|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* memcontrol.c - Memory Controller | 
|  | * | 
|  | * Copyright IBM Corporation, 2007 | 
|  | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
|  | * | 
|  | * Copyright 2007 OpenVZ SWsoft Inc | 
|  | * Author: Pavel Emelianov <xemul@openvz.org> | 
|  | * | 
|  | * Memory thresholds | 
|  | * Copyright (C) 2009 Nokia Corporation | 
|  | * Author: Kirill A. Shutemov | 
|  | * | 
|  | * Kernel Memory Controller | 
|  | * Copyright (C) 2012 Parallels Inc. and Google Inc. | 
|  | * Authors: Glauber Costa and Suleiman Souhlal | 
|  | * | 
|  | * Native page reclaim | 
|  | * Charge lifetime sanitation | 
|  | * Lockless page tracking & accounting | 
|  | * Unified hierarchy configuration model | 
|  | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | 
|  | * | 
|  | * Per memcg lru locking | 
|  | * Copyright (C) 2020 Alibaba, Inc, Alex Shi | 
|  | */ | 
|  |  | 
|  | #include <linux/cgroup-defs.h> | 
|  | #include <linux/page_counter.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/vm_event_item.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/limits.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/vmpressure.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/swap_cgroup.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/resume_user_mode.h> | 
|  | #include <linux/psi.h> | 
|  | #include <linux/seq_buf.h> | 
|  | #include <linux/sched/isolation.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include "internal.h" | 
|  | #include <net/sock.h> | 
|  | #include <net/ip.h> | 
|  | #include "slab.h" | 
|  | #include "memcontrol-v1.h" | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/memcg.h> | 
|  | #undef CREATE_TRACE_POINTS | 
|  |  | 
|  | #include <trace/events/vmscan.h> | 
|  |  | 
|  | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | 
|  | EXPORT_SYMBOL(memory_cgrp_subsys); | 
|  |  | 
|  | struct mem_cgroup *root_mem_cgroup __read_mostly; | 
|  |  | 
|  | /* Active memory cgroup to use from an interrupt context */ | 
|  | DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); | 
|  | EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); | 
|  |  | 
|  | /* Socket memory accounting disabled? */ | 
|  | static bool cgroup_memory_nosocket __ro_after_init; | 
|  |  | 
|  | /* Kernel memory accounting disabled? */ | 
|  | static bool cgroup_memory_nokmem __ro_after_init; | 
|  |  | 
|  | /* BPF memory accounting disabled? */ | 
|  | static bool cgroup_memory_nobpf __ro_after_init; | 
|  |  | 
|  | static struct kmem_cache *memcg_cachep; | 
|  | static struct kmem_cache *memcg_pn_cachep; | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); | 
|  | #endif | 
|  |  | 
|  | static inline bool task_is_dying(void) | 
|  | { | 
|  | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || | 
|  | (current->flags & PF_EXITING); | 
|  | } | 
|  |  | 
|  | /* Some nice accessors for the vmpressure. */ | 
|  | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  | return &memcg->vmpressure; | 
|  | } | 
|  |  | 
|  | struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) | 
|  | { | 
|  | return container_of(vmpr, struct mem_cgroup, vmpressure); | 
|  | } | 
|  |  | 
|  | #define SEQ_BUF_SIZE SZ_4K | 
|  | #define CURRENT_OBJCG_UPDATE_BIT 0 | 
|  | #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) | 
|  |  | 
|  | static DEFINE_SPINLOCK(objcg_lock); | 
|  |  | 
|  | bool mem_cgroup_kmem_disabled(void) | 
|  | { | 
|  | return cgroup_memory_nokmem; | 
|  | } | 
|  |  | 
|  | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); | 
|  |  | 
|  | static void obj_cgroup_release(struct percpu_ref *ref) | 
|  | { | 
|  | struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); | 
|  | unsigned int nr_bytes; | 
|  | unsigned int nr_pages; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * At this point all allocated objects are freed, and | 
|  | * objcg->nr_charged_bytes can't have an arbitrary byte value. | 
|  | * However, it can be PAGE_SIZE or (x * PAGE_SIZE). | 
|  | * | 
|  | * The following sequence can lead to it: | 
|  | * 1) CPU0: objcg == stock->cached_objcg | 
|  | * 2) CPU1: we do a small allocation (e.g. 92 bytes), | 
|  | *          PAGE_SIZE bytes are charged | 
|  | * 3) CPU1: a process from another memcg is allocating something, | 
|  | *          the stock if flushed, | 
|  | *          objcg->nr_charged_bytes = PAGE_SIZE - 92 | 
|  | * 5) CPU0: we do release this object, | 
|  | *          92 bytes are added to stock->nr_bytes | 
|  | * 6) CPU0: stock is flushed, | 
|  | *          92 bytes are added to objcg->nr_charged_bytes | 
|  | * | 
|  | * In the result, nr_charged_bytes == PAGE_SIZE. | 
|  | * This page will be uncharged in obj_cgroup_release(). | 
|  | */ | 
|  | nr_bytes = atomic_read(&objcg->nr_charged_bytes); | 
|  | WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); | 
|  | nr_pages = nr_bytes >> PAGE_SHIFT; | 
|  |  | 
|  | if (nr_pages) { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); | 
|  | memcg1_account_kmem(memcg, -nr_pages); | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | memcg_uncharge(memcg, nr_pages); | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&objcg_lock, flags); | 
|  | list_del(&objcg->list); | 
|  | spin_unlock_irqrestore(&objcg_lock, flags); | 
|  |  | 
|  | percpu_ref_exit(ref); | 
|  | kfree_rcu(objcg, rcu); | 
|  | } | 
|  |  | 
|  | static struct obj_cgroup *obj_cgroup_alloc(void) | 
|  | { | 
|  | struct obj_cgroup *objcg; | 
|  | int ret; | 
|  |  | 
|  | objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); | 
|  | if (!objcg) | 
|  | return NULL; | 
|  |  | 
|  | ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, | 
|  | GFP_KERNEL); | 
|  | if (ret) { | 
|  | kfree(objcg); | 
|  | return NULL; | 
|  | } | 
|  | INIT_LIST_HEAD(&objcg->list); | 
|  | return objcg; | 
|  | } | 
|  |  | 
|  | static void memcg_reparent_objcgs(struct mem_cgroup *memcg, | 
|  | struct mem_cgroup *parent) | 
|  | { | 
|  | struct obj_cgroup *objcg, *iter; | 
|  |  | 
|  | objcg = rcu_replace_pointer(memcg->objcg, NULL, true); | 
|  |  | 
|  | spin_lock_irq(&objcg_lock); | 
|  |  | 
|  | /* 1) Ready to reparent active objcg. */ | 
|  | list_add(&objcg->list, &memcg->objcg_list); | 
|  | /* 2) Reparent active objcg and already reparented objcgs to parent. */ | 
|  | list_for_each_entry(iter, &memcg->objcg_list, list) | 
|  | WRITE_ONCE(iter->memcg, parent); | 
|  | /* 3) Move already reparented objcgs to the parent's list */ | 
|  | list_splice(&memcg->objcg_list, &parent->objcg_list); | 
|  |  | 
|  | spin_unlock_irq(&objcg_lock); | 
|  |  | 
|  | percpu_ref_kill(&objcg->refcnt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A lot of the calls to the cache allocation functions are expected to be | 
|  | * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are | 
|  | * conditional to this static branch, we'll have to allow modules that does | 
|  | * kmem_cache_alloc and the such to see this symbol as well | 
|  | */ | 
|  | DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); | 
|  | EXPORT_SYMBOL(memcg_kmem_online_key); | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); | 
|  | EXPORT_SYMBOL(memcg_bpf_enabled_key); | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_css_from_folio - css of the memcg associated with a folio | 
|  | * @folio: folio of interest | 
|  | * | 
|  | * If memcg is bound to the default hierarchy, css of the memcg associated | 
|  | * with @folio is returned.  The returned css remains associated with @folio | 
|  | * until it is released. | 
|  | * | 
|  | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | 
|  | * is returned. | 
|  | */ | 
|  | struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) | 
|  | { | 
|  | struct mem_cgroup *memcg = folio_memcg(folio); | 
|  |  | 
|  | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | memcg = root_mem_cgroup; | 
|  |  | 
|  | return &memcg->css; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_cgroup_ino - return inode number of the memcg a page is charged to | 
|  | * @page: the page | 
|  | * | 
|  | * Look up the closest online ancestor of the memory cgroup @page is charged to | 
|  | * and return its inode number or 0 if @page is not charged to any cgroup. It | 
|  | * is safe to call this function without holding a reference to @page. | 
|  | * | 
|  | * Note, this function is inherently racy, because there is nothing to prevent | 
|  | * the cgroup inode from getting torn down and potentially reallocated a moment | 
|  | * after page_cgroup_ino() returns, so it only should be used by callers that | 
|  | * do not care (such as procfs interfaces). | 
|  | */ | 
|  | ino_t page_cgroup_ino(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned long ino = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* page_folio() is racy here, but the entire function is racy anyway */ | 
|  | memcg = folio_memcg_check(page_folio(page)); | 
|  |  | 
|  | while (memcg && !(memcg->css.flags & CSS_ONLINE)) | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  | if (memcg) | 
|  | ino = cgroup_ino(memcg->css.cgroup); | 
|  | rcu_read_unlock(); | 
|  | return ino; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(page_cgroup_ino); | 
|  |  | 
|  | /* Subset of node_stat_item for memcg stats */ | 
|  | static const unsigned int memcg_node_stat_items[] = { | 
|  | NR_INACTIVE_ANON, | 
|  | NR_ACTIVE_ANON, | 
|  | NR_INACTIVE_FILE, | 
|  | NR_ACTIVE_FILE, | 
|  | NR_UNEVICTABLE, | 
|  | NR_SLAB_RECLAIMABLE_B, | 
|  | NR_SLAB_UNRECLAIMABLE_B, | 
|  | WORKINGSET_REFAULT_ANON, | 
|  | WORKINGSET_REFAULT_FILE, | 
|  | WORKINGSET_ACTIVATE_ANON, | 
|  | WORKINGSET_ACTIVATE_FILE, | 
|  | WORKINGSET_RESTORE_ANON, | 
|  | WORKINGSET_RESTORE_FILE, | 
|  | WORKINGSET_NODERECLAIM, | 
|  | NR_ANON_MAPPED, | 
|  | NR_FILE_MAPPED, | 
|  | NR_FILE_PAGES, | 
|  | NR_FILE_DIRTY, | 
|  | NR_WRITEBACK, | 
|  | NR_SHMEM, | 
|  | NR_SHMEM_THPS, | 
|  | NR_FILE_THPS, | 
|  | NR_ANON_THPS, | 
|  | NR_KERNEL_STACK_KB, | 
|  | NR_PAGETABLE, | 
|  | NR_SECONDARY_PAGETABLE, | 
|  | #ifdef CONFIG_SWAP | 
|  | NR_SWAPCACHE, | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | PGPROMOTE_SUCCESS, | 
|  | #endif | 
|  | PGDEMOTE_KSWAPD, | 
|  | PGDEMOTE_DIRECT, | 
|  | PGDEMOTE_KHUGEPAGED, | 
|  | PGDEMOTE_PROACTIVE, | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | NR_HUGETLB, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const unsigned int memcg_stat_items[] = { | 
|  | MEMCG_SWAP, | 
|  | MEMCG_SOCK, | 
|  | MEMCG_PERCPU_B, | 
|  | MEMCG_VMALLOC, | 
|  | MEMCG_KMEM, | 
|  | MEMCG_ZSWAP_B, | 
|  | MEMCG_ZSWAPPED, | 
|  | }; | 
|  |  | 
|  | #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) | 
|  | #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ | 
|  | ARRAY_SIZE(memcg_stat_items)) | 
|  | #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) | 
|  | static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; | 
|  |  | 
|  | static void init_memcg_stats(void) | 
|  | { | 
|  | u8 i, j = 0; | 
|  |  | 
|  | BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); | 
|  |  | 
|  | memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); | 
|  |  | 
|  | for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) | 
|  | mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) | 
|  | mem_cgroup_stats_index[memcg_stat_items[i]] = j; | 
|  | } | 
|  |  | 
|  | static inline int memcg_stats_index(int idx) | 
|  | { | 
|  | return mem_cgroup_stats_index[idx]; | 
|  | } | 
|  |  | 
|  | struct lruvec_stats_percpu { | 
|  | /* Local (CPU and cgroup) state */ | 
|  | long state[NR_MEMCG_NODE_STAT_ITEMS]; | 
|  |  | 
|  | /* Delta calculation for lockless upward propagation */ | 
|  | long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; | 
|  | }; | 
|  |  | 
|  | struct lruvec_stats { | 
|  | /* Aggregated (CPU and subtree) state */ | 
|  | long state[NR_MEMCG_NODE_STAT_ITEMS]; | 
|  |  | 
|  | /* Non-hierarchical (CPU aggregated) state */ | 
|  | long state_local[NR_MEMCG_NODE_STAT_ITEMS]; | 
|  |  | 
|  | /* Pending child counts during tree propagation */ | 
|  | long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; | 
|  | }; | 
|  |  | 
|  | unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | long x; | 
|  | int i; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return node_page_state(lruvec_pgdat(lruvec), idx); | 
|  |  | 
|  | i = memcg_stats_index(idx); | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) | 
|  | return 0; | 
|  |  | 
|  | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
|  | x = READ_ONCE(pn->lruvec_stats->state[i]); | 
|  | #ifdef CONFIG_SMP | 
|  | if (x < 0) | 
|  | x = 0; | 
|  | #endif | 
|  | return x; | 
|  | } | 
|  |  | 
|  | unsigned long lruvec_page_state_local(struct lruvec *lruvec, | 
|  | enum node_stat_item idx) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | long x; | 
|  | int i; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return node_page_state(lruvec_pgdat(lruvec), idx); | 
|  |  | 
|  | i = memcg_stats_index(idx); | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) | 
|  | return 0; | 
|  |  | 
|  | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
|  | x = READ_ONCE(pn->lruvec_stats->state_local[i]); | 
|  | #ifdef CONFIG_SMP | 
|  | if (x < 0) | 
|  | x = 0; | 
|  | #endif | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* Subset of vm_event_item to report for memcg event stats */ | 
|  | static const unsigned int memcg_vm_event_stat[] = { | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | PGPGIN, | 
|  | PGPGOUT, | 
|  | #endif | 
|  | PSWPIN, | 
|  | PSWPOUT, | 
|  | PGSCAN_KSWAPD, | 
|  | PGSCAN_DIRECT, | 
|  | PGSCAN_KHUGEPAGED, | 
|  | PGSCAN_PROACTIVE, | 
|  | PGSTEAL_KSWAPD, | 
|  | PGSTEAL_DIRECT, | 
|  | PGSTEAL_KHUGEPAGED, | 
|  | PGSTEAL_PROACTIVE, | 
|  | PGFAULT, | 
|  | PGMAJFAULT, | 
|  | PGREFILL, | 
|  | PGACTIVATE, | 
|  | PGDEACTIVATE, | 
|  | PGLAZYFREE, | 
|  | PGLAZYFREED, | 
|  | #ifdef CONFIG_SWAP | 
|  | SWPIN_ZERO, | 
|  | SWPOUT_ZERO, | 
|  | #endif | 
|  | #ifdef CONFIG_ZSWAP | 
|  | ZSWPIN, | 
|  | ZSWPOUT, | 
|  | ZSWPWB, | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | THP_FAULT_ALLOC, | 
|  | THP_COLLAPSE_ALLOC, | 
|  | THP_SWPOUT, | 
|  | THP_SWPOUT_FALLBACK, | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | NUMA_PAGE_MIGRATE, | 
|  | NUMA_PTE_UPDATES, | 
|  | NUMA_HINT_FAULTS, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) | 
|  | static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; | 
|  |  | 
|  | static void init_memcg_events(void) | 
|  | { | 
|  | u8 i; | 
|  |  | 
|  | BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); | 
|  |  | 
|  | memset(mem_cgroup_events_index, U8_MAX, | 
|  | sizeof(mem_cgroup_events_index)); | 
|  |  | 
|  | for (i = 0; i < NR_MEMCG_EVENTS; ++i) | 
|  | mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; | 
|  | } | 
|  |  | 
|  | static inline int memcg_events_index(enum vm_event_item idx) | 
|  | { | 
|  | return mem_cgroup_events_index[idx]; | 
|  | } | 
|  |  | 
|  | struct memcg_vmstats_percpu { | 
|  | /* Stats updates since the last flush */ | 
|  | unsigned int			stats_updates; | 
|  |  | 
|  | /* Cached pointers for fast iteration in memcg_rstat_updated() */ | 
|  | struct memcg_vmstats_percpu __percpu	*parent_pcpu; | 
|  | struct memcg_vmstats			*vmstats; | 
|  |  | 
|  | /* The above should fit a single cacheline for memcg_rstat_updated() */ | 
|  |  | 
|  | /* Local (CPU and cgroup) page state & events */ | 
|  | long			state[MEMCG_VMSTAT_SIZE]; | 
|  | unsigned long		events[NR_MEMCG_EVENTS]; | 
|  |  | 
|  | /* Delta calculation for lockless upward propagation */ | 
|  | long			state_prev[MEMCG_VMSTAT_SIZE]; | 
|  | unsigned long		events_prev[NR_MEMCG_EVENTS]; | 
|  | } ____cacheline_aligned; | 
|  |  | 
|  | struct memcg_vmstats { | 
|  | /* Aggregated (CPU and subtree) page state & events */ | 
|  | long			state[MEMCG_VMSTAT_SIZE]; | 
|  | unsigned long		events[NR_MEMCG_EVENTS]; | 
|  |  | 
|  | /* Non-hierarchical (CPU aggregated) page state & events */ | 
|  | long			state_local[MEMCG_VMSTAT_SIZE]; | 
|  | unsigned long		events_local[NR_MEMCG_EVENTS]; | 
|  |  | 
|  | /* Pending child counts during tree propagation */ | 
|  | long			state_pending[MEMCG_VMSTAT_SIZE]; | 
|  | unsigned long		events_pending[NR_MEMCG_EVENTS]; | 
|  |  | 
|  | /* Stats updates since the last flush */ | 
|  | atomic_t		stats_updates; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * memcg and lruvec stats flushing | 
|  | * | 
|  | * Many codepaths leading to stats update or read are performance sensitive and | 
|  | * adding stats flushing in such codepaths is not desirable. So, to optimize the | 
|  | * flushing the kernel does: | 
|  | * | 
|  | * 1) Periodically and asynchronously flush the stats every 2 seconds to not let | 
|  | *    rstat update tree grow unbounded. | 
|  | * | 
|  | * 2) Flush the stats synchronously on reader side only when there are more than | 
|  | *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization | 
|  | *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but | 
|  | *    only for 2 seconds due to (1). | 
|  | */ | 
|  | static void flush_memcg_stats_dwork(struct work_struct *w); | 
|  | static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); | 
|  | static u64 flush_last_time; | 
|  |  | 
|  | #define FLUSH_TIME (2UL*HZ) | 
|  |  | 
|  | static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) | 
|  | { | 
|  | return atomic_read(&vmstats->stats_updates) > | 
|  | MEMCG_CHARGE_BATCH * num_online_cpus(); | 
|  | } | 
|  |  | 
|  | static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, | 
|  | int cpu) | 
|  | { | 
|  | struct memcg_vmstats_percpu __percpu *statc_pcpu; | 
|  | struct memcg_vmstats_percpu *statc; | 
|  | unsigned int stats_updates; | 
|  |  | 
|  | if (!val) | 
|  | return; | 
|  |  | 
|  | css_rstat_updated(&memcg->css, cpu); | 
|  | statc_pcpu = memcg->vmstats_percpu; | 
|  | for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { | 
|  | statc = this_cpu_ptr(statc_pcpu); | 
|  | /* | 
|  | * If @memcg is already flushable then all its ancestors are | 
|  | * flushable as well and also there is no need to increase | 
|  | * stats_updates. | 
|  | */ | 
|  | if (memcg_vmstats_needs_flush(statc->vmstats)) | 
|  | break; | 
|  |  | 
|  | stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, | 
|  | abs(val)); | 
|  | if (stats_updates < MEMCG_CHARGE_BATCH) | 
|  | continue; | 
|  |  | 
|  | stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); | 
|  | atomic_add(stats_updates, &statc->vmstats->stats_updates); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) | 
|  | { | 
|  | bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); | 
|  |  | 
|  | trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates), | 
|  | force, needs_flush); | 
|  |  | 
|  | if (!force && !needs_flush) | 
|  | return; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | WRITE_ONCE(flush_last_time, jiffies_64); | 
|  |  | 
|  | css_rstat_flush(&memcg->css); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree | 
|  | * @memcg: root of the subtree to flush | 
|  | * | 
|  | * Flushing is serialized by the underlying global rstat lock. There is also a | 
|  | * minimum amount of work to be done even if there are no stat updates to flush. | 
|  | * Hence, we only flush the stats if the updates delta exceeds a threshold. This | 
|  | * avoids unnecessary work and contention on the underlying lock. | 
|  | */ | 
|  | void mem_cgroup_flush_stats(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  |  | 
|  | __mem_cgroup_flush_stats(memcg, false); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* Only flush if the periodic flusher is one full cycle late */ | 
|  | if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) | 
|  | mem_cgroup_flush_stats(memcg); | 
|  | } | 
|  |  | 
|  | static void flush_memcg_stats_dwork(struct work_struct *w) | 
|  | { | 
|  | /* | 
|  | * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing | 
|  | * in latency-sensitive paths is as cheap as possible. | 
|  | */ | 
|  | __mem_cgroup_flush_stats(root_mem_cgroup, true); | 
|  | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); | 
|  | } | 
|  |  | 
|  | unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) | 
|  | { | 
|  | long x; | 
|  | int i = memcg_stats_index(idx); | 
|  |  | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) | 
|  | return 0; | 
|  |  | 
|  | x = READ_ONCE(memcg->vmstats->state[i]); | 
|  | #ifdef CONFIG_SMP | 
|  | if (x < 0) | 
|  | x = 0; | 
|  | #endif | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static int memcg_page_state_unit(int item); | 
|  |  | 
|  | /* | 
|  | * Normalize the value passed into memcg_rstat_updated() to be in pages. Round | 
|  | * up non-zero sub-page updates to 1 page as zero page updates are ignored. | 
|  | */ | 
|  | static int memcg_state_val_in_pages(int idx, int val) | 
|  | { | 
|  | int unit = memcg_page_state_unit(idx); | 
|  |  | 
|  | if (!val || unit == PAGE_SIZE) | 
|  | return val; | 
|  | else | 
|  | return max(val * unit / PAGE_SIZE, 1UL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mod_memcg_state - update cgroup memory statistics | 
|  | * @memcg: the memory cgroup | 
|  | * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item | 
|  | * @val: delta to add to the counter, can be negative | 
|  | */ | 
|  | void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, | 
|  | int val) | 
|  | { | 
|  | int i = memcg_stats_index(idx); | 
|  | int cpu; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) | 
|  | return; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  |  | 
|  | this_cpu_add(memcg->vmstats_percpu->state[i], val); | 
|  | val = memcg_state_val_in_pages(idx, val); | 
|  | memcg_rstat_updated(memcg, val, cpu); | 
|  | trace_mod_memcg_state(memcg, idx, val); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | /* idx can be of type enum memcg_stat_item or node_stat_item. */ | 
|  | unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) | 
|  | { | 
|  | long x; | 
|  | int i = memcg_stats_index(idx); | 
|  |  | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) | 
|  | return 0; | 
|  |  | 
|  | x = READ_ONCE(memcg->vmstats->state_local[i]); | 
|  | #ifdef CONFIG_SMP | 
|  | if (x < 0) | 
|  | x = 0; | 
|  | #endif | 
|  | return x; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void mod_memcg_lruvec_state(struct lruvec *lruvec, | 
|  | enum node_stat_item idx, | 
|  | int val) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | struct mem_cgroup *memcg; | 
|  | int i = memcg_stats_index(idx); | 
|  | int cpu; | 
|  |  | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) | 
|  | return; | 
|  |  | 
|  | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
|  | memcg = pn->memcg; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  |  | 
|  | /* Update memcg */ | 
|  | this_cpu_add(memcg->vmstats_percpu->state[i], val); | 
|  |  | 
|  | /* Update lruvec */ | 
|  | this_cpu_add(pn->lruvec_stats_percpu->state[i], val); | 
|  |  | 
|  | val = memcg_state_val_in_pages(idx, val); | 
|  | memcg_rstat_updated(memcg, val, cpu); | 
|  | trace_mod_memcg_lruvec_state(memcg, idx, val); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __mod_lruvec_state - update lruvec memory statistics | 
|  | * @lruvec: the lruvec | 
|  | * @idx: the stat item | 
|  | * @val: delta to add to the counter, can be negative | 
|  | * | 
|  | * The lruvec is the intersection of the NUMA node and a cgroup. This | 
|  | * function updates the all three counters that are affected by a | 
|  | * change of state at this level: per-node, per-cgroup, per-lruvec. | 
|  | */ | 
|  | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, | 
|  | int val) | 
|  | { | 
|  | /* Update node */ | 
|  | __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); | 
|  |  | 
|  | /* Update memcg and lruvec */ | 
|  | if (!mem_cgroup_disabled()) | 
|  | mod_memcg_lruvec_state(lruvec, idx, val); | 
|  | } | 
|  |  | 
|  | void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, | 
|  | int val) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | pg_data_t *pgdat = folio_pgdat(folio); | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = folio_memcg(folio); | 
|  | /* Untracked pages have no memcg, no lruvec. Update only the node */ | 
|  | if (!memcg) { | 
|  | rcu_read_unlock(); | 
|  | __mod_node_page_state(pgdat, idx, val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
|  | __mod_lruvec_state(lruvec, idx, val); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(__lruvec_stat_mod_folio); | 
|  |  | 
|  | void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) | 
|  | { | 
|  | pg_data_t *pgdat = page_pgdat(virt_to_page(p)); | 
|  | struct mem_cgroup *memcg; | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_slab_obj(p); | 
|  |  | 
|  | /* | 
|  | * Untracked pages have no memcg, no lruvec. Update only the | 
|  | * node. If we reparent the slab objects to the root memcg, | 
|  | * when we free the slab object, we need to update the per-memcg | 
|  | * vmstats to keep it correct for the root memcg. | 
|  | */ | 
|  | if (!memcg) { | 
|  | __mod_node_page_state(pgdat, idx, val); | 
|  | } else { | 
|  | lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
|  | __mod_lruvec_state(lruvec, idx, val); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * count_memcg_events - account VM events in a cgroup | 
|  | * @memcg: the memory cgroup | 
|  | * @idx: the event item | 
|  | * @count: the number of events that occurred | 
|  | */ | 
|  | void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, | 
|  | unsigned long count) | 
|  | { | 
|  | int i = memcg_events_index(idx); | 
|  | int cpu; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) | 
|  | return; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  |  | 
|  | this_cpu_add(memcg->vmstats_percpu->events[i], count); | 
|  | memcg_rstat_updated(memcg, count, cpu); | 
|  | trace_count_memcg_events(memcg, idx, count); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | unsigned long memcg_events(struct mem_cgroup *memcg, int event) | 
|  | { | 
|  | int i = memcg_events_index(event); | 
|  |  | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) | 
|  | return 0; | 
|  |  | 
|  | return READ_ONCE(memcg->vmstats->events[i]); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) | 
|  | { | 
|  | int i = memcg_events_index(event); | 
|  |  | 
|  | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) | 
|  | return 0; | 
|  |  | 
|  | return READ_ONCE(memcg->vmstats->events_local[i]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * mm_update_next_owner() may clear mm->owner to NULL | 
|  | * if it races with swapoff, page migration, etc. | 
|  | * So this can be called with p == NULL. | 
|  | */ | 
|  | if (unlikely(!p)) | 
|  | return NULL; | 
|  |  | 
|  | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | 
|  | } | 
|  | EXPORT_SYMBOL(mem_cgroup_from_task); | 
|  |  | 
|  | static __always_inline struct mem_cgroup *active_memcg(void) | 
|  | { | 
|  | if (!in_task()) | 
|  | return this_cpu_read(int_active_memcg); | 
|  | else | 
|  | return current->active_memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. | 
|  | * @mm: mm from which memcg should be extracted. It can be NULL. | 
|  | * | 
|  | * Obtain a reference on mm->memcg and returns it if successful. If mm | 
|  | * is NULL, then the memcg is chosen as follows: | 
|  | * 1) The active memcg, if set. | 
|  | * 2) current->mm->memcg, if available | 
|  | * 3) root memcg | 
|  | * If mem_cgroup is disabled, NULL is returned. | 
|  | */ | 
|  | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Page cache insertions can happen without an | 
|  | * actual mm context, e.g. during disk probing | 
|  | * on boot, loopback IO, acct() writes etc. | 
|  | * | 
|  | * No need to css_get on root memcg as the reference | 
|  | * counting is disabled on the root level in the | 
|  | * cgroup core. See CSS_NO_REF. | 
|  | */ | 
|  | if (unlikely(!mm)) { | 
|  | memcg = active_memcg(); | 
|  | if (unlikely(memcg)) { | 
|  | /* remote memcg must hold a ref */ | 
|  | css_get(&memcg->css); | 
|  | return memcg; | 
|  | } | 
|  | mm = current->mm; | 
|  | if (unlikely(!mm)) | 
|  | return root_mem_cgroup; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
|  | if (unlikely(!memcg)) | 
|  | memcg = root_mem_cgroup; | 
|  | } while (!css_tryget(&memcg->css)); | 
|  | rcu_read_unlock(); | 
|  | return memcg; | 
|  | } | 
|  | EXPORT_SYMBOL(get_mem_cgroup_from_mm); | 
|  |  | 
|  | /** | 
|  | * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. | 
|  | */ | 
|  | struct mem_cgroup *get_mem_cgroup_from_current(void) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | again: | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_task(current); | 
|  | if (!css_tryget(&memcg->css)) { | 
|  | rcu_read_unlock(); | 
|  | goto again; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. | 
|  | * @folio: folio from which memcg should be extracted. | 
|  | */ | 
|  | struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) | 
|  | { | 
|  | struct mem_cgroup *memcg = folio_memcg(folio); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) | 
|  | memcg = root_mem_cgroup; | 
|  | rcu_read_unlock(); | 
|  | return memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_iter - iterate over memory cgroup hierarchy | 
|  | * @root: hierarchy root | 
|  | * @prev: previously returned memcg, NULL on first invocation | 
|  | * @reclaim: cookie for shared reclaim walks, NULL for full walks | 
|  | * | 
|  | * Returns references to children of the hierarchy below @root, or | 
|  | * @root itself, or %NULL after a full round-trip. | 
|  | * | 
|  | * Caller must pass the return value in @prev on subsequent | 
|  | * invocations for reference counting, or use mem_cgroup_iter_break() | 
|  | * to cancel a hierarchy walk before the round-trip is complete. | 
|  | * | 
|  | * Reclaimers can specify a node in @reclaim to divide up the memcgs | 
|  | * in the hierarchy among all concurrent reclaimers operating on the | 
|  | * same node. | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | 
|  | struct mem_cgroup *prev, | 
|  | struct mem_cgroup_reclaim_cookie *reclaim) | 
|  | { | 
|  | struct mem_cgroup_reclaim_iter *iter; | 
|  | struct cgroup_subsys_state *css; | 
|  | struct mem_cgroup *pos; | 
|  | struct mem_cgroup *next; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | restart: | 
|  | next = NULL; | 
|  |  | 
|  | if (reclaim) { | 
|  | int gen; | 
|  | int nid = reclaim->pgdat->node_id; | 
|  |  | 
|  | iter = &root->nodeinfo[nid]->iter; | 
|  | gen = atomic_read(&iter->generation); | 
|  |  | 
|  | /* | 
|  | * On start, join the current reclaim iteration cycle. | 
|  | * Exit when a concurrent walker completes it. | 
|  | */ | 
|  | if (!prev) | 
|  | reclaim->generation = gen; | 
|  | else if (reclaim->generation != gen) | 
|  | goto out_unlock; | 
|  |  | 
|  | pos = READ_ONCE(iter->position); | 
|  | } else | 
|  | pos = prev; | 
|  |  | 
|  | css = pos ? &pos->css : NULL; | 
|  |  | 
|  | while ((css = css_next_descendant_pre(css, &root->css))) { | 
|  | /* | 
|  | * Verify the css and acquire a reference.  The root | 
|  | * is provided by the caller, so we know it's alive | 
|  | * and kicking, and don't take an extra reference. | 
|  | */ | 
|  | if (css == &root->css || css_tryget(css)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | next = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (reclaim) { | 
|  | /* | 
|  | * The position could have already been updated by a competing | 
|  | * thread, so check that the value hasn't changed since we read | 
|  | * it to avoid reclaiming from the same cgroup twice. | 
|  | */ | 
|  | if (cmpxchg(&iter->position, pos, next) != pos) { | 
|  | if (css && css != &root->css) | 
|  | css_put(css); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | if (!next) { | 
|  | atomic_inc(&iter->generation); | 
|  |  | 
|  | /* | 
|  | * Reclaimers share the hierarchy walk, and a | 
|  | * new one might jump in right at the end of | 
|  | * the hierarchy - make sure they see at least | 
|  | * one group and restart from the beginning. | 
|  | */ | 
|  | if (!prev) | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | if (prev && prev != root) | 
|  | css_put(&prev->css); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | 
|  | * @root: hierarchy root | 
|  | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | 
|  | */ | 
|  | void mem_cgroup_iter_break(struct mem_cgroup *root, | 
|  | struct mem_cgroup *prev) | 
|  | { | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  | if (prev && prev != root) | 
|  | css_put(&prev->css); | 
|  | } | 
|  |  | 
|  | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, | 
|  | struct mem_cgroup *dead_memcg) | 
|  | { | 
|  | struct mem_cgroup_reclaim_iter *iter; | 
|  | struct mem_cgroup_per_node *mz; | 
|  | int nid; | 
|  |  | 
|  | for_each_node(nid) { | 
|  | mz = from->nodeinfo[nid]; | 
|  | iter = &mz->iter; | 
|  | cmpxchg(&iter->position, dead_memcg, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) | 
|  | { | 
|  | struct mem_cgroup *memcg = dead_memcg; | 
|  | struct mem_cgroup *last; | 
|  |  | 
|  | do { | 
|  | __invalidate_reclaim_iterators(memcg, dead_memcg); | 
|  | last = memcg; | 
|  | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  |  | 
|  | /* | 
|  | * When cgroup1 non-hierarchy mode is used, | 
|  | * parent_mem_cgroup() does not walk all the way up to the | 
|  | * cgroup root (root_mem_cgroup). So we have to handle | 
|  | * dead_memcg from cgroup root separately. | 
|  | */ | 
|  | if (!mem_cgroup_is_root(last)) | 
|  | __invalidate_reclaim_iterators(root_mem_cgroup, | 
|  | dead_memcg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy | 
|  | * @memcg: hierarchy root | 
|  | * @fn: function to call for each task | 
|  | * @arg: argument passed to @fn | 
|  | * | 
|  | * This function iterates over tasks attached to @memcg or to any of its | 
|  | * descendants and calls @fn for each task. If @fn returns a non-zero | 
|  | * value, the function breaks the iteration loop. Otherwise, it will iterate | 
|  | * over all tasks and return 0. | 
|  | * | 
|  | * This function must not be called for the root memory cgroup. | 
|  | */ | 
|  | void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, | 
|  | int (*fn)(struct task_struct *, void *), void *arg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(mem_cgroup_is_root(memcg)); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | struct css_task_iter it; | 
|  | struct task_struct *task; | 
|  |  | 
|  | css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); | 
|  | while (!ret && (task = css_task_iter_next(&it))) { | 
|  | ret = fn(task, arg); | 
|  | /* Avoid potential softlockup warning */ | 
|  | cond_resched(); | 
|  | } | 
|  | css_task_iter_end(&it); | 
|  | if (ret) { | 
|  | mem_cgroup_iter_break(memcg, iter); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | memcg = folio_memcg(folio); | 
|  |  | 
|  | if (!memcg) | 
|  | VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); | 
|  | else | 
|  | VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * folio_lruvec_lock - Lock the lruvec for a folio. | 
|  | * @folio: Pointer to the folio. | 
|  | * | 
|  | * These functions are safe to use under any of the following conditions: | 
|  | * - folio locked | 
|  | * - folio_test_lru false | 
|  | * - folio frozen (refcount of 0) | 
|  | * | 
|  | * Return: The lruvec this folio is on with its lock held. | 
|  | */ | 
|  | struct lruvec *folio_lruvec_lock(struct folio *folio) | 
|  | { | 
|  | struct lruvec *lruvec = folio_lruvec(folio); | 
|  |  | 
|  | spin_lock(&lruvec->lru_lock); | 
|  | lruvec_memcg_debug(lruvec, folio); | 
|  |  | 
|  | return lruvec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_lruvec_lock_irq - Lock the lruvec for a folio. | 
|  | * @folio: Pointer to the folio. | 
|  | * | 
|  | * These functions are safe to use under any of the following conditions: | 
|  | * - folio locked | 
|  | * - folio_test_lru false | 
|  | * - folio frozen (refcount of 0) | 
|  | * | 
|  | * Return: The lruvec this folio is on with its lock held and interrupts | 
|  | * disabled. | 
|  | */ | 
|  | struct lruvec *folio_lruvec_lock_irq(struct folio *folio) | 
|  | { | 
|  | struct lruvec *lruvec = folio_lruvec(folio); | 
|  |  | 
|  | spin_lock_irq(&lruvec->lru_lock); | 
|  | lruvec_memcg_debug(lruvec, folio); | 
|  |  | 
|  | return lruvec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. | 
|  | * @folio: Pointer to the folio. | 
|  | * @flags: Pointer to irqsave flags. | 
|  | * | 
|  | * These functions are safe to use under any of the following conditions: | 
|  | * - folio locked | 
|  | * - folio_test_lru false | 
|  | * - folio frozen (refcount of 0) | 
|  | * | 
|  | * Return: The lruvec this folio is on with its lock held and interrupts | 
|  | * disabled. | 
|  | */ | 
|  | struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, | 
|  | unsigned long *flags) | 
|  | { | 
|  | struct lruvec *lruvec = folio_lruvec(folio); | 
|  |  | 
|  | spin_lock_irqsave(&lruvec->lru_lock, *flags); | 
|  | lruvec_memcg_debug(lruvec, folio); | 
|  |  | 
|  | return lruvec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_update_lru_size - account for adding or removing an lru page | 
|  | * @lruvec: mem_cgroup per zone lru vector | 
|  | * @lru: index of lru list the page is sitting on | 
|  | * @zid: zone id of the accounted pages | 
|  | * @nr_pages: positive when adding or negative when removing | 
|  | * | 
|  | * This function must be called under lru_lock, just before a page is added | 
|  | * to or just after a page is removed from an lru list. | 
|  | */ | 
|  | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | 
|  | int zid, int nr_pages) | 
|  | { | 
|  | struct mem_cgroup_per_node *mz; | 
|  | unsigned long *lru_size; | 
|  | long size; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
|  | lru_size = &mz->lru_zone_size[zid][lru]; | 
|  |  | 
|  | if (nr_pages < 0) | 
|  | *lru_size += nr_pages; | 
|  |  | 
|  | size = *lru_size; | 
|  | if (WARN_ONCE(size < 0, | 
|  | "%s(%p, %d, %d): lru_size %ld\n", | 
|  | __func__, lruvec, lru, nr_pages, size)) { | 
|  | VM_BUG_ON(1); | 
|  | *lru_size = 0; | 
|  | } | 
|  |  | 
|  | if (nr_pages > 0) | 
|  | *lru_size += nr_pages; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | 
|  | * @memcg: the memory cgroup | 
|  | * | 
|  | * Returns the maximum amount of memory @mem can be charged with, in | 
|  | * pages. | 
|  | */ | 
|  | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long margin = 0; | 
|  | unsigned long count; | 
|  | unsigned long limit; | 
|  |  | 
|  | count = page_counter_read(&memcg->memory); | 
|  | limit = READ_ONCE(memcg->memory.max); | 
|  | if (count < limit) | 
|  | margin = limit - count; | 
|  |  | 
|  | if (do_memsw_account()) { | 
|  | count = page_counter_read(&memcg->memsw); | 
|  | limit = READ_ONCE(memcg->memsw.max); | 
|  | if (count < limit) | 
|  | margin = min(margin, limit - count); | 
|  | else | 
|  | margin = 0; | 
|  | } | 
|  |  | 
|  | return margin; | 
|  | } | 
|  |  | 
|  | struct memory_stat { | 
|  | const char *name; | 
|  | unsigned int idx; | 
|  | }; | 
|  |  | 
|  | static const struct memory_stat memory_stats[] = { | 
|  | { "anon",			NR_ANON_MAPPED			}, | 
|  | { "file",			NR_FILE_PAGES			}, | 
|  | { "kernel",			MEMCG_KMEM			}, | 
|  | { "kernel_stack",		NR_KERNEL_STACK_KB		}, | 
|  | { "pagetables",			NR_PAGETABLE			}, | 
|  | { "sec_pagetables",		NR_SECONDARY_PAGETABLE		}, | 
|  | { "percpu",			MEMCG_PERCPU_B			}, | 
|  | { "sock",			MEMCG_SOCK			}, | 
|  | { "vmalloc",			MEMCG_VMALLOC			}, | 
|  | { "shmem",			NR_SHMEM			}, | 
|  | #ifdef CONFIG_ZSWAP | 
|  | { "zswap",			MEMCG_ZSWAP_B			}, | 
|  | { "zswapped",			MEMCG_ZSWAPPED			}, | 
|  | #endif | 
|  | { "file_mapped",		NR_FILE_MAPPED			}, | 
|  | { "file_dirty",			NR_FILE_DIRTY			}, | 
|  | { "file_writeback",		NR_WRITEBACK			}, | 
|  | #ifdef CONFIG_SWAP | 
|  | { "swapcached",			NR_SWAPCACHE			}, | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | { "anon_thp",			NR_ANON_THPS			}, | 
|  | { "file_thp",			NR_FILE_THPS			}, | 
|  | { "shmem_thp",			NR_SHMEM_THPS			}, | 
|  | #endif | 
|  | { "inactive_anon",		NR_INACTIVE_ANON		}, | 
|  | { "active_anon",		NR_ACTIVE_ANON			}, | 
|  | { "inactive_file",		NR_INACTIVE_FILE		}, | 
|  | { "active_file",		NR_ACTIVE_FILE			}, | 
|  | { "unevictable",		NR_UNEVICTABLE			}, | 
|  | { "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		}, | 
|  | { "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		}, | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | { "hugetlb",			NR_HUGETLB			}, | 
|  | #endif | 
|  |  | 
|  | /* The memory events */ | 
|  | { "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		}, | 
|  | { "workingset_refault_file",	WORKINGSET_REFAULT_FILE		}, | 
|  | { "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	}, | 
|  | { "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	}, | 
|  | { "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		}, | 
|  | { "workingset_restore_file",	WORKINGSET_RESTORE_FILE		}, | 
|  | { "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		}, | 
|  |  | 
|  | { "pgdemote_kswapd",		PGDEMOTE_KSWAPD		}, | 
|  | { "pgdemote_direct",		PGDEMOTE_DIRECT		}, | 
|  | { "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	}, | 
|  | { "pgdemote_proactive",		PGDEMOTE_PROACTIVE	}, | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | { "pgpromote_success",		PGPROMOTE_SUCCESS	}, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* The actual unit of the state item, not the same as the output unit */ | 
|  | static int memcg_page_state_unit(int item) | 
|  | { | 
|  | switch (item) { | 
|  | case MEMCG_PERCPU_B: | 
|  | case MEMCG_ZSWAP_B: | 
|  | case NR_SLAB_RECLAIMABLE_B: | 
|  | case NR_SLAB_UNRECLAIMABLE_B: | 
|  | return 1; | 
|  | case NR_KERNEL_STACK_KB: | 
|  | return SZ_1K; | 
|  | default: | 
|  | return PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Translate stat items to the correct unit for memory.stat output */ | 
|  | static int memcg_page_state_output_unit(int item) | 
|  | { | 
|  | /* | 
|  | * Workingset state is actually in pages, but we export it to userspace | 
|  | * as a scalar count of events, so special case it here. | 
|  | * | 
|  | * Demotion and promotion activities are exported in pages, consistent | 
|  | * with their global counterparts. | 
|  | */ | 
|  | switch (item) { | 
|  | case WORKINGSET_REFAULT_ANON: | 
|  | case WORKINGSET_REFAULT_FILE: | 
|  | case WORKINGSET_ACTIVATE_ANON: | 
|  | case WORKINGSET_ACTIVATE_FILE: | 
|  | case WORKINGSET_RESTORE_ANON: | 
|  | case WORKINGSET_RESTORE_FILE: | 
|  | case WORKINGSET_NODERECLAIM: | 
|  | case PGDEMOTE_KSWAPD: | 
|  | case PGDEMOTE_DIRECT: | 
|  | case PGDEMOTE_KHUGEPAGED: | 
|  | case PGDEMOTE_PROACTIVE: | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | case PGPROMOTE_SUCCESS: | 
|  | #endif | 
|  | return 1; | 
|  | default: | 
|  | return memcg_page_state_unit(item); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) | 
|  | { | 
|  | return memcg_page_state(memcg, item) * | 
|  | memcg_page_state_output_unit(item); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) | 
|  | { | 
|  | return memcg_page_state_local(memcg, item) * | 
|  | memcg_page_state_output_unit(item); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static bool memcg_accounts_hugetlb(void) | 
|  | { | 
|  | return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; | 
|  | } | 
|  | #else /* CONFIG_HUGETLB_PAGE */ | 
|  | static bool memcg_accounts_hugetlb(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Provide statistics on the state of the memory subsystem as | 
|  | * well as cumulative event counters that show past behavior. | 
|  | * | 
|  | * This list is ordered following a combination of these gradients: | 
|  | * 1) generic big picture -> specifics and details | 
|  | * 2) reflecting userspace activity -> reflecting kernel heuristics | 
|  | * | 
|  | * Current memory state: | 
|  | */ | 
|  | mem_cgroup_flush_stats(memcg); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { | 
|  | u64 size; | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | if (unlikely(memory_stats[i].idx == NR_HUGETLB) && | 
|  | !memcg_accounts_hugetlb()) | 
|  | continue; | 
|  | #endif | 
|  | size = memcg_page_state_output(memcg, memory_stats[i].idx); | 
|  | seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); | 
|  |  | 
|  | if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { | 
|  | size += memcg_page_state_output(memcg, | 
|  | NR_SLAB_RECLAIMABLE_B); | 
|  | seq_buf_printf(s, "slab %llu\n", size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Accumulated memory events */ | 
|  | seq_buf_printf(s, "pgscan %lu\n", | 
|  | memcg_events(memcg, PGSCAN_KSWAPD) + | 
|  | memcg_events(memcg, PGSCAN_DIRECT) + | 
|  | memcg_events(memcg, PGSCAN_PROACTIVE) + | 
|  | memcg_events(memcg, PGSCAN_KHUGEPAGED)); | 
|  | seq_buf_printf(s, "pgsteal %lu\n", | 
|  | memcg_events(memcg, PGSTEAL_KSWAPD) + | 
|  | memcg_events(memcg, PGSTEAL_DIRECT) + | 
|  | memcg_events(memcg, PGSTEAL_PROACTIVE) + | 
|  | memcg_events(memcg, PGSTEAL_KHUGEPAGED)); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | if (memcg_vm_event_stat[i] == PGPGIN || | 
|  | memcg_vm_event_stat[i] == PGPGOUT) | 
|  | continue; | 
|  | #endif | 
|  | seq_buf_printf(s, "%s %lu\n", | 
|  | vm_event_name(memcg_vm_event_stat[i]), | 
|  | memcg_events(memcg, memcg_vm_event_stat[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) | 
|  | { | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | memcg_stat_format(memcg, s); | 
|  | else | 
|  | memcg1_stat_format(memcg, s); | 
|  | if (seq_buf_has_overflowed(s)) | 
|  | pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_print_oom_context: Print OOM information relevant to | 
|  | * memory controller. | 
|  | * @memcg: The memory cgroup that went over limit | 
|  | * @p: Task that is going to be killed | 
|  | * | 
|  | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
|  | * enabled | 
|  | */ | 
|  | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) | 
|  | { | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (memcg) { | 
|  | pr_cont(",oom_memcg="); | 
|  | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | } else | 
|  | pr_cont(",global_oom"); | 
|  | if (p) { | 
|  | pr_cont(",task_memcg="); | 
|  | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to | 
|  | * memory controller. | 
|  | * @memcg: The memory cgroup that went over limit | 
|  | */ | 
|  | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* Use static buffer, for the caller is holding oom_lock. */ | 
|  | static char buf[SEQ_BUF_SIZE]; | 
|  | struct seq_buf s; | 
|  | unsigned long memory_failcnt; | 
|  |  | 
|  | lockdep_assert_held(&oom_lock); | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); | 
|  | else | 
|  | memory_failcnt = memcg->memory.failcnt; | 
|  |  | 
|  | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->memory)), | 
|  | K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->swap)), | 
|  | K((u64)READ_ONCE(memcg->swap.max)), | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | else { | 
|  | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->memsw)), | 
|  | K((u64)memcg->memsw.max), memcg->memsw.failcnt); | 
|  | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->kmem)), | 
|  | K((u64)memcg->kmem.max), memcg->kmem.failcnt); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | pr_info("Memory cgroup stats for "); | 
|  | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | pr_cont(":"); | 
|  | seq_buf_init(&s, buf, SEQ_BUF_SIZE); | 
|  | memory_stat_format(memcg, &s); | 
|  | seq_buf_do_printk(&s, KERN_INFO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the memory (and swap, if configured) limit for a memcg. | 
|  | */ | 
|  | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long max = READ_ONCE(memcg->memory.max); | 
|  |  | 
|  | if (do_memsw_account()) { | 
|  | if (mem_cgroup_swappiness(memcg)) { | 
|  | /* Calculate swap excess capacity from memsw limit */ | 
|  | unsigned long swap = READ_ONCE(memcg->memsw.max) - max; | 
|  |  | 
|  | max += min(swap, (unsigned long)total_swap_pages); | 
|  | } | 
|  | } else { | 
|  | if (mem_cgroup_swappiness(memcg)) | 
|  | max += min(READ_ONCE(memcg->swap.max), | 
|  | (unsigned long)total_swap_pages); | 
|  | } | 
|  | return max; | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_size(struct mem_cgroup *memcg) | 
|  | { | 
|  | return page_counter_read(&memcg->memory); | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | int order) | 
|  | { | 
|  | struct oom_control oc = { | 
|  | .zonelist = NULL, | 
|  | .nodemask = NULL, | 
|  | .memcg = memcg, | 
|  | .gfp_mask = gfp_mask, | 
|  | .order = order, | 
|  | }; | 
|  | bool ret = true; | 
|  |  | 
|  | if (mutex_lock_killable(&oom_lock)) | 
|  | return true; | 
|  |  | 
|  | if (mem_cgroup_margin(memcg) >= (1 << order)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * A few threads which were not waiting at mutex_lock_killable() can | 
|  | * fail to bail out. Therefore, check again after holding oom_lock. | 
|  | */ | 
|  | ret = out_of_memory(&oc); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&oom_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if successfully killed one or more processes. Though in some | 
|  | * corner cases it can return true even without killing any process. | 
|  | */ | 
|  | static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | 
|  | { | 
|  | bool locked, ret; | 
|  |  | 
|  | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | return false; | 
|  |  | 
|  | memcg_memory_event(memcg, MEMCG_OOM); | 
|  |  | 
|  | if (!memcg1_oom_prepare(memcg, &locked)) | 
|  | return false; | 
|  |  | 
|  | ret = mem_cgroup_out_of_memory(memcg, mask, order); | 
|  |  | 
|  | memcg1_oom_finish(memcg, locked); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM | 
|  | * @victim: task to be killed by the OOM killer | 
|  | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM | 
|  | * | 
|  | * Returns a pointer to a memory cgroup, which has to be cleaned up | 
|  | * by killing all belonging OOM-killable tasks. | 
|  | * | 
|  | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, | 
|  | struct mem_cgroup *oom_domain) | 
|  | { | 
|  | struct mem_cgroup *oom_group = NULL; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return NULL; | 
|  |  | 
|  | if (!oom_domain) | 
|  | oom_domain = root_mem_cgroup; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | memcg = mem_cgroup_from_task(victim); | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the victim task has been asynchronously moved to a different | 
|  | * memory cgroup, we might end up killing tasks outside oom_domain. | 
|  | * In this case it's better to ignore memory.group.oom. | 
|  | */ | 
|  | if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Traverse the memory cgroup hierarchy from the victim task's | 
|  | * cgroup up to the OOMing cgroup (or root) to find the | 
|  | * highest-level memory cgroup with oom.group set. | 
|  | */ | 
|  | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
|  | if (READ_ONCE(memcg->oom_group)) | 
|  | oom_group = memcg; | 
|  |  | 
|  | if (memcg == oom_domain) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (oom_group) | 
|  | css_get(&oom_group->css); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return oom_group; | 
|  | } | 
|  |  | 
|  | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) | 
|  | { | 
|  | pr_info("Tasks in "); | 
|  | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | pr_cont(" are going to be killed due to memory.oom.group set\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their | 
|  | * nr_pages in a single cacheline. This may change in future. | 
|  | */ | 
|  | #define NR_MEMCG_STOCK 7 | 
|  | #define FLUSHING_CACHED_CHARGE	0 | 
|  | struct memcg_stock_pcp { | 
|  | local_trylock_t lock; | 
|  | uint8_t nr_pages[NR_MEMCG_STOCK]; | 
|  | struct mem_cgroup *cached[NR_MEMCG_STOCK]; | 
|  |  | 
|  | struct work_struct work; | 
|  | unsigned long flags; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { | 
|  | .lock = INIT_LOCAL_TRYLOCK(lock), | 
|  | }; | 
|  |  | 
|  | struct obj_stock_pcp { | 
|  | local_trylock_t lock; | 
|  | unsigned int nr_bytes; | 
|  | struct obj_cgroup *cached_objcg; | 
|  | struct pglist_data *cached_pgdat; | 
|  | int nr_slab_reclaimable_b; | 
|  | int nr_slab_unreclaimable_b; | 
|  |  | 
|  | struct work_struct work; | 
|  | unsigned long flags; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { | 
|  | .lock = INIT_LOCAL_TRYLOCK(lock), | 
|  | }; | 
|  |  | 
|  | static DEFINE_MUTEX(percpu_charge_mutex); | 
|  |  | 
|  | static void drain_obj_stock(struct obj_stock_pcp *stock); | 
|  | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, | 
|  | struct mem_cgroup *root_memcg); | 
|  |  | 
|  | /** | 
|  | * consume_stock: Try to consume stocked charge on this cpu. | 
|  | * @memcg: memcg to consume from. | 
|  | * @nr_pages: how many pages to charge. | 
|  | * | 
|  | * Consume the cached charge if enough nr_pages are present otherwise return | 
|  | * failure. Also return failure for charge request larger than | 
|  | * MEMCG_CHARGE_BATCH or if the local lock is already taken. | 
|  | * | 
|  | * returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | uint8_t stock_pages; | 
|  | bool ret = false; | 
|  | int i; | 
|  |  | 
|  | if (nr_pages > MEMCG_CHARGE_BATCH || | 
|  | !local_trylock(&memcg_stock.lock)) | 
|  | return ret; | 
|  |  | 
|  | stock = this_cpu_ptr(&memcg_stock); | 
|  |  | 
|  | for (i = 0; i < NR_MEMCG_STOCK; ++i) { | 
|  | if (memcg != READ_ONCE(stock->cached[i])) | 
|  | continue; | 
|  |  | 
|  | stock_pages = READ_ONCE(stock->nr_pages[i]); | 
|  | if (stock_pages >= nr_pages) { | 
|  | WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); | 
|  | ret = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | local_unlock(&memcg_stock.lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns stocks cached in percpu and reset cached information. | 
|  | */ | 
|  | static void drain_stock(struct memcg_stock_pcp *stock, int i) | 
|  | { | 
|  | struct mem_cgroup *old = READ_ONCE(stock->cached[i]); | 
|  | uint8_t stock_pages; | 
|  |  | 
|  | if (!old) | 
|  | return; | 
|  |  | 
|  | stock_pages = READ_ONCE(stock->nr_pages[i]); | 
|  | if (stock_pages) { | 
|  | memcg_uncharge(old, stock_pages); | 
|  | WRITE_ONCE(stock->nr_pages[i], 0); | 
|  | } | 
|  |  | 
|  | css_put(&old->css); | 
|  | WRITE_ONCE(stock->cached[i], NULL); | 
|  | } | 
|  |  | 
|  | static void drain_stock_fully(struct memcg_stock_pcp *stock) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_MEMCG_STOCK; ++i) | 
|  | drain_stock(stock, i); | 
|  | } | 
|  |  | 
|  | static void drain_local_memcg_stock(struct work_struct *dummy) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  |  | 
|  | if (WARN_ONCE(!in_task(), "drain in non-task context")) | 
|  | return; | 
|  |  | 
|  | local_lock(&memcg_stock.lock); | 
|  |  | 
|  | stock = this_cpu_ptr(&memcg_stock); | 
|  | drain_stock_fully(stock); | 
|  | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 
|  |  | 
|  | local_unlock(&memcg_stock.lock); | 
|  | } | 
|  |  | 
|  | static void drain_local_obj_stock(struct work_struct *dummy) | 
|  | { | 
|  | struct obj_stock_pcp *stock; | 
|  |  | 
|  | if (WARN_ONCE(!in_task(), "drain in non-task context")) | 
|  | return; | 
|  |  | 
|  | local_lock(&obj_stock.lock); | 
|  |  | 
|  | stock = this_cpu_ptr(&obj_stock); | 
|  | drain_obj_stock(stock); | 
|  | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 
|  |  | 
|  | local_unlock(&obj_stock.lock); | 
|  | } | 
|  |  | 
|  | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | struct mem_cgroup *cached; | 
|  | uint8_t stock_pages; | 
|  | bool success = false; | 
|  | int empty_slot = -1; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we | 
|  | * decide to increase it more than 127 then we will need more careful | 
|  | * handling of nr_pages[] in struct memcg_stock_pcp. | 
|  | */ | 
|  | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); | 
|  |  | 
|  | VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); | 
|  |  | 
|  | if (nr_pages > MEMCG_CHARGE_BATCH || | 
|  | !local_trylock(&memcg_stock.lock)) { | 
|  | /* | 
|  | * In case of larger than batch refill or unlikely failure to | 
|  | * lock the percpu memcg_stock.lock, uncharge memcg directly. | 
|  | */ | 
|  | memcg_uncharge(memcg, nr_pages); | 
|  | return; | 
|  | } | 
|  |  | 
|  | stock = this_cpu_ptr(&memcg_stock); | 
|  | for (i = 0; i < NR_MEMCG_STOCK; ++i) { | 
|  | cached = READ_ONCE(stock->cached[i]); | 
|  | if (!cached && empty_slot == -1) | 
|  | empty_slot = i; | 
|  | if (memcg == READ_ONCE(stock->cached[i])) { | 
|  | stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; | 
|  | WRITE_ONCE(stock->nr_pages[i], stock_pages); | 
|  | if (stock_pages > MEMCG_CHARGE_BATCH) | 
|  | drain_stock(stock, i); | 
|  | success = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!success) { | 
|  | i = empty_slot; | 
|  | if (i == -1) { | 
|  | i = get_random_u32_below(NR_MEMCG_STOCK); | 
|  | drain_stock(stock, i); | 
|  | } | 
|  | css_get(&memcg->css); | 
|  | WRITE_ONCE(stock->cached[i], memcg); | 
|  | WRITE_ONCE(stock->nr_pages[i], nr_pages); | 
|  | } | 
|  |  | 
|  | local_unlock(&memcg_stock.lock); | 
|  | } | 
|  |  | 
|  | static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, | 
|  | struct mem_cgroup *root_memcg) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | bool flush = false; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < NR_MEMCG_STOCK; ++i) { | 
|  | memcg = READ_ONCE(stock->cached[i]); | 
|  | if (!memcg) | 
|  | continue; | 
|  |  | 
|  | if (READ_ONCE(stock->nr_pages[i]) && | 
|  | mem_cgroup_is_descendant(memcg, root_memcg)) { | 
|  | flush = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drains all per-CPU charge caches for given root_memcg resp. subtree | 
|  | * of the hierarchy under it. | 
|  | */ | 
|  | void drain_all_stock(struct mem_cgroup *root_memcg) | 
|  | { | 
|  | int cpu, curcpu; | 
|  |  | 
|  | /* If someone's already draining, avoid adding running more workers. */ | 
|  | if (!mutex_trylock(&percpu_charge_mutex)) | 
|  | return; | 
|  | /* | 
|  | * Notify other cpus that system-wide "drain" is running | 
|  | * We do not care about races with the cpu hotplug because cpu down | 
|  | * as well as workers from this path always operate on the local | 
|  | * per-cpu data. CPU up doesn't touch memcg_stock at all. | 
|  | */ | 
|  | migrate_disable(); | 
|  | curcpu = smp_processor_id(); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); | 
|  | struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); | 
|  |  | 
|  | if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && | 
|  | is_memcg_drain_needed(memcg_st, root_memcg) && | 
|  | !test_and_set_bit(FLUSHING_CACHED_CHARGE, | 
|  | &memcg_st->flags)) { | 
|  | if (cpu == curcpu) | 
|  | drain_local_memcg_stock(&memcg_st->work); | 
|  | else if (!cpu_is_isolated(cpu)) | 
|  | schedule_work_on(cpu, &memcg_st->work); | 
|  | } | 
|  |  | 
|  | if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && | 
|  | obj_stock_flush_required(obj_st, root_memcg) && | 
|  | !test_and_set_bit(FLUSHING_CACHED_CHARGE, | 
|  | &obj_st->flags)) { | 
|  | if (cpu == curcpu) | 
|  | drain_local_obj_stock(&obj_st->work); | 
|  | else if (!cpu_is_isolated(cpu)) | 
|  | schedule_work_on(cpu, &obj_st->work); | 
|  | } | 
|  | } | 
|  | migrate_enable(); | 
|  | mutex_unlock(&percpu_charge_mutex); | 
|  | } | 
|  |  | 
|  | static int memcg_hotplug_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | /* no need for the local lock */ | 
|  | drain_obj_stock(&per_cpu(obj_stock, cpu)); | 
|  | drain_stock_fully(&per_cpu(memcg_stock, cpu)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long reclaim_high(struct mem_cgroup *memcg, | 
|  | unsigned int nr_pages, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long nr_reclaimed = 0; | 
|  |  | 
|  | do { | 
|  | unsigned long pflags; | 
|  |  | 
|  | if (page_counter_read(&memcg->memory) <= | 
|  | READ_ONCE(memcg->memory.high)) | 
|  | continue; | 
|  |  | 
|  | memcg_memory_event(memcg, MEMCG_HIGH); | 
|  |  | 
|  | psi_memstall_enter(&pflags); | 
|  | nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, | 
|  | gfp_mask, | 
|  | MEMCG_RECLAIM_MAY_SWAP, | 
|  | NULL); | 
|  | psi_memstall_leave(&pflags); | 
|  | } while ((memcg = parent_mem_cgroup(memcg)) && | 
|  | !mem_cgroup_is_root(memcg)); | 
|  |  | 
|  | return nr_reclaimed; | 
|  | } | 
|  |  | 
|  | static void high_work_func(struct work_struct *work) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = container_of(work, struct mem_cgroup, high_work); | 
|  | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clamp the maximum sleep time per allocation batch to 2 seconds. This is | 
|  | * enough to still cause a significant slowdown in most cases, while still | 
|  | * allowing diagnostics and tracing to proceed without becoming stuck. | 
|  | */ | 
|  | #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) | 
|  |  | 
|  | /* | 
|  | * When calculating the delay, we use these either side of the exponentiation to | 
|  | * maintain precision and scale to a reasonable number of jiffies (see the table | 
|  | * below. | 
|  | * | 
|  | * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the | 
|  | *   overage ratio to a delay. | 
|  | * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the | 
|  | *   proposed penalty in order to reduce to a reasonable number of jiffies, and | 
|  | *   to produce a reasonable delay curve. | 
|  | * | 
|  | * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a | 
|  | * reasonable delay curve compared to precision-adjusted overage, not | 
|  | * penalising heavily at first, but still making sure that growth beyond the | 
|  | * limit penalises misbehaviour cgroups by slowing them down exponentially. For | 
|  | * example, with a high of 100 megabytes: | 
|  | * | 
|  | *  +-------+------------------------+ | 
|  | *  | usage | time to allocate in ms | | 
|  | *  +-------+------------------------+ | 
|  | *  | 100M  |                      0 | | 
|  | *  | 101M  |                      6 | | 
|  | *  | 102M  |                     25 | | 
|  | *  | 103M  |                     57 | | 
|  | *  | 104M  |                    102 | | 
|  | *  | 105M  |                    159 | | 
|  | *  | 106M  |                    230 | | 
|  | *  | 107M  |                    313 | | 
|  | *  | 108M  |                    409 | | 
|  | *  | 109M  |                    518 | | 
|  | *  | 110M  |                    639 | | 
|  | *  | 111M  |                    774 | | 
|  | *  | 112M  |                    921 | | 
|  | *  | 113M  |                   1081 | | 
|  | *  | 114M  |                   1254 | | 
|  | *  | 115M  |                   1439 | | 
|  | *  | 116M  |                   1638 | | 
|  | *  | 117M  |                   1849 | | 
|  | *  | 118M  |                   2000 | | 
|  | *  | 119M  |                   2000 | | 
|  | *  | 120M  |                   2000 | | 
|  | *  +-------+------------------------+ | 
|  | */ | 
|  | #define MEMCG_DELAY_PRECISION_SHIFT 20 | 
|  | #define MEMCG_DELAY_SCALING_SHIFT 14 | 
|  |  | 
|  | static u64 calculate_overage(unsigned long usage, unsigned long high) | 
|  | { | 
|  | u64 overage; | 
|  |  | 
|  | if (usage <= high) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Prevent division by 0 in overage calculation by acting as if | 
|  | * it was a threshold of 1 page | 
|  | */ | 
|  | high = max(high, 1UL); | 
|  |  | 
|  | overage = usage - high; | 
|  | overage <<= MEMCG_DELAY_PRECISION_SHIFT; | 
|  | return div64_u64(overage, high); | 
|  | } | 
|  |  | 
|  | static u64 mem_find_max_overage(struct mem_cgroup *memcg) | 
|  | { | 
|  | u64 overage, max_overage = 0; | 
|  |  | 
|  | do { | 
|  | overage = calculate_overage(page_counter_read(&memcg->memory), | 
|  | READ_ONCE(memcg->memory.high)); | 
|  | max_overage = max(overage, max_overage); | 
|  | } while ((memcg = parent_mem_cgroup(memcg)) && | 
|  | !mem_cgroup_is_root(memcg)); | 
|  |  | 
|  | return max_overage; | 
|  | } | 
|  |  | 
|  | static u64 swap_find_max_overage(struct mem_cgroup *memcg) | 
|  | { | 
|  | u64 overage, max_overage = 0; | 
|  |  | 
|  | do { | 
|  | overage = calculate_overage(page_counter_read(&memcg->swap), | 
|  | READ_ONCE(memcg->swap.high)); | 
|  | if (overage) | 
|  | memcg_memory_event(memcg, MEMCG_SWAP_HIGH); | 
|  | max_overage = max(overage, max_overage); | 
|  | } while ((memcg = parent_mem_cgroup(memcg)) && | 
|  | !mem_cgroup_is_root(memcg)); | 
|  |  | 
|  | return max_overage; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the number of jiffies that we should penalise a mischievous cgroup which | 
|  | * is exceeding its memory.high by checking both it and its ancestors. | 
|  | */ | 
|  | static unsigned long calculate_high_delay(struct mem_cgroup *memcg, | 
|  | unsigned int nr_pages, | 
|  | u64 max_overage) | 
|  | { | 
|  | unsigned long penalty_jiffies; | 
|  |  | 
|  | if (!max_overage) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We use overage compared to memory.high to calculate the number of | 
|  | * jiffies to sleep (penalty_jiffies). Ideally this value should be | 
|  | * fairly lenient on small overages, and increasingly harsh when the | 
|  | * memcg in question makes it clear that it has no intention of stopping | 
|  | * its crazy behaviour, so we exponentially increase the delay based on | 
|  | * overage amount. | 
|  | */ | 
|  | penalty_jiffies = max_overage * max_overage * HZ; | 
|  | penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; | 
|  | penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Factor in the task's own contribution to the overage, such that four | 
|  | * N-sized allocations are throttled approximately the same as one | 
|  | * 4N-sized allocation. | 
|  | * | 
|  | * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or | 
|  | * larger the current charge patch is than that. | 
|  | */ | 
|  | return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaims memory over the high limit. Called directly from | 
|  | * try_charge() (context permitting), as well as from the userland | 
|  | * return path where reclaim is always able to block. | 
|  | */ | 
|  | void __mem_cgroup_handle_over_high(gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long penalty_jiffies; | 
|  | unsigned long pflags; | 
|  | unsigned long nr_reclaimed; | 
|  | unsigned int nr_pages = current->memcg_nr_pages_over_high; | 
|  | int nr_retries = MAX_RECLAIM_RETRIES; | 
|  | struct mem_cgroup *memcg; | 
|  | bool in_retry = false; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_mm(current->mm); | 
|  | current->memcg_nr_pages_over_high = 0; | 
|  |  | 
|  | retry_reclaim: | 
|  | /* | 
|  | * Bail if the task is already exiting. Unlike memory.max, | 
|  | * memory.high enforcement isn't as strict, and there is no | 
|  | * OOM killer involved, which means the excess could already | 
|  | * be much bigger (and still growing) than it could for | 
|  | * memory.max; the dying task could get stuck in fruitless | 
|  | * reclaim for a long time, which isn't desirable. | 
|  | */ | 
|  | if (task_is_dying()) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * The allocating task should reclaim at least the batch size, but for | 
|  | * subsequent retries we only want to do what's necessary to prevent oom | 
|  | * or breaching resource isolation. | 
|  | * | 
|  | * This is distinct from memory.max or page allocator behaviour because | 
|  | * memory.high is currently batched, whereas memory.max and the page | 
|  | * allocator run every time an allocation is made. | 
|  | */ | 
|  | nr_reclaimed = reclaim_high(memcg, | 
|  | in_retry ? SWAP_CLUSTER_MAX : nr_pages, | 
|  | gfp_mask); | 
|  |  | 
|  | /* | 
|  | * memory.high is breached and reclaim is unable to keep up. Throttle | 
|  | * allocators proactively to slow down excessive growth. | 
|  | */ | 
|  | penalty_jiffies = calculate_high_delay(memcg, nr_pages, | 
|  | mem_find_max_overage(memcg)); | 
|  |  | 
|  | penalty_jiffies += calculate_high_delay(memcg, nr_pages, | 
|  | swap_find_max_overage(memcg)); | 
|  |  | 
|  | /* | 
|  | * Clamp the max delay per usermode return so as to still keep the | 
|  | * application moving forwards and also permit diagnostics, albeit | 
|  | * extremely slowly. | 
|  | */ | 
|  | penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); | 
|  |  | 
|  | /* | 
|  | * Don't sleep if the amount of jiffies this memcg owes us is so low | 
|  | * that it's not even worth doing, in an attempt to be nice to those who | 
|  | * go only a small amount over their memory.high value and maybe haven't | 
|  | * been aggressively reclaimed enough yet. | 
|  | */ | 
|  | if (penalty_jiffies <= HZ / 100) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If reclaim is making forward progress but we're still over | 
|  | * memory.high, we want to encourage that rather than doing allocator | 
|  | * throttling. | 
|  | */ | 
|  | if (nr_reclaimed || nr_retries--) { | 
|  | in_retry = true; | 
|  | goto retry_reclaim; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaim didn't manage to push usage below the limit, slow | 
|  | * this allocating task down. | 
|  | * | 
|  | * If we exit early, we're guaranteed to die (since | 
|  | * schedule_timeout_killable sets TASK_KILLABLE). This means we don't | 
|  | * need to account for any ill-begotten jiffies to pay them off later. | 
|  | */ | 
|  | psi_memstall_enter(&pflags); | 
|  | schedule_timeout_killable(penalty_jiffies); | 
|  | psi_memstall_leave(&pflags); | 
|  |  | 
|  | out: | 
|  | css_put(&memcg->css); | 
|  | } | 
|  |  | 
|  | static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | unsigned int nr_pages) | 
|  | { | 
|  | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); | 
|  | int nr_retries = MAX_RECLAIM_RETRIES; | 
|  | struct mem_cgroup *mem_over_limit; | 
|  | struct page_counter *counter; | 
|  | unsigned long nr_reclaimed; | 
|  | bool passed_oom = false; | 
|  | unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; | 
|  | bool drained = false; | 
|  | bool raised_max_event = false; | 
|  | unsigned long pflags; | 
|  | bool allow_spinning = gfpflags_allow_spinning(gfp_mask); | 
|  |  | 
|  | retry: | 
|  | if (consume_stock(memcg, nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | if (!allow_spinning) | 
|  | /* Avoid the refill and flush of the older stock */ | 
|  | batch = nr_pages; | 
|  |  | 
|  | if (!do_memsw_account() || | 
|  | page_counter_try_charge(&memcg->memsw, batch, &counter)) { | 
|  | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | 
|  | goto done_restock; | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, batch); | 
|  | mem_over_limit = mem_cgroup_from_counter(counter, memory); | 
|  | } else { | 
|  | mem_over_limit = mem_cgroup_from_counter(counter, memsw); | 
|  | reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; | 
|  | } | 
|  |  | 
|  | if (batch > nr_pages) { | 
|  | batch = nr_pages; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent unbounded recursion when reclaim operations need to | 
|  | * allocate memory. This might exceed the limits temporarily, | 
|  | * but we prefer facilitating memory reclaim and getting back | 
|  | * under the limit over triggering OOM kills in these cases. | 
|  | */ | 
|  | if (unlikely(current->flags & PF_MEMALLOC)) | 
|  | goto force; | 
|  |  | 
|  | if (unlikely(task_in_memcg_oom(current))) | 
|  | goto nomem; | 
|  |  | 
|  | if (!gfpflags_allow_blocking(gfp_mask)) | 
|  | goto nomem; | 
|  |  | 
|  | __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning); | 
|  | raised_max_event = true; | 
|  |  | 
|  | psi_memstall_enter(&pflags); | 
|  | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | 
|  | gfp_mask, reclaim_options, NULL); | 
|  | psi_memstall_leave(&pflags); | 
|  |  | 
|  | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | 
|  | goto retry; | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(mem_over_limit); | 
|  | drained = true; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (gfp_mask & __GFP_NORETRY) | 
|  | goto nomem; | 
|  | /* | 
|  | * Even though the limit is exceeded at this point, reclaim | 
|  | * may have been able to free some pages.  Retry the charge | 
|  | * before killing the task. | 
|  | * | 
|  | * Only for regular pages, though: huge pages are rather | 
|  | * unlikely to succeed so close to the limit, and we fall back | 
|  | * to regular pages anyway in case of failure. | 
|  | */ | 
|  | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | 
|  | goto retry; | 
|  |  | 
|  | if (nr_retries--) | 
|  | goto retry; | 
|  |  | 
|  | if (gfp_mask & __GFP_RETRY_MAYFAIL) | 
|  | goto nomem; | 
|  |  | 
|  | /* Avoid endless loop for tasks bypassed by the oom killer */ | 
|  | if (passed_oom && task_is_dying()) | 
|  | goto nomem; | 
|  |  | 
|  | /* | 
|  | * keep retrying as long as the memcg oom killer is able to make | 
|  | * a forward progress or bypass the charge if the oom killer | 
|  | * couldn't make any progress. | 
|  | */ | 
|  | if (mem_cgroup_oom(mem_over_limit, gfp_mask, | 
|  | get_order(nr_pages * PAGE_SIZE))) { | 
|  | passed_oom = true; | 
|  | nr_retries = MAX_RECLAIM_RETRIES; | 
|  | goto retry; | 
|  | } | 
|  | nomem: | 
|  | /* | 
|  | * Memcg doesn't have a dedicated reserve for atomic | 
|  | * allocations. But like the global atomic pool, we need to | 
|  | * put the burden of reclaim on regular allocation requests | 
|  | * and let these go through as privileged allocations. | 
|  | */ | 
|  | if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) | 
|  | return -ENOMEM; | 
|  | force: | 
|  | /* | 
|  | * If the allocation has to be enforced, don't forget to raise | 
|  | * a MEMCG_MAX event. | 
|  | */ | 
|  | if (!raised_max_event) | 
|  | __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning); | 
|  |  | 
|  | /* | 
|  | * The allocation either can't fail or will lead to more memory | 
|  | * being freed very soon.  Allow memory usage go over the limit | 
|  | * temporarily by force charging it. | 
|  | */ | 
|  | page_counter_charge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_charge(&memcg->memsw, nr_pages); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | done_restock: | 
|  | if (batch > nr_pages) | 
|  | refill_stock(memcg, batch - nr_pages); | 
|  |  | 
|  | /* | 
|  | * If the hierarchy is above the normal consumption range, schedule | 
|  | * reclaim on returning to userland.  We can perform reclaim here | 
|  | * if __GFP_RECLAIM but let's always punt for simplicity and so that | 
|  | * GFP_KERNEL can consistently be used during reclaim.  @memcg is | 
|  | * not recorded as it most likely matches current's and won't | 
|  | * change in the meantime.  As high limit is checked again before | 
|  | * reclaim, the cost of mismatch is negligible. | 
|  | */ | 
|  | do { | 
|  | bool mem_high, swap_high; | 
|  |  | 
|  | mem_high = page_counter_read(&memcg->memory) > | 
|  | READ_ONCE(memcg->memory.high); | 
|  | swap_high = page_counter_read(&memcg->swap) > | 
|  | READ_ONCE(memcg->swap.high); | 
|  |  | 
|  | /* Don't bother a random interrupted task */ | 
|  | if (!in_task()) { | 
|  | if (mem_high) { | 
|  | schedule_work(&memcg->high_work); | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (mem_high || swap_high) { | 
|  | /* | 
|  | * The allocating tasks in this cgroup will need to do | 
|  | * reclaim or be throttled to prevent further growth | 
|  | * of the memory or swap footprints. | 
|  | * | 
|  | * Target some best-effort fairness between the tasks, | 
|  | * and distribute reclaim work and delay penalties | 
|  | * based on how much each task is actually allocating. | 
|  | */ | 
|  | current->memcg_nr_pages_over_high += batch; | 
|  | set_notify_resume(current); | 
|  | break; | 
|  | } | 
|  | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  |  | 
|  | /* | 
|  | * Reclaim is set up above to be called from the userland | 
|  | * return path. But also attempt synchronous reclaim to avoid | 
|  | * excessive overrun while the task is still inside the | 
|  | * kernel. If this is successful, the return path will see it | 
|  | * when it rechecks the overage and simply bail out. | 
|  | */ | 
|  | if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && | 
|  | !(current->flags & PF_MEMALLOC) && | 
|  | gfpflags_allow_blocking(gfp_mask)) | 
|  | __mem_cgroup_handle_over_high(gfp_mask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | unsigned int nr_pages) | 
|  | { | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return 0; | 
|  |  | 
|  | return try_charge_memcg(memcg, gfp_mask, nr_pages); | 
|  | } | 
|  |  | 
|  | static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) | 
|  | { | 
|  | VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); | 
|  | /* | 
|  | * Any of the following ensures page's memcg stability: | 
|  | * | 
|  | * - the page lock | 
|  | * - LRU isolation | 
|  | * - exclusive reference | 
|  | */ | 
|  | folio->memcg_data = (unsigned long)memcg; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC | 
|  | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, | 
|  | struct pglist_data *pgdat, | 
|  | enum node_stat_item idx, int nr) | 
|  | { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | if (likely(!in_nmi())) { | 
|  | lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
|  | mod_memcg_lruvec_state(lruvec, idx, nr); | 
|  | } else { | 
|  | struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; | 
|  |  | 
|  | /* preemption is disabled in_nmi(). */ | 
|  | css_rstat_updated(&memcg->css, smp_processor_id()); | 
|  | if (idx == NR_SLAB_RECLAIMABLE_B) | 
|  | atomic_add(nr, &pn->slab_reclaimable); | 
|  | else | 
|  | atomic_add(nr, &pn->slab_unreclaimable); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, | 
|  | struct pglist_data *pgdat, | 
|  | enum node_stat_item idx, int nr) | 
|  | { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
|  | mod_memcg_lruvec_state(lruvec, idx, nr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, | 
|  | struct pglist_data *pgdat, | 
|  | enum node_stat_item idx, int nr) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = obj_cgroup_memcg(objcg); | 
|  | account_slab_nmi_safe(memcg, pgdat, idx, nr); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) | 
|  | { | 
|  | /* | 
|  | * Slab objects are accounted individually, not per-page. | 
|  | * Memcg membership data for each individual object is saved in | 
|  | * slab->obj_exts. | 
|  | */ | 
|  | if (folio_test_slab(folio)) { | 
|  | struct slabobj_ext *obj_exts; | 
|  | struct slab *slab; | 
|  | unsigned int off; | 
|  |  | 
|  | slab = folio_slab(folio); | 
|  | obj_exts = slab_obj_exts(slab); | 
|  | if (!obj_exts) | 
|  | return NULL; | 
|  |  | 
|  | off = obj_to_index(slab->slab_cache, slab, p); | 
|  | if (obj_exts[off].objcg) | 
|  | return obj_cgroup_memcg(obj_exts[off].objcg); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * folio_memcg_check() is used here, because in theory we can encounter | 
|  | * a folio where the slab flag has been cleared already, but | 
|  | * slab->obj_exts has not been freed yet | 
|  | * folio_memcg_check() will guarantee that a proper memory | 
|  | * cgroup pointer or NULL will be returned. | 
|  | */ | 
|  | return folio_memcg_check(folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a pointer to the memory cgroup to which the kernel object is charged. | 
|  | * It is not suitable for objects allocated using vmalloc(). | 
|  | * | 
|  | * A passed kernel object must be a slab object or a generic kernel page. | 
|  | * | 
|  | * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), | 
|  | * cgroup_mutex, etc. | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | return mem_cgroup_from_obj_folio(virt_to_folio(p), p); | 
|  | } | 
|  |  | 
|  | static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct obj_cgroup *objcg = NULL; | 
|  |  | 
|  | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { | 
|  | objcg = rcu_dereference(memcg->objcg); | 
|  | if (likely(objcg && obj_cgroup_tryget(objcg))) | 
|  | break; | 
|  | objcg = NULL; | 
|  | } | 
|  | return objcg; | 
|  | } | 
|  |  | 
|  | static struct obj_cgroup *current_objcg_update(void) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | struct obj_cgroup *old, *objcg = NULL; | 
|  |  | 
|  | do { | 
|  | /* Atomically drop the update bit. */ | 
|  | old = xchg(¤t->objcg, NULL); | 
|  | if (old) { | 
|  | old = (struct obj_cgroup *) | 
|  | ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); | 
|  | obj_cgroup_put(old); | 
|  |  | 
|  | old = NULL; | 
|  | } | 
|  |  | 
|  | /* If new objcg is NULL, no reason for the second atomic update. */ | 
|  | if (!current->mm || (current->flags & PF_KTHREAD)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Release the objcg pointer from the previous iteration, | 
|  | * if try_cmpxcg() below fails. | 
|  | */ | 
|  | if (unlikely(objcg)) { | 
|  | obj_cgroup_put(objcg); | 
|  | objcg = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the new objcg pointer. The current task can be | 
|  | * asynchronously moved to another memcg and the previous | 
|  | * memcg can be offlined. So let's get the memcg pointer | 
|  | * and try get a reference to objcg under a rcu read lock. | 
|  | */ | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_task(current); | 
|  | objcg = __get_obj_cgroup_from_memcg(memcg); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Try set up a new objcg pointer atomically. If it | 
|  | * fails, it means the update flag was set concurrently, so | 
|  | * the whole procedure should be repeated. | 
|  | */ | 
|  | } while (!try_cmpxchg(¤t->objcg, &old, objcg)); | 
|  |  | 
|  | return objcg; | 
|  | } | 
|  |  | 
|  | __always_inline struct obj_cgroup *current_obj_cgroup(void) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | struct obj_cgroup *objcg; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) | 
|  | return NULL; | 
|  |  | 
|  | if (in_task()) { | 
|  | memcg = current->active_memcg; | 
|  | if (unlikely(memcg)) | 
|  | goto from_memcg; | 
|  |  | 
|  | objcg = READ_ONCE(current->objcg); | 
|  | if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) | 
|  | objcg = current_objcg_update(); | 
|  | /* | 
|  | * Objcg reference is kept by the task, so it's safe | 
|  | * to use the objcg by the current task. | 
|  | */ | 
|  | return objcg; | 
|  | } | 
|  |  | 
|  | memcg = this_cpu_read(int_active_memcg); | 
|  | if (unlikely(memcg)) | 
|  | goto from_memcg; | 
|  |  | 
|  | return NULL; | 
|  |  | 
|  | from_memcg: | 
|  | objcg = NULL; | 
|  | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { | 
|  | /* | 
|  | * Memcg pointer is protected by scope (see set_active_memcg()) | 
|  | * and is pinning the corresponding objcg, so objcg can't go | 
|  | * away and can be used within the scope without any additional | 
|  | * protection. | 
|  | */ | 
|  | objcg = rcu_dereference_check(memcg->objcg, 1); | 
|  | if (likely(objcg)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return objcg; | 
|  | } | 
|  |  | 
|  | struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) | 
|  | { | 
|  | struct obj_cgroup *objcg; | 
|  |  | 
|  | if (!memcg_kmem_online()) | 
|  | return NULL; | 
|  |  | 
|  | if (folio_memcg_kmem(folio)) { | 
|  | objcg = __folio_objcg(folio); | 
|  | obj_cgroup_get(objcg); | 
|  | } else { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = __folio_memcg(folio); | 
|  | if (memcg) | 
|  | objcg = __get_obj_cgroup_from_memcg(memcg); | 
|  | else | 
|  | objcg = NULL; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | return objcg; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC | 
|  | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) | 
|  | { | 
|  | if (likely(!in_nmi())) { | 
|  | mod_memcg_state(memcg, MEMCG_KMEM, val); | 
|  | } else { | 
|  | /* preemption is disabled in_nmi(). */ | 
|  | css_rstat_updated(&memcg->css, smp_processor_id()); | 
|  | atomic_add(val, &memcg->kmem_stat); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) | 
|  | { | 
|  | mod_memcg_state(memcg, MEMCG_KMEM, val); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg | 
|  | * @objcg: object cgroup to uncharge | 
|  | * @nr_pages: number of pages to uncharge | 
|  | */ | 
|  | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, | 
|  | unsigned int nr_pages) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  |  | 
|  | account_kmem_nmi_safe(memcg, -nr_pages); | 
|  | memcg1_account_kmem(memcg, -nr_pages); | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | refill_stock(memcg, nr_pages); | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg | 
|  | * @objcg: object cgroup to charge | 
|  | * @gfp: reclaim mode | 
|  | * @nr_pages: number of pages to charge | 
|  | * | 
|  | * Returns 0 on success, an error code on failure. | 
|  | */ | 
|  | static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, | 
|  | unsigned int nr_pages) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | int ret; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  |  | 
|  | ret = try_charge_memcg(memcg, gfp, nr_pages); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | account_kmem_nmi_safe(memcg, nr_pages); | 
|  | memcg1_account_kmem(memcg, nr_pages); | 
|  | out: | 
|  | css_put(&memcg->css); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct obj_cgroup *page_objcg(const struct page *page) | 
|  | { | 
|  | unsigned long memcg_data = page->memcg_data; | 
|  |  | 
|  | if (mem_cgroup_disabled() || !memcg_data) | 
|  | return NULL; | 
|  |  | 
|  | VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, | 
|  | page); | 
|  | return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); | 
|  | } | 
|  |  | 
|  | static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) | 
|  | { | 
|  | page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup | 
|  | * @page: page to charge | 
|  | * @gfp: reclaim mode | 
|  | * @order: allocation order | 
|  | * | 
|  | * Returns 0 on success, an error code on failure. | 
|  | */ | 
|  | int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) | 
|  | { | 
|  | struct obj_cgroup *objcg; | 
|  | int ret = 0; | 
|  |  | 
|  | objcg = current_obj_cgroup(); | 
|  | if (objcg) { | 
|  | ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); | 
|  | if (!ret) { | 
|  | obj_cgroup_get(objcg); | 
|  | page_set_objcg(page, objcg); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __memcg_kmem_uncharge_page: uncharge a kmem page | 
|  | * @page: page to uncharge | 
|  | * @order: allocation order | 
|  | */ | 
|  | void __memcg_kmem_uncharge_page(struct page *page, int order) | 
|  | { | 
|  | struct obj_cgroup *objcg = page_objcg(page); | 
|  | unsigned int nr_pages = 1 << order; | 
|  |  | 
|  | if (!objcg) | 
|  | return; | 
|  |  | 
|  | obj_cgroup_uncharge_pages(objcg, nr_pages); | 
|  | page->memcg_data = 0; | 
|  | obj_cgroup_put(objcg); | 
|  | } | 
|  |  | 
|  | static void __account_obj_stock(struct obj_cgroup *objcg, | 
|  | struct obj_stock_pcp *stock, int nr, | 
|  | struct pglist_data *pgdat, enum node_stat_item idx) | 
|  | { | 
|  | int *bytes; | 
|  |  | 
|  | /* | 
|  | * Save vmstat data in stock and skip vmstat array update unless | 
|  | * accumulating over a page of vmstat data or when pgdat changes. | 
|  | */ | 
|  | if (stock->cached_pgdat != pgdat) { | 
|  | /* Flush the existing cached vmstat data */ | 
|  | struct pglist_data *oldpg = stock->cached_pgdat; | 
|  |  | 
|  | if (stock->nr_slab_reclaimable_b) { | 
|  | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, | 
|  | stock->nr_slab_reclaimable_b); | 
|  | stock->nr_slab_reclaimable_b = 0; | 
|  | } | 
|  | if (stock->nr_slab_unreclaimable_b) { | 
|  | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, | 
|  | stock->nr_slab_unreclaimable_b); | 
|  | stock->nr_slab_unreclaimable_b = 0; | 
|  | } | 
|  | stock->cached_pgdat = pgdat; | 
|  | } | 
|  |  | 
|  | bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b | 
|  | : &stock->nr_slab_unreclaimable_b; | 
|  | /* | 
|  | * Even for large object >= PAGE_SIZE, the vmstat data will still be | 
|  | * cached locally at least once before pushing it out. | 
|  | */ | 
|  | if (!*bytes) { | 
|  | *bytes = nr; | 
|  | nr = 0; | 
|  | } else { | 
|  | *bytes += nr; | 
|  | if (abs(*bytes) > PAGE_SIZE) { | 
|  | nr = *bytes; | 
|  | *bytes = 0; | 
|  | } else { | 
|  | nr = 0; | 
|  | } | 
|  | } | 
|  | if (nr) | 
|  | mod_objcg_mlstate(objcg, pgdat, idx, nr); | 
|  | } | 
|  |  | 
|  | static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, | 
|  | struct pglist_data *pgdat, enum node_stat_item idx) | 
|  | { | 
|  | struct obj_stock_pcp *stock; | 
|  | bool ret = false; | 
|  |  | 
|  | if (!local_trylock(&obj_stock.lock)) | 
|  | return ret; | 
|  |  | 
|  | stock = this_cpu_ptr(&obj_stock); | 
|  | if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { | 
|  | stock->nr_bytes -= nr_bytes; | 
|  | ret = true; | 
|  |  | 
|  | if (pgdat) | 
|  | __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); | 
|  | } | 
|  |  | 
|  | local_unlock(&obj_stock.lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void drain_obj_stock(struct obj_stock_pcp *stock) | 
|  | { | 
|  | struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); | 
|  |  | 
|  | if (!old) | 
|  | return; | 
|  |  | 
|  | if (stock->nr_bytes) { | 
|  | unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; | 
|  | unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); | 
|  |  | 
|  | if (nr_pages) { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_objcg(old); | 
|  |  | 
|  | mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); | 
|  | memcg1_account_kmem(memcg, -nr_pages); | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | memcg_uncharge(memcg, nr_pages); | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The leftover is flushed to the centralized per-memcg value. | 
|  | * On the next attempt to refill obj stock it will be moved | 
|  | * to a per-cpu stock (probably, on an other CPU), see | 
|  | * refill_obj_stock(). | 
|  | * | 
|  | * How often it's flushed is a trade-off between the memory | 
|  | * limit enforcement accuracy and potential CPU contention, | 
|  | * so it might be changed in the future. | 
|  | */ | 
|  | atomic_add(nr_bytes, &old->nr_charged_bytes); | 
|  | stock->nr_bytes = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush the vmstat data in current stock | 
|  | */ | 
|  | if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { | 
|  | if (stock->nr_slab_reclaimable_b) { | 
|  | mod_objcg_mlstate(old, stock->cached_pgdat, | 
|  | NR_SLAB_RECLAIMABLE_B, | 
|  | stock->nr_slab_reclaimable_b); | 
|  | stock->nr_slab_reclaimable_b = 0; | 
|  | } | 
|  | if (stock->nr_slab_unreclaimable_b) { | 
|  | mod_objcg_mlstate(old, stock->cached_pgdat, | 
|  | NR_SLAB_UNRECLAIMABLE_B, | 
|  | stock->nr_slab_unreclaimable_b); | 
|  | stock->nr_slab_unreclaimable_b = 0; | 
|  | } | 
|  | stock->cached_pgdat = NULL; | 
|  | } | 
|  |  | 
|  | WRITE_ONCE(stock->cached_objcg, NULL); | 
|  | obj_cgroup_put(old); | 
|  | } | 
|  |  | 
|  | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, | 
|  | struct mem_cgroup *root_memcg) | 
|  | { | 
|  | struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); | 
|  | struct mem_cgroup *memcg; | 
|  | bool flush = false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (objcg) { | 
|  | memcg = obj_cgroup_memcg(objcg); | 
|  | if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) | 
|  | flush = true; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, | 
|  | bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, | 
|  | enum node_stat_item idx) | 
|  | { | 
|  | struct obj_stock_pcp *stock; | 
|  | unsigned int nr_pages = 0; | 
|  |  | 
|  | if (!local_trylock(&obj_stock.lock)) { | 
|  | if (pgdat) | 
|  | mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); | 
|  | nr_pages = nr_bytes >> PAGE_SHIFT; | 
|  | nr_bytes = nr_bytes & (PAGE_SIZE - 1); | 
|  | atomic_add(nr_bytes, &objcg->nr_charged_bytes); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | stock = this_cpu_ptr(&obj_stock); | 
|  | if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ | 
|  | drain_obj_stock(stock); | 
|  | obj_cgroup_get(objcg); | 
|  | stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) | 
|  | ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; | 
|  | WRITE_ONCE(stock->cached_objcg, objcg); | 
|  |  | 
|  | allow_uncharge = true;	/* Allow uncharge when objcg changes */ | 
|  | } | 
|  | stock->nr_bytes += nr_bytes; | 
|  |  | 
|  | if (pgdat) | 
|  | __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); | 
|  |  | 
|  | if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { | 
|  | nr_pages = stock->nr_bytes >> PAGE_SHIFT; | 
|  | stock->nr_bytes &= (PAGE_SIZE - 1); | 
|  | } | 
|  |  | 
|  | local_unlock(&obj_stock.lock); | 
|  | out: | 
|  | if (nr_pages) | 
|  | obj_cgroup_uncharge_pages(objcg, nr_pages); | 
|  | } | 
|  |  | 
|  | static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, | 
|  | struct pglist_data *pgdat, enum node_stat_item idx) | 
|  | { | 
|  | unsigned int nr_pages, nr_bytes; | 
|  | int ret; | 
|  |  | 
|  | if (likely(consume_obj_stock(objcg, size, pgdat, idx))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * In theory, objcg->nr_charged_bytes can have enough | 
|  | * pre-charged bytes to satisfy the allocation. However, | 
|  | * flushing objcg->nr_charged_bytes requires two atomic | 
|  | * operations, and objcg->nr_charged_bytes can't be big. | 
|  | * The shared objcg->nr_charged_bytes can also become a | 
|  | * performance bottleneck if all tasks of the same memcg are | 
|  | * trying to update it. So it's better to ignore it and try | 
|  | * grab some new pages. The stock's nr_bytes will be flushed to | 
|  | * objcg->nr_charged_bytes later on when objcg changes. | 
|  | * | 
|  | * The stock's nr_bytes may contain enough pre-charged bytes | 
|  | * to allow one less page from being charged, but we can't rely | 
|  | * on the pre-charged bytes not being changed outside of | 
|  | * consume_obj_stock() or refill_obj_stock(). So ignore those | 
|  | * pre-charged bytes as well when charging pages. To avoid a | 
|  | * page uncharge right after a page charge, we set the | 
|  | * allow_uncharge flag to false when calling refill_obj_stock() | 
|  | * to temporarily allow the pre-charged bytes to exceed the page | 
|  | * size limit. The maximum reachable value of the pre-charged | 
|  | * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data | 
|  | * race. | 
|  | */ | 
|  | nr_pages = size >> PAGE_SHIFT; | 
|  | nr_bytes = size & (PAGE_SIZE - 1); | 
|  |  | 
|  | if (nr_bytes) | 
|  | nr_pages += 1; | 
|  |  | 
|  | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); | 
|  | if (!ret && (nr_bytes || pgdat)) | 
|  | refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, | 
|  | false, size, pgdat, idx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) | 
|  | { | 
|  | return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); | 
|  | } | 
|  |  | 
|  | void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) | 
|  | { | 
|  | refill_obj_stock(objcg, size, true, 0, NULL, 0); | 
|  | } | 
|  |  | 
|  | static inline size_t obj_full_size(struct kmem_cache *s) | 
|  | { | 
|  | /* | 
|  | * For each accounted object there is an extra space which is used | 
|  | * to store obj_cgroup membership. Charge it too. | 
|  | */ | 
|  | return s->size + sizeof(struct obj_cgroup *); | 
|  | } | 
|  |  | 
|  | bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, | 
|  | gfp_t flags, size_t size, void **p) | 
|  | { | 
|  | struct obj_cgroup *objcg; | 
|  | struct slab *slab; | 
|  | unsigned long off; | 
|  | size_t i; | 
|  |  | 
|  | /* | 
|  | * The obtained objcg pointer is safe to use within the current scope, | 
|  | * defined by current task or set_active_memcg() pair. | 
|  | * obj_cgroup_get() is used to get a permanent reference. | 
|  | */ | 
|  | objcg = current_obj_cgroup(); | 
|  | if (!objcg) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * slab_alloc_node() avoids the NULL check, so we might be called with a | 
|  | * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill | 
|  | * the whole requested size. | 
|  | * return success as there's nothing to free back | 
|  | */ | 
|  | if (unlikely(*p == NULL)) | 
|  | return true; | 
|  |  | 
|  | flags &= gfp_allowed_mask; | 
|  |  | 
|  | if (lru) { | 
|  | int ret; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | ret = memcg_list_lru_alloc(memcg, lru, flags); | 
|  | css_put(&memcg->css); | 
|  |  | 
|  | if (ret) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | slab = virt_to_slab(p[i]); | 
|  |  | 
|  | if (!slab_obj_exts(slab) && | 
|  | alloc_slab_obj_exts(slab, s, flags, false)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if we fail and size is 1, memcg_alloc_abort_single() will | 
|  | * just free the object, which is ok as we have not assigned | 
|  | * objcg to its obj_ext yet | 
|  | * | 
|  | * for larger sizes, kmem_cache_free_bulk() will uncharge | 
|  | * any objects that were already charged and obj_ext assigned | 
|  | * | 
|  | * TODO: we could batch this until slab_pgdat(slab) changes | 
|  | * between iterations, with a more complicated undo | 
|  | */ | 
|  | if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), | 
|  | slab_pgdat(slab), cache_vmstat_idx(s))) | 
|  | return false; | 
|  |  | 
|  | off = obj_to_index(s, slab, p[i]); | 
|  | obj_cgroup_get(objcg); | 
|  | slab_obj_exts(slab)[off].objcg = objcg; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, | 
|  | void **p, int objects, struct slabobj_ext *obj_exts) | 
|  | { | 
|  | size_t obj_size = obj_full_size(s); | 
|  |  | 
|  | for (int i = 0; i < objects; i++) { | 
|  | struct obj_cgroup *objcg; | 
|  | unsigned int off; | 
|  |  | 
|  | off = obj_to_index(s, slab, p[i]); | 
|  | objcg = obj_exts[off].objcg; | 
|  | if (!objcg) | 
|  | continue; | 
|  |  | 
|  | obj_exts[off].objcg = NULL; | 
|  | refill_obj_stock(objcg, obj_size, true, -obj_size, | 
|  | slab_pgdat(slab), cache_vmstat_idx(s)); | 
|  | obj_cgroup_put(objcg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The objcg is only set on the first page, so transfer it to all the | 
|  | * other pages. | 
|  | */ | 
|  | void split_page_memcg(struct page *page, unsigned order) | 
|  | { | 
|  | struct obj_cgroup *objcg = page_objcg(page); | 
|  | unsigned int i, nr = 1 << order; | 
|  |  | 
|  | if (!objcg) | 
|  | return; | 
|  |  | 
|  | for (i = 1; i < nr; i++) | 
|  | page_set_objcg(&page[i], objcg); | 
|  |  | 
|  | obj_cgroup_get_many(objcg, nr - 1); | 
|  | } | 
|  |  | 
|  | void folio_split_memcg_refs(struct folio *folio, unsigned old_order, | 
|  | unsigned new_order) | 
|  | { | 
|  | unsigned new_refs; | 
|  |  | 
|  | if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) | 
|  | return; | 
|  |  | 
|  | new_refs = (1 << (old_order - new_order)) - 1; | 
|  | css_get_many(&__folio_memcg(folio)->css, new_refs); | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | 
|  | { | 
|  | unsigned long val; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) { | 
|  | /* | 
|  | * Approximate root's usage from global state. This isn't | 
|  | * perfect, but the root usage was always an approximation. | 
|  | */ | 
|  | val = global_node_page_state(NR_FILE_PAGES) + | 
|  | global_node_page_state(NR_ANON_MAPPED); | 
|  | if (swap) | 
|  | val += total_swap_pages - get_nr_swap_pages(); | 
|  | } else { | 
|  | if (!swap) | 
|  | val = page_counter_read(&memcg->memory); | 
|  | else | 
|  | val = page_counter_read(&memcg->memsw); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct obj_cgroup *objcg; | 
|  |  | 
|  | if (mem_cgroup_kmem_disabled()) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(mem_cgroup_is_root(memcg))) | 
|  | return 0; | 
|  |  | 
|  | objcg = obj_cgroup_alloc(); | 
|  | if (!objcg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | objcg->memcg = memcg; | 
|  | rcu_assign_pointer(memcg->objcg, objcg); | 
|  | obj_cgroup_get(objcg); | 
|  | memcg->orig_objcg = objcg; | 
|  |  | 
|  | static_branch_enable(&memcg_kmem_online_key); | 
|  |  | 
|  | memcg->kmemcg_id = memcg->id.id; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *parent; | 
|  |  | 
|  | if (mem_cgroup_kmem_disabled()) | 
|  | return; | 
|  |  | 
|  | if (unlikely(mem_cgroup_is_root(memcg))) | 
|  | return; | 
|  |  | 
|  | parent = parent_mem_cgroup(memcg); | 
|  | if (!parent) | 
|  | parent = root_mem_cgroup; | 
|  |  | 
|  | memcg_reparent_list_lrus(memcg, parent); | 
|  |  | 
|  | /* | 
|  | * Objcg's reparenting must be after list_lru's, make sure list_lru | 
|  | * helpers won't use parent's list_lru until child is drained. | 
|  | */ | 
|  | memcg_reparent_objcgs(memcg, parent); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  |  | 
|  | #include <trace/events/writeback.h> | 
|  |  | 
|  | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | { | 
|  | return wb_domain_init(&memcg->cgwb_domain, gfp); | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | { | 
|  | wb_domain_exit(&memcg->cgwb_domain); | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | { | 
|  | wb_domain_size_changed(&memcg->cgwb_domain); | 
|  | } | 
|  |  | 
|  | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  |  | 
|  | if (!memcg->css.parent) | 
|  | return NULL; | 
|  |  | 
|  | return &memcg->cgwb_domain; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | 
|  | * @wb: bdi_writeback in question | 
|  | * @pfilepages: out parameter for number of file pages | 
|  | * @pheadroom: out parameter for number of allocatable pages according to memcg | 
|  | * @pdirty: out parameter for number of dirty pages | 
|  | * @pwriteback: out parameter for number of pages under writeback | 
|  | * | 
|  | * Determine the numbers of file, headroom, dirty, and writeback pages in | 
|  | * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom | 
|  | * is a bit more involved. | 
|  | * | 
|  | * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the | 
|  | * headroom is calculated as the lowest headroom of itself and the | 
|  | * ancestors.  Note that this doesn't consider the actual amount of | 
|  | * available memory in the system.  The caller should further cap | 
|  | * *@pheadroom accordingly. | 
|  | */ | 
|  | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, | 
|  | unsigned long *pheadroom, unsigned long *pdirty, | 
|  | unsigned long *pwriteback) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  | struct mem_cgroup *parent; | 
|  |  | 
|  | mem_cgroup_flush_stats_ratelimited(memcg); | 
|  |  | 
|  | *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); | 
|  | *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); | 
|  | *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + | 
|  | memcg_page_state(memcg, NR_ACTIVE_FILE); | 
|  |  | 
|  | *pheadroom = PAGE_COUNTER_MAX; | 
|  | while ((parent = parent_mem_cgroup(memcg))) { | 
|  | unsigned long ceiling = min(READ_ONCE(memcg->memory.max), | 
|  | READ_ONCE(memcg->memory.high)); | 
|  | unsigned long used = page_counter_read(&memcg->memory); | 
|  |  | 
|  | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); | 
|  | memcg = parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Foreign dirty flushing | 
|  | * | 
|  | * There's an inherent mismatch between memcg and writeback.  The former | 
|  | * tracks ownership per-page while the latter per-inode.  This was a | 
|  | * deliberate design decision because honoring per-page ownership in the | 
|  | * writeback path is complicated, may lead to higher CPU and IO overheads | 
|  | * and deemed unnecessary given that write-sharing an inode across | 
|  | * different cgroups isn't a common use-case. | 
|  | * | 
|  | * Combined with inode majority-writer ownership switching, this works well | 
|  | * enough in most cases but there are some pathological cases.  For | 
|  | * example, let's say there are two cgroups A and B which keep writing to | 
|  | * different but confined parts of the same inode.  B owns the inode and | 
|  | * A's memory is limited far below B's.  A's dirty ratio can rise enough to | 
|  | * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid | 
|  | * triggering background writeback.  A will be slowed down without a way to | 
|  | * make writeback of the dirty pages happen. | 
|  | * | 
|  | * Conditions like the above can lead to a cgroup getting repeatedly and | 
|  | * severely throttled after making some progress after each | 
|  | * dirty_expire_interval while the underlying IO device is almost | 
|  | * completely idle. | 
|  | * | 
|  | * Solving this problem completely requires matching the ownership tracking | 
|  | * granularities between memcg and writeback in either direction.  However, | 
|  | * the more egregious behaviors can be avoided by simply remembering the | 
|  | * most recent foreign dirtying events and initiating remote flushes on | 
|  | * them when local writeback isn't enough to keep the memory clean enough. | 
|  | * | 
|  | * The following two functions implement such mechanism.  When a foreign | 
|  | * page - a page whose memcg and writeback ownerships don't match - is | 
|  | * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning | 
|  | * bdi_writeback on the page owning memcg.  When balance_dirty_pages() | 
|  | * decides that the memcg needs to sleep due to high dirty ratio, it calls | 
|  | * mem_cgroup_flush_foreign() which queues writeback on the recorded | 
|  | * foreign bdi_writebacks which haven't expired.  Both the numbers of | 
|  | * recorded bdi_writebacks and concurrent in-flight foreign writebacks are | 
|  | * limited to MEMCG_CGWB_FRN_CNT. | 
|  | * | 
|  | * The mechanism only remembers IDs and doesn't hold any object references. | 
|  | * As being wrong occasionally doesn't matter, updates and accesses to the | 
|  | * records are lockless and racy. | 
|  | */ | 
|  | void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, | 
|  | struct bdi_writeback *wb) | 
|  | { | 
|  | struct mem_cgroup *memcg = folio_memcg(folio); | 
|  | struct memcg_cgwb_frn *frn; | 
|  | u64 now = get_jiffies_64(); | 
|  | u64 oldest_at = now; | 
|  | int oldest = -1; | 
|  | int i; | 
|  |  | 
|  | trace_track_foreign_dirty(folio, wb); | 
|  |  | 
|  | /* | 
|  | * Pick the slot to use.  If there is already a slot for @wb, keep | 
|  | * using it.  If not replace the oldest one which isn't being | 
|  | * written out. | 
|  | */ | 
|  | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | 
|  | frn = &memcg->cgwb_frn[i]; | 
|  | if (frn->bdi_id == wb->bdi->id && | 
|  | frn->memcg_id == wb->memcg_css->id) | 
|  | break; | 
|  | if (time_before64(frn->at, oldest_at) && | 
|  | atomic_read(&frn->done.cnt) == 1) { | 
|  | oldest = i; | 
|  | oldest_at = frn->at; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i < MEMCG_CGWB_FRN_CNT) { | 
|  | /* | 
|  | * Re-using an existing one.  Update timestamp lazily to | 
|  | * avoid making the cacheline hot.  We want them to be | 
|  | * reasonably up-to-date and significantly shorter than | 
|  | * dirty_expire_interval as that's what expires the record. | 
|  | * Use the shorter of 1s and dirty_expire_interval / 8. | 
|  | */ | 
|  | unsigned long update_intv = | 
|  | min_t(unsigned long, HZ, | 
|  | msecs_to_jiffies(dirty_expire_interval * 10) / 8); | 
|  |  | 
|  | if (time_before64(frn->at, now - update_intv)) | 
|  | frn->at = now; | 
|  | } else if (oldest >= 0) { | 
|  | /* replace the oldest free one */ | 
|  | frn = &memcg->cgwb_frn[oldest]; | 
|  | frn->bdi_id = wb->bdi->id; | 
|  | frn->memcg_id = wb->memcg_css->id; | 
|  | frn->at = now; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* issue foreign writeback flushes for recorded foreign dirtying events */ | 
|  | void mem_cgroup_flush_foreign(struct bdi_writeback *wb) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  | unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); | 
|  | u64 now = jiffies_64; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | 
|  | struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; | 
|  |  | 
|  | /* | 
|  | * If the record is older than dirty_expire_interval, | 
|  | * writeback on it has already started.  No need to kick it | 
|  | * off again.  Also, don't start a new one if there's | 
|  | * already one in flight. | 
|  | */ | 
|  | if (time_after64(frn->at, now - intv) && | 
|  | atomic_read(&frn->done.cnt) == 1) { | 
|  | frn->at = 0; | 
|  | trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); | 
|  | cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, | 
|  | WB_REASON_FOREIGN_FLUSH, | 
|  | &frn->done); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | /* | 
|  | * Private memory cgroup IDR | 
|  | * | 
|  | * Swap-out records and page cache shadow entries need to store memcg | 
|  | * references in constrained space, so we maintain an ID space that is | 
|  | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of | 
|  | * memory-controlled cgroups to 64k. | 
|  | * | 
|  | * However, there usually are many references to the offline CSS after | 
|  | * the cgroup has been destroyed, such as page cache or reclaimable | 
|  | * slab objects, that don't need to hang on to the ID. We want to keep | 
|  | * those dead CSS from occupying IDs, or we might quickly exhaust the | 
|  | * relatively small ID space and prevent the creation of new cgroups | 
|  | * even when there are much fewer than 64k cgroups - possibly none. | 
|  | * | 
|  | * Maintain a private 16-bit ID space for memcg, and allow the ID to | 
|  | * be freed and recycled when it's no longer needed, which is usually | 
|  | * when the CSS is offlined. | 
|  | * | 
|  | * The only exception to that are records of swapped out tmpfs/shmem | 
|  | * pages that need to be attributed to live ancestors on swapin. But | 
|  | * those references are manageable from userspace. | 
|  | */ | 
|  |  | 
|  | #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1) | 
|  | static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); | 
|  |  | 
|  | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (memcg->id.id > 0) { | 
|  | xa_erase(&mem_cgroup_ids, memcg->id.id); | 
|  | memcg->id.id = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, | 
|  | unsigned int n) | 
|  | { | 
|  | refcount_add(n, &memcg->id.ref); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) | 
|  | { | 
|  | if (refcount_sub_and_test(n, &memcg->id.ref)) { | 
|  | mem_cgroup_id_remove(memcg); | 
|  |  | 
|  | /* Memcg ID pins CSS */ | 
|  | css_put(&memcg->css); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) | 
|  | { | 
|  | mem_cgroup_id_put_many(memcg, 1); | 
|  | } | 
|  |  | 
|  | struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) | 
|  | { | 
|  | while (!refcount_inc_not_zero(&memcg->id.ref)) { | 
|  | /* | 
|  | * The root cgroup cannot be destroyed, so it's refcount must | 
|  | * always be >= 1. | 
|  | */ | 
|  | if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { | 
|  | VM_BUG_ON(1); | 
|  | break; | 
|  | } | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  | } | 
|  | return memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_from_id - look up a memcg from a memcg id | 
|  | * @id: the memcg id to look up | 
|  | * | 
|  | * Caller must hold rcu_read_lock(). | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | 
|  | { | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | return xa_load(&mem_cgroup_ids, id); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SHRINKER_DEBUG | 
|  | struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | struct cgroup_subsys_state *css; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | cgrp = cgroup_get_from_id(ino); | 
|  | if (IS_ERR(cgrp)) | 
|  | return ERR_CAST(cgrp); | 
|  |  | 
|  | css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); | 
|  | if (css) | 
|  | memcg = container_of(css, struct mem_cgroup, css); | 
|  | else | 
|  | memcg = ERR_PTR(-ENOENT); | 
|  |  | 
|  | cgroup_put(cgrp); | 
|  |  | 
|  | return memcg; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) | 
|  | { | 
|  | if (!pn) | 
|  | return; | 
|  |  | 
|  | free_percpu(pn->lruvec_stats_percpu); | 
|  | kfree(pn->lruvec_stats); | 
|  | kfree(pn); | 
|  | } | 
|  |  | 
|  | static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  |  | 
|  | pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, | 
|  | node); | 
|  | if (!pn) | 
|  | return false; | 
|  |  | 
|  | pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), | 
|  | GFP_KERNEL_ACCOUNT, node); | 
|  | if (!pn->lruvec_stats) | 
|  | goto fail; | 
|  |  | 
|  | pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, | 
|  | GFP_KERNEL_ACCOUNT); | 
|  | if (!pn->lruvec_stats_percpu) | 
|  | goto fail; | 
|  |  | 
|  | lruvec_init(&pn->lruvec); | 
|  | pn->memcg = memcg; | 
|  |  | 
|  | memcg->nodeinfo[node] = pn; | 
|  | return true; | 
|  | fail: | 
|  | free_mem_cgroup_per_node_info(pn); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_free(struct mem_cgroup *memcg) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | obj_cgroup_put(memcg->orig_objcg); | 
|  |  | 
|  | for_each_node(node) | 
|  | free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); | 
|  | memcg1_free_events(memcg); | 
|  | kfree(memcg->vmstats); | 
|  | free_percpu(memcg->vmstats_percpu); | 
|  | kfree(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_free(struct mem_cgroup *memcg) | 
|  | { | 
|  | lru_gen_exit_memcg(memcg); | 
|  | memcg_wb_domain_exit(memcg); | 
|  | __mem_cgroup_free(memcg); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) | 
|  | { | 
|  | struct memcg_vmstats_percpu *statc; | 
|  | struct memcg_vmstats_percpu __percpu *pstatc_pcpu; | 
|  | struct mem_cgroup *memcg; | 
|  | int node, cpu; | 
|  | int __maybe_unused i; | 
|  | long error; | 
|  |  | 
|  | memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); | 
|  | if (!memcg) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, | 
|  | XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); | 
|  | if (error) | 
|  | goto fail; | 
|  | error = -ENOMEM; | 
|  |  | 
|  | memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), | 
|  | GFP_KERNEL_ACCOUNT); | 
|  | if (!memcg->vmstats) | 
|  | goto fail; | 
|  |  | 
|  | memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, | 
|  | GFP_KERNEL_ACCOUNT); | 
|  | if (!memcg->vmstats_percpu) | 
|  | goto fail; | 
|  |  | 
|  | if (!memcg1_alloc_events(memcg)) | 
|  | goto fail; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (parent) | 
|  | pstatc_pcpu = parent->vmstats_percpu; | 
|  | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); | 
|  | statc->parent_pcpu = parent ? pstatc_pcpu : NULL; | 
|  | statc->vmstats = memcg->vmstats; | 
|  | } | 
|  |  | 
|  | for_each_node(node) | 
|  | if (!alloc_mem_cgroup_per_node_info(memcg, node)) | 
|  | goto fail; | 
|  |  | 
|  | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) | 
|  | goto fail; | 
|  |  | 
|  | INIT_WORK(&memcg->high_work, high_work_func); | 
|  | vmpressure_init(&memcg->vmpressure); | 
|  | INIT_LIST_HEAD(&memcg->memory_peaks); | 
|  | INIT_LIST_HEAD(&memcg->swap_peaks); | 
|  | spin_lock_init(&memcg->peaks_lock); | 
|  | memcg->socket_pressure = get_jiffies_64(); | 
|  | #if BITS_PER_LONG < 64 | 
|  | seqlock_init(&memcg->socket_pressure_seqlock); | 
|  | #endif | 
|  | memcg1_memcg_init(memcg); | 
|  | memcg->kmemcg_id = -1; | 
|  | INIT_LIST_HEAD(&memcg->objcg_list); | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | INIT_LIST_HEAD(&memcg->cgwb_list); | 
|  | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) | 
|  | memcg->cgwb_frn[i].done = | 
|  | __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); | 
|  | INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); | 
|  | memcg->deferred_split_queue.split_queue_len = 0; | 
|  | #endif | 
|  | lru_gen_init_memcg(memcg); | 
|  | return memcg; | 
|  | fail: | 
|  | mem_cgroup_id_remove(memcg); | 
|  | __mem_cgroup_free(memcg); | 
|  | return ERR_PTR(error); | 
|  | } | 
|  |  | 
|  | static struct cgroup_subsys_state * __ref | 
|  | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
|  | { | 
|  | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); | 
|  | struct mem_cgroup *memcg, *old_memcg; | 
|  | bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); | 
|  |  | 
|  | old_memcg = set_active_memcg(parent); | 
|  | memcg = mem_cgroup_alloc(parent); | 
|  | set_active_memcg(old_memcg); | 
|  | if (IS_ERR(memcg)) | 
|  | return ERR_CAST(memcg); | 
|  |  | 
|  | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); | 
|  | memcg1_soft_limit_reset(memcg); | 
|  | #ifdef CONFIG_ZSWAP | 
|  | memcg->zswap_max = PAGE_COUNTER_MAX; | 
|  | WRITE_ONCE(memcg->zswap_writeback, true); | 
|  | #endif | 
|  | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); | 
|  | if (parent) { | 
|  | WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); | 
|  |  | 
|  | page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); | 
|  | page_counter_init(&memcg->swap, &parent->swap, false); | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | memcg->memory.track_failcnt = !memcg_on_dfl; | 
|  | WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); | 
|  | page_counter_init(&memcg->kmem, &parent->kmem, false); | 
|  | page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); | 
|  | #endif | 
|  | } else { | 
|  | init_memcg_stats(); | 
|  | init_memcg_events(); | 
|  | page_counter_init(&memcg->memory, NULL, true); | 
|  | page_counter_init(&memcg->swap, NULL, false); | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | page_counter_init(&memcg->kmem, NULL, false); | 
|  | page_counter_init(&memcg->tcpmem, NULL, false); | 
|  | #endif | 
|  | root_mem_cgroup = memcg; | 
|  | return &memcg->css; | 
|  | } | 
|  |  | 
|  | if (memcg_on_dfl && !cgroup_memory_nosocket) | 
|  | static_branch_inc(&memcg_sockets_enabled_key); | 
|  |  | 
|  | if (!cgroup_memory_nobpf) | 
|  | static_branch_inc(&memcg_bpf_enabled_key); | 
|  |  | 
|  | return &memcg->css; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (memcg_online_kmem(memcg)) | 
|  | goto remove_id; | 
|  |  | 
|  | /* | 
|  | * A memcg must be visible for expand_shrinker_info() | 
|  | * by the time the maps are allocated. So, we allocate maps | 
|  | * here, when for_each_mem_cgroup() can't skip it. | 
|  | */ | 
|  | if (alloc_shrinker_info(memcg)) | 
|  | goto offline_kmem; | 
|  |  | 
|  | if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) | 
|  | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, | 
|  | FLUSH_TIME); | 
|  | lru_gen_online_memcg(memcg); | 
|  |  | 
|  | /* Online state pins memcg ID, memcg ID pins CSS */ | 
|  | refcount_set(&memcg->id.ref, 1); | 
|  | css_get(css); | 
|  |  | 
|  | /* | 
|  | * Ensure mem_cgroup_from_id() works once we're fully online. | 
|  | * | 
|  | * We could do this earlier and require callers to filter with | 
|  | * css_tryget_online(). But right now there are no users that | 
|  | * need earlier access, and the workingset code relies on the | 
|  | * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So | 
|  | * publish it here at the end of onlining. This matches the | 
|  | * regular ID destruction during offlining. | 
|  | */ | 
|  | xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); | 
|  |  | 
|  | return 0; | 
|  | offline_kmem: | 
|  | memcg_offline_kmem(memcg); | 
|  | remove_id: | 
|  | mem_cgroup_id_remove(memcg); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | memcg1_css_offline(memcg); | 
|  |  | 
|  | page_counter_set_min(&memcg->memory, 0); | 
|  | page_counter_set_low(&memcg->memory, 0); | 
|  |  | 
|  | zswap_memcg_offline_cleanup(memcg); | 
|  |  | 
|  | memcg_offline_kmem(memcg); | 
|  | reparent_shrinker_deferred(memcg); | 
|  | wb_memcg_offline(memcg); | 
|  | lru_gen_offline_memcg(memcg); | 
|  |  | 
|  | drain_all_stock(memcg); | 
|  |  | 
|  | mem_cgroup_id_put(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | invalidate_reclaim_iterators(memcg); | 
|  | lru_gen_release_memcg(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | int __maybe_unused i; | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) | 
|  | wb_wait_for_completion(&memcg->cgwb_frn[i].done); | 
|  | #endif | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
|  | static_branch_dec(&memcg_sockets_enabled_key); | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) | 
|  | static_branch_dec(&memcg_sockets_enabled_key); | 
|  |  | 
|  | if (!cgroup_memory_nobpf) | 
|  | static_branch_dec(&memcg_bpf_enabled_key); | 
|  |  | 
|  | vmpressure_cleanup(&memcg->vmpressure); | 
|  | cancel_work_sync(&memcg->high_work); | 
|  | memcg1_remove_from_trees(memcg); | 
|  | free_shrinker_info(memcg); | 
|  | mem_cgroup_free(memcg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_css_reset - reset the states of a mem_cgroup | 
|  | * @css: the target css | 
|  | * | 
|  | * Reset the states of the mem_cgroup associated with @css.  This is | 
|  | * invoked when the userland requests disabling on the default hierarchy | 
|  | * but the memcg is pinned through dependency.  The memcg should stop | 
|  | * applying policies and should revert to the vanilla state as it may be | 
|  | * made visible again. | 
|  | * | 
|  | * The current implementation only resets the essential configurations. | 
|  | * This needs to be expanded to cover all the visible parts. | 
|  | */ | 
|  | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); | 
|  | page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); | 
|  | page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); | 
|  | #endif | 
|  | page_counter_set_min(&memcg->memory, 0); | 
|  | page_counter_set_low(&memcg->memory, 0); | 
|  | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); | 
|  | memcg1_soft_limit_reset(memcg); | 
|  | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | } | 
|  |  | 
|  | struct aggregate_control { | 
|  | /* pointer to the aggregated (CPU and subtree aggregated) counters */ | 
|  | long *aggregate; | 
|  | /* pointer to the non-hierarchichal (CPU aggregated) counters */ | 
|  | long *local; | 
|  | /* pointer to the pending child counters during tree propagation */ | 
|  | long *pending; | 
|  | /* pointer to the parent's pending counters, could be NULL */ | 
|  | long *ppending; | 
|  | /* pointer to the percpu counters to be aggregated */ | 
|  | long *cstat; | 
|  | /* pointer to the percpu counters of the last aggregation*/ | 
|  | long *cstat_prev; | 
|  | /* size of the above counters */ | 
|  | int size; | 
|  | }; | 
|  |  | 
|  | static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) | 
|  | { | 
|  | int i; | 
|  | long delta, delta_cpu, v; | 
|  |  | 
|  | for (i = 0; i < ac->size; i++) { | 
|  | /* | 
|  | * Collect the aggregated propagation counts of groups | 
|  | * below us. We're in a per-cpu loop here and this is | 
|  | * a global counter, so the first cycle will get them. | 
|  | */ | 
|  | delta = ac->pending[i]; | 
|  | if (delta) | 
|  | ac->pending[i] = 0; | 
|  |  | 
|  | /* Add CPU changes on this level since the last flush */ | 
|  | delta_cpu = 0; | 
|  | v = READ_ONCE(ac->cstat[i]); | 
|  | if (v != ac->cstat_prev[i]) { | 
|  | delta_cpu = v - ac->cstat_prev[i]; | 
|  | delta += delta_cpu; | 
|  | ac->cstat_prev[i] = v; | 
|  | } | 
|  |  | 
|  | /* Aggregate counts on this level and propagate upwards */ | 
|  | if (delta_cpu) | 
|  | ac->local[i] += delta_cpu; | 
|  |  | 
|  | if (delta) { | 
|  | ac->aggregate[i] += delta; | 
|  | if (ac->ppending) | 
|  | ac->ppending[i] += delta; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC | 
|  | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, | 
|  | int cpu) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | if (atomic_read(&memcg->kmem_stat)) { | 
|  | int kmem = atomic_xchg(&memcg->kmem_stat, 0); | 
|  | int index = memcg_stats_index(MEMCG_KMEM); | 
|  |  | 
|  | memcg->vmstats->state[index] += kmem; | 
|  | if (parent) | 
|  | parent->vmstats->state_pending[index] += kmem; | 
|  | } | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; | 
|  | struct lruvec_stats *lstats = pn->lruvec_stats; | 
|  | struct lruvec_stats *plstats = NULL; | 
|  |  | 
|  | if (parent) | 
|  | plstats = parent->nodeinfo[nid]->lruvec_stats; | 
|  |  | 
|  | if (atomic_read(&pn->slab_reclaimable)) { | 
|  | int slab = atomic_xchg(&pn->slab_reclaimable, 0); | 
|  | int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); | 
|  |  | 
|  | lstats->state[index] += slab; | 
|  | if (plstats) | 
|  | plstats->state_pending[index] += slab; | 
|  | } | 
|  | if (atomic_read(&pn->slab_unreclaimable)) { | 
|  | int slab = atomic_xchg(&pn->slab_unreclaimable, 0); | 
|  | int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); | 
|  |  | 
|  | lstats->state[index] += slab; | 
|  | if (plstats) | 
|  | plstats->state_pending[index] += slab; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, | 
|  | int cpu) | 
|  | {} | 
|  | #endif | 
|  |  | 
|  | static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct mem_cgroup *parent = parent_mem_cgroup(memcg); | 
|  | struct memcg_vmstats_percpu *statc; | 
|  | struct aggregate_control ac; | 
|  | int nid; | 
|  |  | 
|  | flush_nmi_stats(memcg, parent, cpu); | 
|  |  | 
|  | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); | 
|  |  | 
|  | ac = (struct aggregate_control) { | 
|  | .aggregate = memcg->vmstats->state, | 
|  | .local = memcg->vmstats->state_local, | 
|  | .pending = memcg->vmstats->state_pending, | 
|  | .ppending = parent ? parent->vmstats->state_pending : NULL, | 
|  | .cstat = statc->state, | 
|  | .cstat_prev = statc->state_prev, | 
|  | .size = MEMCG_VMSTAT_SIZE, | 
|  | }; | 
|  | mem_cgroup_stat_aggregate(&ac); | 
|  |  | 
|  | ac = (struct aggregate_control) { | 
|  | .aggregate = memcg->vmstats->events, | 
|  | .local = memcg->vmstats->events_local, | 
|  | .pending = memcg->vmstats->events_pending, | 
|  | .ppending = parent ? parent->vmstats->events_pending : NULL, | 
|  | .cstat = statc->events, | 
|  | .cstat_prev = statc->events_prev, | 
|  | .size = NR_MEMCG_EVENTS, | 
|  | }; | 
|  | mem_cgroup_stat_aggregate(&ac); | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; | 
|  | struct lruvec_stats *lstats = pn->lruvec_stats; | 
|  | struct lruvec_stats *plstats = NULL; | 
|  | struct lruvec_stats_percpu *lstatc; | 
|  |  | 
|  | if (parent) | 
|  | plstats = parent->nodeinfo[nid]->lruvec_stats; | 
|  |  | 
|  | lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); | 
|  |  | 
|  | ac = (struct aggregate_control) { | 
|  | .aggregate = lstats->state, | 
|  | .local = lstats->state_local, | 
|  | .pending = lstats->state_pending, | 
|  | .ppending = plstats ? plstats->state_pending : NULL, | 
|  | .cstat = lstatc->state, | 
|  | .cstat_prev = lstatc->state_prev, | 
|  | .size = NR_MEMCG_NODE_STAT_ITEMS, | 
|  | }; | 
|  | mem_cgroup_stat_aggregate(&ac); | 
|  |  | 
|  | } | 
|  | WRITE_ONCE(statc->stats_updates, 0); | 
|  | /* We are in a per-cpu loop here, only do the atomic write once */ | 
|  | if (atomic_read(&memcg->vmstats->stats_updates)) | 
|  | atomic_set(&memcg->vmstats->stats_updates, 0); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_fork(struct task_struct *task) | 
|  | { | 
|  | /* | 
|  | * Set the update flag to cause task->objcg to be initialized lazily | 
|  | * on the first allocation. It can be done without any synchronization | 
|  | * because it's always performed on the current task, so does | 
|  | * current_objcg_update(). | 
|  | */ | 
|  | task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_exit(struct task_struct *task) | 
|  | { | 
|  | struct obj_cgroup *objcg = task->objcg; | 
|  |  | 
|  | objcg = (struct obj_cgroup *) | 
|  | ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); | 
|  | obj_cgroup_put(objcg); | 
|  |  | 
|  | /* | 
|  | * Some kernel allocations can happen after this point, | 
|  | * but let's ignore them. It can be done without any synchronization | 
|  | * because it's always performed on the current task, so does | 
|  | * current_objcg_update(). | 
|  | */ | 
|  | task->objcg = NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LRU_GEN | 
|  | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | /* find the first leader if there is any */ | 
|  | cgroup_taskset_for_each_leader(task, css, tset) | 
|  | break; | 
|  |  | 
|  | if (!task) | 
|  | return; | 
|  |  | 
|  | task_lock(task); | 
|  | if (task->mm && READ_ONCE(task->mm->owner) == task) | 
|  | lru_gen_migrate_mm(task->mm); | 
|  | task_unlock(task); | 
|  | } | 
|  | #else | 
|  | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} | 
|  | #endif /* CONFIG_LRU_GEN */ | 
|  |  | 
|  | static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | cgroup_taskset_for_each(task, css, tset) { | 
|  | /* atomically set the update bit */ | 
|  | set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | mem_cgroup_lru_gen_attach(tset); | 
|  | mem_cgroup_kmem_attach(tset); | 
|  | } | 
|  |  | 
|  | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) | 
|  | { | 
|  | if (value == PAGE_COUNTER_MAX) | 
|  | seq_puts(m, "max\n"); | 
|  | else | 
|  | seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 memory_current_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | #define OFP_PEAK_UNSET (((-1UL))) | 
|  |  | 
|  | static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) | 
|  | { | 
|  | struct cgroup_of_peak *ofp = of_peak(sf->private); | 
|  | u64 fd_peak = READ_ONCE(ofp->value), peak; | 
|  |  | 
|  | /* User wants global or local peak? */ | 
|  | if (fd_peak == OFP_PEAK_UNSET) | 
|  | peak = pc->watermark; | 
|  | else | 
|  | peak = max(fd_peak, READ_ONCE(pc->local_watermark)); | 
|  |  | 
|  | seq_printf(sf, "%llu\n", peak * PAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memory_peak_show(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); | 
|  |  | 
|  | return peak_show(sf, v, &memcg->memory); | 
|  | } | 
|  |  | 
|  | static int peak_open(struct kernfs_open_file *of) | 
|  | { | 
|  | struct cgroup_of_peak *ofp = of_peak(of); | 
|  |  | 
|  | ofp->value = OFP_PEAK_UNSET; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void peak_release(struct kernfs_open_file *of) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | struct cgroup_of_peak *ofp = of_peak(of); | 
|  |  | 
|  | if (ofp->value == OFP_PEAK_UNSET) { | 
|  | /* fast path (no writes on this fd) */ | 
|  | return; | 
|  | } | 
|  | spin_lock(&memcg->peaks_lock); | 
|  | list_del(&ofp->list); | 
|  | spin_unlock(&memcg->peaks_lock); | 
|  | } | 
|  |  | 
|  | static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, | 
|  | loff_t off, struct page_counter *pc, | 
|  | struct list_head *watchers) | 
|  | { | 
|  | unsigned long usage; | 
|  | struct cgroup_of_peak *peer_ctx; | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | struct cgroup_of_peak *ofp = of_peak(of); | 
|  |  | 
|  | spin_lock(&memcg->peaks_lock); | 
|  |  | 
|  | usage = page_counter_read(pc); | 
|  | WRITE_ONCE(pc->local_watermark, usage); | 
|  |  | 
|  | list_for_each_entry(peer_ctx, watchers, list) | 
|  | if (usage > peer_ctx->value) | 
|  | WRITE_ONCE(peer_ctx->value, usage); | 
|  |  | 
|  | /* initial write, register watcher */ | 
|  | if (ofp->value == OFP_PEAK_UNSET) | 
|  | list_add(&ofp->list, watchers); | 
|  |  | 
|  | WRITE_ONCE(ofp->value, usage); | 
|  | spin_unlock(&memcg->peaks_lock); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, | 
|  | size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  |  | 
|  | return peak_write(of, buf, nbytes, off, &memcg->memory, | 
|  | &memcg->memory_peaks); | 
|  | } | 
|  |  | 
|  | #undef OFP_PEAK_UNSET | 
|  |  | 
|  | static int memory_min_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_min_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long min; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &min); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | page_counter_set_min(&memcg->memory, min); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_low_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_low_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long low; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &low); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | page_counter_set_low(&memcg->memory, low); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_high_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_high_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned int nr_retries = MAX_RECLAIM_RETRIES; | 
|  | bool drained = false; | 
|  | unsigned long high; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &high); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | page_counter_set_high(&memcg->memory, high); | 
|  |  | 
|  | if (of->file->f_flags & O_NONBLOCK) | 
|  | goto out; | 
|  |  | 
|  | for (;;) { | 
|  | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  | unsigned long reclaimed; | 
|  |  | 
|  | if (nr_pages <= high) | 
|  | break; | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(memcg); | 
|  | drained = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | 
|  | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); | 
|  |  | 
|  | if (!reclaimed && !nr_retries--) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_max_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); | 
|  | } | 
|  |  | 
|  | static ssize_t memory_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; | 
|  | bool drained = false; | 
|  | unsigned long max; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &max); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | xchg(&memcg->memory.max, max); | 
|  |  | 
|  | if (of->file->f_flags & O_NONBLOCK) | 
|  | goto out; | 
|  |  | 
|  | for (;;) { | 
|  | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  |  | 
|  | if (nr_pages <= max) | 
|  | break; | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(memcg); | 
|  | drained = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (nr_reclaims) { | 
|  | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | 
|  | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) | 
|  | nr_reclaims--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | memcg_memory_event(memcg, MEMCG_OOM); | 
|  | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' | 
|  | * if any new events become available. | 
|  | */ | 
|  | static void __memory_events_show(struct seq_file *m, atomic_long_t *events) | 
|  | { | 
|  | seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); | 
|  | seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); | 
|  | seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); | 
|  | seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); | 
|  | seq_printf(m, "oom_kill %lu\n", | 
|  | atomic_long_read(&events[MEMCG_OOM_KILL])); | 
|  | seq_printf(m, "oom_group_kill %lu\n", | 
|  | atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); | 
|  | } | 
|  |  | 
|  | static int memory_events_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | __memory_events_show(m, memcg->memory_events); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memory_events_local_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | __memory_events_show(m, memcg->memory_events_local); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int memory_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  | char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); | 
|  | struct seq_buf s; | 
|  |  | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  | seq_buf_init(&s, buf, SEQ_BUF_SIZE); | 
|  | memory_stat_format(memcg, &s); | 
|  | seq_puts(m, buf); | 
|  | kfree(buf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, | 
|  | int item) | 
|  | { | 
|  | return lruvec_page_state(lruvec, item) * | 
|  | memcg_page_state_output_unit(item); | 
|  | } | 
|  |  | 
|  | static int memory_numa_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | int i; | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | mem_cgroup_flush_stats(memcg); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { | 
|  | int nid; | 
|  |  | 
|  | if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) | 
|  | continue; | 
|  |  | 
|  | seq_printf(m, "%s", memory_stats[i].name); | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | u64 size; | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); | 
|  | size = lruvec_page_state_output(lruvec, | 
|  | memory_stats[i].idx); | 
|  | seq_printf(m, " N%d=%llu", nid, size); | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int memory_oom_group_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | int ret, oom_group; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | if (!buf) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = kstrtoint(buf, 0, &oom_group); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (oom_group != 0 && oom_group != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | WRITE_ONCE(memcg->oom_group, oom_group); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, | 
|  | size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | int ret; | 
|  |  | 
|  | ret = user_proactive_reclaim(buf, memcg, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static struct cftype memory_files[] = { | 
|  | { | 
|  | .name = "current", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = memory_current_read, | 
|  | }, | 
|  | { | 
|  | .name = "peak", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .open = peak_open, | 
|  | .release = peak_release, | 
|  | .seq_show = memory_peak_show, | 
|  | .write = memory_peak_write, | 
|  | }, | 
|  | { | 
|  | .name = "min", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_min_show, | 
|  | .write = memory_min_write, | 
|  | }, | 
|  | { | 
|  | .name = "low", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_low_show, | 
|  | .write = memory_low_write, | 
|  | }, | 
|  | { | 
|  | .name = "high", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_high_show, | 
|  | .write = memory_high_write, | 
|  | }, | 
|  | { | 
|  | .name = "max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_max_show, | 
|  | .write = memory_max_write, | 
|  | }, | 
|  | { | 
|  | .name = "events", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .file_offset = offsetof(struct mem_cgroup, events_file), | 
|  | .seq_show = memory_events_show, | 
|  | }, | 
|  | { | 
|  | .name = "events.local", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .file_offset = offsetof(struct mem_cgroup, events_local_file), | 
|  | .seq_show = memory_events_local_show, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .seq_show = memory_stat_show, | 
|  | }, | 
|  | #ifdef CONFIG_NUMA | 
|  | { | 
|  | .name = "numa_stat", | 
|  | .seq_show = memory_numa_stat_show, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .name = "oom.group", | 
|  | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, | 
|  | .seq_show = memory_oom_group_show, | 
|  | .write = memory_oom_group_write, | 
|  | }, | 
|  | { | 
|  | .name = "reclaim", | 
|  | .flags = CFTYPE_NS_DELEGATABLE, | 
|  | .write = memory_reclaim, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | struct cgroup_subsys memory_cgrp_subsys = { | 
|  | .css_alloc = mem_cgroup_css_alloc, | 
|  | .css_online = mem_cgroup_css_online, | 
|  | .css_offline = mem_cgroup_css_offline, | 
|  | .css_released = mem_cgroup_css_released, | 
|  | .css_free = mem_cgroup_css_free, | 
|  | .css_reset = mem_cgroup_css_reset, | 
|  | .css_rstat_flush = mem_cgroup_css_rstat_flush, | 
|  | .attach = mem_cgroup_attach, | 
|  | .fork = mem_cgroup_fork, | 
|  | .exit = mem_cgroup_exit, | 
|  | .dfl_cftypes = memory_files, | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | .legacy_cftypes = mem_cgroup_legacy_files, | 
|  | #endif | 
|  | .early_init = 0, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_calculate_protection - check if memory consumption is in the normal range | 
|  | * @root: the top ancestor of the sub-tree being checked | 
|  | * @memcg: the memory cgroup to check | 
|  | * | 
|  | * WARNING: This function is not stateless! It can only be used as part | 
|  | *          of a top-down tree iteration, not for isolated queries. | 
|  | */ | 
|  | void mem_cgroup_calculate_protection(struct mem_cgroup *root, | 
|  | struct mem_cgroup *memcg) | 
|  | { | 
|  | bool recursive_protection = | 
|  | cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  |  | 
|  | page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); | 
|  | } | 
|  |  | 
|  | static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, | 
|  | gfp_t gfp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = try_charge(memcg, gfp, folio_nr_pages(folio)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | css_get(&memcg->css); | 
|  | commit_charge(folio, memcg); | 
|  | memcg1_commit_charge(folio, memcg); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | int ret; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_mm(mm); | 
|  | ret = charge_memcg(folio, memcg, gfp); | 
|  | css_put(&memcg->css); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio | 
|  | * @folio: folio being charged | 
|  | * @gfp: reclaim mode | 
|  | * | 
|  | * This function is called when allocating a huge page folio, after the page has | 
|  | * already been obtained and charged to the appropriate hugetlb cgroup | 
|  | * controller (if it is enabled). | 
|  | * | 
|  | * Returns ENOMEM if the memcg is already full. | 
|  | * Returns 0 if either the charge was successful, or if we skip the charging. | 
|  | */ | 
|  | int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) | 
|  | { | 
|  | struct mem_cgroup *memcg = get_mem_cgroup_from_current(); | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Even memcg does not account for hugetlb, we still want to update | 
|  | * system-level stats via lruvec_stat_mod_folio. Return 0, and skip | 
|  | * charging the memcg. | 
|  | */ | 
|  | if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || | 
|  | !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | goto out; | 
|  |  | 
|  | if (charge_memcg(folio, memcg, gfp)) | 
|  | ret = -ENOMEM; | 
|  |  | 
|  | out: | 
|  | mem_cgroup_put(memcg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. | 
|  | * @folio: folio to charge. | 
|  | * @mm: mm context of the victim | 
|  | * @gfp: reclaim mode | 
|  | * @entry: swap entry for which the folio is allocated | 
|  | * | 
|  | * This function charges a folio allocated for swapin. Please call this before | 
|  | * adding the folio to the swapcache. | 
|  | * | 
|  | * Returns 0 on success. Otherwise, an error code is returned. | 
|  | */ | 
|  | int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, | 
|  | gfp_t gfp, swp_entry_t entry) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned short id; | 
|  | int ret; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return 0; | 
|  |  | 
|  | id = lookup_swap_cgroup_id(entry); | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_id(id); | 
|  | if (!memcg || !css_tryget_online(&memcg->css)) | 
|  | memcg = get_mem_cgroup_from_mm(mm); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | ret = charge_memcg(folio, memcg, gfp); | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct uncharge_gather { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned long nr_memory; | 
|  | unsigned long pgpgout; | 
|  | unsigned long nr_kmem; | 
|  | int nid; | 
|  | }; | 
|  |  | 
|  | static inline void uncharge_gather_clear(struct uncharge_gather *ug) | 
|  | { | 
|  | memset(ug, 0, sizeof(*ug)); | 
|  | } | 
|  |  | 
|  | static void uncharge_batch(const struct uncharge_gather *ug) | 
|  | { | 
|  | if (ug->nr_memory) { | 
|  | memcg_uncharge(ug->memcg, ug->nr_memory); | 
|  | if (ug->nr_kmem) { | 
|  | mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); | 
|  | memcg1_account_kmem(ug->memcg, -ug->nr_kmem); | 
|  | } | 
|  | memcg1_oom_recover(ug->memcg); | 
|  | } | 
|  |  | 
|  | memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); | 
|  |  | 
|  | /* drop reference from uncharge_folio */ | 
|  | css_put(&ug->memcg->css); | 
|  | } | 
|  |  | 
|  | static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) | 
|  | { | 
|  | long nr_pages; | 
|  | struct mem_cgroup *memcg; | 
|  | struct obj_cgroup *objcg; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); | 
|  |  | 
|  | /* | 
|  | * Nobody should be changing or seriously looking at | 
|  | * folio memcg or objcg at this point, we have fully | 
|  | * exclusive access to the folio. | 
|  | */ | 
|  | if (folio_memcg_kmem(folio)) { | 
|  | objcg = __folio_objcg(folio); | 
|  | /* | 
|  | * This get matches the put at the end of the function and | 
|  | * kmem pages do not hold memcg references anymore. | 
|  | */ | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | } else { | 
|  | memcg = __folio_memcg(folio); | 
|  | } | 
|  |  | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | if (ug->memcg != memcg) { | 
|  | if (ug->memcg) { | 
|  | uncharge_batch(ug); | 
|  | uncharge_gather_clear(ug); | 
|  | } | 
|  | ug->memcg = memcg; | 
|  | ug->nid = folio_nid(folio); | 
|  |  | 
|  | /* pairs with css_put in uncharge_batch */ | 
|  | css_get(&memcg->css); | 
|  | } | 
|  |  | 
|  | nr_pages = folio_nr_pages(folio); | 
|  |  | 
|  | if (folio_memcg_kmem(folio)) { | 
|  | ug->nr_memory += nr_pages; | 
|  | ug->nr_kmem += nr_pages; | 
|  |  | 
|  | folio->memcg_data = 0; | 
|  | obj_cgroup_put(objcg); | 
|  | } else { | 
|  | /* LRU pages aren't accounted at the root level */ | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | ug->nr_memory += nr_pages; | 
|  | ug->pgpgout++; | 
|  |  | 
|  | WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); | 
|  | folio->memcg_data = 0; | 
|  | } | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | } | 
|  |  | 
|  | void __mem_cgroup_uncharge(struct folio *folio) | 
|  | { | 
|  | struct uncharge_gather ug; | 
|  |  | 
|  | /* Don't touch folio->lru of any random page, pre-check: */ | 
|  | if (!folio_memcg_charged(folio)) | 
|  | return; | 
|  |  | 
|  | uncharge_gather_clear(&ug); | 
|  | uncharge_folio(folio, &ug); | 
|  | uncharge_batch(&ug); | 
|  | } | 
|  |  | 
|  | void __mem_cgroup_uncharge_folios(struct folio_batch *folios) | 
|  | { | 
|  | struct uncharge_gather ug; | 
|  | unsigned int i; | 
|  |  | 
|  | uncharge_gather_clear(&ug); | 
|  | for (i = 0; i < folios->nr; i++) | 
|  | uncharge_folio(folios->folios[i], &ug); | 
|  | if (ug.memcg) | 
|  | uncharge_batch(&ug); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_replace_folio - Charge a folio's replacement. | 
|  | * @old: Currently circulating folio. | 
|  | * @new: Replacement folio. | 
|  | * | 
|  | * Charge @new as a replacement folio for @old. @old will | 
|  | * be uncharged upon free. | 
|  | * | 
|  | * Both folios must be locked, @new->mapping must be set up. | 
|  | */ | 
|  | void mem_cgroup_replace_folio(struct folio *old, struct folio *new) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | long nr_pages = folio_nr_pages(new); | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); | 
|  | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); | 
|  | VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | /* Page cache replacement: new folio already charged? */ | 
|  | if (folio_memcg_charged(new)) | 
|  | return; | 
|  |  | 
|  | memcg = folio_memcg(old); | 
|  | VM_WARN_ON_ONCE_FOLIO(!memcg, old); | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | /* Force-charge the new page. The old one will be freed soon */ | 
|  | if (!mem_cgroup_is_root(memcg)) { | 
|  | page_counter_charge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_charge(&memcg->memsw, nr_pages); | 
|  | } | 
|  |  | 
|  | css_get(&memcg->css); | 
|  | commit_charge(new, memcg); | 
|  | memcg1_commit_charge(new, memcg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. | 
|  | * @old: Currently circulating folio. | 
|  | * @new: Replacement folio. | 
|  | * | 
|  | * Transfer the memcg data from the old folio to the new folio for migration. | 
|  | * The old folio's data info will be cleared. Note that the memory counters | 
|  | * will remain unchanged throughout the process. | 
|  | * | 
|  | * Both folios must be locked, @new->mapping must be set up. | 
|  | */ | 
|  | void mem_cgroup_migrate(struct folio *old, struct folio *new) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); | 
|  | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); | 
|  | VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); | 
|  | VM_BUG_ON_FOLIO(folio_test_lru(old), old); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | memcg = folio_memcg(old); | 
|  | /* | 
|  | * Note that it is normal to see !memcg for a hugetlb folio. | 
|  | * For e.g, itt could have been allocated when memory_hugetlb_accounting | 
|  | * was not selected. | 
|  | */ | 
|  | VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | /* Transfer the charge and the css ref */ | 
|  | commit_charge(new, memcg); | 
|  |  | 
|  | /* Warning should never happen, so don't worry about refcount non-0 */ | 
|  | WARN_ON_ONCE(folio_unqueue_deferred_split(old)); | 
|  | old->memcg_data = 0; | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); | 
|  | EXPORT_SYMBOL(memcg_sockets_enabled_key); | 
|  |  | 
|  | void mem_cgroup_sk_alloc(struct sock *sk) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (!mem_cgroup_sockets_enabled) | 
|  | return; | 
|  |  | 
|  | /* Do not associate the sock with unrelated interrupted task's memcg. */ | 
|  | if (!in_task()) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_task(current); | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | goto out; | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) | 
|  | goto out; | 
|  | if (css_tryget(&memcg->css)) | 
|  | sk->sk_memcg = memcg; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_sk_free(struct sock *sk) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); | 
|  |  | 
|  | if (memcg) | 
|  | css_put(&memcg->css); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (sk->sk_memcg == newsk->sk_memcg) | 
|  | return; | 
|  |  | 
|  | mem_cgroup_sk_free(newsk); | 
|  |  | 
|  | memcg = mem_cgroup_from_sk(sk); | 
|  | if (memcg) | 
|  | css_get(&memcg->css); | 
|  |  | 
|  | newsk->sk_memcg = sk->sk_memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_sk_charge - charge socket memory | 
|  | * @sk: socket in memcg to charge | 
|  | * @nr_pages: number of pages to charge | 
|  | * @gfp_mask: reclaim mode | 
|  | * | 
|  | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | 
|  | * @memcg's configured limit, %false if it doesn't. | 
|  | */ | 
|  | bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); | 
|  |  | 
|  | if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { | 
|  | mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_sk_uncharge - uncharge socket memory | 
|  | * @sk: socket in memcg to uncharge | 
|  | * @nr_pages: number of pages to uncharge | 
|  | */ | 
|  | void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
|  | memcg1_uncharge_skmem(memcg, nr_pages); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); | 
|  |  | 
|  | refill_stock(memcg, nr_pages); | 
|  | } | 
|  |  | 
|  | static int __init cgroup_memory(char *s) | 
|  | { | 
|  | char *token; | 
|  |  | 
|  | while ((token = strsep(&s, ",")) != NULL) { | 
|  | if (!*token) | 
|  | continue; | 
|  | if (!strcmp(token, "nosocket")) | 
|  | cgroup_memory_nosocket = true; | 
|  | if (!strcmp(token, "nokmem")) | 
|  | cgroup_memory_nokmem = true; | 
|  | if (!strcmp(token, "nobpf")) | 
|  | cgroup_memory_nobpf = true; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __setup("cgroup.memory=", cgroup_memory); | 
|  |  | 
|  | /* | 
|  | * Memory controller init before cgroup_init() initialize root_mem_cgroup. | 
|  | * | 
|  | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this | 
|  | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but | 
|  | * basically everything that doesn't depend on a specific mem_cgroup structure | 
|  | * should be initialized from here. | 
|  | */ | 
|  | int __init mem_cgroup_init(void) | 
|  | { | 
|  | unsigned int memcg_size; | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * Currently s32 type (can refer to struct batched_lruvec_stat) is | 
|  | * used for per-memcg-per-cpu caching of per-node statistics. In order | 
|  | * to work fine, we should make sure that the overfill threshold can't | 
|  | * exceed S32_MAX / PAGE_SIZE. | 
|  | */ | 
|  | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); | 
|  |  | 
|  | cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, | 
|  | memcg_hotplug_cpu_dead); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | 
|  | drain_local_memcg_stock); | 
|  | INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, | 
|  | drain_local_obj_stock); | 
|  | } | 
|  |  | 
|  | memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); | 
|  | memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, | 
|  | SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); | 
|  |  | 
|  | memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, | 
|  | SLAB_PANIC | SLAB_HWCACHE_ALIGN); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SWAP | 
|  | /** | 
|  | * __mem_cgroup_try_charge_swap - try charging swap space for a folio | 
|  | * @folio: folio being added to swap | 
|  | * @entry: swap entry to charge | 
|  | * | 
|  | * Try to charge @folio's memcg for the swap space at @entry. | 
|  | * | 
|  | * Returns 0 on success, -ENOMEM on failure. | 
|  | */ | 
|  | int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) | 
|  | { | 
|  | unsigned int nr_pages = folio_nr_pages(folio); | 
|  | struct page_counter *counter; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (do_memsw_account()) | 
|  | return 0; | 
|  |  | 
|  | memcg = folio_memcg(folio); | 
|  |  | 
|  | VM_WARN_ON_ONCE_FOLIO(!memcg, folio); | 
|  | if (!memcg) | 
|  | return 0; | 
|  |  | 
|  | if (!entry.val) { | 
|  | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memcg = mem_cgroup_id_get_online(memcg); | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg) && | 
|  | !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { | 
|  | memcg_memory_event(memcg, MEMCG_SWAP_MAX); | 
|  | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
|  | mem_cgroup_id_put(memcg); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Get references for the tail pages, too */ | 
|  | if (nr_pages > 1) | 
|  | mem_cgroup_id_get_many(memcg, nr_pages - 1); | 
|  | mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); | 
|  |  | 
|  | swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __mem_cgroup_uncharge_swap - uncharge swap space | 
|  | * @entry: swap entry to uncharge | 
|  | * @nr_pages: the amount of swap space to uncharge | 
|  | */ | 
|  | void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned short id; | 
|  |  | 
|  | id = swap_cgroup_clear(entry, nr_pages); | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_id(id); | 
|  | if (memcg) { | 
|  | if (!mem_cgroup_is_root(memcg)) { | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  | else | 
|  | page_counter_uncharge(&memcg->swap, nr_pages); | 
|  | } | 
|  | mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); | 
|  | mem_cgroup_id_put_many(memcg, nr_pages); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) | 
|  | { | 
|  | long nr_swap_pages = get_nr_swap_pages(); | 
|  |  | 
|  | if (mem_cgroup_disabled() || do_memsw_account()) | 
|  | return nr_swap_pages; | 
|  | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) | 
|  | nr_swap_pages = min_t(long, nr_swap_pages, | 
|  | READ_ONCE(memcg->swap.max) - | 
|  | page_counter_read(&memcg->swap)); | 
|  | return nr_swap_pages; | 
|  | } | 
|  |  | 
|  | bool mem_cgroup_swap_full(struct folio *folio) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  |  | 
|  | if (vm_swap_full()) | 
|  | return true; | 
|  | if (do_memsw_account()) | 
|  | return false; | 
|  |  | 
|  | memcg = folio_memcg(folio); | 
|  | if (!memcg) | 
|  | return false; | 
|  |  | 
|  | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { | 
|  | unsigned long usage = page_counter_read(&memcg->swap); | 
|  |  | 
|  | if (usage * 2 >= READ_ONCE(memcg->swap.high) || | 
|  | usage * 2 >= READ_ONCE(memcg->swap.max)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int __init setup_swap_account(char *s) | 
|  | { | 
|  | bool res; | 
|  |  | 
|  | if (!kstrtobool(s, &res) && !res) | 
|  | pr_warn_once("The swapaccount=0 commandline option is deprecated " | 
|  | "in favor of configuring swap control via cgroupfs. " | 
|  | "Please report your usecase to linux-mm@kvack.org if you " | 
|  | "depend on this functionality.\n"); | 
|  | return 1; | 
|  | } | 
|  | __setup("swapaccount=", setup_swap_account); | 
|  |  | 
|  | static u64 swap_current_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | static int swap_peak_show(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); | 
|  |  | 
|  | return peak_show(sf, v, &memcg->swap); | 
|  | } | 
|  |  | 
|  | static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, | 
|  | size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  |  | 
|  | return peak_write(of, buf, nbytes, off, &memcg->swap, | 
|  | &memcg->swap_peaks); | 
|  | } | 
|  |  | 
|  | static int swap_high_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); | 
|  | } | 
|  |  | 
|  | static ssize_t swap_high_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long high; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &high); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | page_counter_set_high(&memcg->swap, high); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int swap_max_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); | 
|  | } | 
|  |  | 
|  | static ssize_t swap_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long max; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &max); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | xchg(&memcg->swap.max, max); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int swap_events_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | seq_printf(m, "high %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); | 
|  | seq_printf(m, "max %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | 
|  | seq_printf(m, "fail %lu\n", | 
|  | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cftype swap_files[] = { | 
|  | { | 
|  | .name = "swap.current", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = swap_current_read, | 
|  | }, | 
|  | { | 
|  | .name = "swap.high", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = swap_high_show, | 
|  | .write = swap_high_write, | 
|  | }, | 
|  | { | 
|  | .name = "swap.max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = swap_max_show, | 
|  | .write = swap_max_write, | 
|  | }, | 
|  | { | 
|  | .name = "swap.peak", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .open = peak_open, | 
|  | .release = peak_release, | 
|  | .seq_show = swap_peak_show, | 
|  | .write = swap_peak_write, | 
|  | }, | 
|  | { | 
|  | .name = "swap.events", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .file_offset = offsetof(struct mem_cgroup, swap_events_file), | 
|  | .seq_show = swap_events_show, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ZSWAP | 
|  | /** | 
|  | * obj_cgroup_may_zswap - check if this cgroup can zswap | 
|  | * @objcg: the object cgroup | 
|  | * | 
|  | * Check if the hierarchical zswap limit has been reached. | 
|  | * | 
|  | * This doesn't check for specific headroom, and it is not atomic | 
|  | * either. But with zswap, the size of the allocation is only known | 
|  | * once compression has occurred, and this optimistic pre-check avoids | 
|  | * spending cycles on compression when there is already no room left | 
|  | * or zswap is disabled altogether somewhere in the hierarchy. | 
|  | */ | 
|  | bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) | 
|  | { | 
|  | struct mem_cgroup *memcg, *original_memcg; | 
|  | bool ret = true; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return true; | 
|  |  | 
|  | original_memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | for (memcg = original_memcg; !mem_cgroup_is_root(memcg); | 
|  | memcg = parent_mem_cgroup(memcg)) { | 
|  | unsigned long max = READ_ONCE(memcg->zswap_max); | 
|  | unsigned long pages; | 
|  |  | 
|  | if (max == PAGE_COUNTER_MAX) | 
|  | continue; | 
|  | if (max == 0) { | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Force flush to get accurate stats for charging */ | 
|  | __mem_cgroup_flush_stats(memcg, true); | 
|  | pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; | 
|  | if (pages < max) | 
|  | continue; | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  | mem_cgroup_put(original_memcg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * obj_cgroup_charge_zswap - charge compression backend memory | 
|  | * @objcg: the object cgroup | 
|  | * @size: size of compressed object | 
|  | * | 
|  | * This forces the charge after obj_cgroup_may_zswap() allowed | 
|  | * compression and storage in zwap for this cgroup to go ahead. | 
|  | */ | 
|  | void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return; | 
|  |  | 
|  | VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); | 
|  |  | 
|  | /* PF_MEMALLOC context, charging must succeed */ | 
|  | if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) | 
|  | VM_WARN_ON_ONCE(1); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = obj_cgroup_memcg(objcg); | 
|  | mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); | 
|  | mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * obj_cgroup_uncharge_zswap - uncharge compression backend memory | 
|  | * @objcg: the object cgroup | 
|  | * @size: size of compressed object | 
|  | * | 
|  | * Uncharges zswap memory on page in. | 
|  | */ | 
|  | void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return; | 
|  |  | 
|  | obj_cgroup_uncharge(objcg, size); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = obj_cgroup_memcg(objcg); | 
|  | mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); | 
|  | mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* if zswap is disabled, do not block pages going to the swapping device */ | 
|  | if (!zswap_is_enabled()) | 
|  | return true; | 
|  |  | 
|  | for (; memcg; memcg = parent_mem_cgroup(memcg)) | 
|  | if (!READ_ONCE(memcg->zswap_writeback)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static u64 zswap_current_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | mem_cgroup_flush_stats(memcg); | 
|  | return memcg_page_state(memcg, MEMCG_ZSWAP_B); | 
|  | } | 
|  |  | 
|  | static int zswap_max_show(struct seq_file *m, void *v) | 
|  | { | 
|  | return seq_puts_memcg_tunable(m, | 
|  | READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); | 
|  | } | 
|  |  | 
|  | static ssize_t zswap_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long max; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &max); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | xchg(&memcg->zswap_max, max); | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int zswap_writeback_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t zswap_writeback_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | int zswap_writeback; | 
|  | ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); | 
|  |  | 
|  | if (parse_ret) | 
|  | return parse_ret; | 
|  |  | 
|  | if (zswap_writeback != 0 && zswap_writeback != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static struct cftype zswap_files[] = { | 
|  | { | 
|  | .name = "zswap.current", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = zswap_current_read, | 
|  | }, | 
|  | { | 
|  | .name = "zswap.max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = zswap_max_show, | 
|  | .write = zswap_max_write, | 
|  | }, | 
|  | { | 
|  | .name = "zswap.writeback", | 
|  | .seq_show = zswap_writeback_show, | 
|  | .write = zswap_writeback_write, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  | #endif /* CONFIG_ZSWAP */ | 
|  |  | 
|  | static int __init mem_cgroup_swap_init(void) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return 0; | 
|  |  | 
|  | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); | 
|  | #ifdef CONFIG_MEMCG_V1 | 
|  | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); | 
|  | #endif | 
|  | #ifdef CONFIG_ZSWAP | 
|  | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(mem_cgroup_swap_init); | 
|  |  | 
|  | #endif /* CONFIG_SWAP */ | 
|  |  | 
|  | bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) | 
|  | { | 
|  | return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; | 
|  | } |