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(mas_is_underflow(mas))) | 
|  | return NULL; | 
|  |  | 
|  | mas->last = mas->max; | 
|  | node = mas_mn(mas); | 
|  | type = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, type); | 
|  | mas->index = pivots[mas->offset - 1] + 1; | 
|  | } | 
|  |  | 
|  | slots = ma_slots(node, type); | 
|  | entry = mas_slot(mas, slots, mas->offset); | 
|  | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) | 
|  | goto retry; | 
|  |  | 
|  | if (likely(entry)) | 
|  | return entry; | 
|  |  | 
|  | if (!empty) { | 
|  | if (mas->index <= min) | 
|  | goto underflow; | 
|  |  | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  |  | 
|  | underflow: | 
|  | mas->status = ma_underflow; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_next_node() - Get the next node at the same level in the tree. | 
|  | * @mas: The maple state | 
|  | * @node: The maple node | 
|  | * @max: The maximum pivot value to check. | 
|  | * | 
|  | * The next value will be mas->node[mas->offset] or the status will have | 
|  | * overflowed. | 
|  | * Return: 1 on dead node, 0 otherwise. | 
|  | */ | 
|  | static int mas_next_node(struct ma_state *mas, struct maple_node *node, | 
|  | unsigned long max) | 
|  | { | 
|  | unsigned long min; | 
|  | unsigned long *pivots; | 
|  | struct maple_enode *enode; | 
|  | struct maple_node *tmp; | 
|  | int level = 0; | 
|  | unsigned char node_end; | 
|  | enum maple_type mt; | 
|  | void __rcu **slots; | 
|  |  | 
|  | if (mas->max >= max) | 
|  | goto overflow; | 
|  |  | 
|  | min = mas->max + 1; | 
|  | level = 0; | 
|  | do { | 
|  | if (ma_is_root(node)) | 
|  | goto overflow; | 
|  |  | 
|  | /* Walk up. */ | 
|  | if (unlikely(mas_ascend(mas))) | 
|  | return 1; | 
|  |  | 
|  | level++; | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, mt); | 
|  | node_end = ma_data_end(node, mt, pivots, mas->max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | } while (unlikely(mas->offset == node_end)); | 
|  |  | 
|  | slots = ma_slots(node, mt); | 
|  | mas->offset++; | 
|  | enode = mas_slot(mas, slots, mas->offset); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | if (level > 1) | 
|  | mas->offset = 0; | 
|  |  | 
|  | while (unlikely(level > 1)) { | 
|  | level--; | 
|  | mas->node = enode; | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | slots = ma_slots(node, mt); | 
|  | enode = mas_slot(mas, slots, 0); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!mas->offset) | 
|  | pivots = ma_pivots(node, mt); | 
|  |  | 
|  | mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); | 
|  | tmp = mte_to_node(enode); | 
|  | mt = mte_node_type(enode); | 
|  | pivots = ma_pivots(tmp, mt); | 
|  | mas->end = ma_data_end(tmp, mt, pivots, mas->max); | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->node = enode; | 
|  | mas->min = min; | 
|  | return 0; | 
|  |  | 
|  | overflow: | 
|  | if (unlikely(ma_dead_node(node))) | 
|  | return 1; | 
|  |  | 
|  | mas->status = ma_overflow; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_next_slot() - Get the entry in the next slot | 
|  | * | 
|  | * @mas: The maple state | 
|  | * @max: The maximum starting range | 
|  | * @empty: Can be empty | 
|  | * | 
|  | * Return: The entry in the next slot which is possibly NULL | 
|  | */ | 
|  | static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) | 
|  | { | 
|  | void __rcu **slots; | 
|  | unsigned long *pivots; | 
|  | unsigned long pivot; | 
|  | enum maple_type type; | 
|  | struct maple_node *node; | 
|  | unsigned long save_point = mas->last; | 
|  | void *entry; | 
|  |  | 
|  | retry: | 
|  | node = mas_mn(mas); | 
|  | type = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, type); | 
|  | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) | 
|  | goto retry; | 
|  |  | 
|  | if (mas->max >= max) { | 
|  | if (likely(mas->offset < mas->end)) | 
|  | pivot = pivots[mas->offset]; | 
|  | else | 
|  | pivot = mas->max; | 
|  |  | 
|  | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) | 
|  | goto retry; | 
|  |  | 
|  | if (pivot >= max) { /* Was at the limit, next will extend beyond */ | 
|  | mas->status = ma_overflow; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(mas->offset < mas->end)) { | 
|  | mas->index = pivots[mas->offset] + 1; | 
|  | again: | 
|  | mas->offset++; | 
|  | if (likely(mas->offset < mas->end)) | 
|  | mas->last = pivots[mas->offset]; | 
|  | else | 
|  | mas->last = mas->max; | 
|  | } else  { | 
|  | if (mas->last >= max) { | 
|  | mas->status = ma_overflow; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (mas_next_node(mas, node, max)) { | 
|  | mas_rewalk(mas, save_point); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(mas_is_overflow(mas))) | 
|  | return NULL; | 
|  |  | 
|  | mas->offset = 0; | 
|  | mas->index = mas->min; | 
|  | node = mas_mn(mas); | 
|  | type = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, type); | 
|  | mas->last = pivots[0]; | 
|  | } | 
|  |  | 
|  | slots = ma_slots(node, type); | 
|  | entry = mt_slot(mas->tree, slots, mas->offset); | 
|  | if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) | 
|  | goto retry; | 
|  |  | 
|  | if (entry) | 
|  | return entry; | 
|  |  | 
|  |  | 
|  | if (!empty) { | 
|  | if (mas->last >= max) { | 
|  | mas->status = ma_overflow; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | mas->index = mas->last + 1; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the | 
|  | * highest gap address of a given size in a given node and descend. | 
|  | * @mas: The maple state | 
|  | * @size: The needed size. | 
|  | * | 
|  | * Return: True if found in a leaf, false otherwise. | 
|  | * | 
|  | */ | 
|  | static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, | 
|  | unsigned long *gap_min, unsigned long *gap_max) | 
|  | { | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | struct maple_node *node = mas_mn(mas); | 
|  | unsigned long *pivots, *gaps; | 
|  | void __rcu **slots; | 
|  | unsigned long gap = 0; | 
|  | unsigned long max, min; | 
|  | unsigned char offset; | 
|  |  | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | return true; | 
|  |  | 
|  | if (ma_is_dense(type)) { | 
|  | /* dense nodes. */ | 
|  | mas->offset = (unsigned char)(mas->index - mas->min); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | gaps = ma_gaps(node, type); | 
|  | offset = mas->offset; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | /* Skip out of bounds. */ | 
|  | while (mas->last < min) | 
|  | min = mas_safe_min(mas, pivots, --offset); | 
|  |  | 
|  | max = mas_safe_pivot(mas, pivots, offset, type); | 
|  | while (mas->index <= max) { | 
|  | gap = 0; | 
|  | if (gaps) | 
|  | gap = gaps[offset]; | 
|  | else if (!mas_slot(mas, slots, offset)) | 
|  | gap = max - min + 1; | 
|  |  | 
|  | if (gap) { | 
|  | if ((size <= gap) && (size <= mas->last - min + 1)) | 
|  | break; | 
|  |  | 
|  | if (!gaps) { | 
|  | /* Skip the next slot, it cannot be a gap. */ | 
|  | if (offset < 2) | 
|  | goto ascend; | 
|  |  | 
|  | offset -= 2; | 
|  | max = pivots[offset]; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!offset) | 
|  | goto ascend; | 
|  |  | 
|  | offset--; | 
|  | max = min - 1; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | } | 
|  |  | 
|  | if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) | 
|  | goto no_space; | 
|  |  | 
|  | if (unlikely(ma_is_leaf(type))) { | 
|  | mas->offset = offset; | 
|  | *gap_min = min; | 
|  | *gap_max = min + gap - 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* descend, only happens under lock. */ | 
|  | mas->node = mas_slot(mas, slots, offset); | 
|  | mas->min = min; | 
|  | mas->max = max; | 
|  | mas->offset = mas_data_end(mas); | 
|  | return false; | 
|  |  | 
|  | ascend: | 
|  | if (!mte_is_root(mas->node)) | 
|  | return false; | 
|  |  | 
|  | no_space: | 
|  | mas_set_err(mas, -EBUSY); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) | 
|  | { | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | unsigned long pivot, min, gap = 0; | 
|  | unsigned char offset, data_end; | 
|  | unsigned long *gaps, *pivots; | 
|  | void __rcu **slots; | 
|  | struct maple_node *node; | 
|  | bool found = false; | 
|  |  | 
|  | if (ma_is_dense(type)) { | 
|  | mas->offset = (unsigned char)(mas->index - mas->min); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | node = mas_mn(mas); | 
|  | pivots = ma_pivots(node, type); | 
|  | slots = ma_slots(node, type); | 
|  | gaps = ma_gaps(node, type); | 
|  | offset = mas->offset; | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | data_end = ma_data_end(node, type, pivots, mas->max); | 
|  | for (; offset <= data_end; offset++) { | 
|  | pivot = mas_safe_pivot(mas, pivots, offset, type); | 
|  |  | 
|  | /* Not within lower bounds */ | 
|  | if (mas->index > pivot) | 
|  | goto next_slot; | 
|  |  | 
|  | if (gaps) | 
|  | gap = gaps[offset]; | 
|  | else if (!mas_slot(mas, slots, offset)) | 
|  | gap = min(pivot, mas->last) - max(mas->index, min) + 1; | 
|  | else | 
|  | goto next_slot; | 
|  |  | 
|  | if (gap >= size) { | 
|  | if (ma_is_leaf(type)) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mas->node = mas_slot(mas, slots, offset); | 
|  | mas->min = min; | 
|  | mas->max = pivot; | 
|  | offset = 0; | 
|  | break; | 
|  | } | 
|  | next_slot: | 
|  | min = pivot + 1; | 
|  | if (mas->last <= pivot) { | 
|  | mas_set_err(mas, -EBUSY); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | mas->offset = offset; | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_walk() - Search for @mas->index in the tree. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * mas->index and mas->last will be set to the range if there is a value.  If | 
|  | * mas->status is ma_none, reset to ma_start | 
|  | * | 
|  | * Return: the entry at the location or %NULL. | 
|  | */ | 
|  | void *mas_walk(struct ma_state *mas) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | if (!mas_is_active(mas) && !mas_is_start(mas)) | 
|  | mas->status = ma_start; | 
|  | retry: | 
|  | entry = mas_state_walk(mas); | 
|  | if (mas_is_start(mas)) { | 
|  | goto retry; | 
|  | } else if (mas_is_none(mas)) { | 
|  | mas->index = 0; | 
|  | mas->last = ULONG_MAX; | 
|  | } else if (mas_is_ptr(mas)) { | 
|  | if (!mas->index) { | 
|  | mas->last = 0; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | mas->index = 1; | 
|  | mas->last = ULONG_MAX; | 
|  | mas->status = ma_none; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_walk); | 
|  |  | 
|  | static inline bool mas_rewind_node(struct ma_state *mas) | 
|  | { | 
|  | unsigned char slot; | 
|  |  | 
|  | do { | 
|  | if (mte_is_root(mas->node)) { | 
|  | slot = mas->offset; | 
|  | if (!slot) | 
|  | return false; | 
|  | } else { | 
|  | mas_ascend(mas); | 
|  | slot = mas->offset; | 
|  | } | 
|  | } while (!slot); | 
|  |  | 
|  | mas->offset = --slot; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_skip_node() - Internal function.  Skip over a node. | 
|  | * @mas: The maple state. | 
|  | * | 
|  | * Return: true if there is another node, false otherwise. | 
|  | */ | 
|  | static inline bool mas_skip_node(struct ma_state *mas) | 
|  | { | 
|  | if (mas_is_err(mas)) | 
|  | return false; | 
|  |  | 
|  | do { | 
|  | if (mte_is_root(mas->node)) { | 
|  | if (mas->offset >= mas_data_end(mas)) { | 
|  | mas_set_err(mas, -EBUSY); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | mas_ascend(mas); | 
|  | } | 
|  | } while (mas->offset >= mas_data_end(mas)); | 
|  |  | 
|  | mas->offset++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of | 
|  | * @size | 
|  | * @mas: The maple state | 
|  | * @size: The size of the gap required | 
|  | * | 
|  | * Search between @mas->index and @mas->last for a gap of @size. | 
|  | */ | 
|  | static inline void mas_awalk(struct ma_state *mas, unsigned long size) | 
|  | { | 
|  | struct maple_enode *last = NULL; | 
|  |  | 
|  | /* | 
|  | * There are 4 options: | 
|  | * go to child (descend) | 
|  | * go back to parent (ascend) | 
|  | * no gap found. (return, error == -EBUSY) | 
|  | * found the gap. (return) | 
|  | */ | 
|  | while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { | 
|  | if (last == mas->node) | 
|  | mas_skip_node(mas); | 
|  | else | 
|  | last = mas->node; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_sparse_area() - Internal function.  Return upper or lower limit when | 
|  | * searching for a gap in an empty tree. | 
|  | * @mas: The maple state | 
|  | * @min: the minimum range | 
|  | * @max: The maximum range | 
|  | * @size: The size of the gap | 
|  | * @fwd: Searching forward or back | 
|  | */ | 
|  | static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, | 
|  | unsigned long max, unsigned long size, bool fwd) | 
|  | { | 
|  | if (!unlikely(mas_is_none(mas)) && min == 0) { | 
|  | min++; | 
|  | /* | 
|  | * At this time, min is increased, we need to recheck whether | 
|  | * the size is satisfied. | 
|  | */ | 
|  | if (min > max || max - min + 1 < size) | 
|  | return -EBUSY; | 
|  | } | 
|  | /* mas_is_ptr */ | 
|  |  | 
|  | if (fwd) { | 
|  | mas->index = min; | 
|  | mas->last = min + size - 1; | 
|  | } else { | 
|  | mas->last = max; | 
|  | mas->index = max - size + 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_empty_area() - Get the lowest address within the range that is | 
|  | * sufficient for the size requested. | 
|  | * @mas: The maple state | 
|  | * @min: The lowest value of the range | 
|  | * @max: The highest value of the range | 
|  | * @size: The size needed | 
|  | */ | 
|  | int mas_empty_area(struct ma_state *mas, unsigned long min, | 
|  | unsigned long max, unsigned long size) | 
|  | { | 
|  | unsigned char offset; | 
|  | unsigned long *pivots; | 
|  | enum maple_type mt; | 
|  | struct maple_node *node; | 
|  |  | 
|  | if (min > max) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (size == 0 || max - min < size - 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mas_is_start(mas)) | 
|  | mas_start(mas); | 
|  | else if (mas->offset >= 2) | 
|  | mas->offset -= 2; | 
|  | else if (!mas_skip_node(mas)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Empty set */ | 
|  | if (mas_is_none(mas) || mas_is_ptr(mas)) | 
|  | return mas_sparse_area(mas, min, max, size, true); | 
|  |  | 
|  | /* The start of the window can only be within these values */ | 
|  | mas->index = min; | 
|  | mas->last = max; | 
|  | mas_awalk(mas, size); | 
|  |  | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | offset = mas->offset; | 
|  | node = mas_mn(mas); | 
|  | mt = mte_node_type(mas->node); | 
|  | pivots = ma_pivots(node, mt); | 
|  | min = mas_safe_min(mas, pivots, offset); | 
|  | if (mas->index < min) | 
|  | mas->index = min; | 
|  | mas->last = mas->index + size - 1; | 
|  | mas->end = ma_data_end(node, mt, pivots, mas->max); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_empty_area); | 
|  |  | 
|  | /* | 
|  | * mas_empty_area_rev() - Get the highest address within the range that is | 
|  | * sufficient for the size requested. | 
|  | * @mas: The maple state | 
|  | * @min: The lowest value of the range | 
|  | * @max: The highest value of the range | 
|  | * @size: The size needed | 
|  | */ | 
|  | int mas_empty_area_rev(struct ma_state *mas, unsigned long min, | 
|  | unsigned long max, unsigned long size) | 
|  | { | 
|  | struct maple_enode *last = mas->node; | 
|  |  | 
|  | if (min > max) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (size == 0 || max - min < size - 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mas_is_start(mas)) | 
|  | mas_start(mas); | 
|  | else if ((mas->offset < 2) && (!mas_rewind_node(mas))) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) | 
|  | return mas_sparse_area(mas, min, max, size, false); | 
|  | else if (mas->offset >= 2) | 
|  | mas->offset -= 2; | 
|  | else | 
|  | mas->offset = mas_data_end(mas); | 
|  |  | 
|  |  | 
|  | /* The start of the window can only be within these values. */ | 
|  | mas->index = min; | 
|  | mas->last = max; | 
|  |  | 
|  | while (!mas_rev_awalk(mas, size, &min, &max)) { | 
|  | if (last == mas->node) { | 
|  | if (!mas_rewind_node(mas)) | 
|  | return -EBUSY; | 
|  | } else { | 
|  | last = mas->node; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mas_is_err(mas)) | 
|  | return xa_err(mas->node); | 
|  |  | 
|  | if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Trim the upper limit to the max. */ | 
|  | if (max < mas->last) | 
|  | mas->last = max; | 
|  |  | 
|  | mas->index = mas->last - size + 1; | 
|  | mas->end = mas_data_end(mas); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_empty_area_rev); | 
|  |  | 
|  | /* | 
|  | * mte_dead_leaves() - Mark all leaves of a node as dead. | 
|  | * @enode: the encoded node | 
|  | * @mt: the maple tree | 
|  | * @slots: Pointer to the slot array | 
|  | * | 
|  | * Must hold the write lock. | 
|  | * | 
|  | * Return: The number of leaves marked as dead. | 
|  | */ | 
|  | static inline | 
|  | unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, | 
|  | void __rcu **slots) | 
|  | { | 
|  | struct maple_node *node; | 
|  | enum maple_type type; | 
|  | void *entry; | 
|  | int offset; | 
|  |  | 
|  | for (offset = 0; offset < mt_slot_count(enode); offset++) { | 
|  | entry = mt_slot(mt, slots, offset); | 
|  | type = mte_node_type(entry); | 
|  | node = mte_to_node(entry); | 
|  | /* Use both node and type to catch LE & BE metadata */ | 
|  | if (!node || !type) | 
|  | break; | 
|  |  | 
|  | mte_set_node_dead(entry); | 
|  | node->type = type; | 
|  | rcu_assign_pointer(slots[offset], node); | 
|  | } | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mte_dead_walk() - Walk down a dead tree to just before the leaves | 
|  | * @enode: The maple encoded node | 
|  | * @offset: The starting offset | 
|  | * | 
|  | * Note: This can only be used from the RCU callback context. | 
|  | */ | 
|  | static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) | 
|  | { | 
|  | struct maple_node *node, *next; | 
|  | void __rcu **slots = NULL; | 
|  |  | 
|  | next = mte_to_node(*enode); | 
|  | do { | 
|  | *enode = ma_enode_ptr(next); | 
|  | node = mte_to_node(*enode); | 
|  | slots = ma_slots(node, node->type); | 
|  | next = rcu_dereference_protected(slots[offset], | 
|  | lock_is_held(&rcu_callback_map)); | 
|  | offset = 0; | 
|  | } while (!ma_is_leaf(next->type)); | 
|  |  | 
|  | return slots; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mt_free_walk() - Walk & free a tree in the RCU callback context | 
|  | * @head: The RCU head that's within the node. | 
|  | * | 
|  | * Note: This can only be used from the RCU callback context. | 
|  | */ | 
|  | static void mt_free_walk(struct rcu_head *head) | 
|  | { | 
|  | void __rcu **slots; | 
|  | struct maple_node *node, *start; | 
|  | struct maple_enode *enode; | 
|  | unsigned char offset; | 
|  | enum maple_type type; | 
|  |  | 
|  | node = container_of(head, struct maple_node, rcu); | 
|  |  | 
|  | if (ma_is_leaf(node->type)) | 
|  | goto free_leaf; | 
|  |  | 
|  | start = node; | 
|  | enode = mt_mk_node(node, node->type); | 
|  | slots = mte_dead_walk(&enode, 0); | 
|  | node = mte_to_node(enode); | 
|  | do { | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  | offset = node->parent_slot + 1; | 
|  | enode = node->piv_parent; | 
|  | if (mte_to_node(enode) == node) | 
|  | goto free_leaf; | 
|  |  | 
|  | type = mte_node_type(enode); | 
|  | slots = ma_slots(mte_to_node(enode), type); | 
|  | if ((offset < mt_slots[type]) && | 
|  | rcu_dereference_protected(slots[offset], | 
|  | lock_is_held(&rcu_callback_map))) | 
|  | slots = mte_dead_walk(&enode, offset); | 
|  | node = mte_to_node(enode); | 
|  | } while ((node != start) || (node->slot_len < offset)); | 
|  |  | 
|  | slots = ma_slots(node, node->type); | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  |  | 
|  | free_leaf: | 
|  | kfree(node); | 
|  | } | 
|  |  | 
|  | static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, | 
|  | struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) | 
|  | { | 
|  | struct maple_node *node; | 
|  | struct maple_enode *next = *enode; | 
|  | void __rcu **slots = NULL; | 
|  | enum maple_type type; | 
|  | unsigned char next_offset = 0; | 
|  |  | 
|  | do { | 
|  | *enode = next; | 
|  | node = mte_to_node(*enode); | 
|  | type = mte_node_type(*enode); | 
|  | slots = ma_slots(node, type); | 
|  | next = mt_slot_locked(mt, slots, next_offset); | 
|  | if ((mte_dead_node(next))) | 
|  | next = mt_slot_locked(mt, slots, ++next_offset); | 
|  |  | 
|  | mte_set_node_dead(*enode); | 
|  | node->type = type; | 
|  | node->piv_parent = prev; | 
|  | node->parent_slot = offset; | 
|  | offset = next_offset; | 
|  | next_offset = 0; | 
|  | prev = *enode; | 
|  | } while (!mte_is_leaf(next)); | 
|  |  | 
|  | return slots; | 
|  | } | 
|  |  | 
|  | static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, | 
|  | bool free) | 
|  | { | 
|  | void __rcu **slots; | 
|  | struct maple_node *node = mte_to_node(enode); | 
|  | struct maple_enode *start; | 
|  |  | 
|  | if (mte_is_leaf(enode)) { | 
|  | mte_set_node_dead(enode); | 
|  | node->type = mte_node_type(enode); | 
|  | goto free_leaf; | 
|  | } | 
|  |  | 
|  | start = enode; | 
|  | slots = mte_destroy_descend(&enode, mt, start, 0); | 
|  | node = mte_to_node(enode); // Updated in the above call. | 
|  | do { | 
|  | enum maple_type type; | 
|  | unsigned char offset; | 
|  | struct maple_enode *parent, *tmp; | 
|  |  | 
|  | node->slot_len = mte_dead_leaves(enode, mt, slots); | 
|  | if (free) | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  | offset = node->parent_slot + 1; | 
|  | enode = node->piv_parent; | 
|  | if (mte_to_node(enode) == node) | 
|  | goto free_leaf; | 
|  |  | 
|  | type = mte_node_type(enode); | 
|  | slots = ma_slots(mte_to_node(enode), type); | 
|  | if (offset >= mt_slots[type]) | 
|  | goto next; | 
|  |  | 
|  | tmp = mt_slot_locked(mt, slots, offset); | 
|  | if (mte_node_type(tmp) && mte_to_node(tmp)) { | 
|  | parent = enode; | 
|  | enode = tmp; | 
|  | slots = mte_destroy_descend(&enode, mt, parent, offset); | 
|  | } | 
|  | next: | 
|  | node = mte_to_node(enode); | 
|  | } while (start != enode); | 
|  |  | 
|  | node = mte_to_node(enode); | 
|  | node->slot_len = mte_dead_leaves(enode, mt, slots); | 
|  | if (free) | 
|  | mt_free_bulk(node->slot_len, slots); | 
|  |  | 
|  | free_leaf: | 
|  | if (free) | 
|  | kfree(node); | 
|  | else | 
|  | mt_clear_meta(mt, node, node->type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mte_destroy_walk() - Free a tree or sub-tree. | 
|  | * @enode: the encoded maple node (maple_enode) to start | 
|  | * @mt: the tree to free - needed for node types. | 
|  | * | 
|  | * Must hold the write lock. | 
|  | */ | 
|  | static inline void mte_destroy_walk(struct maple_enode *enode, | 
|  | struct maple_tree *mt) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(enode); | 
|  |  | 
|  | if (mt_in_rcu(mt)) { | 
|  | mt_destroy_walk(enode, mt, false); | 
|  | call_rcu(&node->rcu, mt_free_walk); | 
|  | } else { | 
|  | mt_destroy_walk(enode, mt, true); | 
|  | } | 
|  | } | 
|  | /* Interface */ | 
|  |  | 
|  | /** | 
|  | * mas_store() - Store an @entry. | 
|  | * @mas: The maple state. | 
|  | * @entry: The entry to store. | 
|  | * | 
|  | * The @mas->index and @mas->last is used to set the range for the @entry. | 
|  | * | 
|  | * Return: the first entry between mas->index and mas->last or %NULL. | 
|  | */ | 
|  | void *mas_store(struct ma_state *mas, void *entry) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | trace_ma_write(__func__, mas, 0, entry); | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | if (MAS_WARN_ON(mas, mas->index > mas->last)) | 
|  | pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last, | 
|  | entry); | 
|  |  | 
|  | if (mas->index > mas->last) { | 
|  | mas_set_err(mas, -EINVAL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Storing is the same operation as insert with the added caveat that it | 
|  | * can overwrite entries.  Although this seems simple enough, one may | 
|  | * want to examine what happens if a single store operation was to | 
|  | * overwrite multiple entries within a self-balancing B-Tree. | 
|  | */ | 
|  | mas_wr_prealloc_setup(&wr_mas); | 
|  | mas->store_type = mas_wr_store_type(&wr_mas); | 
|  | if (mas->mas_flags & MA_STATE_PREALLOC) { | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); | 
|  | return wr_mas.content; | 
|  | } | 
|  |  | 
|  | mas_prealloc_calc(&wr_mas, entry); | 
|  | if (!mas->node_request) | 
|  | goto store; | 
|  |  | 
|  | mas_alloc_nodes(mas, GFP_NOWAIT); | 
|  | if (mas_is_err(mas)) | 
|  | return NULL; | 
|  |  | 
|  | store: | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | mas_destroy(mas); | 
|  | return wr_mas.content; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_store); | 
|  |  | 
|  | /** | 
|  | * mas_store_gfp() - Store a value into the tree. | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations if necessary. | 
|  | * | 
|  | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not | 
|  | * be allocated. | 
|  | */ | 
|  | int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) | 
|  | { | 
|  | unsigned long index = mas->index; | 
|  | unsigned long last = mas->last; | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  | int ret = 0; | 
|  |  | 
|  | retry: | 
|  | mas_wr_preallocate(&wr_mas, entry); | 
|  | if (unlikely(mas_nomem(mas, gfp))) { | 
|  | if (!entry) | 
|  | __mas_set_range(mas, index, last); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (mas_is_err(mas)) { | 
|  | ret = xa_err(mas->node); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | out: | 
|  | mas_destroy(mas); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_store_gfp); | 
|  |  | 
|  | /** | 
|  | * mas_store_prealloc() - Store a value into the tree using memory | 
|  | * preallocated in the maple state. | 
|  | * @mas: The maple state | 
|  | * @entry: The entry to store. | 
|  | */ | 
|  | void mas_store_prealloc(struct ma_state *mas, void *entry) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | if (mas->store_type == wr_store_root) { | 
|  | mas_wr_prealloc_setup(&wr_mas); | 
|  | goto store; | 
|  | } | 
|  |  | 
|  | mas_wr_walk_descend(&wr_mas); | 
|  | if (mas->store_type != wr_spanning_store) { | 
|  | /* set wr_mas->content to current slot */ | 
|  | wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset); | 
|  | mas_wr_end_piv(&wr_mas); | 
|  | } | 
|  |  | 
|  | store: | 
|  | trace_ma_write(__func__, mas, 0, entry); | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); | 
|  | mas_destroy(mas); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_store_prealloc); | 
|  |  | 
|  | /** | 
|  | * mas_preallocate() - Preallocate enough nodes for a store operation | 
|  | * @mas: The maple state | 
|  | * @entry: The entry that will be stored | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * Return: 0 on success, -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) | 
|  | { | 
|  | MA_WR_STATE(wr_mas, mas, entry); | 
|  |  | 
|  | mas_wr_prealloc_setup(&wr_mas); | 
|  | mas->store_type = mas_wr_store_type(&wr_mas); | 
|  | mas_prealloc_calc(&wr_mas, entry); | 
|  | if (!mas->node_request) | 
|  | goto set_flag; | 
|  |  | 
|  | mas->mas_flags &= ~MA_STATE_PREALLOC; | 
|  | mas_alloc_nodes(mas, gfp); | 
|  | if (mas_is_err(mas)) { | 
|  | int ret = xa_err(mas->node); | 
|  |  | 
|  | mas->node_request = 0; | 
|  | mas_destroy(mas); | 
|  | mas_reset(mas); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | set_flag: | 
|  | mas->mas_flags |= MA_STATE_PREALLOC; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_preallocate); | 
|  |  | 
|  | /* | 
|  | * mas_destroy() - destroy a maple state. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Upon completion, check the left-most node and rebalance against the node to | 
|  | * the right if necessary.  Frees any allocated nodes associated with this maple | 
|  | * state. | 
|  | */ | 
|  | void mas_destroy(struct ma_state *mas) | 
|  | { | 
|  | mas->mas_flags &= ~MA_STATE_PREALLOC; | 
|  | mas_empty_nodes(mas); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_destroy); | 
|  |  | 
|  | static void mas_may_activate(struct ma_state *mas) | 
|  | { | 
|  | if (!mas->node) { | 
|  | mas->status = ma_start; | 
|  | } else if (mas->index > mas->max || mas->index < mas->min) { | 
|  | mas->status = ma_start; | 
|  | } else { | 
|  | mas->status = ma_active; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool mas_next_setup(struct ma_state *mas, unsigned long max, | 
|  | void **entry) | 
|  | { | 
|  | bool was_none = mas_is_none(mas); | 
|  |  | 
|  | if (unlikely(mas->last >= max)) { | 
|  | mas->status = ma_overflow; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (mas->status) { | 
|  | case ma_active: | 
|  | return false; | 
|  | case ma_none: | 
|  | fallthrough; | 
|  | case ma_pause: | 
|  | mas->status = ma_start; | 
|  | fallthrough; | 
|  | case ma_start: | 
|  | mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ | 
|  | break; | 
|  | case ma_overflow: | 
|  | /* Overflowed before, but the max changed */ | 
|  | mas_may_activate(mas); | 
|  | break; | 
|  | case ma_underflow: | 
|  | /* The user expects the mas to be one before where it is */ | 
|  | mas_may_activate(mas); | 
|  | *entry = mas_walk(mas); | 
|  | if (*entry) | 
|  | return true; | 
|  | break; | 
|  | case ma_root: | 
|  | break; | 
|  | case ma_error: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (likely(mas_is_active(mas))) /* Fast path */ | 
|  | return false; | 
|  |  | 
|  | if (mas_is_ptr(mas)) { | 
|  | *entry = NULL; | 
|  | if (was_none && mas->index == 0) { | 
|  | mas->index = mas->last = 0; | 
|  | return true; | 
|  | } | 
|  | mas->index = 1; | 
|  | mas->last = ULONG_MAX; | 
|  | mas->status = ma_none; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (mas_is_none(mas)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_next() - Get the next entry. | 
|  | * @mas: The maple state | 
|  | * @max: The maximum index to check. | 
|  | * | 
|  | * Returns the next entry after @mas->index. | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * Can return the zero entry. | 
|  | * | 
|  | * Return: The next entry or %NULL | 
|  | */ | 
|  | void *mas_next(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_next_setup(mas, max, &entry)) | 
|  | return entry; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_next_slot */ | 
|  | return mas_next_slot(mas, max, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_next); | 
|  |  | 
|  | /** | 
|  | * mas_next_range() - Advance the maple state to the next range | 
|  | * @mas: The maple state | 
|  | * @max: The maximum index to check. | 
|  | * | 
|  | * Sets @mas->index and @mas->last to the range. | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * Can return the zero entry. | 
|  | * | 
|  | * Return: The next entry or %NULL | 
|  | */ | 
|  | void *mas_next_range(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_next_setup(mas, max, &entry)) | 
|  | return entry; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_next_slot */ | 
|  | return mas_next_slot(mas, max, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_next_range); | 
|  |  | 
|  | /** | 
|  | * mt_next() - get the next value in the maple tree | 
|  | * @mt: The maple tree | 
|  | * @index: The start index | 
|  | * @max: The maximum index to check | 
|  | * | 
|  | * Takes RCU read lock internally to protect the search, which does not | 
|  | * protect the returned pointer after dropping RCU read lock. | 
|  | * See also: Documentation/core-api/maple_tree.rst | 
|  | * | 
|  | * Return: The entry higher than @index or %NULL if nothing is found. | 
|  | */ | 
|  | void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) | 
|  | { | 
|  | void *entry = NULL; | 
|  | MA_STATE(mas, mt, index, index); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | entry = mas_next(&mas, max); | 
|  | rcu_read_unlock(); | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_next); | 
|  |  | 
|  | static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) | 
|  | { | 
|  | if (unlikely(mas->index <= min)) { | 
|  | mas->status = ma_underflow; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (mas->status) { | 
|  | case ma_active: | 
|  | return false; | 
|  | case ma_start: | 
|  | break; | 
|  | case ma_none: | 
|  | fallthrough; | 
|  | case ma_pause: | 
|  | mas->status = ma_start; | 
|  | break; | 
|  | case ma_underflow: | 
|  | /* underflowed before but the min changed */ | 
|  | mas_may_activate(mas); | 
|  | break; | 
|  | case ma_overflow: | 
|  | /* User expects mas to be one after where it is */ | 
|  | mas_may_activate(mas); | 
|  | *entry = mas_walk(mas); | 
|  | if (*entry) | 
|  | return true; | 
|  | break; | 
|  | case ma_root: | 
|  | break; | 
|  | case ma_error: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (mas_is_start(mas)) | 
|  | mas_walk(mas); | 
|  |  | 
|  | if (unlikely(mas_is_ptr(mas))) { | 
|  | if (!mas->index) { | 
|  | mas->status = ma_none; | 
|  | return true; | 
|  | } | 
|  | mas->index = mas->last = 0; | 
|  | *entry = mas_root(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (mas_is_none(mas)) { | 
|  | if (mas->index) { | 
|  | /* Walked to out-of-range pointer? */ | 
|  | mas->index = mas->last = 0; | 
|  | mas->status = ma_root; | 
|  | *entry = mas_root(mas); | 
|  | return true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_prev() - Get the previous entry | 
|  | * @mas: The maple state | 
|  | * @min: The minimum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * Will reset mas to ma_start if the status is ma_none.  Will stop on not | 
|  | * searchable nodes. | 
|  | * | 
|  | * Return: the previous value or %NULL. | 
|  | */ | 
|  | void *mas_prev(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_prev_setup(mas, min, &entry)) | 
|  | return entry; | 
|  |  | 
|  | return mas_prev_slot(mas, min, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_prev); | 
|  |  | 
|  | /** | 
|  | * mas_prev_range() - Advance to the previous range | 
|  | * @mas: The maple state | 
|  | * @min: The minimum value to check. | 
|  | * | 
|  | * Sets @mas->index and @mas->last to the range. | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * Will reset mas to ma_start if the node is ma_none.  Will stop on not | 
|  | * searchable nodes. | 
|  | * | 
|  | * Return: the previous value or %NULL. | 
|  | */ | 
|  | void *mas_prev_range(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_prev_setup(mas, min, &entry)) | 
|  | return entry; | 
|  |  | 
|  | return mas_prev_slot(mas, min, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_prev_range); | 
|  |  | 
|  | /** | 
|  | * mt_prev() - get the previous value in the maple tree | 
|  | * @mt: The maple tree | 
|  | * @index: The start index | 
|  | * @min: The minimum index to check | 
|  | * | 
|  | * Takes RCU read lock internally to protect the search, which does not | 
|  | * protect the returned pointer after dropping RCU read lock. | 
|  | * See also: Documentation/core-api/maple_tree.rst | 
|  | * | 
|  | * Return: The entry before @index or %NULL if nothing is found. | 
|  | */ | 
|  | void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) | 
|  | { | 
|  | void *entry = NULL; | 
|  | MA_STATE(mas, mt, index, index); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | entry = mas_prev(&mas, min); | 
|  | rcu_read_unlock(); | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_prev); | 
|  |  | 
|  | /** | 
|  | * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. | 
|  | * @mas: The maple state to pause | 
|  | * | 
|  | * Some users need to pause a walk and drop the lock they're holding in | 
|  | * order to yield to a higher priority thread or carry out an operation | 
|  | * on an entry.  Those users should call this function before they drop | 
|  | * the lock.  It resets the @mas to be suitable for the next iteration | 
|  | * of the loop after the user has reacquired the lock.  If most entries | 
|  | * found during a walk require you to call mas_pause(), the mt_for_each() | 
|  | * iterator may be more appropriate. | 
|  | * | 
|  | */ | 
|  | void mas_pause(struct ma_state *mas) | 
|  | { | 
|  | mas->status = ma_pause; | 
|  | mas->node = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_pause); | 
|  |  | 
|  | /** | 
|  | * mas_find_setup() - Internal function to set up mas_find*(). | 
|  | * @mas: The maple state | 
|  | * @max: The maximum index | 
|  | * @entry: Pointer to the entry | 
|  | * | 
|  | * Returns: True if entry is the answer, false otherwise. | 
|  | */ | 
|  | static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) | 
|  | { | 
|  | switch (mas->status) { | 
|  | case ma_active: | 
|  | if (mas->last < max) | 
|  | return false; | 
|  | return true; | 
|  | case ma_start: | 
|  | break; | 
|  | case ma_pause: | 
|  | if (unlikely(mas->last >= max)) | 
|  | return true; | 
|  |  | 
|  | mas->index = ++mas->last; | 
|  | mas->status = ma_start; | 
|  | break; | 
|  | case ma_none: | 
|  | if (unlikely(mas->last >= max)) | 
|  | return true; | 
|  |  | 
|  | mas->index = mas->last; | 
|  | mas->status = ma_start; | 
|  | break; | 
|  | case ma_underflow: | 
|  | /* mas is pointing at entry before unable to go lower */ | 
|  | if (unlikely(mas->index >= max)) { | 
|  | mas->status = ma_overflow; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mas_may_activate(mas); | 
|  | *entry = mas_walk(mas); | 
|  | if (*entry) | 
|  | return true; | 
|  | break; | 
|  | case ma_overflow: | 
|  | if (unlikely(mas->last >= max)) | 
|  | return true; | 
|  |  | 
|  | mas_may_activate(mas); | 
|  | *entry = mas_walk(mas); | 
|  | if (*entry) | 
|  | return true; | 
|  | break; | 
|  | case ma_root: | 
|  | break; | 
|  | case ma_error: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (mas_is_start(mas)) { | 
|  | /* First run or continue */ | 
|  | if (mas->index > max) | 
|  | return true; | 
|  |  | 
|  | *entry = mas_walk(mas); | 
|  | if (*entry) | 
|  | return true; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (unlikely(mas_is_ptr(mas))) | 
|  | goto ptr_out_of_range; | 
|  |  | 
|  | if (unlikely(mas_is_none(mas))) | 
|  | return true; | 
|  |  | 
|  | if (mas->index == max) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  |  | 
|  | ptr_out_of_range: | 
|  | mas->status = ma_none; | 
|  | mas->index = 1; | 
|  | mas->last = ULONG_MAX; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_find() - On the first call, find the entry at or after mas->index up to | 
|  | * %max.  Otherwise, find the entry after mas->index. | 
|  | * @mas: The maple state | 
|  | * @max: The maximum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * If an entry exists, last and index are updated accordingly. | 
|  | * May set @mas->status to ma_overflow. | 
|  | * | 
|  | * Return: The entry or %NULL. | 
|  | */ | 
|  | void *mas_find(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_find_setup(mas, max, &entry)) | 
|  | return entry; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_next_slot */ | 
|  | entry = mas_next_slot(mas, max, false); | 
|  | /* Ignore overflow */ | 
|  | mas->status = ma_active; | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_find); | 
|  |  | 
|  | /** | 
|  | * mas_find_range() - On the first call, find the entry at or after | 
|  | * mas->index up to %max.  Otherwise, advance to the next slot mas->index. | 
|  | * @mas: The maple state | 
|  | * @max: The maximum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * If an entry exists, last and index are updated accordingly. | 
|  | * May set @mas->status to ma_overflow. | 
|  | * | 
|  | * Return: The entry or %NULL. | 
|  | */ | 
|  | void *mas_find_range(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_find_setup(mas, max, &entry)) | 
|  | return entry; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_next_slot */ | 
|  | return mas_next_slot(mas, max, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_find_range); | 
|  |  | 
|  | /** | 
|  | * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() | 
|  | * @mas: The maple state | 
|  | * @min: The minimum index | 
|  | * @entry: Pointer to the entry | 
|  | * | 
|  | * Returns: True if entry is the answer, false otherwise. | 
|  | */ | 
|  | static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, | 
|  | void **entry) | 
|  | { | 
|  |  | 
|  | switch (mas->status) { | 
|  | case ma_active: | 
|  | goto active; | 
|  | case ma_start: | 
|  | break; | 
|  | case ma_pause: | 
|  | if (unlikely(mas->index <= min)) { | 
|  | mas->status = ma_underflow; | 
|  | return true; | 
|  | } | 
|  | mas->last = --mas->index; | 
|  | mas->status = ma_start; | 
|  | break; | 
|  | case ma_none: | 
|  | if (mas->index <= min) | 
|  | goto none; | 
|  |  | 
|  | mas->last = mas->index; | 
|  | mas->status = ma_start; | 
|  | break; | 
|  | case ma_overflow: /* user expects the mas to be one after where it is */ | 
|  | if (unlikely(mas->index <= min)) { | 
|  | mas->status = ma_underflow; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mas->status = ma_active; | 
|  | break; | 
|  | case ma_underflow: /* user expects the mas to be one before where it is */ | 
|  | if (unlikely(mas->index <= min)) | 
|  | return true; | 
|  |  | 
|  | mas->status = ma_active; | 
|  | break; | 
|  | case ma_root: | 
|  | break; | 
|  | case ma_error: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (mas_is_start(mas)) { | 
|  | /* First run or continue */ | 
|  | if (mas->index < min) | 
|  | return true; | 
|  |  | 
|  | *entry = mas_walk(mas); | 
|  | if (*entry) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (unlikely(mas_is_ptr(mas))) | 
|  | goto none; | 
|  |  | 
|  | if (unlikely(mas_is_none(mas))) { | 
|  | /* | 
|  | * Walked to the location, and there was nothing so the previous | 
|  | * location is 0. | 
|  | */ | 
|  | mas->last = mas->index = 0; | 
|  | mas->status = ma_root; | 
|  | *entry = mas_root(mas); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | active: | 
|  | if (mas->index < min) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  |  | 
|  | none: | 
|  | mas->status = ma_none; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mas_find_rev: On the first call, find the first non-null entry at or below | 
|  | * mas->index down to %min.  Otherwise find the first non-null entry below | 
|  | * mas->index down to %min. | 
|  | * @mas: The maple state | 
|  | * @min: The minimum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * If an entry exists, last and index are updated accordingly. | 
|  | * May set @mas->status to ma_underflow. | 
|  | * | 
|  | * Return: The entry or %NULL. | 
|  | */ | 
|  | void *mas_find_rev(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_find_rev_setup(mas, min, &entry)) | 
|  | return entry; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_prev_slot */ | 
|  | return mas_prev_slot(mas, min, false); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_find_rev); | 
|  |  | 
|  | /** | 
|  | * mas_find_range_rev: On the first call, find the first non-null entry at or | 
|  | * below mas->index down to %min.  Otherwise advance to the previous slot after | 
|  | * mas->index down to %min. | 
|  | * @mas: The maple state | 
|  | * @min: The minimum value to check. | 
|  | * | 
|  | * Must hold rcu_read_lock or the write lock. | 
|  | * If an entry exists, last and index are updated accordingly. | 
|  | * May set @mas->status to ma_underflow. | 
|  | * | 
|  | * Return: The entry or %NULL. | 
|  | */ | 
|  | void *mas_find_range_rev(struct ma_state *mas, unsigned long min) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | if (mas_find_rev_setup(mas, min, &entry)) | 
|  | return entry; | 
|  |  | 
|  | /* Retries on dead nodes handled by mas_prev_slot */ | 
|  | return mas_prev_slot(mas, min, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_find_range_rev); | 
|  |  | 
|  | /** | 
|  | * mas_erase() - Find the range in which index resides and erase the entire | 
|  | * range. | 
|  | * @mas: The maple state | 
|  | * | 
|  | * Must hold the write lock. | 
|  | * Searches for @mas->index, sets @mas->index and @mas->last to the range and | 
|  | * erases that range. | 
|  | * | 
|  | * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. | 
|  | */ | 
|  | void *mas_erase(struct ma_state *mas) | 
|  | { | 
|  | void *entry; | 
|  | unsigned long index = mas->index; | 
|  | MA_WR_STATE(wr_mas, mas, NULL); | 
|  |  | 
|  | if (!mas_is_active(mas) || !mas_is_start(mas)) | 
|  | mas->status = ma_start; | 
|  |  | 
|  | write_retry: | 
|  | entry = mas_state_walk(mas); | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | /* Must reset to ensure spanning writes of last slot are detected */ | 
|  | mas_reset(mas); | 
|  | mas_wr_preallocate(&wr_mas, NULL); | 
|  | if (mas_nomem(mas, GFP_KERNEL)) { | 
|  | /* in case the range of entry changed when unlocked */ | 
|  | mas->index = mas->last = index; | 
|  | goto write_retry; | 
|  | } | 
|  |  | 
|  | if (mas_is_err(mas)) | 
|  | goto out; | 
|  |  | 
|  | mas_wr_store_entry(&wr_mas); | 
|  | out: | 
|  | mas_destroy(mas); | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_erase); | 
|  |  | 
|  | /** | 
|  | * mas_nomem() - Check if there was an error allocating and do the allocation | 
|  | * if necessary If there are allocations, then free them. | 
|  | * @mas: The maple state | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * Return: true on allocation, false otherwise. | 
|  | */ | 
|  | bool mas_nomem(struct ma_state *mas, gfp_t gfp) | 
|  | __must_hold(mas->tree->ma_lock) | 
|  | { | 
|  | if (likely(mas->node != MA_ERROR(-ENOMEM))) | 
|  | return false; | 
|  |  | 
|  | if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { | 
|  | mtree_unlock(mas->tree); | 
|  | mas_alloc_nodes(mas, gfp); | 
|  | mtree_lock(mas->tree); | 
|  | } else { | 
|  | mas_alloc_nodes(mas, gfp); | 
|  | } | 
|  |  | 
|  | if (!mas->sheaf && !mas->alloc) | 
|  | return false; | 
|  |  | 
|  | mas->status = ma_start; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void __init maple_tree_init(void) | 
|  | { | 
|  | struct kmem_cache_args args = { | 
|  | .align  = sizeof(struct maple_node), | 
|  | .sheaf_capacity = 32, | 
|  | }; | 
|  |  | 
|  | maple_node_cache = kmem_cache_create("maple_node", | 
|  | sizeof(struct maple_node), &args, | 
|  | SLAB_PANIC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mtree_load() - Load a value stored in a maple tree | 
|  | * @mt: The maple tree | 
|  | * @index: The index to load | 
|  | * | 
|  | * Return: the entry or %NULL | 
|  | */ | 
|  | void *mtree_load(struct maple_tree *mt, unsigned long index) | 
|  | { | 
|  | MA_STATE(mas, mt, index, index); | 
|  | void *entry; | 
|  |  | 
|  | trace_ma_read(__func__, &mas); | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | entry = mas_start(&mas); | 
|  | if (unlikely(mas_is_none(&mas))) | 
|  | goto unlock; | 
|  |  | 
|  | if (unlikely(mas_is_ptr(&mas))) { | 
|  | if (index) | 
|  | entry = NULL; | 
|  |  | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | entry = mtree_lookup_walk(&mas); | 
|  | if (!entry && unlikely(mas_is_start(&mas))) | 
|  | goto retry; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | if (xa_is_zero(entry)) | 
|  | return NULL; | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_load); | 
|  |  | 
|  | /** | 
|  | * mtree_store_range() - Store an entry at a given range. | 
|  | * @mt: The maple tree | 
|  | * @index: The start of the range | 
|  | * @last: The end of the range | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * | 
|  | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not | 
|  | * be allocated. | 
|  | */ | 
|  | int mtree_store_range(struct maple_tree *mt, unsigned long index, | 
|  | unsigned long last, void *entry, gfp_t gfp) | 
|  | { | 
|  | MA_STATE(mas, mt, index, last); | 
|  | int ret = 0; | 
|  |  | 
|  | trace_ma_write(__func__, &mas, 0, entry); | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (index > last) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | ret = mas_store_gfp(&mas, entry, gfp); | 
|  | mtree_unlock(mt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_store_range); | 
|  |  | 
|  | /** | 
|  | * mtree_store() - Store an entry at a given index. | 
|  | * @mt: The maple tree | 
|  | * @index: The index to store the value | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * | 
|  | * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not | 
|  | * be allocated. | 
|  | */ | 
|  | int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, | 
|  | gfp_t gfp) | 
|  | { | 
|  | return mtree_store_range(mt, index, index, entry, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_store); | 
|  |  | 
|  | /** | 
|  | * mtree_insert_range() - Insert an entry at a given range if there is no value. | 
|  | * @mt: The maple tree | 
|  | * @first: The start of the range | 
|  | * @last: The end of the range | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid | 
|  | * request, -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int mtree_insert_range(struct maple_tree *mt, unsigned long first, | 
|  | unsigned long last, void *entry, gfp_t gfp) | 
|  | { | 
|  | MA_STATE(ms, mt, first, last); | 
|  | int ret = 0; | 
|  |  | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (first > last) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | retry: | 
|  | mas_insert(&ms, entry); | 
|  | if (mas_nomem(&ms, gfp)) | 
|  | goto retry; | 
|  |  | 
|  | mtree_unlock(mt); | 
|  | if (mas_is_err(&ms)) | 
|  | ret = xa_err(ms.node); | 
|  |  | 
|  | mas_destroy(&ms); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_insert_range); | 
|  |  | 
|  | /** | 
|  | * mtree_insert() - Insert an entry at a given index if there is no value. | 
|  | * @mt: The maple tree | 
|  | * @index : The index to store the value | 
|  | * @entry: The entry to store | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid | 
|  | * request, -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, | 
|  | gfp_t gfp) | 
|  | { | 
|  | return mtree_insert_range(mt, index, index, entry, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_insert); | 
|  |  | 
|  | int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, | 
|  | void *entry, unsigned long size, unsigned long min, | 
|  | unsigned long max, gfp_t gfp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  | if (!mt_is_alloc(mt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (WARN_ON_ONCE(mt_is_reserved(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | retry: | 
|  | ret = mas_empty_area(&mas, min, max, size); | 
|  | if (ret) | 
|  | goto unlock; | 
|  |  | 
|  | mas_insert(&mas, entry); | 
|  | /* | 
|  | * mas_nomem() may release the lock, causing the allocated area | 
|  | * to be unavailable, so try to allocate a free area again. | 
|  | */ | 
|  | if (mas_nomem(&mas, gfp)) | 
|  | goto retry; | 
|  |  | 
|  | if (mas_is_err(&mas)) | 
|  | ret = xa_err(mas.node); | 
|  | else | 
|  | *startp = mas.index; | 
|  |  | 
|  | unlock: | 
|  | mtree_unlock(mt); | 
|  | mas_destroy(&mas); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_alloc_range); | 
|  |  | 
|  | /** | 
|  | * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree. | 
|  | * @mt: The maple tree. | 
|  | * @startp: Pointer to ID. | 
|  | * @range_lo: Lower bound of range to search. | 
|  | * @range_hi: Upper bound of range to search. | 
|  | * @entry: The entry to store. | 
|  | * @next: Pointer to next ID to allocate. | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * Finds an empty entry in @mt after @next, stores the new index into | 
|  | * the @id pointer, stores the entry at that index, then updates @next. | 
|  | * | 
|  | * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag. | 
|  | * | 
|  | * Context: Any context.  Takes and releases the mt.lock.  May sleep if | 
|  | * the @gfp flags permit. | 
|  | * | 
|  | * Return: 0 if the allocation succeeded without wrapping, 1 if the | 
|  | * allocation succeeded after wrapping, -ENOMEM if memory could not be | 
|  | * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no | 
|  | * free entries. | 
|  | */ | 
|  | int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, | 
|  | void *entry, unsigned long range_lo, unsigned long range_hi, | 
|  | unsigned long *next, gfp_t gfp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  |  | 
|  | if (!mt_is_alloc(mt)) | 
|  | return -EINVAL; | 
|  | if (WARN_ON_ONCE(mt_is_reserved(entry))) | 
|  | return -EINVAL; | 
|  | mtree_lock(mt); | 
|  | ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi, | 
|  | next, gfp); | 
|  | mtree_unlock(mt); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_alloc_cyclic); | 
|  |  | 
|  | int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, | 
|  | void *entry, unsigned long size, unsigned long min, | 
|  | unsigned long max, gfp_t gfp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  | if (!mt_is_alloc(mt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (WARN_ON_ONCE(mt_is_reserved(entry))) | 
|  | return -EINVAL; | 
|  |  | 
|  | mtree_lock(mt); | 
|  | retry: | 
|  | ret = mas_empty_area_rev(&mas, min, max, size); | 
|  | if (ret) | 
|  | goto unlock; | 
|  |  | 
|  | mas_insert(&mas, entry); | 
|  | /* | 
|  | * mas_nomem() may release the lock, causing the allocated area | 
|  | * to be unavailable, so try to allocate a free area again. | 
|  | */ | 
|  | if (mas_nomem(&mas, gfp)) | 
|  | goto retry; | 
|  |  | 
|  | if (mas_is_err(&mas)) | 
|  | ret = xa_err(mas.node); | 
|  | else | 
|  | *startp = mas.index; | 
|  |  | 
|  | unlock: | 
|  | mtree_unlock(mt); | 
|  | mas_destroy(&mas); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_alloc_rrange); | 
|  |  | 
|  | /** | 
|  | * mtree_erase() - Find an index and erase the entire range. | 
|  | * @mt: The maple tree | 
|  | * @index: The index to erase | 
|  | * | 
|  | * Erasing is the same as a walk to an entry then a store of a NULL to that | 
|  | * ENTIRE range.  In fact, it is implemented as such using the advanced API. | 
|  | * | 
|  | * Return: The entry stored at the @index or %NULL | 
|  | */ | 
|  | void *mtree_erase(struct maple_tree *mt, unsigned long index) | 
|  | { | 
|  | void *entry = NULL; | 
|  |  | 
|  | MA_STATE(mas, mt, index, index); | 
|  | trace_ma_op(__func__, &mas); | 
|  |  | 
|  | mtree_lock(mt); | 
|  | entry = mas_erase(&mas); | 
|  | mtree_unlock(mt); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_erase); | 
|  |  | 
|  | /* | 
|  | * mas_dup_free() - Free an incomplete duplication of a tree. | 
|  | * @mas: The maple state of a incomplete tree. | 
|  | * | 
|  | * The parameter @mas->node passed in indicates that the allocation failed on | 
|  | * this node. This function frees all nodes starting from @mas->node in the | 
|  | * reverse order of mas_dup_build(). There is no need to hold the source tree | 
|  | * lock at this time. | 
|  | */ | 
|  | static void mas_dup_free(struct ma_state *mas) | 
|  | { | 
|  | struct maple_node *node; | 
|  | enum maple_type type; | 
|  | void __rcu **slots; | 
|  | unsigned char count, i; | 
|  |  | 
|  | /* Maybe the first node allocation failed. */ | 
|  | if (mas_is_none(mas)) | 
|  | return; | 
|  |  | 
|  | while (!mte_is_root(mas->node)) { | 
|  | mas_ascend(mas); | 
|  | if (mas->offset) { | 
|  | mas->offset--; | 
|  | do { | 
|  | mas_descend(mas); | 
|  | mas->offset = mas_data_end(mas); | 
|  | } while (!mte_is_leaf(mas->node)); | 
|  |  | 
|  | mas_ascend(mas); | 
|  | } | 
|  |  | 
|  | node = mte_to_node(mas->node); | 
|  | type = mte_node_type(mas->node); | 
|  | slots = ma_slots(node, type); | 
|  | count = mas_data_end(mas) + 1; | 
|  | for (i = 0; i < count; i++) | 
|  | ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; | 
|  | mt_free_bulk(count, slots); | 
|  | } | 
|  |  | 
|  | node = mte_to_node(mas->node); | 
|  | kfree(node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_copy_node() - Copy a maple node and replace the parent. | 
|  | * @mas: The maple state of source tree. | 
|  | * @new_mas: The maple state of new tree. | 
|  | * @parent: The parent of the new node. | 
|  | * | 
|  | * Copy @mas->node to @new_mas->node, set @parent to be the parent of | 
|  | * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. | 
|  | */ | 
|  | static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, | 
|  | struct maple_pnode *parent) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(mas->node); | 
|  | struct maple_node *new_node = mte_to_node(new_mas->node); | 
|  | unsigned long val; | 
|  |  | 
|  | /* Copy the node completely. */ | 
|  | memcpy(new_node, node, sizeof(struct maple_node)); | 
|  | /* Update the parent node pointer. */ | 
|  | val = (unsigned long)node->parent & MAPLE_NODE_MASK; | 
|  | new_node->parent = ma_parent_ptr(val | (unsigned long)parent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_dup_alloc() - Allocate child nodes for a maple node. | 
|  | * @mas: The maple state of source tree. | 
|  | * @new_mas: The maple state of new tree. | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * This function allocates child nodes for @new_mas->node during the duplication | 
|  | * process. If memory allocation fails, @mas is set to -ENOMEM. | 
|  | */ | 
|  | static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(mas->node); | 
|  | struct maple_node *new_node = mte_to_node(new_mas->node); | 
|  | enum maple_type type; | 
|  | unsigned char count, i; | 
|  | void __rcu **slots; | 
|  | void __rcu **new_slots; | 
|  | unsigned long val; | 
|  |  | 
|  | /* Allocate memory for child nodes. */ | 
|  | type = mte_node_type(mas->node); | 
|  | new_slots = ma_slots(new_node, type); | 
|  | count = mas->node_request = mas_data_end(mas) + 1; | 
|  | mas_alloc_nodes(mas, gfp); | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | return; | 
|  |  | 
|  | slots = ma_slots(node, type); | 
|  | for (i = 0; i < count; i++) { | 
|  | val = (unsigned long)mt_slot_locked(mas->tree, slots, i); | 
|  | val &= MAPLE_NODE_MASK; | 
|  | new_slots[i] = ma_mnode_ptr((unsigned long)mas_pop_node(mas) | | 
|  | val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mas_dup_build() - Build a new maple tree from a source tree | 
|  | * @mas: The maple state of source tree, need to be in MAS_START state. | 
|  | * @new_mas: The maple state of new tree, need to be in MAS_START state. | 
|  | * @gfp: The GFP_FLAGS to use for allocations. | 
|  | * | 
|  | * This function builds a new tree in DFS preorder. If the memory allocation | 
|  | * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the | 
|  | * last node. mas_dup_free() will free the incomplete duplication of a tree. | 
|  | * | 
|  | * Note that the attributes of the two trees need to be exactly the same, and the | 
|  | * new tree needs to be empty, otherwise -EINVAL will be set in @mas. | 
|  | */ | 
|  | static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct maple_node *node; | 
|  | struct maple_pnode *parent = NULL; | 
|  | struct maple_enode *root; | 
|  | enum maple_type type; | 
|  |  | 
|  | if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || | 
|  | unlikely(!mtree_empty(new_mas->tree))) { | 
|  | mas_set_err(mas, -EINVAL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | root = mas_start(mas); | 
|  | if (mas_is_ptr(mas) || mas_is_none(mas)) | 
|  | goto set_new_tree; | 
|  |  | 
|  | node = mt_alloc_one(gfp); | 
|  | if (!node) { | 
|  | new_mas->status = ma_none; | 
|  | mas_set_err(mas, -ENOMEM); | 
|  | return; | 
|  | } | 
|  |  | 
|  | type = mte_node_type(mas->node); | 
|  | root = mt_mk_node(node, type); | 
|  | new_mas->node = root; | 
|  | new_mas->min = 0; | 
|  | new_mas->max = ULONG_MAX; | 
|  | root = mte_mk_root(root); | 
|  | while (1) { | 
|  | mas_copy_node(mas, new_mas, parent); | 
|  | if (!mte_is_leaf(mas->node)) { | 
|  | /* Only allocate child nodes for non-leaf nodes. */ | 
|  | mas_dup_alloc(mas, new_mas, gfp); | 
|  | if (unlikely(mas_is_err(mas))) | 
|  | goto empty_mas; | 
|  | } else { | 
|  | /* | 
|  | * This is the last leaf node and duplication is | 
|  | * completed. | 
|  | */ | 
|  | if (mas->max == ULONG_MAX) | 
|  | goto done; | 
|  |  | 
|  | /* This is not the last leaf node and needs to go up. */ | 
|  | do { | 
|  | mas_ascend(mas); | 
|  | mas_ascend(new_mas); | 
|  | } while (mas->offset == mas_data_end(mas)); | 
|  |  | 
|  | /* Move to the next subtree. */ | 
|  | mas->offset++; | 
|  | new_mas->offset++; | 
|  | } | 
|  |  | 
|  | mas_descend(mas); | 
|  | parent = ma_parent_ptr(mte_to_node(new_mas->node)); | 
|  | mas_descend(new_mas); | 
|  | mas->offset = 0; | 
|  | new_mas->offset = 0; | 
|  | } | 
|  | done: | 
|  | /* Specially handle the parent of the root node. */ | 
|  | mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); | 
|  | set_new_tree: | 
|  | /* Make them the same height */ | 
|  | new_mas->tree->ma_flags = mas->tree->ma_flags; | 
|  | rcu_assign_pointer(new_mas->tree->ma_root, root); | 
|  | empty_mas: | 
|  | mas_empty_nodes(mas); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __mt_dup(): Duplicate an entire maple tree | 
|  | * @mt: The source maple tree | 
|  | * @new: The new maple tree | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * | 
|  | * This function duplicates a maple tree in Depth-First Search (DFS) pre-order | 
|  | * traversal. It uses memcpy() to copy nodes in the source tree and allocate | 
|  | * new child nodes in non-leaf nodes. The new node is exactly the same as the | 
|  | * source node except for all the addresses stored in it. It will be faster than | 
|  | * traversing all elements in the source tree and inserting them one by one into | 
|  | * the new tree. | 
|  | * The user needs to ensure that the attributes of the source tree and the new | 
|  | * tree are the same, and the new tree needs to be an empty tree, otherwise | 
|  | * -EINVAL will be returned. | 
|  | * Note that the user needs to manually lock the source tree and the new tree. | 
|  | * | 
|  | * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If | 
|  | * the attributes of the two trees are different or the new tree is not an empty | 
|  | * tree. | 
|  | */ | 
|  | int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) | 
|  | { | 
|  | int ret = 0; | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  | MA_STATE(new_mas, new, 0, 0); | 
|  |  | 
|  | mas_dup_build(&mas, &new_mas, gfp); | 
|  | if (unlikely(mas_is_err(&mas))) { | 
|  | ret = xa_err(mas.node); | 
|  | if (ret == -ENOMEM) | 
|  | mas_dup_free(&new_mas); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__mt_dup); | 
|  |  | 
|  | /** | 
|  | * mtree_dup(): Duplicate an entire maple tree | 
|  | * @mt: The source maple tree | 
|  | * @new: The new maple tree | 
|  | * @gfp: The GFP_FLAGS to use for allocations | 
|  | * | 
|  | * This function duplicates a maple tree in Depth-First Search (DFS) pre-order | 
|  | * traversal. It uses memcpy() to copy nodes in the source tree and allocate | 
|  | * new child nodes in non-leaf nodes. The new node is exactly the same as the | 
|  | * source node except for all the addresses stored in it. It will be faster than | 
|  | * traversing all elements in the source tree and inserting them one by one into | 
|  | * the new tree. | 
|  | * The user needs to ensure that the attributes of the source tree and the new | 
|  | * tree are the same, and the new tree needs to be an empty tree, otherwise | 
|  | * -EINVAL will be returned. | 
|  | * | 
|  | * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If | 
|  | * the attributes of the two trees are different or the new tree is not an empty | 
|  | * tree. | 
|  | */ | 
|  | int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) | 
|  | { | 
|  | int ret = 0; | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  | MA_STATE(new_mas, new, 0, 0); | 
|  |  | 
|  | mas_lock(&new_mas); | 
|  | mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); | 
|  | mas_dup_build(&mas, &new_mas, gfp); | 
|  | mas_unlock(&mas); | 
|  | if (unlikely(mas_is_err(&mas))) { | 
|  | ret = xa_err(mas.node); | 
|  | if (ret == -ENOMEM) | 
|  | mas_dup_free(&new_mas); | 
|  | } | 
|  |  | 
|  | mas_unlock(&new_mas); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_dup); | 
|  |  | 
|  | /** | 
|  | * __mt_destroy() - Walk and free all nodes of a locked maple tree. | 
|  | * @mt: The maple tree | 
|  | * | 
|  | * Note: Does not handle locking. | 
|  | */ | 
|  | void __mt_destroy(struct maple_tree *mt) | 
|  | { | 
|  | void *root = mt_root_locked(mt); | 
|  |  | 
|  | rcu_assign_pointer(mt->ma_root, NULL); | 
|  | if (xa_is_node(root)) | 
|  | mte_destroy_walk(root, mt); | 
|  |  | 
|  | mt->ma_flags = mt_attr(mt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__mt_destroy); | 
|  |  | 
|  | /** | 
|  | * mtree_destroy() - Destroy a maple tree | 
|  | * @mt: The maple tree | 
|  | * | 
|  | * Frees all resources used by the tree.  Handles locking. | 
|  | */ | 
|  | void mtree_destroy(struct maple_tree *mt) | 
|  | { | 
|  | mtree_lock(mt); | 
|  | __mt_destroy(mt); | 
|  | mtree_unlock(mt); | 
|  | } | 
|  | EXPORT_SYMBOL(mtree_destroy); | 
|  |  | 
|  | /** | 
|  | * mt_find() - Search from the start up until an entry is found. | 
|  | * @mt: The maple tree | 
|  | * @index: Pointer which contains the start location of the search | 
|  | * @max: The maximum value of the search range | 
|  | * | 
|  | * Takes RCU read lock internally to protect the search, which does not | 
|  | * protect the returned pointer after dropping RCU read lock. | 
|  | * See also: Documentation/core-api/maple_tree.rst | 
|  | * | 
|  | * In case that an entry is found @index is updated to point to the next | 
|  | * possible entry independent whether the found entry is occupying a | 
|  | * single index or a range if indices. | 
|  | * | 
|  | * Return: The entry at or after the @index or %NULL | 
|  | */ | 
|  | void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) | 
|  | { | 
|  | MA_STATE(mas, mt, *index, *index); | 
|  | void *entry; | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | unsigned long copy = *index; | 
|  | #endif | 
|  |  | 
|  | trace_ma_read(__func__, &mas); | 
|  |  | 
|  | if ((*index) > max) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | entry = mas_state_walk(&mas); | 
|  | if (mas_is_start(&mas)) | 
|  | goto retry; | 
|  |  | 
|  | if (unlikely(xa_is_zero(entry))) | 
|  | entry = NULL; | 
|  |  | 
|  | if (entry) | 
|  | goto unlock; | 
|  |  | 
|  | while (mas_is_active(&mas) && (mas.last < max)) { | 
|  | entry = mas_next_slot(&mas, max, false); | 
|  | if (likely(entry && !xa_is_zero(entry))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(xa_is_zero(entry))) | 
|  | entry = NULL; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | if (likely(entry)) { | 
|  | *index = mas.last + 1; | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) | 
|  | pr_err("index not increased! %lx <= %lx\n", | 
|  | *index, copy); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(mt_find); | 
|  |  | 
|  | /** | 
|  | * mt_find_after() - Search from the start up until an entry is found. | 
|  | * @mt: The maple tree | 
|  | * @index: Pointer which contains the start location of the search | 
|  | * @max: The maximum value to check | 
|  | * | 
|  | * Same as mt_find() except that it checks @index for 0 before | 
|  | * searching. If @index == 0, the search is aborted. This covers a wrap | 
|  | * around of @index to 0 in an iterator loop. | 
|  | * | 
|  | * Return: The entry at or after the @index or %NULL | 
|  | */ | 
|  | void *mt_find_after(struct maple_tree *mt, unsigned long *index, | 
|  | unsigned long max) | 
|  | { | 
|  | if (!(*index)) | 
|  | return NULL; | 
|  |  | 
|  | return mt_find(mt, index, max); | 
|  | } | 
|  | EXPORT_SYMBOL(mt_find_after); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MAPLE_TREE | 
|  | atomic_t maple_tree_tests_run; | 
|  | EXPORT_SYMBOL_GPL(maple_tree_tests_run); | 
|  | atomic_t maple_tree_tests_passed; | 
|  | EXPORT_SYMBOL_GPL(maple_tree_tests_passed); | 
|  |  | 
|  | #ifndef __KERNEL__ | 
|  | extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); | 
|  | void mt_set_non_kernel(unsigned int val) | 
|  | { | 
|  | kmem_cache_set_non_kernel(maple_node_cache, val); | 
|  | } | 
|  |  | 
|  | extern void kmem_cache_set_callback(struct kmem_cache *cachep, | 
|  | void (*callback)(void *)); | 
|  | void mt_set_callback(void (*callback)(void *)) | 
|  | { | 
|  | kmem_cache_set_callback(maple_node_cache, callback); | 
|  | } | 
|  |  | 
|  | extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private); | 
|  | void mt_set_private(void *private) | 
|  | { | 
|  | kmem_cache_set_private(maple_node_cache, private); | 
|  | } | 
|  |  | 
|  | extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); | 
|  | unsigned long mt_get_alloc_size(void) | 
|  | { | 
|  | return kmem_cache_get_alloc(maple_node_cache); | 
|  | } | 
|  |  | 
|  | extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); | 
|  | void mt_zero_nr_tallocated(void) | 
|  | { | 
|  | kmem_cache_zero_nr_tallocated(maple_node_cache); | 
|  | } | 
|  |  | 
|  | extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); | 
|  | unsigned int mt_nr_tallocated(void) | 
|  | { | 
|  | return kmem_cache_nr_tallocated(maple_node_cache); | 
|  | } | 
|  |  | 
|  | extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); | 
|  | unsigned int mt_nr_allocated(void) | 
|  | { | 
|  | return kmem_cache_nr_allocated(maple_node_cache); | 
|  | } | 
|  |  | 
|  | void mt_cache_shrink(void) | 
|  | { | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * mt_cache_shrink() - For testing, don't use this. | 
|  | * | 
|  | * Certain testcases can trigger an OOM when combined with other memory | 
|  | * debugging configuration options.  This function is used to reduce the | 
|  | * possibility of an out of memory even due to kmem_cache objects remaining | 
|  | * around for longer than usual. | 
|  | */ | 
|  | void mt_cache_shrink(void) | 
|  | { | 
|  | kmem_cache_shrink(maple_node_cache); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_cache_shrink); | 
|  |  | 
|  | #endif /* not defined __KERNEL__ */ | 
|  | /* | 
|  | * mas_get_slot() - Get the entry in the maple state node stored at @offset. | 
|  | * @mas: The maple state | 
|  | * @offset: The offset into the slot array to fetch. | 
|  | * | 
|  | * Return: The entry stored at @offset. | 
|  | */ | 
|  | static inline struct maple_enode *mas_get_slot(struct ma_state *mas, | 
|  | unsigned char offset) | 
|  | { | 
|  | return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), | 
|  | offset); | 
|  | } | 
|  |  | 
|  | /* Depth first search, post-order */ | 
|  | static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) | 
|  | { | 
|  |  | 
|  | struct maple_enode *p, *mn = mas->node; | 
|  | unsigned long p_min, p_max; | 
|  |  | 
|  | mas_next_node(mas, mas_mn(mas), max); | 
|  | if (!mas_is_overflow(mas)) | 
|  | return; | 
|  |  | 
|  | if (mte_is_root(mn)) | 
|  | return; | 
|  |  | 
|  | mas->node = mn; | 
|  | mas_ascend(mas); | 
|  | do { | 
|  | p = mas->node; | 
|  | p_min = mas->min; | 
|  | p_max = mas->max; | 
|  | mas_prev_node(mas, 0); | 
|  | } while (!mas_is_underflow(mas)); | 
|  |  | 
|  | mas->node = p; | 
|  | mas->max = p_max; | 
|  | mas->min = p_min; | 
|  | } | 
|  |  | 
|  | /* Tree validations */ | 
|  | static void mt_dump_node(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth, | 
|  | enum mt_dump_format format); | 
|  | static void mt_dump_range(unsigned long min, unsigned long max, | 
|  | unsigned int depth, enum mt_dump_format format) | 
|  | { | 
|  | static const char spaces[] = "                                "; | 
|  |  | 
|  | switch(format) { | 
|  | case mt_dump_hex: | 
|  | if (min == max) | 
|  | pr_info("%.*s%lx: ", depth * 2, spaces, min); | 
|  | else | 
|  | pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); | 
|  | break; | 
|  | case mt_dump_dec: | 
|  | if (min == max) | 
|  | pr_info("%.*s%lu: ", depth * 2, spaces, min); | 
|  | else | 
|  | pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, | 
|  | unsigned int depth, enum mt_dump_format format) | 
|  | { | 
|  | mt_dump_range(min, max, depth, format); | 
|  |  | 
|  | if (xa_is_value(entry)) | 
|  | pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry), | 
|  | xa_to_value(entry), entry); | 
|  | else if (xa_is_zero(entry)) | 
|  | pr_cont("zero (%ld)\n", xa_to_internal(entry)); | 
|  | else if (mt_is_reserved(entry)) | 
|  | pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry); | 
|  | else | 
|  | pr_cont(PTR_FMT "\n", entry); | 
|  | } | 
|  |  | 
|  | static void mt_dump_range64(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth, | 
|  | enum mt_dump_format format) | 
|  | { | 
|  | struct maple_range_64 *node = &mte_to_node(entry)->mr64; | 
|  | bool leaf = mte_is_leaf(entry); | 
|  | unsigned long first = min; | 
|  | int i; | 
|  |  | 
|  | pr_cont(" contents: "); | 
|  | for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { | 
|  | switch(format) { | 
|  | case mt_dump_hex: | 
|  | pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]); | 
|  | break; | 
|  | case mt_dump_dec: | 
|  | pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]); | 
|  | } | 
|  | } | 
|  | pr_cont(PTR_FMT "\n", node->slot[i]); | 
|  | for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { | 
|  | unsigned long last = max; | 
|  |  | 
|  | if (i < (MAPLE_RANGE64_SLOTS - 1)) | 
|  | last = node->pivot[i]; | 
|  | else if (!node->slot[i] && max != mt_node_max(entry)) | 
|  | break; | 
|  | if (last == 0 && i > 0) | 
|  | break; | 
|  | if (leaf) | 
|  | mt_dump_entry(mt_slot(mt, node->slot, i), | 
|  | first, last, depth + 1, format); | 
|  | else if (node->slot[i]) | 
|  | mt_dump_node(mt, mt_slot(mt, node->slot, i), | 
|  | first, last, depth + 1, format); | 
|  |  | 
|  | if (last == max) | 
|  | break; | 
|  | if (last > max) { | 
|  | switch(format) { | 
|  | case mt_dump_hex: | 
|  | pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n", | 
|  | node, last, max, i); | 
|  | break; | 
|  | case mt_dump_dec: | 
|  | pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n", | 
|  | node, last, max, i); | 
|  | } | 
|  | } | 
|  | first = last + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mt_dump_arange64(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth, | 
|  | enum mt_dump_format format) | 
|  | { | 
|  | struct maple_arange_64 *node = &mte_to_node(entry)->ma64; | 
|  | unsigned long first = min; | 
|  | int i; | 
|  |  | 
|  | pr_cont(" contents: "); | 
|  | for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { | 
|  | switch (format) { | 
|  | case mt_dump_hex: | 
|  | pr_cont("%lx ", node->gap[i]); | 
|  | break; | 
|  | case mt_dump_dec: | 
|  | pr_cont("%lu ", node->gap[i]); | 
|  | } | 
|  | } | 
|  | pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); | 
|  | for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { | 
|  | switch (format) { | 
|  | case mt_dump_hex: | 
|  | pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]); | 
|  | break; | 
|  | case mt_dump_dec: | 
|  | pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]); | 
|  | } | 
|  | } | 
|  | pr_cont(PTR_FMT "\n", node->slot[i]); | 
|  | for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { | 
|  | unsigned long last = max; | 
|  |  | 
|  | if (i < (MAPLE_ARANGE64_SLOTS - 1)) | 
|  | last = node->pivot[i]; | 
|  | else if (!node->slot[i]) | 
|  | break; | 
|  | if (last == 0 && i > 0) | 
|  | break; | 
|  | if (node->slot[i]) | 
|  | mt_dump_node(mt, mt_slot(mt, node->slot, i), | 
|  | first, last, depth + 1, format); | 
|  |  | 
|  | if (last == max) | 
|  | break; | 
|  | if (last > max) { | 
|  | switch(format) { | 
|  | case mt_dump_hex: | 
|  | pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n", | 
|  | node, last, max, i); | 
|  | break; | 
|  | case mt_dump_dec: | 
|  | pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n", | 
|  | node, last, max, i); | 
|  | } | 
|  | } | 
|  | first = last + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mt_dump_node(const struct maple_tree *mt, void *entry, | 
|  | unsigned long min, unsigned long max, unsigned int depth, | 
|  | enum mt_dump_format format) | 
|  | { | 
|  | struct maple_node *node = mte_to_node(entry); | 
|  | unsigned int type = mte_node_type(entry); | 
|  | unsigned int i; | 
|  |  | 
|  | mt_dump_range(min, max, depth, format); | 
|  |  | 
|  | pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node, | 
|  | depth, type, node ? node->parent : NULL); | 
|  | switch (type) { | 
|  | case maple_dense: | 
|  | pr_cont("\n"); | 
|  | for (i = 0; i < MAPLE_NODE_SLOTS; i++) { | 
|  | if (min + i > max) | 
|  | pr_cont("OUT OF RANGE: "); | 
|  | mt_dump_entry(mt_slot(mt, node->slot, i), | 
|  | min + i, min + i, depth, format); | 
|  | } | 
|  | break; | 
|  | case maple_leaf_64: | 
|  | case maple_range_64: | 
|  | mt_dump_range64(mt, entry, min, max, depth, format); | 
|  | break; | 
|  | case maple_arange_64: | 
|  | mt_dump_arange64(mt, entry, min, max, depth, format); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pr_cont(" UNKNOWN TYPE\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) | 
|  | { | 
|  | void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); | 
|  |  | 
|  | pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n", | 
|  | mt, mt->ma_flags, mt_height(mt), entry); | 
|  | if (xa_is_node(entry)) | 
|  | mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); | 
|  | else if (entry) | 
|  | mt_dump_entry(entry, 0, 0, 0, format); | 
|  | else | 
|  | pr_info("(empty)\n"); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_dump); | 
|  |  | 
|  | /* | 
|  | * Calculate the maximum gap in a node and check if that's what is reported in | 
|  | * the parent (unless root). | 
|  | */ | 
|  | static void mas_validate_gaps(struct ma_state *mas) | 
|  | { | 
|  | struct maple_enode *mte = mas->node; | 
|  | struct maple_node *p_mn, *node = mte_to_node(mte); | 
|  | enum maple_type mt = mte_node_type(mas->node); | 
|  | unsigned long gap = 0, max_gap = 0; | 
|  | unsigned long p_end, p_start = mas->min; | 
|  | unsigned char p_slot, offset; | 
|  | unsigned long *gaps = NULL; | 
|  | unsigned long *pivots = ma_pivots(node, mt); | 
|  | unsigned int i; | 
|  |  | 
|  | if (ma_is_dense(mt)) { | 
|  | for (i = 0; i < mt_slot_count(mte); i++) { | 
|  | if (mas_get_slot(mas, i)) { | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  | gap = 0; | 
|  | continue; | 
|  | } | 
|  | gap++; | 
|  | } | 
|  | goto counted; | 
|  | } | 
|  |  | 
|  | gaps = ma_gaps(node, mt); | 
|  | for (i = 0; i < mt_slot_count(mte); i++) { | 
|  | p_end = mas_safe_pivot(mas, pivots, i, mt); | 
|  |  | 
|  | if (!gaps) { | 
|  | if (!mas_get_slot(mas, i)) | 
|  | gap = p_end - p_start + 1; | 
|  | } else { | 
|  | void *entry = mas_get_slot(mas, i); | 
|  |  | 
|  | gap = gaps[i]; | 
|  | MT_BUG_ON(mas->tree, !entry); | 
|  |  | 
|  | if (gap > p_end - p_start + 1) { | 
|  | pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n", | 
|  | mas_mn(mas), i, gap, p_end, p_start, | 
|  | p_end - p_start + 1); | 
|  | MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (gap > max_gap) | 
|  | max_gap = gap; | 
|  |  | 
|  | p_start = p_end + 1; | 
|  | if (p_end >= mas->max) | 
|  | break; | 
|  | } | 
|  |  | 
|  | counted: | 
|  | if (mt == maple_arange_64) { | 
|  | MT_BUG_ON(mas->tree, !gaps); | 
|  | offset = ma_meta_gap(node); | 
|  | if (offset > i) { | 
|  | pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | if (gaps[offset] != max_gap) { | 
|  | pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n", | 
|  | node, offset, max_gap); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | for (i++ ; i < mt_slot_count(mte); i++) { | 
|  | if (gaps[i] != 0) { | 
|  | pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n", | 
|  | node, i); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mte_is_root(mte)) | 
|  | return; | 
|  |  | 
|  | p_slot = mte_parent_slot(mas->node); | 
|  | p_mn = mte_parent(mte); | 
|  | MT_BUG_ON(mas->tree, max_gap > mas->max); | 
|  | if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { | 
|  | pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap); | 
|  | mt_dump(mas->tree, mt_dump_hex); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mas_validate_parent_slot(struct ma_state *mas) | 
|  | { | 
|  | struct maple_node *parent; | 
|  | struct maple_enode *node; | 
|  | enum maple_type p_type; | 
|  | unsigned char p_slot; | 
|  | void __rcu **slots; | 
|  | int i; | 
|  |  | 
|  | if (mte_is_root(mas->node)) | 
|  | return; | 
|  |  | 
|  | p_slot = mte_parent_slot(mas->node); | 
|  | p_type = mas_parent_type(mas, mas->node); | 
|  | parent = mte_parent(mas->node); | 
|  | slots = ma_slots(parent, p_type); | 
|  | MT_BUG_ON(mas->tree, mas_mn(mas) == parent); | 
|  |  | 
|  | /* Check prev/next parent slot for duplicate node entry */ | 
|  |  | 
|  | for (i = 0; i < mt_slots[p_type]; i++) { | 
|  | node = mas_slot(mas, slots, i); | 
|  | if (i == p_slot) { | 
|  | if (node != mas->node) | 
|  | pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n", | 
|  | parent, i, mas_mn(mas)); | 
|  | MT_BUG_ON(mas->tree, node != mas->node); | 
|  | } else if (node == mas->node) { | 
|  | pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n", | 
|  | mas_mn(mas), parent, i, p_slot); | 
|  | MT_BUG_ON(mas->tree, node == mas->node); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mas_validate_child_slot(struct ma_state *mas) | 
|  | { | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | void __rcu **slots = ma_slots(mte_to_node(mas->node), type); | 
|  | unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); | 
|  | struct maple_enode *child; | 
|  | unsigned char i; | 
|  |  | 
|  | if (mte_is_leaf(mas->node)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < mt_slots[type]; i++) { | 
|  | child = mas_slot(mas, slots, i); | 
|  |  | 
|  | if (!child) { | 
|  | pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n", | 
|  | mas_mn(mas), i); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | if (mte_parent_slot(child) != i) { | 
|  | pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n", | 
|  | mas_mn(mas), i, mte_to_node(child), | 
|  | mte_parent_slot(child)); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | if (mte_parent(child) != mte_to_node(mas->node)) { | 
|  | pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n", | 
|  | mte_to_node(child), mte_parent(child), | 
|  | mte_to_node(mas->node)); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | if (i < mt_pivots[type] && pivots[i] == mas->max) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate all pivots are within mas->min and mas->max, check metadata ends | 
|  | * where the maximum ends and ensure there is no slots or pivots set outside of | 
|  | * the end of the data. | 
|  | */ | 
|  | static void mas_validate_limits(struct ma_state *mas) | 
|  | { | 
|  | int i; | 
|  | unsigned long prev_piv = 0; | 
|  | enum maple_type type = mte_node_type(mas->node); | 
|  | void __rcu **slots = ma_slots(mte_to_node(mas->node), type); | 
|  | unsigned long *pivots = ma_pivots(mas_mn(mas), type); | 
|  |  | 
|  | for (i = 0; i < mt_slots[type]; i++) { | 
|  | unsigned long piv; | 
|  |  | 
|  | piv = mas_safe_pivot(mas, pivots, i, type); | 
|  |  | 
|  | if (!piv && (i != 0)) { | 
|  | pr_err("Missing node limit pivot at " PTR_FMT "[%u]", | 
|  | mas_mn(mas), i); | 
|  | MAS_WARN_ON(mas, 1); | 
|  | } | 
|  |  | 
|  | if (prev_piv > piv) { | 
|  | pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n", | 
|  | mas_mn(mas), i, piv, prev_piv); | 
|  | MAS_WARN_ON(mas, piv < prev_piv); | 
|  | } | 
|  |  | 
|  | if (piv < mas->min) { | 
|  | pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i, | 
|  | piv, mas->min); | 
|  | MAS_WARN_ON(mas, piv < mas->min); | 
|  | } | 
|  | if (piv > mas->max) { | 
|  | pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i, | 
|  | piv, mas->max); | 
|  | MAS_WARN_ON(mas, piv > mas->max); | 
|  | } | 
|  | prev_piv = piv; | 
|  | if (piv == mas->max) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (mas_data_end(mas) != i) { | 
|  | pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n", | 
|  | mas_mn(mas), mas_data_end(mas), i); | 
|  | MT_BUG_ON(mas->tree, 1); | 
|  | } | 
|  |  | 
|  | for (i += 1; i < mt_slots[type]; i++) { | 
|  | void *entry = mas_slot(mas, slots, i); | 
|  |  | 
|  | if (entry && (i != mt_slots[type] - 1)) { | 
|  | pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n", | 
|  | mas_mn(mas), i, entry); | 
|  | MT_BUG_ON(mas->tree, entry != NULL); | 
|  | } | 
|  |  | 
|  | if (i < mt_pivots[type]) { | 
|  | unsigned long piv = pivots[i]; | 
|  |  | 
|  | if (!piv) | 
|  | continue; | 
|  |  | 
|  | pr_err(PTR_FMT "[%u] should not have piv %lu\n", | 
|  | mas_mn(mas), i, piv); | 
|  | MAS_WARN_ON(mas, i < mt_pivots[type] - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mt_validate_nulls(struct maple_tree *mt) | 
|  | { | 
|  | void *entry, *last = (void *)1; | 
|  | unsigned char offset = 0; | 
|  | void __rcu **slots; | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  |  | 
|  | mas_start(&mas); | 
|  | if (mas_is_none(&mas) || (mas_is_ptr(&mas))) | 
|  | return; | 
|  |  | 
|  | while (!mte_is_leaf(mas.node)) | 
|  | mas_descend(&mas); | 
|  |  | 
|  | slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); | 
|  | do { | 
|  | entry = mas_slot(&mas, slots, offset); | 
|  | if (!last && !entry) { | 
|  | pr_err("Sequential nulls end at " PTR_FMT "[%u]\n", | 
|  | mas_mn(&mas), offset); | 
|  | } | 
|  | MT_BUG_ON(mt, !last && !entry); | 
|  | last = entry; | 
|  | if (offset == mas_data_end(&mas)) { | 
|  | mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); | 
|  | if (mas_is_overflow(&mas)) | 
|  | return; | 
|  | offset = 0; | 
|  | slots = ma_slots(mte_to_node(mas.node), | 
|  | mte_node_type(mas.node)); | 
|  | } else { | 
|  | offset++; | 
|  | } | 
|  |  | 
|  | } while (!mas_is_overflow(&mas)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate a maple tree by checking: | 
|  | * 1. The limits (pivots are within mas->min to mas->max) | 
|  | * 2. The gap is correctly set in the parents | 
|  | */ | 
|  | void mt_validate(struct maple_tree *mt) | 
|  | __must_hold(mas->tree->ma_lock) | 
|  | { | 
|  | unsigned char end; | 
|  |  | 
|  | MA_STATE(mas, mt, 0, 0); | 
|  | mas_start(&mas); | 
|  | if (!mas_is_active(&mas)) | 
|  | return; | 
|  |  | 
|  | while (!mte_is_leaf(mas.node)) | 
|  | mas_descend(&mas); | 
|  |  | 
|  | while (!mas_is_overflow(&mas)) { | 
|  | MAS_WARN_ON(&mas, mte_dead_node(mas.node)); | 
|  | end = mas_data_end(&mas); | 
|  | if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && | 
|  | (!mte_is_root(mas.node)))) { | 
|  | pr_err("Invalid size %u of " PTR_FMT "\n", | 
|  | end, mas_mn(&mas)); | 
|  | } | 
|  |  | 
|  | mas_validate_parent_slot(&mas); | 
|  | mas_validate_limits(&mas); | 
|  | mas_validate_child_slot(&mas); | 
|  | if (mt_is_alloc(mt)) | 
|  | mas_validate_gaps(&mas); | 
|  | mas_dfs_postorder(&mas, ULONG_MAX); | 
|  | } | 
|  | mt_validate_nulls(mt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mt_validate); | 
|  |  | 
|  | void mas_dump(const struct ma_state *mas) | 
|  | { | 
|  | pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ", | 
|  | mas->tree, mas->node); | 
|  | switch (mas->status) { | 
|  | case ma_active: | 
|  | pr_err("(ma_active)"); | 
|  | break; | 
|  | case ma_none: | 
|  | pr_err("(ma_none)"); | 
|  | break; | 
|  | case ma_root: | 
|  | pr_err("(ma_root)"); | 
|  | break; | 
|  | case ma_start: | 
|  | pr_err("(ma_start) "); | 
|  | break; | 
|  | case ma_pause: | 
|  | pr_err("(ma_pause) "); | 
|  | break; | 
|  | case ma_overflow: | 
|  | pr_err("(ma_overflow) "); | 
|  | break; | 
|  | case ma_underflow: | 
|  | pr_err("(ma_underflow) "); | 
|  | break; | 
|  | case ma_error: | 
|  | pr_err("(ma_error) "); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pr_err("Store Type: "); | 
|  | switch (mas->store_type) { | 
|  | case wr_invalid: | 
|  | pr_err("invalid store type\n"); | 
|  | break; | 
|  | case wr_new_root: | 
|  | pr_err("new_root\n"); | 
|  | break; | 
|  | case wr_store_root: | 
|  | pr_err("store_root\n"); | 
|  | break; | 
|  | case wr_exact_fit: | 
|  | pr_err("exact_fit\n"); | 
|  | break; | 
|  | case wr_split_store: | 
|  | pr_err("split_store\n"); | 
|  | break; | 
|  | case wr_slot_store: | 
|  | pr_err("slot_store\n"); | 
|  | break; | 
|  | case wr_append: | 
|  | pr_err("append\n"); | 
|  | break; | 
|  | case wr_node_store: | 
|  | pr_err("node_store\n"); | 
|  | break; | 
|  | case wr_spanning_store: | 
|  | pr_err("spanning_store\n"); | 
|  | break; | 
|  | case wr_rebalance: | 
|  | pr_err("rebalance\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end, | 
|  | mas->index, mas->last); | 
|  | pr_err("     min=%lx max=%lx sheaf=" PTR_FMT ", request %lu depth=%u, flags=%x\n", | 
|  | mas->min, mas->max, mas->sheaf, mas->node_request, mas->depth, | 
|  | mas->mas_flags); | 
|  | if (mas->index > mas->last) | 
|  | pr_err("Check index & last\n"); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_dump); | 
|  |  | 
|  | void mas_wr_dump(const struct ma_wr_state *wr_mas) | 
|  | { | 
|  | pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n", | 
|  | wr_mas->node, wr_mas->r_min, wr_mas->r_max); | 
|  | pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n", | 
|  | wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, | 
|  | wr_mas->end_piv); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mas_wr_dump); | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_MAPLE_TREE */ |