| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2008 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/iversion.h> | 
 | #include "misc.h" | 
 | #include "ctree.h" | 
 | #include "tree-log.h" | 
 | #include "disk-io.h" | 
 | #include "locking.h" | 
 | #include "backref.h" | 
 | #include "compression.h" | 
 | #include "qgroup.h" | 
 | #include "block-group.h" | 
 | #include "space-info.h" | 
 | #include "inode-item.h" | 
 | #include "fs.h" | 
 | #include "accessors.h" | 
 | #include "extent-tree.h" | 
 | #include "root-tree.h" | 
 | #include "dir-item.h" | 
 | #include "file-item.h" | 
 | #include "file.h" | 
 | #include "orphan.h" | 
 | #include "tree-checker.h" | 
 |  | 
 | #define MAX_CONFLICT_INODES 10 | 
 |  | 
 | /* magic values for the inode_only field in btrfs_log_inode: | 
 |  * | 
 |  * LOG_INODE_ALL means to log everything | 
 |  * LOG_INODE_EXISTS means to log just enough to recreate the inode | 
 |  * during log replay | 
 |  */ | 
 | enum { | 
 | 	LOG_INODE_ALL, | 
 | 	LOG_INODE_EXISTS, | 
 | }; | 
 |  | 
 | /* | 
 |  * directory trouble cases | 
 |  * | 
 |  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync | 
 |  * log, we must force a full commit before doing an fsync of the directory | 
 |  * where the unlink was done. | 
 |  * ---> record transid of last unlink/rename per directory | 
 |  * | 
 |  * mkdir foo/some_dir | 
 |  * normal commit | 
 |  * rename foo/some_dir foo2/some_dir | 
 |  * mkdir foo/some_dir | 
 |  * fsync foo/some_dir/some_file | 
 |  * | 
 |  * The fsync above will unlink the original some_dir without recording | 
 |  * it in its new location (foo2).  After a crash, some_dir will be gone | 
 |  * unless the fsync of some_file forces a full commit | 
 |  * | 
 |  * 2) we must log any new names for any file or dir that is in the fsync | 
 |  * log. ---> check inode while renaming/linking. | 
 |  * | 
 |  * 2a) we must log any new names for any file or dir during rename | 
 |  * when the directory they are being removed from was logged. | 
 |  * ---> check inode and old parent dir during rename | 
 |  * | 
 |  *  2a is actually the more important variant.  With the extra logging | 
 |  *  a crash might unlink the old name without recreating the new one | 
 |  * | 
 |  * 3) after a crash, we must go through any directories with a link count | 
 |  * of zero and redo the rm -rf | 
 |  * | 
 |  * mkdir f1/foo | 
 |  * normal commit | 
 |  * rm -rf f1/foo | 
 |  * fsync(f1) | 
 |  * | 
 |  * The directory f1 was fully removed from the FS, but fsync was never | 
 |  * called on f1, only its parent dir.  After a crash the rm -rf must | 
 |  * be replayed.  This must be able to recurse down the entire | 
 |  * directory tree.  The inode link count fixup code takes care of the | 
 |  * ugly details. | 
 |  */ | 
 |  | 
 | /* | 
 |  * stages for the tree walking.  The first | 
 |  * stage (0) is to only pin down the blocks we find | 
 |  * the second stage (1) is to make sure that all the inodes | 
 |  * we find in the log are created in the subvolume. | 
 |  * | 
 |  * The last stage is to deal with directories and links and extents | 
 |  * and all the other fun semantics | 
 |  */ | 
 | enum { | 
 | 	LOG_WALK_PIN_ONLY, | 
 | 	LOG_WALK_REPLAY_INODES, | 
 | 	LOG_WALK_REPLAY_DIR_INDEX, | 
 | 	LOG_WALK_REPLAY_ALL, | 
 | }; | 
 |  | 
 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_inode *inode, | 
 | 			   int inode_only, | 
 | 			   struct btrfs_log_ctx *ctx); | 
 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     struct btrfs_path *path, u64 objectid); | 
 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       u64 dirid, bool del_all); | 
 | static void wait_log_commit(struct btrfs_root *root, int transid); | 
 |  | 
 | /* | 
 |  * tree logging is a special write ahead log used to make sure that | 
 |  * fsyncs and O_SYNCs can happen without doing full tree commits. | 
 |  * | 
 |  * Full tree commits are expensive because they require commonly | 
 |  * modified blocks to be recowed, creating many dirty pages in the | 
 |  * extent tree an 4x-6x higher write load than ext3. | 
 |  * | 
 |  * Instead of doing a tree commit on every fsync, we use the | 
 |  * key ranges and transaction ids to find items for a given file or directory | 
 |  * that have changed in this transaction.  Those items are copied into | 
 |  * a special tree (one per subvolume root), that tree is written to disk | 
 |  * and then the fsync is considered complete. | 
 |  * | 
 |  * After a crash, items are copied out of the log-tree back into the | 
 |  * subvolume tree.  Any file data extents found are recorded in the extent | 
 |  * allocation tree, and the log-tree freed. | 
 |  * | 
 |  * The log tree is read three times, once to pin down all the extents it is | 
 |  * using in ram and once, once to create all the inodes logged in the tree | 
 |  * and once to do all the other items. | 
 |  */ | 
 |  | 
 | static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) | 
 | { | 
 | 	unsigned int nofs_flag; | 
 | 	struct btrfs_inode *inode; | 
 |  | 
 | 	/* Only meant to be called for subvolume roots and not for log roots. */ | 
 | 	ASSERT(btrfs_is_fstree(btrfs_root_id(root))); | 
 |  | 
 | 	/* | 
 | 	 * We're holding a transaction handle whether we are logging or | 
 | 	 * replaying a log tree, so we must make sure NOFS semantics apply | 
 | 	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL | 
 | 	 * to allocate an inode, which can recurse back into the filesystem and | 
 | 	 * attempt a transaction commit, resulting in a deadlock. | 
 | 	 */ | 
 | 	nofs_flag = memalloc_nofs_save(); | 
 | 	inode = btrfs_iget(objectid, root); | 
 | 	memalloc_nofs_restore(nofs_flag); | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | /* | 
 |  * start a sub transaction and setup the log tree | 
 |  * this increments the log tree writer count to make the people | 
 |  * syncing the tree wait for us to finish | 
 |  */ | 
 | static int start_log_trans(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, | 
 | 			   struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
 | 	const bool zoned = btrfs_is_zoned(fs_info); | 
 | 	int ret = 0; | 
 | 	bool created = false; | 
 |  | 
 | 	/* | 
 | 	 * First check if the log root tree was already created. If not, create | 
 | 	 * it before locking the root's log_mutex, just to keep lockdep happy. | 
 | 	 */ | 
 | 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { | 
 | 		mutex_lock(&tree_root->log_mutex); | 
 | 		if (!fs_info->log_root_tree) { | 
 | 			ret = btrfs_init_log_root_tree(trans, fs_info); | 
 | 			if (!ret) { | 
 | 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); | 
 | 				created = true; | 
 | 			} | 
 | 		} | 
 | 		mutex_unlock(&tree_root->log_mutex); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 |  | 
 | again: | 
 | 	if (root->log_root) { | 
 | 		int index = (root->log_transid + 1) % 2; | 
 |  | 
 | 		if (btrfs_need_log_full_commit(trans)) { | 
 | 			ret = BTRFS_LOG_FORCE_COMMIT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (zoned && atomic_read(&root->log_commit[index])) { | 
 | 			wait_log_commit(root, root->log_transid - 1); | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		if (!root->log_start_pid) { | 
 | 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
 | 			root->log_start_pid = current->pid; | 
 | 		} else if (root->log_start_pid != current->pid) { | 
 | 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * This means fs_info->log_root_tree was already created | 
 | 		 * for some other FS trees. Do the full commit not to mix | 
 | 		 * nodes from multiple log transactions to do sequential | 
 | 		 * writing. | 
 | 		 */ | 
 | 		if (zoned && !created) { | 
 | 			ret = BTRFS_LOG_FORCE_COMMIT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_add_log_tree(trans, root); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); | 
 | 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
 | 		root->log_start_pid = current->pid; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&root->log_writers); | 
 | 	if (!ctx->logging_new_name) { | 
 | 		int index = root->log_transid % 2; | 
 | 		list_add_tail(&ctx->list, &root->log_ctxs[index]); | 
 | 		ctx->log_transid = root->log_transid; | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * returns 0 if there was a log transaction running and we were able | 
 |  * to join, or returns -ENOENT if there were not transactions | 
 |  * in progress | 
 |  */ | 
 | static int join_running_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	const bool zoned = btrfs_is_zoned(root->fs_info); | 
 | 	int ret = -ENOENT; | 
 |  | 
 | 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) | 
 | 		return ret; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | again: | 
 | 	if (root->log_root) { | 
 | 		int index = (root->log_transid + 1) % 2; | 
 |  | 
 | 		ret = 0; | 
 | 		if (zoned && atomic_read(&root->log_commit[index])) { | 
 | 			wait_log_commit(root, root->log_transid - 1); | 
 | 			goto again; | 
 | 		} | 
 | 		atomic_inc(&root->log_writers); | 
 | 	} | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This either makes the current running log transaction wait | 
 |  * until you call btrfs_end_log_trans() or it makes any future | 
 |  * log transactions wait until you call btrfs_end_log_trans() | 
 |  */ | 
 | void btrfs_pin_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	atomic_inc(&root->log_writers); | 
 | } | 
 |  | 
 | /* | 
 |  * indicate we're done making changes to the log tree | 
 |  * and wake up anyone waiting to do a sync | 
 |  */ | 
 | void btrfs_end_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	if (atomic_dec_and_test(&root->log_writers)) { | 
 | 		/* atomic_dec_and_test implies a barrier */ | 
 | 		cond_wake_up_nomb(&root->log_writer_wait); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * the walk control struct is used to pass state down the chain when | 
 |  * processing the log tree.  The stage field tells us which part | 
 |  * of the log tree processing we are currently doing.  The others | 
 |  * are state fields used for that specific part | 
 |  */ | 
 | struct walk_control { | 
 | 	/* should we free the extent on disk when done?  This is used | 
 | 	 * at transaction commit time while freeing a log tree | 
 | 	 */ | 
 | 	int free; | 
 |  | 
 | 	/* pin only walk, we record which extents on disk belong to the | 
 | 	 * log trees | 
 | 	 */ | 
 | 	int pin; | 
 |  | 
 | 	/* what stage of the replay code we're currently in */ | 
 | 	int stage; | 
 |  | 
 | 	/* | 
 | 	 * Ignore any items from the inode currently being processed. Needs | 
 | 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY. | 
 | 	 */ | 
 | 	bool ignore_cur_inode; | 
 |  | 
 | 	/* the root we are currently replaying */ | 
 | 	struct btrfs_root *replay_dest; | 
 |  | 
 | 	/* the trans handle for the current replay */ | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	/* the function that gets used to process blocks we find in the | 
 | 	 * tree.  Note the extent_buffer might not be up to date when it is | 
 | 	 * passed in, and it must be checked or read if you need the data | 
 | 	 * inside it | 
 | 	 */ | 
 | 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | 
 | 			    struct walk_control *wc, u64 gen, int level); | 
 | }; | 
 |  | 
 | /* | 
 |  * process_func used to pin down extents, write them or wait on them | 
 |  */ | 
 | static int process_one_buffer(struct btrfs_root *log, | 
 | 			      struct extent_buffer *eb, | 
 | 			      struct walk_control *wc, u64 gen, int level) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = log->fs_info; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this fs is mixed then we need to be able to process the leaves to | 
 | 	 * pin down any logged extents, so we have to read the block. | 
 | 	 */ | 
 | 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { | 
 | 		struct btrfs_tree_parent_check check = { | 
 | 			.level = level, | 
 | 			.transid = gen | 
 | 		}; | 
 |  | 
 | 		ret = btrfs_read_extent_buffer(eb, &check); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (wc->pin) { | 
 | 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (btrfs_buffer_uptodate(eb, gen, 0) && | 
 | 		    btrfs_header_level(eb) == 0) | 
 | 			ret = btrfs_exclude_logged_extents(eb); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Item overwrite used by log replay. The given eb, slot and key all refer to | 
 |  * the source data we are copying out. | 
 |  * | 
 |  * The given root is for the tree we are copying into, and path is a scratch | 
 |  * path for use in this function (it should be released on entry and will be | 
 |  * released on exit). | 
 |  * | 
 |  * If the key is already in the destination tree the existing item is | 
 |  * overwritten.  If the existing item isn't big enough, it is extended. | 
 |  * If it is too large, it is truncated. | 
 |  * | 
 |  * If the key isn't in the destination yet, a new item is inserted. | 
 |  */ | 
 | static int overwrite_item(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct extent_buffer *eb, int slot, | 
 | 			  struct btrfs_key *key) | 
 | { | 
 | 	int ret; | 
 | 	u32 item_size; | 
 | 	u64 saved_i_size = 0; | 
 | 	int save_old_i_size = 0; | 
 | 	unsigned long src_ptr; | 
 | 	unsigned long dst_ptr; | 
 | 	struct extent_buffer *dst_eb; | 
 | 	int dst_slot; | 
 | 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; | 
 |  | 
 | 	/* | 
 | 	 * This is only used during log replay, so the root is always from a | 
 | 	 * fs/subvolume tree. In case we ever need to support a log root, then | 
 | 	 * we'll have to clone the leaf in the path, release the path and use | 
 | 	 * the leaf before writing into the log tree. See the comments at | 
 | 	 * copy_items() for more details. | 
 | 	 */ | 
 | 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 	item_size = btrfs_item_size(eb, slot); | 
 | 	src_ptr = btrfs_item_ptr_offset(eb, slot); | 
 |  | 
 | 	/* Look for the key in the destination tree. */ | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	dst_eb = path->nodes[0]; | 
 | 	dst_slot = path->slots[0]; | 
 |  | 
 | 	if (ret == 0) { | 
 | 		char *src_copy; | 
 | 		const u32 dst_size = btrfs_item_size(dst_eb, dst_slot); | 
 |  | 
 | 		if (dst_size != item_size) | 
 | 			goto insert; | 
 |  | 
 | 		if (item_size == 0) { | 
 | 			btrfs_release_path(path); | 
 | 			return 0; | 
 | 		} | 
 | 		src_copy = kmalloc(item_size, GFP_NOFS); | 
 | 		if (!src_copy) { | 
 | 			btrfs_release_path(path); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		read_extent_buffer(eb, src_copy, src_ptr, item_size); | 
 | 		dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); | 
 | 		ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size); | 
 |  | 
 | 		kfree(src_copy); | 
 | 		/* | 
 | 		 * they have the same contents, just return, this saves | 
 | 		 * us from cowing blocks in the destination tree and doing | 
 | 		 * extra writes that may not have been done by a previous | 
 | 		 * sync | 
 | 		 */ | 
 | 		if (ret == 0) { | 
 | 			btrfs_release_path(path); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We need to load the old nbytes into the inode so when we | 
 | 		 * replay the extents we've logged we get the right nbytes. | 
 | 		 */ | 
 | 		if (inode_item) { | 
 | 			struct btrfs_inode_item *item; | 
 | 			u64 nbytes; | 
 | 			u32 mode; | 
 |  | 
 | 			item = btrfs_item_ptr(dst_eb, dst_slot, | 
 | 					      struct btrfs_inode_item); | 
 | 			nbytes = btrfs_inode_nbytes(dst_eb, item); | 
 | 			item = btrfs_item_ptr(eb, slot, | 
 | 					      struct btrfs_inode_item); | 
 | 			btrfs_set_inode_nbytes(eb, item, nbytes); | 
 |  | 
 | 			/* | 
 | 			 * If this is a directory we need to reset the i_size to | 
 | 			 * 0 so that we can set it up properly when replaying | 
 | 			 * the rest of the items in this log. | 
 | 			 */ | 
 | 			mode = btrfs_inode_mode(eb, item); | 
 | 			if (S_ISDIR(mode)) | 
 | 				btrfs_set_inode_size(eb, item, 0); | 
 | 		} | 
 | 	} else if (inode_item) { | 
 | 		struct btrfs_inode_item *item; | 
 | 		u32 mode; | 
 |  | 
 | 		/* | 
 | 		 * New inode, set nbytes to 0 so that the nbytes comes out | 
 | 		 * properly when we replay the extents. | 
 | 		 */ | 
 | 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); | 
 | 		btrfs_set_inode_nbytes(eb, item, 0); | 
 |  | 
 | 		/* | 
 | 		 * If this is a directory we need to reset the i_size to 0 so | 
 | 		 * that we can set it up properly when replaying the rest of | 
 | 		 * the items in this log. | 
 | 		 */ | 
 | 		mode = btrfs_inode_mode(eb, item); | 
 | 		if (S_ISDIR(mode)) | 
 | 			btrfs_set_inode_size(eb, item, 0); | 
 | 	} | 
 | insert: | 
 | 	btrfs_release_path(path); | 
 | 	/* try to insert the key into the destination tree */ | 
 | 	path->skip_release_on_error = 1; | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, | 
 | 				      key, item_size); | 
 | 	path->skip_release_on_error = 0; | 
 |  | 
 | 	dst_eb = path->nodes[0]; | 
 | 	dst_slot = path->slots[0]; | 
 |  | 
 | 	/* make sure any existing item is the correct size */ | 
 | 	if (ret == -EEXIST || ret == -EOVERFLOW) { | 
 | 		const u32 found_size = btrfs_item_size(dst_eb, dst_slot); | 
 |  | 
 | 		if (found_size > item_size) | 
 | 			btrfs_truncate_item(trans, path, item_size, 1); | 
 | 		else if (found_size < item_size) | 
 | 			btrfs_extend_item(trans, path, item_size - found_size); | 
 | 	} else if (ret) { | 
 | 		return ret; | 
 | 	} | 
 | 	dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); | 
 |  | 
 | 	/* don't overwrite an existing inode if the generation number | 
 | 	 * was logged as zero.  This is done when the tree logging code | 
 | 	 * is just logging an inode to make sure it exists after recovery. | 
 | 	 * | 
 | 	 * Also, don't overwrite i_size on directories during replay. | 
 | 	 * log replay inserts and removes directory items based on the | 
 | 	 * state of the tree found in the subvolume, and i_size is modified | 
 | 	 * as it goes | 
 | 	 */ | 
 | 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | 
 | 		struct btrfs_inode_item *src_item; | 
 | 		struct btrfs_inode_item *dst_item; | 
 |  | 
 | 		src_item = (struct btrfs_inode_item *)src_ptr; | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 |  | 
 | 		if (btrfs_inode_generation(eb, src_item) == 0) { | 
 | 			const u64 ino_size = btrfs_inode_size(eb, src_item); | 
 |  | 
 | 			/* | 
 | 			 * For regular files an ino_size == 0 is used only when | 
 | 			 * logging that an inode exists, as part of a directory | 
 | 			 * fsync, and the inode wasn't fsynced before. In this | 
 | 			 * case don't set the size of the inode in the fs/subvol | 
 | 			 * tree, otherwise we would be throwing valid data away. | 
 | 			 */ | 
 | 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) && | 
 | 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && | 
 | 			    ino_size != 0) | 
 | 				btrfs_set_inode_size(dst_eb, dst_item, ino_size); | 
 | 			goto no_copy; | 
 | 		} | 
 |  | 
 | 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && | 
 | 		    S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) { | 
 | 			save_old_i_size = 1; | 
 | 			saved_i_size = btrfs_inode_size(dst_eb, dst_item); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size); | 
 |  | 
 | 	if (save_old_i_size) { | 
 | 		struct btrfs_inode_item *dst_item; | 
 |  | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 | 		btrfs_set_inode_size(dst_eb, dst_item, saved_i_size); | 
 | 	} | 
 |  | 
 | 	/* make sure the generation is filled in */ | 
 | 	if (key->type == BTRFS_INODE_ITEM_KEY) { | 
 | 		struct btrfs_inode_item *dst_item; | 
 |  | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 | 		if (btrfs_inode_generation(dst_eb, dst_item) == 0) | 
 | 			btrfs_set_inode_generation(dst_eb, dst_item, trans->transid); | 
 | 	} | 
 | no_copy: | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, | 
 | 			       struct fscrypt_str *name) | 
 | { | 
 | 	char *buf; | 
 |  | 
 | 	buf = kmalloc(len, GFP_NOFS); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	read_extent_buffer(eb, buf, (unsigned long)start, len); | 
 | 	name->name = buf; | 
 | 	name->len = len; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | 
 |  * subvolume 'root'.  path is released on entry and should be released | 
 |  * on exit. | 
 |  * | 
 |  * extents in the log tree have not been allocated out of the extent | 
 |  * tree yet.  So, this completes the allocation, taking a reference | 
 |  * as required if the extent already exists or creating a new extent | 
 |  * if it isn't in the extent allocation tree yet. | 
 |  * | 
 |  * The extent is inserted into the file, dropping any existing extents | 
 |  * from the file that overlap the new one. | 
 |  */ | 
 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct extent_buffer *eb, int slot, | 
 | 				      struct btrfs_key *key) | 
 | { | 
 | 	struct btrfs_drop_extents_args drop_args = { 0 }; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int found_type; | 
 | 	u64 extent_end; | 
 | 	u64 start = key->offset; | 
 | 	u64 nbytes = 0; | 
 | 	struct btrfs_file_extent_item *item; | 
 | 	struct btrfs_inode *inode = NULL; | 
 | 	unsigned long size; | 
 | 	int ret = 0; | 
 |  | 
 | 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
 | 	found_type = btrfs_file_extent_type(eb, item); | 
 |  | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		nbytes = btrfs_file_extent_num_bytes(eb, item); | 
 | 		extent_end = start + nbytes; | 
 |  | 
 | 		/* | 
 | 		 * We don't add to the inodes nbytes if we are prealloc or a | 
 | 		 * hole. | 
 | 		 */ | 
 | 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0) | 
 | 			nbytes = 0; | 
 | 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		size = btrfs_file_extent_ram_bytes(eb, item); | 
 | 		nbytes = btrfs_file_extent_ram_bytes(eb, item); | 
 | 		extent_end = ALIGN(start + size, | 
 | 				   fs_info->sectorsize); | 
 | 	} else { | 
 | 		btrfs_err(fs_info, | 
 | 		  "unexpected extent type=%d root=%llu inode=%llu offset=%llu", | 
 | 			  found_type, btrfs_root_id(root), key->objectid, key->offset); | 
 | 		return -EUCLEAN; | 
 | 	} | 
 |  | 
 | 	inode = btrfs_iget_logging(key->objectid, root); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 |  | 
 | 	/* | 
 | 	 * first check to see if we already have this extent in the | 
 | 	 * file.  This must be done before the btrfs_drop_extents run | 
 | 	 * so we don't try to drop this extent. | 
 | 	 */ | 
 | 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0); | 
 |  | 
 | 	if (ret == 0 && | 
 | 	    (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | 
 | 		struct btrfs_file_extent_item existing; | 
 | 		unsigned long ptr; | 
 |  | 
 | 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 | 		read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing)); | 
 |  | 
 | 		/* | 
 | 		 * we already have a pointer to this exact extent, | 
 | 		 * we don't have to do anything | 
 | 		 */ | 
 | 		if (memcmp_extent_buffer(eb, &existing, (unsigned long)item, | 
 | 					 sizeof(existing)) == 0) { | 
 | 			btrfs_release_path(path); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* drop any overlapping extents */ | 
 | 	drop_args.start = start; | 
 | 	drop_args.end = extent_end; | 
 | 	drop_args.drop_cache = true; | 
 | 	ret = btrfs_drop_extents(trans, root, inode, &drop_args); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		u64 offset; | 
 | 		unsigned long dest_offset; | 
 | 		struct btrfs_key ins; | 
 |  | 
 | 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && | 
 | 		    btrfs_fs_incompat(fs_info, NO_HOLES)) | 
 | 			goto update_inode; | 
 |  | 
 | 		ret = btrfs_insert_empty_item(trans, root, path, key, | 
 | 					      sizeof(*item)); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		dest_offset = btrfs_item_ptr_offset(path->nodes[0], | 
 | 						    path->slots[0]); | 
 | 		copy_extent_buffer(path->nodes[0], eb, dest_offset, | 
 | 				(unsigned long)item,  sizeof(*item)); | 
 |  | 
 | 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
 | 		ins.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
 | 		offset = key->offset - btrfs_file_extent_offset(eb, item); | 
 |  | 
 | 		/* | 
 | 		 * Manually record dirty extent, as here we did a shallow | 
 | 		 * file extent item copy and skip normal backref update, | 
 | 		 * but modifying extent tree all by ourselves. | 
 | 		 * So need to manually record dirty extent for qgroup, | 
 | 		 * as the owner of the file extent changed from log tree | 
 | 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup) | 
 | 		 */ | 
 | 		ret = btrfs_qgroup_trace_extent(trans, | 
 | 				btrfs_file_extent_disk_bytenr(eb, item), | 
 | 				btrfs_file_extent_disk_num_bytes(eb, item)); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (ins.objectid > 0) { | 
 | 			u64 csum_start; | 
 | 			u64 csum_end; | 
 | 			LIST_HEAD(ordered_sums); | 
 |  | 
 | 			/* | 
 | 			 * is this extent already allocated in the extent | 
 | 			 * allocation tree?  If so, just add a reference | 
 | 			 */ | 
 | 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid, | 
 | 						ins.offset); | 
 | 			if (ret < 0) { | 
 | 				goto out; | 
 | 			} else if (ret == 0) { | 
 | 				struct btrfs_ref ref = { | 
 | 					.action = BTRFS_ADD_DELAYED_REF, | 
 | 					.bytenr = ins.objectid, | 
 | 					.num_bytes = ins.offset, | 
 | 					.owning_root = btrfs_root_id(root), | 
 | 					.ref_root = btrfs_root_id(root), | 
 | 				}; | 
 | 				btrfs_init_data_ref(&ref, key->objectid, offset, | 
 | 						    0, false); | 
 | 				ret = btrfs_inc_extent_ref(trans, &ref); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 			} else { | 
 | 				/* | 
 | 				 * insert the extent pointer in the extent | 
 | 				 * allocation tree | 
 | 				 */ | 
 | 				ret = btrfs_alloc_logged_file_extent(trans, | 
 | 						btrfs_root_id(root), | 
 | 						key->objectid, offset, &ins); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 			} | 
 | 			btrfs_release_path(path); | 
 |  | 
 | 			if (btrfs_file_extent_compression(eb, item)) { | 
 | 				csum_start = ins.objectid; | 
 | 				csum_end = csum_start + ins.offset; | 
 | 			} else { | 
 | 				csum_start = ins.objectid + | 
 | 					btrfs_file_extent_offset(eb, item); | 
 | 				csum_end = csum_start + | 
 | 					btrfs_file_extent_num_bytes(eb, item); | 
 | 			} | 
 |  | 
 | 			ret = btrfs_lookup_csums_list(root->log_root, | 
 | 						csum_start, csum_end - 1, | 
 | 						&ordered_sums, false); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			ret = 0; | 
 | 			/* | 
 | 			 * Now delete all existing cums in the csum root that | 
 | 			 * cover our range. We do this because we can have an | 
 | 			 * extent that is completely referenced by one file | 
 | 			 * extent item and partially referenced by another | 
 | 			 * file extent item (like after using the clone or | 
 | 			 * extent_same ioctls). In this case if we end up doing | 
 | 			 * the replay of the one that partially references the | 
 | 			 * extent first, and we do not do the csum deletion | 
 | 			 * below, we can get 2 csum items in the csum tree that | 
 | 			 * overlap each other. For example, imagine our log has | 
 | 			 * the two following file extent items: | 
 | 			 * | 
 | 			 * key (257 EXTENT_DATA 409600) | 
 | 			 *     extent data disk byte 12845056 nr 102400 | 
 | 			 *     extent data offset 20480 nr 20480 ram 102400 | 
 | 			 * | 
 | 			 * key (257 EXTENT_DATA 819200) | 
 | 			 *     extent data disk byte 12845056 nr 102400 | 
 | 			 *     extent data offset 0 nr 102400 ram 102400 | 
 | 			 * | 
 | 			 * Where the second one fully references the 100K extent | 
 | 			 * that starts at disk byte 12845056, and the log tree | 
 | 			 * has a single csum item that covers the entire range | 
 | 			 * of the extent: | 
 | 			 * | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
 | 			 * | 
 | 			 * After the first file extent item is replayed, the | 
 | 			 * csum tree gets the following csum item: | 
 | 			 * | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
 | 			 * | 
 | 			 * Which covers the 20K sub-range starting at offset 20K | 
 | 			 * of our extent. Now when we replay the second file | 
 | 			 * extent item, if we do not delete existing csum items | 
 | 			 * that cover any of its blocks, we end up getting two | 
 | 			 * csum items in our csum tree that overlap each other: | 
 | 			 * | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
 | 			 * | 
 | 			 * Which is a problem, because after this anyone trying | 
 | 			 * to lookup up for the checksum of any block of our | 
 | 			 * extent starting at an offset of 40K or higher, will | 
 | 			 * end up looking at the second csum item only, which | 
 | 			 * does not contain the checksum for any block starting | 
 | 			 * at offset 40K or higher of our extent. | 
 | 			 */ | 
 | 			while (!list_empty(&ordered_sums)) { | 
 | 				struct btrfs_ordered_sum *sums; | 
 | 				struct btrfs_root *csum_root; | 
 |  | 
 | 				sums = list_first_entry(&ordered_sums, | 
 | 							struct btrfs_ordered_sum, | 
 | 							list); | 
 | 				csum_root = btrfs_csum_root(fs_info, | 
 | 							    sums->logical); | 
 | 				if (!ret) | 
 | 					ret = btrfs_del_csums(trans, csum_root, | 
 | 							      sums->logical, | 
 | 							      sums->len); | 
 | 				if (!ret) | 
 | 					ret = btrfs_csum_file_blocks(trans, | 
 | 								     csum_root, | 
 | 								     sums); | 
 | 				list_del(&sums->list); | 
 | 				kfree(sums); | 
 | 			} | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} else { | 
 | 			btrfs_release_path(path); | 
 | 		} | 
 | 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		/* inline extents are easy, we just overwrite them */ | 
 | 		ret = overwrite_item(trans, root, path, eb, slot, key); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | update_inode: | 
 | 	btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found); | 
 | 	ret = btrfs_update_inode(trans, inode); | 
 | out: | 
 | 	iput(&inode->vfs_inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_inode *dir, | 
 | 				       struct btrfs_inode *inode, | 
 | 				       const struct fscrypt_str *name) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_unlink_inode(trans, dir, inode, name); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	/* | 
 | 	 * Whenever we need to check if a name exists or not, we check the | 
 | 	 * fs/subvolume tree. So after an unlink we must run delayed items, so | 
 | 	 * that future checks for a name during log replay see that the name | 
 | 	 * does not exists anymore. | 
 | 	 */ | 
 | 	return btrfs_run_delayed_items(trans); | 
 | } | 
 |  | 
 | /* | 
 |  * when cleaning up conflicts between the directory names in the | 
 |  * subvolume, directory names in the log and directory names in the | 
 |  * inode back references, we may have to unlink inodes from directories. | 
 |  * | 
 |  * This is a helper function to do the unlink of a specific directory | 
 |  * item | 
 |  */ | 
 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct btrfs_inode *dir, | 
 | 				      struct btrfs_dir_item *di) | 
 | { | 
 | 	struct btrfs_root *root = dir->root; | 
 | 	struct btrfs_inode *inode; | 
 | 	struct fscrypt_str name; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key location; | 
 | 	int ret; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
 | 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); | 
 | 	if (ret) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	inode = btrfs_iget_logging(location.objectid, root); | 
 | 	if (IS_ERR(inode)) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = unlink_inode_for_log_replay(trans, dir, inode, &name); | 
 | out: | 
 | 	kfree(name.name); | 
 | 	if (inode) | 
 | 		iput(&inode->vfs_inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * See if a given name and sequence number found in an inode back reference are | 
 |  * already in a directory and correctly point to this inode. | 
 |  * | 
 |  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it | 
 |  * exists. | 
 |  */ | 
 | static noinline int inode_in_dir(struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 u64 dirid, u64 objectid, u64 index, | 
 | 				 struct fscrypt_str *name) | 
 | { | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key location; | 
 | 	int ret = 0; | 
 |  | 
 | 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | 
 | 					 index, name, 0); | 
 | 	if (IS_ERR(di)) { | 
 | 		ret = PTR_ERR(di); | 
 | 		goto out; | 
 | 	} else if (di) { | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
 | 		if (location.objectid != objectid) | 
 | 			goto out; | 
 | 	} else { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); | 
 | 	if (IS_ERR(di)) { | 
 | 		ret = PTR_ERR(di); | 
 | 		goto out; | 
 | 	} else if (di) { | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
 | 		if (location.objectid == objectid) | 
 | 			ret = 1; | 
 | 	} | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to check a log tree for a named back reference in | 
 |  * an inode.  This is used to decide if a back reference that is | 
 |  * found in the subvolume conflicts with what we find in the log. | 
 |  * | 
 |  * inode backreferences may have multiple refs in a single item, | 
 |  * during replay we process one reference at a time, and we don't | 
 |  * want to delete valid links to a file from the subvolume if that | 
 |  * link is also in the log. | 
 |  */ | 
 | static noinline int backref_in_log(struct btrfs_root *log, | 
 | 				   struct btrfs_key *key, | 
 | 				   u64 ref_objectid, | 
 | 				   const struct fscrypt_str *name) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | 
 | 	if (ret < 0) { | 
 | 		goto out; | 
 | 	} else if (ret == 1) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (key->type == BTRFS_INODE_EXTREF_KEY) | 
 | 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], | 
 | 						       path->slots[0], | 
 | 						       ref_objectid, name); | 
 | 	else | 
 | 		ret = !!btrfs_find_name_in_backref(path->nodes[0], | 
 | 						   path->slots[0], name); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int unlink_refs_not_in_log(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct btrfs_root *log_root, | 
 | 				  struct btrfs_key *search_key, | 
 | 				  struct btrfs_inode *dir, | 
 | 				  struct btrfs_inode *inode, | 
 | 				  u64 parent_objectid) | 
 | { | 
 | 	struct extent_buffer *leaf = path->nodes[0]; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 |  | 
 | 	/* | 
 | 	 * Check all the names in this back reference to see if they are in the | 
 | 	 * log. If so, we allow them to stay otherwise they must be unlinked as | 
 | 	 * a conflict. | 
 | 	 */ | 
 | 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 	ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); | 
 | 	while (ptr < ptr_end) { | 
 | 		struct fscrypt_str victim_name; | 
 | 		struct btrfs_inode_ref *victim_ref; | 
 | 		int ret; | 
 |  | 
 | 		victim_ref = (struct btrfs_inode_ref *)ptr; | 
 | 		ret = read_alloc_one_name(leaf, (victim_ref + 1), | 
 | 					  btrfs_inode_ref_name_len(leaf, victim_ref), | 
 | 					  &victim_name); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); | 
 | 		if (ret) { | 
 | 			kfree(victim_name.name); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		inc_nlink(&inode->vfs_inode); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		ret = unlink_inode_for_log_replay(trans, dir, inode, &victim_name); | 
 | 		kfree(victim_name.name); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unlink_extrefs_not_in_log(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_path *path, | 
 | 				     struct btrfs_root *root, | 
 | 				     struct btrfs_root *log_root, | 
 | 				     struct btrfs_key *search_key, | 
 | 				     struct btrfs_inode *inode, | 
 | 				     u64 inode_objectid, | 
 | 				     u64 parent_objectid) | 
 | { | 
 | 	struct extent_buffer *leaf = path->nodes[0]; | 
 | 	const unsigned long base = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 	const u32 item_size = btrfs_item_size(leaf, path->slots[0]); | 
 | 	u32 cur_offset = 0; | 
 |  | 
 | 	while (cur_offset < item_size) { | 
 | 		struct btrfs_inode_extref *extref; | 
 | 		struct btrfs_inode *victim_parent; | 
 | 		struct fscrypt_str victim_name; | 
 | 		int ret; | 
 |  | 
 | 		extref = (struct btrfs_inode_extref *)(base + cur_offset); | 
 | 		victim_name.len = btrfs_inode_extref_name_len(leaf, extref); | 
 |  | 
 | 		if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) | 
 | 			goto next; | 
 |  | 
 | 		ret = read_alloc_one_name(leaf, &extref->name, victim_name.len, | 
 | 					  &victim_name); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		search_key->objectid = inode_objectid; | 
 | 		search_key->type = BTRFS_INODE_EXTREF_KEY; | 
 | 		search_key->offset = btrfs_extref_hash(parent_objectid, | 
 | 						       victim_name.name, | 
 | 						       victim_name.len); | 
 | 		ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); | 
 | 		if (ret) { | 
 | 			kfree(victim_name.name); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | next: | 
 | 			cur_offset += victim_name.len + sizeof(*extref); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		victim_parent = btrfs_iget_logging(parent_objectid, root); | 
 | 		if (IS_ERR(victim_parent)) { | 
 | 			kfree(victim_name.name); | 
 | 			return PTR_ERR(victim_parent); | 
 | 		} | 
 |  | 
 | 		inc_nlink(&inode->vfs_inode); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		ret = unlink_inode_for_log_replay(trans, victim_parent, inode, | 
 | 						  &victim_name); | 
 | 		iput(&victim_parent->vfs_inode); | 
 | 		kfree(victim_name.name); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int __add_inode_ref(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct btrfs_root *log_root, | 
 | 				  struct btrfs_inode *dir, | 
 | 				  struct btrfs_inode *inode, | 
 | 				  u64 inode_objectid, u64 parent_objectid, | 
 | 				  u64 ref_index, struct fscrypt_str *name) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key search_key; | 
 | 	struct btrfs_inode_extref *extref; | 
 |  | 
 | again: | 
 | 	/* Search old style refs */ | 
 | 	search_key.objectid = inode_objectid; | 
 | 	search_key.type = BTRFS_INODE_REF_KEY; | 
 | 	search_key.offset = parent_objectid; | 
 | 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
 | 	if (ret < 0) { | 
 | 		return ret; | 
 | 	} else if (ret == 0) { | 
 | 		/* | 
 | 		 * Are we trying to overwrite a back ref for the root directory? | 
 | 		 * If so, we're done. | 
 | 		 */ | 
 | 		if (search_key.objectid == search_key.offset) | 
 | 			return 1; | 
 |  | 
 | 		ret = unlink_refs_not_in_log(trans, path, log_root, &search_key, | 
 | 					     dir, inode, parent_objectid); | 
 | 		if (ret == -EAGAIN) | 
 | 			goto again; | 
 | 		else if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* Same search but for extended refs */ | 
 | 	extref = btrfs_lookup_inode_extref(root, path, name, inode_objectid, parent_objectid); | 
 | 	if (IS_ERR(extref)) { | 
 | 		return PTR_ERR(extref); | 
 | 	} else if (extref) { | 
 | 		ret = unlink_extrefs_not_in_log(trans, path, root, log_root, | 
 | 						&search_key, inode, | 
 | 						inode_objectid, parent_objectid); | 
 | 		if (ret == -EAGAIN) | 
 | 			goto again; | 
 | 		else if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* look for a conflicting sequence number */ | 
 | 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), | 
 | 					 ref_index, name, 0); | 
 | 	if (IS_ERR(di)) { | 
 | 		return PTR_ERR(di); | 
 | 	} else if (di) { | 
 | 		ret = drop_one_dir_item(trans, path, dir, di); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* look for a conflicting name */ | 
 | 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); | 
 | 	if (IS_ERR(di)) { | 
 | 		return PTR_ERR(di); | 
 | 	} else if (di) { | 
 | 		ret = drop_one_dir_item(trans, path, dir, di); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
 | 			     struct fscrypt_str *name, u64 *index, | 
 | 			     u64 *parent_objectid) | 
 | { | 
 | 	struct btrfs_inode_extref *extref; | 
 | 	int ret; | 
 |  | 
 | 	extref = (struct btrfs_inode_extref *)ref_ptr; | 
 |  | 
 | 	ret = read_alloc_one_name(eb, &extref->name, | 
 | 				  btrfs_inode_extref_name_len(eb, extref), name); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (index) | 
 | 		*index = btrfs_inode_extref_index(eb, extref); | 
 | 	if (parent_objectid) | 
 | 		*parent_objectid = btrfs_inode_extref_parent(eb, extref); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
 | 			  struct fscrypt_str *name, u64 *index) | 
 | { | 
 | 	struct btrfs_inode_ref *ref; | 
 | 	int ret; | 
 |  | 
 | 	ref = (struct btrfs_inode_ref *)ref_ptr; | 
 |  | 
 | 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), | 
 | 				  name); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (index) | 
 | 		*index = btrfs_inode_ref_index(eb, ref); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Take an inode reference item from the log tree and iterate all names from the | 
 |  * inode reference item in the subvolume tree with the same key (if it exists). | 
 |  * For any name that is not in the inode reference item from the log tree, do a | 
 |  * proper unlink of that name (that is, remove its entry from the inode | 
 |  * reference item and both dir index keys). | 
 |  */ | 
 | static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct btrfs_inode *inode, | 
 | 				 struct extent_buffer *log_eb, | 
 | 				 int log_slot, | 
 | 				 struct btrfs_key *key) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long ref_ptr; | 
 | 	unsigned long ref_end; | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | again: | 
 | 	btrfs_release_path(path); | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	if (ret > 0) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); | 
 | 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); | 
 | 	while (ref_ptr < ref_end) { | 
 | 		struct fscrypt_str name; | 
 | 		u64 parent_id; | 
 |  | 
 | 		if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
 | 			ret = extref_get_fields(eb, ref_ptr, &name, | 
 | 						NULL, &parent_id); | 
 | 		} else { | 
 | 			parent_id = key->offset; | 
 | 			ret = ref_get_fields(eb, ref_ptr, &name, NULL); | 
 | 		} | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		if (key->type == BTRFS_INODE_EXTREF_KEY) | 
 | 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, | 
 | 							       parent_id, &name); | 
 | 		else | 
 | 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); | 
 |  | 
 | 		if (!ret) { | 
 | 			struct btrfs_inode *dir; | 
 |  | 
 | 			btrfs_release_path(path); | 
 | 			dir = btrfs_iget_logging(parent_id, root); | 
 | 			if (IS_ERR(dir)) { | 
 | 				ret = PTR_ERR(dir); | 
 | 				kfree(name.name); | 
 | 				goto out; | 
 | 			} | 
 | 			ret = unlink_inode_for_log_replay(trans, dir, inode, &name); | 
 | 			kfree(name.name); | 
 | 			iput(&dir->vfs_inode); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		kfree(name.name); | 
 | 		ref_ptr += name.len; | 
 | 		if (key->type == BTRFS_INODE_EXTREF_KEY) | 
 | 			ref_ptr += sizeof(struct btrfs_inode_extref); | 
 | 		else | 
 | 			ref_ptr += sizeof(struct btrfs_inode_ref); | 
 | 	} | 
 | 	ret = 0; | 
 |  out: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * replay one inode back reference item found in the log tree. | 
 |  * eb, slot and key refer to the buffer and key found in the log tree. | 
 |  * root is the destination we are replaying into, and path is for temp | 
 |  * use by this function.  (it should be released on return). | 
 |  */ | 
 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  struct btrfs_root *log, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct extent_buffer *eb, int slot, | 
 | 				  struct btrfs_key *key) | 
 | { | 
 | 	struct btrfs_inode *dir = NULL; | 
 | 	struct btrfs_inode *inode = NULL; | 
 | 	unsigned long ref_ptr; | 
 | 	unsigned long ref_end; | 
 | 	struct fscrypt_str name = { 0 }; | 
 | 	int ret; | 
 | 	const bool is_extref_item = (key->type == BTRFS_INODE_EXTREF_KEY); | 
 | 	u64 parent_objectid; | 
 | 	u64 inode_objectid; | 
 | 	u64 ref_index = 0; | 
 | 	int ref_struct_size; | 
 |  | 
 | 	ref_ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 	ref_end = ref_ptr + btrfs_item_size(eb, slot); | 
 |  | 
 | 	if (is_extref_item) { | 
 | 		struct btrfs_inode_extref *r; | 
 |  | 
 | 		ref_struct_size = sizeof(struct btrfs_inode_extref); | 
 | 		r = (struct btrfs_inode_extref *)ref_ptr; | 
 | 		parent_objectid = btrfs_inode_extref_parent(eb, r); | 
 | 	} else { | 
 | 		ref_struct_size = sizeof(struct btrfs_inode_ref); | 
 | 		parent_objectid = key->offset; | 
 | 	} | 
 | 	inode_objectid = key->objectid; | 
 |  | 
 | 	/* | 
 | 	 * it is possible that we didn't log all the parent directories | 
 | 	 * for a given inode.  If we don't find the dir, just don't | 
 | 	 * copy the back ref in.  The link count fixup code will take | 
 | 	 * care of the rest | 
 | 	 */ | 
 | 	dir = btrfs_iget_logging(parent_objectid, root); | 
 | 	if (IS_ERR(dir)) { | 
 | 		ret = PTR_ERR(dir); | 
 | 		if (ret == -ENOENT) | 
 | 			ret = 0; | 
 | 		dir = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode = btrfs_iget_logging(inode_objectid, root); | 
 | 	if (IS_ERR(inode)) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (ref_ptr < ref_end) { | 
 | 		if (is_extref_item) { | 
 | 			ret = extref_get_fields(eb, ref_ptr, &name, | 
 | 						&ref_index, &parent_objectid); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			/* | 
 | 			 * parent object can change from one array | 
 | 			 * item to another. | 
 | 			 */ | 
 | 			if (!dir) { | 
 | 				dir = btrfs_iget_logging(parent_objectid, root); | 
 | 				if (IS_ERR(dir)) { | 
 | 					ret = PTR_ERR(dir); | 
 | 					dir = NULL; | 
 | 					/* | 
 | 					 * A new parent dir may have not been | 
 | 					 * logged and not exist in the subvolume | 
 | 					 * tree, see the comment above before | 
 | 					 * the loop when getting the first | 
 | 					 * parent dir. | 
 | 					 */ | 
 | 					if (ret == -ENOENT) { | 
 | 						/* | 
 | 						 * The next extref may refer to | 
 | 						 * another parent dir that | 
 | 						 * exists, so continue. | 
 | 						 */ | 
 | 						ret = 0; | 
 | 						goto next; | 
 | 					} | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), | 
 | 				   ref_index, &name); | 
 | 		if (ret < 0) { | 
 | 			goto out; | 
 | 		} else if (ret == 0) { | 
 | 			/* | 
 | 			 * look for a conflicting back reference in the | 
 | 			 * metadata. if we find one we have to unlink that name | 
 | 			 * of the file before we add our new link.  Later on, we | 
 | 			 * overwrite any existing back reference, and we don't | 
 | 			 * want to create dangling pointers in the directory. | 
 | 			 */ | 
 | 			ret = __add_inode_ref(trans, root, path, log, dir, inode, | 
 | 					      inode_objectid, parent_objectid, | 
 | 					      ref_index, &name); | 
 | 			if (ret) { | 
 | 				if (ret == 1) | 
 | 					ret = 0; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			/* insert our name */ | 
 | 			ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index); | 
 | 			if (ret) | 
 | 				goto out; | 
 |  | 
 | 			ret = btrfs_update_inode(trans, inode); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 		/* Else, ret == 1, we already have a perfect match, we're done. */ | 
 |  | 
 | next: | 
 | 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; | 
 | 		kfree(name.name); | 
 | 		name.name = NULL; | 
 | 		if (is_extref_item && dir) { | 
 | 			iput(&dir->vfs_inode); | 
 | 			dir = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Before we overwrite the inode reference item in the subvolume tree | 
 | 	 * with the item from the log tree, we must unlink all names from the | 
 | 	 * parent directory that are in the subvolume's tree inode reference | 
 | 	 * item, otherwise we end up with an inconsistent subvolume tree where | 
 | 	 * dir index entries exist for a name but there is no inode reference | 
 | 	 * item with the same name. | 
 | 	 */ | 
 | 	ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* finally write the back reference in the inode */ | 
 | 	ret = overwrite_item(trans, root, path, eb, slot, key); | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	kfree(name.name); | 
 | 	if (dir) | 
 | 		iput(&dir->vfs_inode); | 
 | 	if (inode) | 
 | 		iput(&inode->vfs_inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) | 
 | { | 
 | 	int ret = 0; | 
 | 	int name_len; | 
 | 	unsigned int nlink = 0; | 
 | 	u32 item_size; | 
 | 	u32 cur_offset = 0; | 
 | 	u64 inode_objectid = btrfs_ino(inode); | 
 | 	u64 offset = 0; | 
 | 	unsigned long ptr; | 
 | 	struct btrfs_inode_extref *extref; | 
 | 	struct extent_buffer *leaf; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, | 
 | 					    path, &extref, &offset); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		item_size = btrfs_item_size(leaf, path->slots[0]); | 
 | 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 		cur_offset = 0; | 
 |  | 
 | 		while (cur_offset < item_size) { | 
 | 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset); | 
 | 			name_len = btrfs_inode_extref_name_len(leaf, extref); | 
 |  | 
 | 			nlink++; | 
 |  | 
 | 			cur_offset += name_len + sizeof(*extref); | 
 | 		} | 
 |  | 
 | 		offset++; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (ret < 0 && ret != -ENOENT) | 
 | 		return ret; | 
 | 	return nlink; | 
 | } | 
 |  | 
 | static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	unsigned int nlink = 0; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	int name_len; | 
 | 	u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 | process_slot: | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, | 
 | 				      path->slots[0]); | 
 | 		if (key.objectid != ino || | 
 | 		    key.type != BTRFS_INODE_REF_KEY) | 
 | 			break; | 
 | 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 | 		ptr_end = ptr + btrfs_item_size(path->nodes[0], | 
 | 						   path->slots[0]); | 
 | 		while (ptr < ptr_end) { | 
 | 			struct btrfs_inode_ref *ref; | 
 |  | 
 | 			ref = (struct btrfs_inode_ref *)ptr; | 
 | 			name_len = btrfs_inode_ref_name_len(path->nodes[0], | 
 | 							    ref); | 
 | 			ptr = (unsigned long)(ref + 1) + name_len; | 
 | 			nlink++; | 
 | 		} | 
 |  | 
 | 		if (key.offset == 0) | 
 | 			break; | 
 | 		if (path->slots[0] > 0) { | 
 | 			path->slots[0]--; | 
 | 			goto process_slot; | 
 | 		} | 
 | 		key.offset--; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return nlink; | 
 | } | 
 |  | 
 | /* | 
 |  * There are a few corners where the link count of the file can't | 
 |  * be properly maintained during replay.  So, instead of adding | 
 |  * lots of complexity to the log code, we just scan the backrefs | 
 |  * for any file that has been through replay. | 
 |  * | 
 |  * The scan will update the link count on the inode to reflect the | 
 |  * number of back refs found.  If it goes down to zero, the iput | 
 |  * will free the inode. | 
 |  */ | 
 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | 
 | 					   struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	u64 nlink = 0; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = count_inode_refs(inode, path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	nlink = ret; | 
 |  | 
 | 	ret = count_inode_extrefs(inode, path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	nlink += ret; | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	if (nlink != inode->vfs_inode.i_nlink) { | 
 | 		set_nlink(&inode->vfs_inode, nlink); | 
 | 		ret = btrfs_update_inode(trans, inode); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 | 	if (S_ISDIR(inode->vfs_inode.i_mode)) | 
 | 		inode->index_cnt = (u64)-1; | 
 |  | 
 | 	if (inode->vfs_inode.i_nlink == 0) { | 
 | 		if (S_ISDIR(inode->vfs_inode.i_mode)) { | 
 | 			ret = replay_dir_deletes(trans, root, NULL, path, ino, true); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 		ret = btrfs_insert_orphan_item(trans, root, ino); | 
 | 		if (ret == -EEXIST) | 
 | 			ret = 0; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | 
 | 					    struct btrfs_root *root, | 
 | 					    struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 | 	while (1) { | 
 | 		struct btrfs_inode *inode; | 
 |  | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		if (ret == 1) { | 
 | 			ret = 0; | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | 
 | 		    key.type != BTRFS_ORPHAN_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		ret = btrfs_del_item(trans, root, path); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		btrfs_release_path(path); | 
 | 		inode = btrfs_iget_logging(key.offset, root); | 
 | 		if (IS_ERR(inode)) { | 
 | 			ret = PTR_ERR(inode); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = fixup_inode_link_count(trans, inode); | 
 | 		iput(&inode->vfs_inode); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * fixup on a directory may create new entries, | 
 | 		 * make sure we always look for the highset possible | 
 | 		 * offset | 
 | 		 */ | 
 | 		key.offset = (u64)-1; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * record a given inode in the fixup dir so we can check its link | 
 |  * count when replay is done.  The link count is incremented here | 
 |  * so the inode won't go away until we check it | 
 |  */ | 
 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      u64 objectid) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret = 0; | 
 | 	struct btrfs_inode *inode; | 
 | 	struct inode *vfs_inode; | 
 |  | 
 | 	inode = btrfs_iget_logging(objectid, root); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 |  | 
 | 	vfs_inode = &inode->vfs_inode; | 
 | 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = objectid; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	if (ret == 0) { | 
 | 		if (!vfs_inode->i_nlink) | 
 | 			set_nlink(vfs_inode, 1); | 
 | 		else | 
 | 			inc_nlink(vfs_inode); | 
 | 		ret = btrfs_update_inode(trans, inode); | 
 | 	} else if (ret == -EEXIST) { | 
 | 		ret = 0; | 
 | 	} | 
 | 	iput(vfs_inode); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when replaying the log for a directory, we only insert names | 
 |  * for inodes that actually exist.  This means an fsync on a directory | 
 |  * does not implicitly fsync all the new files in it | 
 |  */ | 
 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    u64 dirid, u64 index, | 
 | 				    const struct fscrypt_str *name, | 
 | 				    struct btrfs_key *location) | 
 | { | 
 | 	struct btrfs_inode *inode; | 
 | 	struct btrfs_inode *dir; | 
 | 	int ret; | 
 |  | 
 | 	inode = btrfs_iget_logging(location->objectid, root); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 |  | 
 | 	dir = btrfs_iget_logging(dirid, root); | 
 | 	if (IS_ERR(dir)) { | 
 | 		iput(&inode->vfs_inode); | 
 | 		return PTR_ERR(dir); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_add_link(trans, dir, inode, name, 1, index); | 
 |  | 
 | 	/* FIXME, put inode into FIXUP list */ | 
 |  | 
 | 	iput(&inode->vfs_inode); | 
 | 	iput(&dir->vfs_inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_inode *dir, | 
 | 					struct btrfs_path *path, | 
 | 					struct btrfs_dir_item *dst_di, | 
 | 					const struct btrfs_key *log_key, | 
 | 					u8 log_flags, | 
 | 					bool exists) | 
 | { | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | 
 | 	/* The existing dentry points to the same inode, don't delete it. */ | 
 | 	if (found_key.objectid == log_key->objectid && | 
 | 	    found_key.type == log_key->type && | 
 | 	    found_key.offset == log_key->offset && | 
 | 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Don't drop the conflicting directory entry if the inode for the new | 
 | 	 * entry doesn't exist. | 
 | 	 */ | 
 | 	if (!exists) | 
 | 		return 0; | 
 |  | 
 | 	return drop_one_dir_item(trans, path, dir, dst_di); | 
 | } | 
 |  | 
 | /* | 
 |  * take a single entry in a log directory item and replay it into | 
 |  * the subvolume. | 
 |  * | 
 |  * if a conflicting item exists in the subdirectory already, | 
 |  * the inode it points to is unlinked and put into the link count | 
 |  * fix up tree. | 
 |  * | 
 |  * If a name from the log points to a file or directory that does | 
 |  * not exist in the FS, it is skipped.  fsyncs on directories | 
 |  * do not force down inodes inside that directory, just changes to the | 
 |  * names or unlinks in a directory. | 
 |  * | 
 |  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a | 
 |  * non-existing inode) and 1 if the name was replayed. | 
 |  */ | 
 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    struct btrfs_path *path, | 
 | 				    struct extent_buffer *eb, | 
 | 				    struct btrfs_dir_item *di, | 
 | 				    struct btrfs_key *key) | 
 | { | 
 | 	struct fscrypt_str name = { 0 }; | 
 | 	struct btrfs_dir_item *dir_dst_di; | 
 | 	struct btrfs_dir_item *index_dst_di; | 
 | 	bool dir_dst_matches = false; | 
 | 	bool index_dst_matches = false; | 
 | 	struct btrfs_key log_key; | 
 | 	struct btrfs_key search_key; | 
 | 	struct btrfs_inode *dir; | 
 | 	u8 log_flags; | 
 | 	bool exists; | 
 | 	int ret; | 
 | 	bool update_size = true; | 
 | 	bool name_added = false; | 
 |  | 
 | 	dir = btrfs_iget_logging(key->objectid, root); | 
 | 	if (IS_ERR(dir)) | 
 | 		return PTR_ERR(dir); | 
 |  | 
 | 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	log_flags = btrfs_dir_flags(eb, di); | 
 | 	btrfs_dir_item_key_to_cpu(eb, di, &log_key); | 
 | 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); | 
 | 	btrfs_release_path(path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	exists = (ret == 0); | 
 | 	ret = 0; | 
 |  | 
 | 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | 
 | 					   &name, 1); | 
 | 	if (IS_ERR(dir_dst_di)) { | 
 | 		ret = PTR_ERR(dir_dst_di); | 
 | 		goto out; | 
 | 	} else if (dir_dst_di) { | 
 | 		ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di, | 
 | 						   &log_key, log_flags, exists); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		dir_dst_matches = (ret == 1); | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, | 
 | 						   key->objectid, key->offset, | 
 | 						   &name, 1); | 
 | 	if (IS_ERR(index_dst_di)) { | 
 | 		ret = PTR_ERR(index_dst_di); | 
 | 		goto out; | 
 | 	} else if (index_dst_di) { | 
 | 		ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di, | 
 | 						   &log_key, log_flags, exists); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		index_dst_matches = (ret == 1); | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (dir_dst_matches && index_dst_matches) { | 
 | 		ret = 0; | 
 | 		update_size = false; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if the inode reference exists in the log for the given name, | 
 | 	 * inode and parent inode | 
 | 	 */ | 
 | 	search_key.objectid = log_key.objectid; | 
 | 	search_key.type = BTRFS_INODE_REF_KEY; | 
 | 	search_key.offset = key->objectid; | 
 | 	ret = backref_in_log(root->log_root, &search_key, 0, &name); | 
 | 	if (ret < 0) { | 
 | 	        goto out; | 
 | 	} else if (ret) { | 
 | 	        /* The dentry will be added later. */ | 
 | 	        ret = 0; | 
 | 	        update_size = false; | 
 | 	        goto out; | 
 | 	} | 
 |  | 
 | 	search_key.objectid = log_key.objectid; | 
 | 	search_key.type = BTRFS_INODE_EXTREF_KEY; | 
 | 	search_key.offset = key->objectid; | 
 | 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); | 
 | 	if (ret < 0) { | 
 | 		goto out; | 
 | 	} else if (ret) { | 
 | 		/* The dentry will be added later. */ | 
 | 		ret = 0; | 
 | 		update_size = false; | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	ret = insert_one_name(trans, root, key->objectid, key->offset, | 
 | 			      &name, &log_key); | 
 | 	if (ret && ret != -ENOENT && ret != -EEXIST) | 
 | 		goto out; | 
 | 	if (!ret) | 
 | 		name_added = true; | 
 | 	update_size = false; | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	if (!ret && update_size) { | 
 | 		btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2); | 
 | 		ret = btrfs_update_inode(trans, dir); | 
 | 	} | 
 | 	kfree(name.name); | 
 | 	iput(&dir->vfs_inode); | 
 | 	if (!ret && name_added) | 
 | 		ret = 1; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ | 
 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_root *root, | 
 | 					struct btrfs_path *path, | 
 | 					struct extent_buffer *eb, int slot, | 
 | 					struct btrfs_key *key) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_dir_item *di; | 
 |  | 
 | 	/* We only log dir index keys, which only contain a single dir item. */ | 
 | 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY); | 
 |  | 
 | 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); | 
 | 	ret = replay_one_name(trans, root, path, eb, di, key); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If this entry refers to a non-directory (directories can not have a | 
 | 	 * link count > 1) and it was added in the transaction that was not | 
 | 	 * committed, make sure we fixup the link count of the inode the entry | 
 | 	 * points to. Otherwise something like the following would result in a | 
 | 	 * directory pointing to an inode with a wrong link that does not account | 
 | 	 * for this dir entry: | 
 | 	 * | 
 | 	 * mkdir testdir | 
 | 	 * touch testdir/foo | 
 | 	 * touch testdir/bar | 
 | 	 * sync | 
 | 	 * | 
 | 	 * ln testdir/bar testdir/bar_link | 
 | 	 * ln testdir/foo testdir/foo_link | 
 | 	 * xfs_io -c "fsync" testdir/bar | 
 | 	 * | 
 | 	 * <power failure> | 
 | 	 * | 
 | 	 * mount fs, log replay happens | 
 | 	 * | 
 | 	 * File foo would remain with a link count of 1 when it has two entries | 
 | 	 * pointing to it in the directory testdir. This would make it impossible | 
 | 	 * to ever delete the parent directory has it would result in stale | 
 | 	 * dentries that can never be deleted. | 
 | 	 */ | 
 | 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { | 
 | 		struct btrfs_path *fixup_path; | 
 | 		struct btrfs_key di_key; | 
 |  | 
 | 		fixup_path = btrfs_alloc_path(); | 
 | 		if (!fixup_path) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
 | 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); | 
 | 		btrfs_free_path(fixup_path); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * directory replay has two parts.  There are the standard directory | 
 |  * items in the log copied from the subvolume, and range items | 
 |  * created in the log while the subvolume was logged. | 
 |  * | 
 |  * The range items tell us which parts of the key space the log | 
 |  * is authoritative for.  During replay, if a key in the subvolume | 
 |  * directory is in a logged range item, but not actually in the log | 
 |  * that means it was deleted from the directory before the fsync | 
 |  * and should be removed. | 
 |  */ | 
 | static noinline int find_dir_range(struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   u64 dirid, | 
 | 				   u64 *start_ret, u64 *end_ret) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	u64 found_end; | 
 | 	struct btrfs_dir_log_item *item; | 
 | 	int ret; | 
 | 	int nritems; | 
 |  | 
 | 	if (*start_ret == (u64)-1) | 
 | 		return 1; | 
 |  | 
 | 	key.objectid = dirid; | 
 | 	key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
 | 	key.offset = *start_ret; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		if (path->slots[0] == 0) | 
 | 			goto out; | 
 | 		path->slots[0]--; | 
 | 	} | 
 | 	if (ret != 0) | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 |  | 
 | 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { | 
 | 		ret = 1; | 
 | 		goto next; | 
 | 	} | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	found_end = btrfs_dir_log_end(path->nodes[0], item); | 
 |  | 
 | 	if (*start_ret >= key.offset && *start_ret <= found_end) { | 
 | 		ret = 0; | 
 | 		*start_ret = key.offset; | 
 | 		*end_ret = found_end; | 
 | 		goto out; | 
 | 	} | 
 | 	ret = 1; | 
 | next: | 
 | 	/* check the next slot in the tree to see if it is a valid item */ | 
 | 	nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	path->slots[0]++; | 
 | 	if (path->slots[0] >= nritems) { | 
 | 		ret = btrfs_next_leaf(root, path); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 |  | 
 | 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	found_end = btrfs_dir_log_end(path->nodes[0], item); | 
 | 	*start_ret = key.offset; | 
 | 	*end_ret = found_end; | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this looks for a given directory item in the log.  If the directory | 
 |  * item is not in the log, the item is removed and the inode it points | 
 |  * to is unlinked | 
 |  */ | 
 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *log, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct btrfs_path *log_path, | 
 | 				      struct btrfs_inode *dir, | 
 | 				      struct btrfs_key *dir_key) | 
 | { | 
 | 	struct btrfs_root *root = dir->root; | 
 | 	int ret; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct fscrypt_str name = { 0 }; | 
 | 	struct btrfs_inode *inode = NULL; | 
 | 	struct btrfs_key location; | 
 |  | 
 | 	/* | 
 | 	 * Currently we only log dir index keys. Even if we replay a log created | 
 | 	 * by an older kernel that logged both dir index and dir item keys, all | 
 | 	 * we need to do is process the dir index keys, we (and our caller) can | 
 | 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). | 
 | 	 */ | 
 | 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); | 
 | 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (log) { | 
 | 		struct btrfs_dir_item *log_di; | 
 |  | 
 | 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path, | 
 | 						     dir_key->objectid, | 
 | 						     dir_key->offset, &name, 0); | 
 | 		if (IS_ERR(log_di)) { | 
 | 			ret = PTR_ERR(log_di); | 
 | 			goto out; | 
 | 		} else if (log_di) { | 
 | 			/* The dentry exists in the log, we have nothing to do. */ | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(eb, di, &location); | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(log_path); | 
 | 	inode = btrfs_iget_logging(location.objectid, root); | 
 | 	if (IS_ERR(inode)) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	inc_nlink(&inode->vfs_inode); | 
 | 	ret = unlink_inode_for_log_replay(trans, dir, inode, &name); | 
 | 	/* | 
 | 	 * Unlike dir item keys, dir index keys can only have one name (entry) in | 
 | 	 * them, as there are no key collisions since each key has a unique offset | 
 | 	 * (an index number), so we're done. | 
 | 	 */ | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(log_path); | 
 | 	kfree(name.name); | 
 | 	if (inode) | 
 | 		iput(&inode->vfs_inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int replay_xattr_deletes(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, | 
 | 			      struct btrfs_root *log, | 
 | 			      struct btrfs_path *path, | 
 | 			      const u64 ino) | 
 | { | 
 | 	struct btrfs_key search_key; | 
 | 	struct btrfs_path *log_path; | 
 | 	int i; | 
 | 	int nritems; | 
 | 	int ret; | 
 |  | 
 | 	log_path = btrfs_alloc_path(); | 
 | 	if (!log_path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	search_key.objectid = ino; | 
 | 	search_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	search_key.offset = 0; | 
 | again: | 
 | 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | process_leaf: | 
 | 	nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	for (i = path->slots[0]; i < nritems; i++) { | 
 | 		struct btrfs_key key; | 
 | 		struct btrfs_dir_item *di; | 
 | 		struct btrfs_dir_item *log_di; | 
 | 		u32 total_size; | 
 | 		u32 cur; | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, i); | 
 | 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); | 
 | 		total_size = btrfs_item_size(path->nodes[0], i); | 
 | 		cur = 0; | 
 | 		while (cur < total_size) { | 
 | 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di); | 
 | 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di); | 
 | 			u32 this_len = sizeof(*di) + name_len + data_len; | 
 | 			char *name; | 
 |  | 
 | 			name = kmalloc(name_len, GFP_NOFS); | 
 | 			if (!name) { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			read_extent_buffer(path->nodes[0], name, | 
 | 					   (unsigned long)(di + 1), name_len); | 
 |  | 
 | 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, | 
 | 						    name, name_len, 0); | 
 | 			btrfs_release_path(log_path); | 
 | 			if (!log_di) { | 
 | 				/* Doesn't exist in log tree, so delete it. */ | 
 | 				btrfs_release_path(path); | 
 | 				di = btrfs_lookup_xattr(trans, root, path, ino, | 
 | 							name, name_len, -1); | 
 | 				kfree(name); | 
 | 				if (IS_ERR(di)) { | 
 | 					ret = PTR_ERR(di); | 
 | 					goto out; | 
 | 				} | 
 | 				ASSERT(di); | 
 | 				ret = btrfs_delete_one_dir_name(trans, root, | 
 | 								path, di); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 				btrfs_release_path(path); | 
 | 				search_key = key; | 
 | 				goto again; | 
 | 			} | 
 | 			kfree(name); | 
 | 			if (IS_ERR(log_di)) { | 
 | 				ret = PTR_ERR(log_di); | 
 | 				goto out; | 
 | 			} | 
 | 			cur += this_len; | 
 | 			di = (struct btrfs_dir_item *)((char *)di + this_len); | 
 | 		} | 
 | 	} | 
 | 	ret = btrfs_next_leaf(root, path); | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	else if (ret == 0) | 
 | 		goto process_leaf; | 
 | out: | 
 | 	btrfs_free_path(log_path); | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * deletion replay happens before we copy any new directory items | 
 |  * out of the log or out of backreferences from inodes.  It | 
 |  * scans the log to find ranges of keys that log is authoritative for, | 
 |  * and then scans the directory to find items in those ranges that are | 
 |  * not present in the log. | 
 |  * | 
 |  * Anything we don't find in the log is unlinked and removed from the | 
 |  * directory. | 
 |  */ | 
 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       u64 dirid, bool del_all) | 
 | { | 
 | 	u64 range_start; | 
 | 	u64 range_end; | 
 | 	int ret = 0; | 
 | 	struct btrfs_key dir_key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *log_path; | 
 | 	struct btrfs_inode *dir; | 
 |  | 
 | 	dir_key.objectid = dirid; | 
 | 	dir_key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	log_path = btrfs_alloc_path(); | 
 | 	if (!log_path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dir = btrfs_iget_logging(dirid, root); | 
 | 	/* | 
 | 	 * It isn't an error if the inode isn't there, that can happen because | 
 | 	 * we replay the deletes before we copy in the inode item from the log. | 
 | 	 */ | 
 | 	if (IS_ERR(dir)) { | 
 | 		btrfs_free_path(log_path); | 
 | 		ret = PTR_ERR(dir); | 
 | 		if (ret == -ENOENT) | 
 | 			ret = 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	range_start = 0; | 
 | 	range_end = 0; | 
 | 	while (1) { | 
 | 		if (del_all) | 
 | 			range_end = (u64)-1; | 
 | 		else { | 
 | 			ret = find_dir_range(log, path, dirid, | 
 | 					     &range_start, &range_end); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		dir_key.offset = range_start; | 
 | 		while (1) { | 
 | 			int nritems; | 
 | 			ret = btrfs_search_slot(NULL, root, &dir_key, path, | 
 | 						0, 0); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 			if (path->slots[0] >= nritems) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret == 1) | 
 | 					break; | 
 | 				else if (ret < 0) | 
 | 					goto out; | 
 | 			} | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 					      path->slots[0]); | 
 | 			if (found_key.objectid != dirid || | 
 | 			    found_key.type != dir_key.type) { | 
 | 				ret = 0; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (found_key.offset > range_end) | 
 | 				break; | 
 |  | 
 | 			ret = check_item_in_log(trans, log, path, | 
 | 						log_path, dir, | 
 | 						&found_key); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			if (found_key.offset == (u64)-1) | 
 | 				break; | 
 | 			dir_key.offset = found_key.offset + 1; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | 		if (range_end == (u64)-1) | 
 | 			break; | 
 | 		range_start = range_end + 1; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_free_path(log_path); | 
 | 	iput(&dir->vfs_inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * the process_func used to replay items from the log tree.  This | 
 |  * gets called in two different stages.  The first stage just looks | 
 |  * for inodes and makes sure they are all copied into the subvolume. | 
 |  * | 
 |  * The second stage copies all the other item types from the log into | 
 |  * the subvolume.  The two stage approach is slower, but gets rid of | 
 |  * lots of complexity around inodes referencing other inodes that exist | 
 |  * only in the log (references come from either directory items or inode | 
 |  * back refs). | 
 |  */ | 
 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | 
 | 			     struct walk_control *wc, u64 gen, int level) | 
 | { | 
 | 	int nritems; | 
 | 	struct btrfs_tree_parent_check check = { | 
 | 		.transid = gen, | 
 | 		.level = level | 
 | 	}; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = wc->replay_dest; | 
 | 	struct btrfs_key key; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_read_extent_buffer(eb, &check); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	level = btrfs_header_level(eb); | 
 |  | 
 | 	if (level != 0) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	nritems = btrfs_header_nritems(eb); | 
 | 	for (i = 0; i < nritems; i++) { | 
 | 		struct btrfs_inode_item *inode_item; | 
 |  | 
 | 		btrfs_item_key_to_cpu(eb, &key, i); | 
 |  | 
 | 		if (key.type == BTRFS_INODE_ITEM_KEY) { | 
 | 			inode_item = btrfs_item_ptr(eb, i, struct btrfs_inode_item); | 
 | 			/* | 
 | 			 * An inode with no links is either: | 
 | 			 * | 
 | 			 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never | 
 | 			 *    got linked before the fsync, skip it, as replaying | 
 | 			 *    it is pointless since it would be deleted later. | 
 | 			 *    We skip logging tmpfiles, but it's always possible | 
 | 			 *    we are replaying a log created with a kernel that | 
 | 			 *    used to log tmpfiles; | 
 | 			 * | 
 | 			 * 2) A non-tmpfile which got its last link deleted | 
 | 			 *    while holding an open fd on it and later got | 
 | 			 *    fsynced through that fd. We always log the | 
 | 			 *    parent inodes when inode->last_unlink_trans is | 
 | 			 *    set to the current transaction, so ignore all the | 
 | 			 *    inode items for this inode. We will delete the | 
 | 			 *    inode when processing the parent directory with | 
 | 			 *    replay_dir_deletes(). | 
 | 			 */ | 
 | 			if (btrfs_inode_nlink(eb, inode_item) == 0) { | 
 | 				wc->ignore_cur_inode = true; | 
 | 				continue; | 
 | 			} else { | 
 | 				wc->ignore_cur_inode = false; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Inode keys are done during the first stage. */ | 
 | 		if (key.type == BTRFS_INODE_ITEM_KEY && | 
 | 		    wc->stage == LOG_WALK_REPLAY_INODES) { | 
 | 			u32 mode; | 
 |  | 
 | 			ret = replay_xattr_deletes(wc->trans, root, log, path, key.objectid); | 
 | 			if (ret) | 
 | 				break; | 
 | 			mode = btrfs_inode_mode(eb, inode_item); | 
 | 			if (S_ISDIR(mode)) { | 
 | 				ret = replay_dir_deletes(wc->trans, root, log, path, | 
 | 							 key.objectid, false); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 | 			ret = overwrite_item(wc->trans, root, path, | 
 | 					     eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * Before replaying extents, truncate the inode to its | 
 | 			 * size. We need to do it now and not after log replay | 
 | 			 * because before an fsync we can have prealloc extents | 
 | 			 * added beyond the inode's i_size. If we did it after, | 
 | 			 * through orphan cleanup for example, we would drop | 
 | 			 * those prealloc extents just after replaying them. | 
 | 			 */ | 
 | 			if (S_ISREG(mode)) { | 
 | 				struct btrfs_drop_extents_args drop_args = { 0 }; | 
 | 				struct btrfs_inode *inode; | 
 | 				u64 from; | 
 |  | 
 | 				inode = btrfs_iget_logging(key.objectid, root); | 
 | 				if (IS_ERR(inode)) { | 
 | 					ret = PTR_ERR(inode); | 
 | 					break; | 
 | 				} | 
 | 				from = ALIGN(i_size_read(&inode->vfs_inode), | 
 | 					     root->fs_info->sectorsize); | 
 | 				drop_args.start = from; | 
 | 				drop_args.end = (u64)-1; | 
 | 				drop_args.drop_cache = true; | 
 | 				ret = btrfs_drop_extents(wc->trans, root, inode, | 
 | 							 &drop_args); | 
 | 				if (!ret) { | 
 | 					inode_sub_bytes(&inode->vfs_inode, | 
 | 							drop_args.bytes_found); | 
 | 					/* Update the inode's nbytes. */ | 
 | 					ret = btrfs_update_inode(wc->trans, inode); | 
 | 				} | 
 | 				iput(&inode->vfs_inode); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 |  | 
 | 			ret = link_to_fixup_dir(wc->trans, root, | 
 | 						path, key.objectid); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (wc->ignore_cur_inode) | 
 | 			continue; | 
 |  | 
 | 		if (key.type == BTRFS_DIR_INDEX_KEY && | 
 | 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { | 
 | 			ret = replay_one_dir_item(wc->trans, root, path, | 
 | 						  eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (wc->stage < LOG_WALK_REPLAY_ALL) | 
 | 			continue; | 
 |  | 
 | 		/* these keys are simply copied */ | 
 | 		if (key.type == BTRFS_XATTR_ITEM_KEY) { | 
 | 			ret = overwrite_item(wc->trans, root, path, | 
 | 					     eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} else if (key.type == BTRFS_INODE_REF_KEY || | 
 | 			   key.type == BTRFS_INODE_EXTREF_KEY) { | 
 | 			ret = add_inode_ref(wc->trans, root, log, path, | 
 | 					    eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
 | 			ret = replay_one_extent(wc->trans, root, path, | 
 | 						eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		/* | 
 | 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the | 
 | 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the | 
 | 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an | 
 | 		 * older kernel with such keys, ignore them. | 
 | 		 */ | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Correctly adjust the reserved bytes occupied by a log tree extent buffer | 
 |  */ | 
 | static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) | 
 | { | 
 | 	struct btrfs_block_group *cache; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(fs_info, start); | 
 | 	if (!cache) { | 
 | 		btrfs_err(fs_info, "unable to find block group for %llu", start); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&cache->space_info->lock); | 
 | 	spin_lock(&cache->lock); | 
 | 	cache->reserved -= fs_info->nodesize; | 
 | 	cache->space_info->bytes_reserved -= fs_info->nodesize; | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&cache->space_info->lock); | 
 |  | 
 | 	btrfs_put_block_group(cache); | 
 | } | 
 |  | 
 | static int clean_log_buffer(struct btrfs_trans_handle *trans, | 
 | 			    struct extent_buffer *eb) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	btrfs_tree_lock(eb); | 
 | 	btrfs_clear_buffer_dirty(trans, eb); | 
 | 	wait_on_extent_buffer_writeback(eb); | 
 | 	btrfs_tree_unlock(eb); | 
 |  | 
 | 	if (trans) { | 
 | 		ret = btrfs_pin_reserved_extent(trans, eb); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} else { | 
 | 		unaccount_log_buffer(eb->fs_info, eb->start); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, int *level, | 
 | 				   struct walk_control *wc) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u64 bytenr; | 
 | 	u64 ptr_gen; | 
 | 	struct extent_buffer *next; | 
 | 	struct extent_buffer *cur; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (*level > 0) { | 
 | 		struct btrfs_tree_parent_check check = { 0 }; | 
 |  | 
 | 		cur = path->nodes[*level]; | 
 |  | 
 | 		WARN_ON(btrfs_header_level(cur) != *level); | 
 |  | 
 | 		if (path->slots[*level] >= | 
 | 		    btrfs_header_nritems(cur)) | 
 | 			break; | 
 |  | 
 | 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | 
 | 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | 
 | 		check.transid = ptr_gen; | 
 | 		check.level = *level - 1; | 
 | 		check.has_first_key = true; | 
 | 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); | 
 |  | 
 | 		next = btrfs_find_create_tree_block(fs_info, bytenr, | 
 | 						    btrfs_header_owner(cur), | 
 | 						    *level - 1); | 
 | 		if (IS_ERR(next)) | 
 | 			return PTR_ERR(next); | 
 |  | 
 | 		if (*level == 1) { | 
 | 			ret = wc->process_func(root, next, wc, ptr_gen, | 
 | 					       *level - 1); | 
 | 			if (ret) { | 
 | 				free_extent_buffer(next); | 
 | 				return ret; | 
 | 			} | 
 |  | 
 | 			path->slots[*level]++; | 
 | 			if (wc->free) { | 
 | 				ret = btrfs_read_extent_buffer(next, &check); | 
 | 				if (ret) { | 
 | 					free_extent_buffer(next); | 
 | 					return ret; | 
 | 				} | 
 |  | 
 | 				ret = clean_log_buffer(trans, next); | 
 | 				if (ret) { | 
 | 					free_extent_buffer(next); | 
 | 					return ret; | 
 | 				} | 
 | 			} | 
 | 			free_extent_buffer(next); | 
 | 			continue; | 
 | 		} | 
 | 		ret = btrfs_read_extent_buffer(next, &check); | 
 | 		if (ret) { | 
 | 			free_extent_buffer(next); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		if (path->nodes[*level-1]) | 
 | 			free_extent_buffer(path->nodes[*level-1]); | 
 | 		path->nodes[*level-1] = next; | 
 | 		*level = btrfs_header_level(next); | 
 | 		path->slots[*level] = 0; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); | 
 |  | 
 | 	cond_resched(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, int *level, | 
 | 				 struct walk_control *wc) | 
 | { | 
 | 	int i; | 
 | 	int slot; | 
 | 	int ret; | 
 |  | 
 | 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | 
 | 		slot = path->slots[i]; | 
 | 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { | 
 | 			path->slots[i]++; | 
 | 			*level = i; | 
 | 			WARN_ON(*level == 0); | 
 | 			return 0; | 
 | 		} else { | 
 | 			ret = wc->process_func(root, path->nodes[*level], wc, | 
 | 				 btrfs_header_generation(path->nodes[*level]), | 
 | 				 *level); | 
 | 			if (ret) | 
 | 				return ret; | 
 |  | 
 | 			if (wc->free) { | 
 | 				ret = clean_log_buffer(trans, path->nodes[*level]); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 			} | 
 | 			free_extent_buffer(path->nodes[*level]); | 
 | 			path->nodes[*level] = NULL; | 
 | 			*level = i + 1; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * drop the reference count on the tree rooted at 'snap'.  This traverses | 
 |  * the tree freeing any blocks that have a ref count of zero after being | 
 |  * decremented. | 
 |  */ | 
 | static int walk_log_tree(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_root *log, struct walk_control *wc) | 
 | { | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int level; | 
 | 	struct btrfs_path *path; | 
 | 	int orig_level; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	level = btrfs_header_level(log->node); | 
 | 	orig_level = level; | 
 | 	path->nodes[level] = log->node; | 
 | 	refcount_inc(&log->node->refs); | 
 | 	path->slots[level] = 0; | 
 |  | 
 | 	while (1) { | 
 | 		wret = walk_down_log_tree(trans, log, path, &level, wc); | 
 | 		if (wret > 0) | 
 | 			break; | 
 | 		if (wret < 0) { | 
 | 			ret = wret; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		wret = walk_up_log_tree(trans, log, path, &level, wc); | 
 | 		if (wret > 0) | 
 | 			break; | 
 | 		if (wret < 0) { | 
 | 			ret = wret; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* was the root node processed? if not, catch it here */ | 
 | 	if (path->nodes[orig_level]) { | 
 | 		ret = wc->process_func(log, path->nodes[orig_level], wc, | 
 | 			 btrfs_header_generation(path->nodes[orig_level]), | 
 | 			 orig_level); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		if (wc->free) | 
 | 			ret = clean_log_buffer(trans, path->nodes[orig_level]); | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to update the item for a given subvolumes log root | 
 |  * in the tree of log roots | 
 |  */ | 
 | static int update_log_root(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *log, | 
 | 			   struct btrfs_root_item *root_item) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = log->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	if (log->log_transid == 1) { | 
 | 		/* insert root item on the first sync */ | 
 | 		ret = btrfs_insert_root(trans, fs_info->log_root_tree, | 
 | 				&log->root_key, root_item); | 
 | 	} else { | 
 | 		ret = btrfs_update_root(trans, fs_info->log_root_tree, | 
 | 				&log->root_key, root_item); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void wait_log_commit(struct btrfs_root *root, int transid) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	int index = transid % 2; | 
 |  | 
 | 	/* | 
 | 	 * we only allow two pending log transactions at a time, | 
 | 	 * so we know that if ours is more than 2 older than the | 
 | 	 * current transaction, we're done | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		prepare_to_wait(&root->log_commit_wait[index], | 
 | 				&wait, TASK_UNINTERRUPTIBLE); | 
 |  | 
 | 		if (!(root->log_transid_committed < transid && | 
 | 		      atomic_read(&root->log_commit[index]))) | 
 | 			break; | 
 |  | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		schedule(); | 
 | 		mutex_lock(&root->log_mutex); | 
 | 	} | 
 | 	finish_wait(&root->log_commit_wait[index], &wait); | 
 | } | 
 |  | 
 | static void wait_for_writer(struct btrfs_root *root) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	for (;;) { | 
 | 		prepare_to_wait(&root->log_writer_wait, &wait, | 
 | 				TASK_UNINTERRUPTIBLE); | 
 | 		if (!atomic_read(&root->log_writers)) | 
 | 			break; | 
 |  | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		schedule(); | 
 | 		mutex_lock(&root->log_mutex); | 
 | 	} | 
 | 	finish_wait(&root->log_writer_wait, &wait); | 
 | } | 
 |  | 
 | void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode) | 
 | { | 
 | 	ctx->log_ret = 0; | 
 | 	ctx->log_transid = 0; | 
 | 	ctx->log_new_dentries = false; | 
 | 	ctx->logging_new_name = false; | 
 | 	ctx->logging_new_delayed_dentries = false; | 
 | 	ctx->logged_before = false; | 
 | 	ctx->inode = inode; | 
 | 	INIT_LIST_HEAD(&ctx->list); | 
 | 	INIT_LIST_HEAD(&ctx->ordered_extents); | 
 | 	INIT_LIST_HEAD(&ctx->conflict_inodes); | 
 | 	ctx->num_conflict_inodes = 0; | 
 | 	ctx->logging_conflict_inodes = false; | 
 | 	ctx->scratch_eb = NULL; | 
 | } | 
 |  | 
 | void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_inode *inode = ctx->inode; | 
 |  | 
 | 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && | 
 | 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Don't care about allocation failure. This is just for optimization, | 
 | 	 * if we fail to allocate here, we will try again later if needed. | 
 | 	 */ | 
 | 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0); | 
 | } | 
 |  | 
 | void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_ordered_extent *tmp; | 
 |  | 
 | 	btrfs_assert_inode_locked(ctx->inode); | 
 |  | 
 | 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { | 
 | 		list_del_init(&ordered->log_list); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static inline void btrfs_remove_log_ctx(struct btrfs_root *root, | 
 | 					struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	list_del_init(&ctx->list); | 
 | 	mutex_unlock(&root->log_mutex); | 
 | } | 
 |  | 
 | /*  | 
 |  * Invoked in log mutex context, or be sure there is no other task which | 
 |  * can access the list. | 
 |  */ | 
 | static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, | 
 | 					     int index, int error) | 
 | { | 
 | 	struct btrfs_log_ctx *ctx; | 
 | 	struct btrfs_log_ctx *safe; | 
 |  | 
 | 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { | 
 | 		list_del_init(&ctx->list); | 
 | 		ctx->log_ret = error; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Sends a given tree log down to the disk and updates the super blocks to | 
 |  * record it.  When this call is done, you know that any inodes previously | 
 |  * logged are safely on disk only if it returns 0. | 
 |  * | 
 |  * Any other return value means you need to call btrfs_commit_transaction. | 
 |  * Some of the edge cases for fsyncing directories that have had unlinks | 
 |  * or renames done in the past mean that sometimes the only safe | 
 |  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN, | 
 |  * that has happened. | 
 |  */ | 
 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | 
 | 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	int index1; | 
 | 	int index2; | 
 | 	int mark; | 
 | 	int ret; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct btrfs_root *log_root_tree = fs_info->log_root_tree; | 
 | 	struct btrfs_root_item new_root_item; | 
 | 	int log_transid = 0; | 
 | 	struct btrfs_log_ctx root_log_ctx; | 
 | 	struct blk_plug plug; | 
 | 	u64 log_root_start; | 
 | 	u64 log_root_level; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	log_transid = ctx->log_transid; | 
 | 	if (root->log_transid_committed >= log_transid) { | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		return ctx->log_ret; | 
 | 	} | 
 |  | 
 | 	index1 = log_transid % 2; | 
 | 	if (atomic_read(&root->log_commit[index1])) { | 
 | 		wait_log_commit(root, log_transid); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		return ctx->log_ret; | 
 | 	} | 
 | 	ASSERT(log_transid == root->log_transid); | 
 | 	atomic_set(&root->log_commit[index1], 1); | 
 |  | 
 | 	/* wait for previous tree log sync to complete */ | 
 | 	if (atomic_read(&root->log_commit[(index1 + 1) % 2])) | 
 | 		wait_log_commit(root, log_transid - 1); | 
 |  | 
 | 	while (1) { | 
 | 		int batch = atomic_read(&root->log_batch); | 
 | 		/* when we're on an ssd, just kick the log commit out */ | 
 | 		if (!btrfs_test_opt(fs_info, SSD) && | 
 | 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { | 
 | 			mutex_unlock(&root->log_mutex); | 
 | 			schedule_timeout_uninterruptible(1); | 
 | 			mutex_lock(&root->log_mutex); | 
 | 		} | 
 | 		wait_for_writer(root); | 
 | 		if (batch == atomic_read(&root->log_batch)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* bail out if we need to do a full commit */ | 
 | 	if (btrfs_need_log_full_commit(trans)) { | 
 | 		ret = BTRFS_LOG_FORCE_COMMIT; | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (log_transid % 2 == 0) | 
 | 		mark = EXTENT_DIRTY_LOG1; | 
 | 	else | 
 | 		mark = EXTENT_DIRTY_LOG2; | 
 |  | 
 | 	/* we start IO on  all the marked extents here, but we don't actually | 
 | 	 * wait for them until later. | 
 | 	 */ | 
 | 	blk_start_plug(&plug); | 
 | 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); | 
 | 	/* | 
 | 	 * -EAGAIN happens when someone, e.g., a concurrent transaction | 
 | 	 *  commit, writes a dirty extent in this tree-log commit. This | 
 | 	 *  concurrent write will create a hole writing out the extents, | 
 | 	 *  and we cannot proceed on a zoned filesystem, requiring | 
 | 	 *  sequential writing. While we can bail out to a full commit | 
 | 	 *  here, but we can continue hoping the concurrent writing fills | 
 | 	 *  the hole. | 
 | 	 */ | 
 | 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) | 
 | 		ret = 0; | 
 | 	if (ret) { | 
 | 		blk_finish_plug(&plug); | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We _must_ update under the root->log_mutex in order to make sure we | 
 | 	 * have a consistent view of the log root we are trying to commit at | 
 | 	 * this moment. | 
 | 	 * | 
 | 	 * We _must_ copy this into a local copy, because we are not holding the | 
 | 	 * log_root_tree->log_mutex yet.  This is important because when we | 
 | 	 * commit the log_root_tree we must have a consistent view of the | 
 | 	 * log_root_tree when we update the super block to point at the | 
 | 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race | 
 | 	 * with the commit and possibly point at the new block which we may not | 
 | 	 * have written out. | 
 | 	 */ | 
 | 	btrfs_set_root_node(&log->root_item, log->node); | 
 | 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); | 
 |  | 
 | 	btrfs_set_root_log_transid(root, root->log_transid + 1); | 
 | 	log->log_transid = root->log_transid; | 
 | 	root->log_start_pid = 0; | 
 | 	/* | 
 | 	 * IO has been started, blocks of the log tree have WRITTEN flag set | 
 | 	 * in their headers. new modifications of the log will be written to | 
 | 	 * new positions. so it's safe to allow log writers to go in. | 
 | 	 */ | 
 | 	mutex_unlock(&root->log_mutex); | 
 |  | 
 | 	if (btrfs_is_zoned(fs_info)) { | 
 | 		mutex_lock(&fs_info->tree_root->log_mutex); | 
 | 		if (!log_root_tree->node) { | 
 | 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree); | 
 | 			if (ret) { | 
 | 				mutex_unlock(&fs_info->tree_root->log_mutex); | 
 | 				blk_finish_plug(&plug); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		mutex_unlock(&fs_info->tree_root->log_mutex); | 
 | 	} | 
 |  | 
 | 	btrfs_init_log_ctx(&root_log_ctx, NULL); | 
 |  | 
 | 	mutex_lock(&log_root_tree->log_mutex); | 
 |  | 
 | 	index2 = log_root_tree->log_transid % 2; | 
 | 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); | 
 | 	root_log_ctx.log_transid = log_root_tree->log_transid; | 
 |  | 
 | 	/* | 
 | 	 * Now we are safe to update the log_root_tree because we're under the | 
 | 	 * log_mutex, and we're a current writer so we're holding the commit | 
 | 	 * open until we drop the log_mutex. | 
 | 	 */ | 
 | 	ret = update_log_root(trans, log, &new_root_item); | 
 | 	if (ret) { | 
 | 		list_del_init(&root_log_ctx.list); | 
 | 		blk_finish_plug(&plug); | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		if (ret != -ENOSPC) | 
 | 			btrfs_err(fs_info, | 
 | 				  "failed to update log for root %llu ret %d", | 
 | 				  btrfs_root_id(root), ret); | 
 | 		btrfs_wait_tree_log_extents(log, mark); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { | 
 | 		blk_finish_plug(&plug); | 
 | 		list_del_init(&root_log_ctx.list); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		ret = root_log_ctx.log_ret; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (atomic_read(&log_root_tree->log_commit[index2])) { | 
 | 		blk_finish_plug(&plug); | 
 | 		ret = btrfs_wait_tree_log_extents(log, mark); | 
 | 		wait_log_commit(log_root_tree, | 
 | 				root_log_ctx.log_transid); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		if (!ret) | 
 | 			ret = root_log_ctx.log_ret; | 
 | 		goto out; | 
 | 	} | 
 | 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); | 
 | 	atomic_set(&log_root_tree->log_commit[index2], 1); | 
 |  | 
 | 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { | 
 | 		wait_log_commit(log_root_tree, | 
 | 				root_log_ctx.log_transid - 1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * now that we've moved on to the tree of log tree roots, | 
 | 	 * check the full commit flag again | 
 | 	 */ | 
 | 	if (btrfs_need_log_full_commit(trans)) { | 
 | 		blk_finish_plug(&plug); | 
 | 		btrfs_wait_tree_log_extents(log, mark); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		ret = BTRFS_LOG_FORCE_COMMIT; | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_write_marked_extents(fs_info, | 
 | 					 &log_root_tree->dirty_log_pages, | 
 | 					 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); | 
 | 	blk_finish_plug(&plug); | 
 | 	/* | 
 | 	 * As described above, -EAGAIN indicates a hole in the extents. We | 
 | 	 * cannot wait for these write outs since the waiting cause a | 
 | 	 * deadlock. Bail out to the full commit instead. | 
 | 	 */ | 
 | 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		btrfs_wait_tree_log_extents(log, mark); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		goto out_wake_log_root; | 
 | 	} else if (ret) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 | 	ret = btrfs_wait_tree_log_extents(log, mark); | 
 | 	if (!ret) | 
 | 		ret = btrfs_wait_tree_log_extents(log_root_tree, | 
 | 						  EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); | 
 | 	if (ret) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 |  | 
 | 	log_root_start = log_root_tree->node->start; | 
 | 	log_root_level = btrfs_header_level(log_root_tree->node); | 
 | 	log_root_tree->log_transid++; | 
 | 	mutex_unlock(&log_root_tree->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Here we are guaranteed that nobody is going to write the superblock | 
 | 	 * for the current transaction before us and that neither we do write | 
 | 	 * our superblock before the previous transaction finishes its commit | 
 | 	 * and writes its superblock, because: | 
 | 	 * | 
 | 	 * 1) We are holding a handle on the current transaction, so no body | 
 | 	 *    can commit it until we release the handle; | 
 | 	 * | 
 | 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so | 
 | 	 *    if the previous transaction is still committing, and hasn't yet | 
 | 	 *    written its superblock, we wait for it to do it, because a | 
 | 	 *    transaction commit acquires the tree_log_mutex when the commit | 
 | 	 *    begins and releases it only after writing its superblock. | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->tree_log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * The previous transaction writeout phase could have failed, and thus | 
 | 	 * marked the fs in an error state.  We must not commit here, as we | 
 | 	 * could have updated our generation in the super_for_commit and | 
 | 	 * writing the super here would result in transid mismatches.  If there | 
 | 	 * is an error here just bail. | 
 | 	 */ | 
 | 	if (BTRFS_FS_ERROR(fs_info)) { | 
 | 		ret = -EIO; | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		mutex_unlock(&fs_info->tree_log_mutex); | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 |  | 
 | 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); | 
 | 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); | 
 | 	ret = write_all_supers(fs_info, 1); | 
 | 	mutex_unlock(&fs_info->tree_log_mutex); | 
 | 	if (ret) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We know there can only be one task here, since we have not yet set | 
 | 	 * root->log_commit[index1] to 0 and any task attempting to sync the | 
 | 	 * log must wait for the previous log transaction to commit if it's | 
 | 	 * still in progress or wait for the current log transaction commit if | 
 | 	 * someone else already started it. We use <= and not < because the | 
 | 	 * first log transaction has an ID of 0. | 
 | 	 */ | 
 | 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); | 
 | 	btrfs_set_root_last_log_commit(root, log_transid); | 
 |  | 
 | out_wake_log_root: | 
 | 	mutex_lock(&log_root_tree->log_mutex); | 
 | 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); | 
 |  | 
 | 	log_root_tree->log_transid_committed++; | 
 | 	atomic_set(&log_root_tree->log_commit[index2], 0); | 
 | 	mutex_unlock(&log_root_tree->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so | 
 | 	 * all the updates above are seen by the woken threads. It might not be | 
 | 	 * necessary, but proving that seems to be hard. | 
 | 	 */ | 
 | 	cond_wake_up(&log_root_tree->log_commit_wait[index2]); | 
 | out: | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	btrfs_remove_all_log_ctxs(root, index1, ret); | 
 | 	root->log_transid_committed++; | 
 | 	atomic_set(&root->log_commit[index1], 0); | 
 | 	mutex_unlock(&root->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so | 
 | 	 * all the updates above are seen by the woken threads. It might not be | 
 | 	 * necessary, but proving that seems to be hard. | 
 | 	 */ | 
 | 	cond_wake_up(&root->log_commit_wait[index1]); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void free_log_tree(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *log) | 
 | { | 
 | 	int ret; | 
 | 	struct walk_control wc = { | 
 | 		.free = 1, | 
 | 		.process_func = process_one_buffer | 
 | 	}; | 
 |  | 
 | 	if (log->node) { | 
 | 		ret = walk_log_tree(trans, log, &wc); | 
 | 		if (ret) { | 
 | 			/* | 
 | 			 * We weren't able to traverse the entire log tree, the | 
 | 			 * typical scenario is getting an -EIO when reading an | 
 | 			 * extent buffer of the tree, due to a previous writeback | 
 | 			 * failure of it. | 
 | 			 */ | 
 | 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, | 
 | 				&log->fs_info->fs_state); | 
 |  | 
 | 			/* | 
 | 			 * Some extent buffers of the log tree may still be dirty | 
 | 			 * and not yet written back to storage, because we may | 
 | 			 * have updates to a log tree without syncing a log tree, | 
 | 			 * such as during rename and link operations. So flush | 
 | 			 * them out and wait for their writeback to complete, so | 
 | 			 * that we properly cleanup their state and pages. | 
 | 			 */ | 
 | 			btrfs_write_marked_extents(log->fs_info, | 
 | 						   &log->dirty_log_pages, | 
 | 						   EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); | 
 | 			btrfs_wait_tree_log_extents(log, | 
 | 						    EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); | 
 |  | 
 | 			if (trans) | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 			else | 
 | 				btrfs_handle_fs_error(log->fs_info, ret, NULL); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_extent_io_tree_release(&log->dirty_log_pages); | 
 | 	btrfs_extent_io_tree_release(&log->log_csum_range); | 
 |  | 
 | 	btrfs_put_root(log); | 
 | } | 
 |  | 
 | /* | 
 |  * free all the extents used by the tree log.  This should be called | 
 |  * at commit time of the full transaction | 
 |  */ | 
 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | 
 | { | 
 | 	if (root->log_root) { | 
 | 		free_log_tree(trans, root->log_root); | 
 | 		root->log_root = NULL; | 
 | 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	if (fs_info->log_root_tree) { | 
 | 		free_log_tree(trans, fs_info->log_root_tree); | 
 | 		fs_info->log_root_tree = NULL; | 
 | 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if an inode was logged in the current transaction. This correctly deals | 
 |  * with the case where the inode was logged but has a logged_trans of 0, which | 
 |  * happens if the inode is evicted and loaded again, as logged_trans is an in | 
 |  * memory only field (not persisted). | 
 |  * | 
 |  * Returns 1 if the inode was logged before in the transaction, 0 if it was not, | 
 |  * and < 0 on error. | 
 |  */ | 
 | static int inode_logged(const struct btrfs_trans_handle *trans, | 
 | 			struct btrfs_inode *inode, | 
 | 			struct btrfs_path *path_in) | 
 | { | 
 | 	struct btrfs_path *path = path_in; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	if (inode->logged_trans == trans->transid) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * If logged_trans is not 0, then we know the inode logged was not logged | 
 | 	 * in this transaction, so we can return false right away. | 
 | 	 */ | 
 | 	if (inode->logged_trans > 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If no log tree was created for this root in this transaction, then | 
 | 	 * the inode can not have been logged in this transaction. In that case | 
 | 	 * set logged_trans to anything greater than 0 and less than the current | 
 | 	 * transaction's ID, to avoid the search below in a future call in case | 
 | 	 * a log tree gets created after this. | 
 | 	 */ | 
 | 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { | 
 | 		inode->logged_trans = trans->transid - 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have a log tree and the inode's logged_trans is 0. We can't tell | 
 | 	 * for sure if the inode was logged before in this transaction by looking | 
 | 	 * only at logged_trans. We could be pessimistic and assume it was, but | 
 | 	 * that can lead to unnecessarily logging an inode during rename and link | 
 | 	 * operations, and then further updating the log in followup rename and | 
 | 	 * link operations, specially if it's a directory, which adds latency | 
 | 	 * visible to applications doing a series of rename or link operations. | 
 | 	 * | 
 | 	 * A logged_trans of 0 here can mean several things: | 
 | 	 * | 
 | 	 * 1) The inode was never logged since the filesystem was mounted, and may | 
 | 	 *    or may have not been evicted and loaded again; | 
 | 	 * | 
 | 	 * 2) The inode was logged in a previous transaction, then evicted and | 
 | 	 *    then loaded again; | 
 | 	 * | 
 | 	 * 3) The inode was logged in the current transaction, then evicted and | 
 | 	 *    then loaded again. | 
 | 	 * | 
 | 	 * For cases 1) and 2) we don't want to return true, but we need to detect | 
 | 	 * case 3) and return true. So we do a search in the log root for the inode | 
 | 	 * item. | 
 | 	 */ | 
 | 	key.objectid = btrfs_ino(inode); | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	if (!path) { | 
 | 		path = btrfs_alloc_path(); | 
 | 		if (!path) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); | 
 |  | 
 | 	if (path_in) | 
 | 		btrfs_release_path(path); | 
 | 	else | 
 | 		btrfs_free_path(path); | 
 |  | 
 | 	/* | 
 | 	 * Logging an inode always results in logging its inode item. So if we | 
 | 	 * did not find the item we know the inode was not logged for sure. | 
 | 	 */ | 
 | 	if (ret < 0) { | 
 | 		return ret; | 
 | 	} else if (ret > 0) { | 
 | 		/* | 
 | 		 * Set logged_trans to a value greater than 0 and less then the | 
 | 		 * current transaction to avoid doing the search in future calls. | 
 | 		 */ | 
 | 		inode->logged_trans = trans->transid - 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The inode was previously logged and then evicted, set logged_trans to | 
 | 	 * the current transacion's ID, to avoid future tree searches as long as | 
 | 	 * the inode is not evicted again. | 
 | 	 */ | 
 | 	inode->logged_trans = trans->transid; | 
 |  | 
 | 	/* | 
 | 	 * If it's a directory, then we must set last_dir_index_offset to the | 
 | 	 * maximum possible value, so that the next attempt to log the inode does | 
 | 	 * not skip checking if dir index keys found in modified subvolume tree | 
 | 	 * leaves have been logged before, otherwise it would result in attempts | 
 | 	 * to insert duplicate dir index keys in the log tree. This must be done | 
 | 	 * because last_dir_index_offset is an in-memory only field, not persisted | 
 | 	 * in the inode item or any other on-disk structure, so its value is lost | 
 | 	 * once the inode is evicted. | 
 | 	 */ | 
 | 	if (S_ISDIR(inode->vfs_inode.i_mode)) | 
 | 		inode->last_dir_index_offset = (u64)-1; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Delete a directory entry from the log if it exists. | 
 |  * | 
 |  * Returns < 0 on error | 
 |  *           1 if the entry does not exists | 
 |  *           0 if the entry existed and was successfully deleted | 
 |  */ | 
 | static int del_logged_dentry(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *log, | 
 | 			     struct btrfs_path *path, | 
 | 			     u64 dir_ino, | 
 | 			     const struct fscrypt_str *name, | 
 | 			     u64 index) | 
 | { | 
 | 	struct btrfs_dir_item *di; | 
 |  | 
 | 	/* | 
 | 	 * We only log dir index items of a directory, so we don't need to look | 
 | 	 * for dir item keys. | 
 | 	 */ | 
 | 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, | 
 | 					 index, name, -1); | 
 | 	if (IS_ERR(di)) | 
 | 		return PTR_ERR(di); | 
 | 	else if (!di) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * We do not need to update the size field of the directory's | 
 | 	 * inode item because on log replay we update the field to reflect | 
 | 	 * all existing entries in the directory (see overwrite_item()). | 
 | 	 */ | 
 | 	return btrfs_del_item(trans, log, path); | 
 | } | 
 |  | 
 | /* | 
 |  * If both a file and directory are logged, and unlinks or renames are | 
 |  * mixed in, we have a few interesting corners: | 
 |  * | 
 |  * create file X in dir Y | 
 |  * link file X to X.link in dir Y | 
 |  * fsync file X | 
 |  * unlink file X but leave X.link | 
 |  * fsync dir Y | 
 |  * | 
 |  * After a crash we would expect only X.link to exist.  But file X | 
 |  * didn't get fsync'd again so the log has back refs for X and X.link. | 
 |  * | 
 |  * We solve this by removing directory entries and inode backrefs from the | 
 |  * log when a file that was logged in the current transaction is | 
 |  * unlinked.  Any later fsync will include the updated log entries, and | 
 |  * we'll be able to reconstruct the proper directory items from backrefs. | 
 |  * | 
 |  * This optimizations allows us to avoid relogging the entire inode | 
 |  * or the entire directory. | 
 |  */ | 
 | void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  const struct fscrypt_str *name, | 
 | 				  struct btrfs_inode *dir, u64 index) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 |  | 
 | 	ret = inode_logged(trans, dir, NULL); | 
 | 	if (ret == 0) | 
 | 		return; | 
 | 	else if (ret < 0) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = join_running_log_trans(root); | 
 | 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); | 
 | 	if (WARN_ON(ret)) | 
 | 		goto out; | 
 |  | 
 | 	mutex_lock(&dir->log_mutex); | 
 |  | 
 | 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), | 
 | 				name, index); | 
 | 	mutex_unlock(&dir->log_mutex); | 
 | 	if (ret < 0) | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 	btrfs_end_log_trans(root); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | } | 
 |  | 
 | /* see comments for btrfs_del_dir_entries_in_log */ | 
 | void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				const struct fscrypt_str *name, | 
 | 				struct btrfs_inode *inode, u64 dirid) | 
 | { | 
 | 	struct btrfs_root *log; | 
 | 	int ret; | 
 |  | 
 | 	ret = inode_logged(trans, inode, NULL); | 
 | 	if (ret == 0) | 
 | 		return; | 
 | 	else if (ret < 0) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = join_running_log_trans(root); | 
 | 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); | 
 | 	if (WARN_ON(ret)) | 
 | 		return; | 
 | 	log = root->log_root; | 
 | 	mutex_lock(&inode->log_mutex); | 
 |  | 
 | 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL); | 
 | 	mutex_unlock(&inode->log_mutex); | 
 | 	if (ret < 0 && ret != -ENOENT) | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 	btrfs_end_log_trans(root); | 
 | } | 
 |  | 
 | /* | 
 |  * creates a range item in the log for 'dirid'.  first_offset and | 
 |  * last_offset tell us which parts of the key space the log should | 
 |  * be considered authoritative for. | 
 |  */ | 
 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       u64 dirid, | 
 | 				       u64 first_offset, u64 last_offset) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_dir_log_item *item; | 
 |  | 
 | 	key.objectid = dirid; | 
 | 	key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
 | 	key.offset = first_offset; | 
 | 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | 
 | 	/* | 
 | 	 * -EEXIST is fine and can happen sporadically when we are logging a | 
 | 	 * directory and have concurrent insertions in the subvolume's tree for | 
 | 	 * items from other inodes and that result in pushing off some dir items | 
 | 	 * from one leaf to another in order to accommodate for the new items. | 
 | 	 * This results in logging the same dir index range key. | 
 | 	 */ | 
 | 	if (ret && ret != -EEXIST) | 
 | 		return ret; | 
 |  | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	if (ret == -EEXIST) { | 
 | 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); | 
 |  | 
 | 		/* | 
 | 		 * btrfs_del_dir_entries_in_log() might have been called during | 
 | 		 * an unlink between the initial insertion of this key and the | 
 | 		 * current update, or we might be logging a single entry deletion | 
 | 		 * during a rename, so set the new last_offset to the max value. | 
 | 		 */ | 
 | 		last_offset = max(last_offset, curr_end); | 
 | 	} | 
 | 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int flush_dir_items_batch(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_inode *inode, | 
 | 				 struct extent_buffer *src, | 
 | 				 struct btrfs_path *dst_path, | 
 | 				 int start_slot, | 
 | 				 int count) | 
 | { | 
 | 	struct btrfs_root *log = inode->root->log_root; | 
 | 	char *ins_data = NULL; | 
 | 	struct btrfs_item_batch batch; | 
 | 	struct extent_buffer *dst; | 
 | 	unsigned long src_offset; | 
 | 	unsigned long dst_offset; | 
 | 	u64 last_index; | 
 | 	struct btrfs_key key; | 
 | 	u32 item_size; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(count > 0); | 
 | 	batch.nr = count; | 
 |  | 
 | 	if (count == 1) { | 
 | 		btrfs_item_key_to_cpu(src, &key, start_slot); | 
 | 		item_size = btrfs_item_size(src, start_slot); | 
 | 		batch.keys = &key; | 
 | 		batch.data_sizes = &item_size; | 
 | 		batch.total_data_size = item_size; | 
 | 	} else { | 
 | 		struct btrfs_key *ins_keys; | 
 | 		u32 *ins_sizes; | 
 |  | 
 | 		ins_data = kmalloc(count * sizeof(u32) + | 
 | 				   count * sizeof(struct btrfs_key), GFP_NOFS); | 
 | 		if (!ins_data) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		ins_sizes = (u32 *)ins_data; | 
 | 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); | 
 | 		batch.keys = ins_keys; | 
 | 		batch.data_sizes = ins_sizes; | 
 | 		batch.total_data_size = 0; | 
 |  | 
 | 		for (i = 0; i < count; i++) { | 
 | 			const int slot = start_slot + i; | 
 |  | 
 | 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot); | 
 | 			ins_sizes[i] = btrfs_item_size(src, slot); | 
 | 			batch.total_data_size += ins_sizes[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	dst = dst_path->nodes[0]; | 
 | 	/* | 
 | 	 * Copy all the items in bulk, in a single copy operation. Item data is | 
 | 	 * organized such that it's placed at the end of a leaf and from right | 
 | 	 * to left. For example, the data for the second item ends at an offset | 
 | 	 * that matches the offset where the data for the first item starts, the | 
 | 	 * data for the third item ends at an offset that matches the offset | 
 | 	 * where the data of the second items starts, and so on. | 
 | 	 * Therefore our source and destination start offsets for copy match the | 
 | 	 * offsets of the last items (highest slots). | 
 | 	 */ | 
 | 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); | 
 | 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); | 
 | 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); | 
 | 	btrfs_release_path(dst_path); | 
 |  | 
 | 	last_index = batch.keys[count - 1].offset; | 
 | 	ASSERT(last_index > inode->last_dir_index_offset); | 
 |  | 
 | 	/* | 
 | 	 * If for some unexpected reason the last item's index is not greater | 
 | 	 * than the last index we logged, warn and force a transaction commit. | 
 | 	 */ | 
 | 	if (WARN_ON(last_index <= inode->last_dir_index_offset)) | 
 | 		ret = BTRFS_LOG_FORCE_COMMIT; | 
 | 	else | 
 | 		inode->last_dir_index_offset = last_index; | 
 |  | 
 | 	if (btrfs_get_first_dir_index_to_log(inode) == 0) | 
 | 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); | 
 | out: | 
 | 	kfree(ins_data); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	const int slot = path->slots[0]; | 
 |  | 
 | 	if (ctx->scratch_eb) { | 
 | 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]); | 
 | 	} else { | 
 | 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]); | 
 | 		if (!ctx->scratch_eb) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	path->nodes[0] = ctx->scratch_eb; | 
 | 	path->slots[0] = slot; | 
 | 	/* | 
 | 	 * Add extra ref to scratch eb so that it is not freed when callers | 
 | 	 * release the path, so we can reuse it later if needed. | 
 | 	 */ | 
 | 	refcount_inc(&ctx->scratch_eb->refs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int process_dir_items_leaf(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_inode *inode, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct btrfs_path *dst_path, | 
 | 				  struct btrfs_log_ctx *ctx, | 
 | 				  u64 *last_old_dentry_offset) | 
 | { | 
 | 	struct btrfs_root *log = inode->root->log_root; | 
 | 	struct extent_buffer *src; | 
 | 	const int nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	bool last_found = false; | 
 | 	int batch_start = 0; | 
 | 	int batch_size = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * We need to clone the leaf, release the read lock on it, and use the | 
 | 	 * clone before modifying the log tree. See the comment at copy_items() | 
 | 	 * about why we need to do this. | 
 | 	 */ | 
 | 	ret = clone_leaf(path, ctx); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	src = path->nodes[0]; | 
 |  | 
 | 	for (int i = path->slots[0]; i < nritems; i++) { | 
 | 		struct btrfs_dir_item *di; | 
 | 		struct btrfs_key key; | 
 | 		int ret; | 
 |  | 
 | 		btrfs_item_key_to_cpu(src, &key, i); | 
 |  | 
 | 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { | 
 | 			last_found = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item); | 
 |  | 
 | 		/* | 
 | 		 * Skip ranges of items that consist only of dir item keys created | 
 | 		 * in past transactions. However if we find a gap, we must log a | 
 | 		 * dir index range item for that gap, so that index keys in that | 
 | 		 * gap are deleted during log replay. | 
 | 		 */ | 
 | 		if (btrfs_dir_transid(src, di) < trans->transid) { | 
 | 			if (key.offset > *last_old_dentry_offset + 1) { | 
 | 				ret = insert_dir_log_key(trans, log, dst_path, | 
 | 						 ino, *last_old_dentry_offset + 1, | 
 | 						 key.offset - 1); | 
 | 				if (ret < 0) | 
 | 					return ret; | 
 | 			} | 
 |  | 
 | 			*last_old_dentry_offset = key.offset; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* If we logged this dir index item before, we can skip it. */ | 
 | 		if (key.offset <= inode->last_dir_index_offset) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We must make sure that when we log a directory entry, the | 
 | 		 * corresponding inode, after log replay, has a matching link | 
 | 		 * count. For example: | 
 | 		 * | 
 | 		 * touch foo | 
 | 		 * mkdir mydir | 
 | 		 * sync | 
 | 		 * ln foo mydir/bar | 
 | 		 * xfs_io -c "fsync" mydir | 
 | 		 * <crash> | 
 | 		 * <mount fs and log replay> | 
 | 		 * | 
 | 		 * Would result in a fsync log that when replayed, our file inode | 
 | 		 * would have a link count of 1, but we get two directory entries | 
 | 		 * pointing to the same inode. After removing one of the names, | 
 | 		 * it would not be possible to remove the other name, which | 
 | 		 * resulted always in stale file handle errors, and would not be | 
 | 		 * possible to rmdir the parent directory, since its i_size could | 
 | 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, | 
 | 		 * resulting in -ENOTEMPTY errors. | 
 | 		 */ | 
 | 		if (!ctx->log_new_dentries) { | 
 | 			struct btrfs_key di_key; | 
 |  | 
 | 			btrfs_dir_item_key_to_cpu(src, di, &di_key); | 
 | 			if (di_key.type != BTRFS_ROOT_ITEM_KEY) | 
 | 				ctx->log_new_dentries = true; | 
 | 		} | 
 |  | 
 | 		if (batch_size == 0) | 
 | 			batch_start = i; | 
 | 		batch_size++; | 
 | 	} | 
 |  | 
 | 	if (batch_size > 0) { | 
 | 		int ret; | 
 |  | 
 | 		ret = flush_dir_items_batch(trans, inode, src, dst_path, | 
 | 					    batch_start, batch_size); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return last_found ? 1 : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * log all the items included in the current transaction for a given | 
 |  * directory.  This also creates the range items in the log tree required | 
 |  * to replay anything deleted before the fsync | 
 |  */ | 
 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_inode *inode, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_path *dst_path, | 
 | 			  struct btrfs_log_ctx *ctx, | 
 | 			  u64 min_offset, u64 *last_offset_ret) | 
 | { | 
 | 	struct btrfs_key min_key; | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	int ret; | 
 | 	u64 last_old_dentry_offset = min_offset - 1; | 
 | 	u64 last_offset = (u64)-1; | 
 | 	u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	min_key.objectid = ino; | 
 | 	min_key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	min_key.offset = min_offset; | 
 |  | 
 | 	ret = btrfs_search_forward(root, &min_key, path, trans->transid); | 
 |  | 
 | 	/* | 
 | 	 * we didn't find anything from this transaction, see if there | 
 | 	 * is anything at all | 
 | 	 */ | 
 | 	if (ret != 0 || min_key.objectid != ino || | 
 | 	    min_key.type != BTRFS_DIR_INDEX_KEY) { | 
 | 		min_key.objectid = ino; | 
 | 		min_key.type = BTRFS_DIR_INDEX_KEY; | 
 | 		min_key.offset = (u64)-1; | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
 | 		if (ret < 0) { | 
 | 			btrfs_release_path(path); | 
 | 			return ret; | 
 | 		} | 
 | 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); | 
 |  | 
 | 		/* if ret == 0 there are items for this type, | 
 | 		 * create a range to tell us the last key of this type. | 
 | 		 * otherwise, there are no items in this directory after | 
 | 		 * *min_offset, and we create a range to indicate that. | 
 | 		 */ | 
 | 		if (ret == 0) { | 
 | 			struct btrfs_key tmp; | 
 |  | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &tmp, | 
 | 					      path->slots[0]); | 
 | 			if (tmp.type == BTRFS_DIR_INDEX_KEY) | 
 | 				last_old_dentry_offset = tmp.offset; | 
 | 		} else if (ret > 0) { | 
 | 			ret = 0; | 
 | 		} | 
 |  | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* go backward to find any previous key */ | 
 | 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); | 
 | 	if (ret == 0) { | 
 | 		struct btrfs_key tmp; | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
 | 		/* | 
 | 		 * The dir index key before the first one we found that needs to | 
 | 		 * be logged might be in a previous leaf, and there might be a | 
 | 		 * gap between these keys, meaning that we had deletions that | 
 | 		 * happened. So the key range item we log (key type | 
 | 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the | 
 | 		 * previous key's offset plus 1, so that those deletes are replayed. | 
 | 		 */ | 
 | 		if (tmp.type == BTRFS_DIR_INDEX_KEY) | 
 | 			last_old_dentry_offset = tmp.offset; | 
 | 	} else if (ret < 0) { | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * Find the first key from this transaction again or the one we were at | 
 | 	 * in the loop below in case we had to reschedule. We may be logging the | 
 | 	 * directory without holding its VFS lock, which happen when logging new | 
 | 	 * dentries (through log_new_dir_dentries()) or in some cases when we | 
 | 	 * need to log the parent directory of an inode. This means a dir index | 
 | 	 * key might be deleted from the inode's root, and therefore we may not | 
 | 	 * find it anymore. If we can't find it, just move to the next key. We | 
 | 	 * can not bail out and ignore, because if we do that we will simply | 
 | 	 * not log dir index keys that come after the one that was just deleted | 
 | 	 * and we can end up logging a dir index range that ends at (u64)-1 | 
 | 	 * (@last_offset is initialized to that), resulting in removing dir | 
 | 	 * entries we should not remove at log replay time. | 
 | 	 */ | 
 | search: | 
 | 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
 | 	if (ret > 0) { | 
 | 		ret = btrfs_next_item(root, path); | 
 | 		if (ret > 0) { | 
 | 			/* There are no more keys in the inode's root. */ | 
 | 			ret = 0; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 | 	if (ret < 0) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * we have a block from this transaction, log every item in it | 
 | 	 * from our directory | 
 | 	 */ | 
 | 	while (1) { | 
 | 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, | 
 | 					     &last_old_dentry_offset); | 
 | 		if (ret != 0) { | 
 | 			if (ret > 0) | 
 | 				ret = 0; | 
 | 			goto done; | 
 | 		} | 
 | 		path->slots[0] = btrfs_header_nritems(path->nodes[0]); | 
 |  | 
 | 		/* | 
 | 		 * look ahead to the next item and see if it is also | 
 | 		 * from this directory and from this transaction | 
 | 		 */ | 
 | 		ret = btrfs_next_leaf(root, path); | 
 | 		if (ret) { | 
 | 			if (ret == 1) { | 
 | 				last_offset = (u64)-1; | 
 | 				ret = 0; | 
 | 			} | 
 | 			goto done; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); | 
 | 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { | 
 | 			last_offset = (u64)-1; | 
 | 			goto done; | 
 | 		} | 
 | 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | 
 | 			/* | 
 | 			 * The next leaf was not changed in the current transaction | 
 | 			 * and has at least one dir index key. | 
 | 			 * We check for the next key because there might have been | 
 | 			 * one or more deletions between the last key we logged and | 
 | 			 * that next key. So the key range item we log (key type | 
 | 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's | 
 | 			 * offset minus 1, so that those deletes are replayed. | 
 | 			 */ | 
 | 			last_offset = min_key.offset - 1; | 
 | 			goto done; | 
 | 		} | 
 | 		if (need_resched()) { | 
 | 			btrfs_release_path(path); | 
 | 			cond_resched(); | 
 | 			goto search; | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(dst_path); | 
 |  | 
 | 	if (ret == 0) { | 
 | 		*last_offset_ret = last_offset; | 
 | 		/* | 
 | 		 * In case the leaf was changed in the current transaction but | 
 | 		 * all its dir items are from a past transaction, the last item | 
 | 		 * in the leaf is a dir item and there's no gap between that last | 
 | 		 * dir item and the first one on the next leaf (which did not | 
 | 		 * change in the current transaction), then we don't need to log | 
 | 		 * a range, last_old_dentry_offset is == to last_offset. | 
 | 		 */ | 
 | 		ASSERT(last_old_dentry_offset <= last_offset); | 
 | 		if (last_old_dentry_offset < last_offset) | 
 | 			ret = insert_dir_log_key(trans, log, path, ino, | 
 | 						 last_old_dentry_offset + 1, | 
 | 						 last_offset); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If the inode was logged before and it was evicted, then its | 
 |  * last_dir_index_offset is (u64)-1, so we don't the value of the last index | 
 |  * key offset. If that's the case, search for it and update the inode. This | 
 |  * is to avoid lookups in the log tree every time we try to insert a dir index | 
 |  * key from a leaf changed in the current transaction, and to allow us to always | 
 |  * do batch insertions of dir index keys. | 
 |  */ | 
 | static int update_last_dir_index_offset(struct btrfs_inode *inode, | 
 | 					struct btrfs_path *path, | 
 | 					const struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&inode->log_mutex); | 
 |  | 
 | 	if (inode->last_dir_index_offset != (u64)-1) | 
 | 		return 0; | 
 |  | 
 | 	if (!ctx->logged_before) { | 
 | 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); | 
 | 	/* | 
 | 	 * An error happened or we actually have an index key with an offset | 
 | 	 * value of (u64)-1. Bail out, we're done. | 
 | 	 */ | 
 | 	if (ret <= 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; | 
 |  | 
 | 	/* | 
 | 	 * No dir index items, bail out and leave last_dir_index_offset with | 
 | 	 * the value right before the first valid index value. | 
 | 	 */ | 
 | 	if (path->slots[0] == 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * btrfs_search_slot() left us at one slot beyond the slot with the last | 
 | 	 * index key, or beyond the last key of the directory that is not an | 
 | 	 * index key. If we have an index key before, set last_dir_index_offset | 
 | 	 * to its offset value, otherwise leave it with a value right before the | 
 | 	 * first valid index value, as it means we have an empty directory. | 
 | 	 */ | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); | 
 | 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) | 
 | 		inode->last_dir_index_offset = key.offset; | 
 |  | 
 | out: | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * logging directories is very similar to logging inodes, We find all the items | 
 |  * from the current transaction and write them to the log. | 
 |  * | 
 |  * The recovery code scans the directory in the subvolume, and if it finds a | 
 |  * key in the range logged that is not present in the log tree, then it means | 
 |  * that dir entry was unlinked during the transaction. | 
 |  * | 
 |  * In order for that scan to work, we must include one key smaller than | 
 |  * the smallest logged by this transaction and one key larger than the largest | 
 |  * key logged by this transaction. | 
 |  */ | 
 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_inode *inode, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_path *dst_path, | 
 | 			  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	u64 min_key; | 
 | 	u64 max_key; | 
 | 	int ret; | 
 |  | 
 | 	ret = update_last_dir_index_offset(inode, path, ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	min_key = BTRFS_DIR_START_INDEX; | 
 | 	max_key = 0; | 
 |  | 
 | 	while (1) { | 
 | 		ret = log_dir_items(trans, inode, path, dst_path, | 
 | 				ctx, min_key, &max_key); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		if (max_key == (u64)-1) | 
 | 			break; | 
 | 		min_key = max_key + 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper function to drop items from the log before we relog an | 
 |  * inode.  max_key_type indicates the highest item type to remove. | 
 |  * This cannot be run for file data extents because it does not | 
 |  * free the extents they point to. | 
 |  */ | 
 | static int drop_inode_items(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *log, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct btrfs_inode *inode, | 
 | 				  int max_key_type) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	int start_slot; | 
 |  | 
 | 	key.objectid = btrfs_ino(inode); | 
 | 	key.type = max_key_type; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
 | 		if (ret < 0) { | 
 | 			break; | 
 | 		} else if (ret > 0) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 |  | 
 | 		if (found_key.objectid != key.objectid) | 
 | 			break; | 
 |  | 
 | 		found_key.offset = 0; | 
 | 		found_key.type = 0; | 
 | 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		ret = btrfs_del_items(trans, log, path, start_slot, | 
 | 				      path->slots[0] - start_slot + 1); | 
 | 		/* | 
 | 		 * If start slot isn't 0 then we don't need to re-search, we've | 
 | 		 * found the last guy with the objectid in this tree. | 
 | 		 */ | 
 | 		if (ret || start_slot != 0) | 
 | 			break; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int truncate_inode_items(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *log_root, | 
 | 				struct btrfs_inode *inode, | 
 | 				u64 new_size, u32 min_type) | 
 | { | 
 | 	struct btrfs_truncate_control control = { | 
 | 		.new_size = new_size, | 
 | 		.ino = btrfs_ino(inode), | 
 | 		.min_type = min_type, | 
 | 		.skip_ref_updates = true, | 
 | 	}; | 
 |  | 
 | 	return btrfs_truncate_inode_items(trans, log_root, &control); | 
 | } | 
 |  | 
 | static void fill_inode_item(struct btrfs_trans_handle *trans, | 
 | 			    struct extent_buffer *leaf, | 
 | 			    struct btrfs_inode_item *item, | 
 | 			    struct inode *inode, int log_inode_only, | 
 | 			    u64 logged_isize) | 
 | { | 
 | 	u64 flags; | 
 |  | 
 | 	if (log_inode_only) { | 
 | 		/* set the generation to zero so the recover code | 
 | 		 * can tell the difference between an logging | 
 | 		 * just to say 'this inode exists' and a logging | 
 | 		 * to say 'update this inode with these values' | 
 | 		 */ | 
 | 		btrfs_set_inode_generation(leaf, item, 0); | 
 | 		btrfs_set_inode_size(leaf, item, logged_isize); | 
 | 	} else { | 
 | 		btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); | 
 | 		btrfs_set_inode_size(leaf, item, inode->i_size); | 
 | 	} | 
 |  | 
 | 	btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); | 
 | 	btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); | 
 | 	btrfs_set_inode_mode(leaf, item, inode->i_mode); | 
 | 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink); | 
 |  | 
 | 	btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); | 
 | 	btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); | 
 |  | 
 | 	btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); | 
 | 	btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); | 
 |  | 
 | 	btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); | 
 | 	btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); | 
 |  | 
 | 	btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); | 
 | 	btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); | 
 |  | 
 | 	/* | 
 | 	 * We do not need to set the nbytes field, in fact during a fast fsync | 
 | 	 * its value may not even be correct, since a fast fsync does not wait | 
 | 	 * for ordered extent completion, which is where we update nbytes, it | 
 | 	 * only waits for writeback to complete. During log replay as we find | 
 | 	 * file extent items and replay them, we adjust the nbytes field of the | 
 | 	 * inode item in subvolume tree as needed (see overwrite_item()). | 
 | 	 */ | 
 |  | 
 | 	btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); | 
 | 	btrfs_set_inode_transid(leaf, item, trans->transid); | 
 | 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev); | 
 | 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, | 
 | 					  BTRFS_I(inode)->ro_flags); | 
 | 	btrfs_set_inode_flags(leaf, item, flags); | 
 | 	btrfs_set_inode_block_group(leaf, item, 0); | 
 | } | 
 |  | 
 | static int log_inode_item(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *log, struct btrfs_path *path, | 
 | 			  struct btrfs_inode *inode, bool inode_item_dropped) | 
 | { | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_get_inode_key(inode, &key); | 
 | 	/* | 
 | 	 * If we are doing a fast fsync and the inode was logged before in the | 
 | 	 * current transaction, then we know the inode was previously logged and | 
 | 	 * it exists in the log tree. For performance reasons, in this case use | 
 | 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never | 
 | 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock | 
 | 	 * contention in case there are concurrent fsyncs for other inodes of the | 
 | 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item | 
 | 	 * already exists can also result in unnecessarily splitting a leaf. | 
 | 	 */ | 
 | 	if (!inode_item_dropped && inode->logged_trans == trans->transid) { | 
 | 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | 
 | 		ASSERT(ret <= 0); | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 	} else { | 
 | 		/* | 
 | 		 * This means it is the first fsync in the current transaction, | 
 | 		 * so the inode item is not in the log and we need to insert it. | 
 | 		 * We can never get -EEXIST because we are only called for a fast | 
 | 		 * fsync and in case an inode eviction happens after the inode was | 
 | 		 * logged before in the current transaction, when we load again | 
 | 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime | 
 | 		 * flags and set ->logged_trans to 0. | 
 | 		 */ | 
 | 		ret = btrfs_insert_empty_item(trans, log, path, &key, | 
 | 					      sizeof(*inode_item)); | 
 | 		ASSERT(ret != -EEXIST); | 
 | 	} | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				    struct btrfs_inode_item); | 
 | 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, | 
 | 			0, 0); | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int log_csums(struct btrfs_trans_handle *trans, | 
 | 		     struct btrfs_inode *inode, | 
 | 		     struct btrfs_root *log_root, | 
 | 		     struct btrfs_ordered_sum *sums) | 
 | { | 
 | 	const u64 lock_end = sums->logical + sums->len - 1; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If this inode was not used for reflink operations in the current | 
 | 	 * transaction with new extents, then do the fast path, no need to | 
 | 	 * worry about logging checksum items with overlapping ranges. | 
 | 	 */ | 
 | 	if (inode->last_reflink_trans < trans->transid) | 
 | 		return btrfs_csum_file_blocks(trans, log_root, sums); | 
 |  | 
 | 	/* | 
 | 	 * Serialize logging for checksums. This is to avoid racing with the | 
 | 	 * same checksum being logged by another task that is logging another | 
 | 	 * file which happens to refer to the same extent as well. Such races | 
 | 	 * can leave checksum items in the log with overlapping ranges. | 
 | 	 */ | 
 | 	ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end, | 
 | 				&cached_state); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	/* | 
 | 	 * Due to extent cloning, we might have logged a csum item that covers a | 
 | 	 * subrange of a cloned extent, and later we can end up logging a csum | 
 | 	 * item for a larger subrange of the same extent or the entire range. | 
 | 	 * This would leave csum items in the log tree that cover the same range | 
 | 	 * and break the searches for checksums in the log tree, resulting in | 
 | 	 * some checksums missing in the fs/subvolume tree. So just delete (or | 
 | 	 * trim and adjust) any existing csum items in the log for this range. | 
 | 	 */ | 
 | 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); | 
 | 	if (!ret) | 
 | 		ret = btrfs_csum_file_blocks(trans, log_root, sums); | 
 |  | 
 | 	btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, | 
 | 			    &cached_state); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int copy_items(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_inode *inode, | 
 | 			       struct btrfs_path *dst_path, | 
 | 			       struct btrfs_path *src_path, | 
 | 			       int start_slot, int nr, int inode_only, | 
 | 			       u64 logged_isize, struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *log = inode->root->log_root; | 
 | 	struct btrfs_file_extent_item *extent; | 
 | 	struct extent_buffer *src; | 
 | 	int ret; | 
 | 	struct btrfs_key *ins_keys; | 
 | 	u32 *ins_sizes; | 
 | 	struct btrfs_item_batch batch; | 
 | 	char *ins_data; | 
 | 	int dst_index; | 
 | 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); | 
 | 	const u64 i_size = i_size_read(&inode->vfs_inode); | 
 |  | 
 | 	/* | 
 | 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and | 
 | 	 * use the clone. This is because otherwise we would be changing the log | 
 | 	 * tree, to insert items from the subvolume tree or insert csum items, | 
 | 	 * while holding a read lock on a leaf from the subvolume tree, which | 
 | 	 * creates a nasty lock dependency when COWing log tree nodes/leaves: | 
 | 	 * | 
 | 	 * 1) Modifying the log tree triggers an extent buffer allocation while | 
 | 	 *    holding a write lock on a parent extent buffer from the log tree. | 
 | 	 *    Allocating the pages for an extent buffer, or the extent buffer | 
 | 	 *    struct, can trigger inode eviction and finally the inode eviction | 
 | 	 *    will trigger a release/remove of a delayed node, which requires | 
 | 	 *    taking the delayed node's mutex; | 
 | 	 * | 
 | 	 * 2) Allocating a metadata extent for a log tree can trigger the async | 
 | 	 *    reclaim thread and make us wait for it to release enough space and | 
 | 	 *    unblock our reservation ticket. The reclaim thread can start | 
 | 	 *    flushing delayed items, and that in turn results in the need to | 
 | 	 *    lock delayed node mutexes and in the need to write lock extent | 
 | 	 *    buffers of a subvolume tree - all this while holding a write lock | 
 | 	 *    on the parent extent buffer in the log tree. | 
 | 	 * | 
 | 	 * So one task in scenario 1) running in parallel with another task in | 
 | 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed | 
 | 	 * node mutex while having a read lock on a leaf from the subvolume, | 
 | 	 * while the other is holding the delayed node's mutex and wants to | 
 | 	 * write lock the same subvolume leaf for flushing delayed items. | 
 | 	 */ | 
 | 	ret = clone_leaf(src_path, ctx); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	src = src_path->nodes[0]; | 
 |  | 
 | 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | 
 | 			   nr * sizeof(u32), GFP_NOFS); | 
 | 	if (!ins_data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ins_sizes = (u32 *)ins_data; | 
 | 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | 
 | 	batch.keys = ins_keys; | 
 | 	batch.data_sizes = ins_sizes; | 
 | 	batch.total_data_size = 0; | 
 | 	batch.nr = 0; | 
 |  | 
 | 	dst_index = 0; | 
 | 	for (int i = 0; i < nr; i++) { | 
 | 		const int src_slot = start_slot + i; | 
 | 		struct btrfs_root *csum_root; | 
 | 		struct btrfs_ordered_sum *sums; | 
 | 		struct btrfs_ordered_sum *sums_next; | 
 | 		LIST_HEAD(ordered_sums); | 
 | 		u64 disk_bytenr; | 
 | 		u64 disk_num_bytes; | 
 | 		u64 extent_offset; | 
 | 		u64 extent_num_bytes; | 
 | 		bool is_old_extent; | 
 |  | 
 | 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); | 
 |  | 
 | 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) | 
 | 			goto add_to_batch; | 
 |  | 
 | 		extent = btrfs_item_ptr(src, src_slot, | 
 | 					struct btrfs_file_extent_item); | 
 |  | 
 | 		is_old_extent = (btrfs_file_extent_generation(src, extent) < | 
 | 				 trans->transid); | 
 |  | 
 | 		/* | 
 | 		 * Don't copy extents from past generations. That would make us | 
 | 		 * log a lot more metadata for common cases like doing only a | 
 | 		 * few random writes into a file and then fsync it for the first | 
 | 		 * time or after the full sync flag is set on the inode. We can | 
 | 		 * get leaves full of extent items, most of which are from past | 
 | 		 * generations, so we can skip them - as long as the inode has | 
 | 		 * not been the target of a reflink operation in this transaction, | 
 | 		 * as in that case it might have had file extent items with old | 
 | 		 * generations copied into it. We also must always log prealloc | 
 | 		 * extents that start at or beyond eof, otherwise we would lose | 
 | 		 * them on log replay. | 
 | 		 */ | 
 | 		if (is_old_extent && | 
 | 		    ins_keys[dst_index].offset < i_size && | 
 | 		    inode->last_reflink_trans < trans->transid) | 
 | 			continue; | 
 |  | 
 | 		if (skip_csum) | 
 | 			goto add_to_batch; | 
 |  | 
 | 		/* Only regular extents have checksums. */ | 
 | 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) | 
 | 			goto add_to_batch; | 
 |  | 
 | 		/* | 
 | 		 * If it's an extent created in a past transaction, then its | 
 | 		 * checksums are already accessible from the committed csum tree, | 
 | 		 * no need to log them. | 
 | 		 */ | 
 | 		if (is_old_extent) | 
 | 			goto add_to_batch; | 
 |  | 
 | 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); | 
 | 		/* If it's an explicit hole, there are no checksums. */ | 
 | 		if (disk_bytenr == 0) | 
 | 			goto add_to_batch; | 
 |  | 
 | 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); | 
 |  | 
 | 		if (btrfs_file_extent_compression(src, extent)) { | 
 | 			extent_offset = 0; | 
 | 			extent_num_bytes = disk_num_bytes; | 
 | 		} else { | 
 | 			extent_offset = btrfs_file_extent_offset(src, extent); | 
 | 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); | 
 | 		} | 
 |  | 
 | 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); | 
 | 		disk_bytenr += extent_offset; | 
 | 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, | 
 | 					      disk_bytenr + extent_num_bytes - 1, | 
 | 					      &ordered_sums, false); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = 0; | 
 |  | 
 | 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { | 
 | 			if (!ret) | 
 | 				ret = log_csums(trans, inode, log, sums); | 
 | 			list_del(&sums->list); | 
 | 			kfree(sums); | 
 | 		} | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | add_to_batch: | 
 | 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot); | 
 | 		batch.total_data_size += ins_sizes[dst_index]; | 
 | 		batch.nr++; | 
 | 		dst_index++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have a leaf full of old extent items that don't need to be logged, | 
 | 	 * so we don't need to do anything. | 
 | 	 */ | 
 | 	if (batch.nr == 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	dst_index = 0; | 
 | 	for (int i = 0; i < nr; i++) { | 
 | 		const int src_slot = start_slot + i; | 
 | 		const int dst_slot = dst_path->slots[0] + dst_index; | 
 | 		struct btrfs_key key; | 
 | 		unsigned long src_offset; | 
 | 		unsigned long dst_offset; | 
 |  | 
 | 		/* | 
 | 		 * We're done, all the remaining items in the source leaf | 
 | 		 * correspond to old file extent items. | 
 | 		 */ | 
 | 		if (dst_index >= batch.nr) | 
 | 			break; | 
 |  | 
 | 		btrfs_item_key_to_cpu(src, &key, src_slot); | 
 |  | 
 | 		if (key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			goto copy_item; | 
 |  | 
 | 		extent = btrfs_item_ptr(src, src_slot, | 
 | 					struct btrfs_file_extent_item); | 
 |  | 
 | 		/* See the comment in the previous loop, same logic. */ | 
 | 		if (btrfs_file_extent_generation(src, extent) < trans->transid && | 
 | 		    key.offset < i_size && | 
 | 		    inode->last_reflink_trans < trans->transid) | 
 | 			continue; | 
 |  | 
 | copy_item: | 
 | 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); | 
 | 		src_offset = btrfs_item_ptr_offset(src, src_slot); | 
 |  | 
 | 		if (key.type == BTRFS_INODE_ITEM_KEY) { | 
 | 			struct btrfs_inode_item *inode_item; | 
 |  | 
 | 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, | 
 | 						    struct btrfs_inode_item); | 
 | 			fill_inode_item(trans, dst_path->nodes[0], inode_item, | 
 | 					&inode->vfs_inode, | 
 | 					inode_only == LOG_INODE_EXISTS, | 
 | 					logged_isize); | 
 | 		} else { | 
 | 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | 
 | 					   src_offset, ins_sizes[dst_index]); | 
 | 		} | 
 |  | 
 | 		dst_index++; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(dst_path); | 
 | out: | 
 | 	kfree(ins_data); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int extent_cmp(void *priv, const struct list_head *a, | 
 | 		      const struct list_head *b) | 
 | { | 
 | 	const struct extent_map *em1, *em2; | 
 |  | 
 | 	em1 = list_entry(a, struct extent_map, list); | 
 | 	em2 = list_entry(b, struct extent_map, list); | 
 |  | 
 | 	if (em1->start < em2->start) | 
 | 		return -1; | 
 | 	else if (em1->start > em2->start) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int log_extent_csums(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_inode *inode, | 
 | 			    struct btrfs_root *log_root, | 
 | 			    const struct extent_map *em, | 
 | 			    struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_root *csum_root; | 
 | 	u64 block_start; | 
 | 	u64 csum_offset; | 
 | 	u64 csum_len; | 
 | 	u64 mod_start = em->start; | 
 | 	u64 mod_len = em->len; | 
 | 	LIST_HEAD(ordered_sums); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (inode->flags & BTRFS_INODE_NODATASUM || | 
 | 	    (em->flags & EXTENT_FLAG_PREALLOC) || | 
 | 	    em->disk_bytenr == EXTENT_MAP_HOLE) | 
 | 		return 0; | 
 |  | 
 | 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { | 
 | 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes; | 
 | 		const u64 mod_end = mod_start + mod_len; | 
 | 		struct btrfs_ordered_sum *sums; | 
 |  | 
 | 		if (mod_len == 0) | 
 | 			break; | 
 |  | 
 | 		if (ordered_end <= mod_start) | 
 | 			continue; | 
 | 		if (mod_end <= ordered->file_offset) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * We are going to copy all the csums on this ordered extent, so | 
 | 		 * go ahead and adjust mod_start and mod_len in case this ordered | 
 | 		 * extent has already been logged. | 
 | 		 */ | 
 | 		if (ordered->file_offset > mod_start) { | 
 | 			if (ordered_end >= mod_end) | 
 | 				mod_len = ordered->file_offset - mod_start; | 
 | 			/* | 
 | 			 * If we have this case | 
 | 			 * | 
 | 			 * |--------- logged extent ---------| | 
 | 			 *       |----- ordered extent ----| | 
 | 			 * | 
 | 			 * Just don't mess with mod_start and mod_len, we'll | 
 | 			 * just end up logging more csums than we need and it | 
 | 			 * will be ok. | 
 | 			 */ | 
 | 		} else { | 
 | 			if (ordered_end < mod_end) { | 
 | 				mod_len = mod_end - ordered_end; | 
 | 				mod_start = ordered_end; | 
 | 			} else { | 
 | 				mod_len = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * To keep us from looping for the above case of an ordered | 
 | 		 * extent that falls inside of the logged extent. | 
 | 		 */ | 
 | 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) | 
 | 			continue; | 
 |  | 
 | 		list_for_each_entry(sums, &ordered->list, list) { | 
 | 			ret = log_csums(trans, inode, log_root, sums); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* We're done, found all csums in the ordered extents. */ | 
 | 	if (mod_len == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* If we're compressed we have to save the entire range of csums. */ | 
 | 	if (btrfs_extent_map_is_compressed(em)) { | 
 | 		csum_offset = 0; | 
 | 		csum_len = em->disk_num_bytes; | 
 | 	} else { | 
 | 		csum_offset = mod_start - em->start; | 
 | 		csum_len = mod_len; | 
 | 	} | 
 |  | 
 | 	/* block start is already adjusted for the file extent offset. */ | 
 | 	block_start = btrfs_extent_map_block_start(em); | 
 | 	csum_root = btrfs_csum_root(trans->fs_info, block_start); | 
 | 	ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset, | 
 | 				      block_start + csum_offset + csum_len - 1, | 
 | 				      &ordered_sums, false); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	ret = 0; | 
 |  | 
 | 	while (!list_empty(&ordered_sums)) { | 
 | 		struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums, | 
 | 								  struct btrfs_ordered_sum, | 
 | 								  list); | 
 | 		if (!ret) | 
 | 			ret = log_csums(trans, inode, log_root, sums); | 
 | 		list_del(&sums->list); | 
 | 		kfree(sums); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int log_one_extent(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_inode *inode, | 
 | 			  const struct extent_map *em, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_drop_extents_args drop_args = { 0 }; | 
 | 	struct btrfs_root *log = inode->root->log_root; | 
 | 	struct btrfs_file_extent_item fi = { 0 }; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	enum btrfs_compression_type compress_type; | 
 | 	u64 extent_offset = em->offset; | 
 | 	u64 block_start = btrfs_extent_map_block_start(em); | 
 | 	u64 block_len; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_set_stack_file_extent_generation(&fi, trans->transid); | 
 | 	if (em->flags & EXTENT_FLAG_PREALLOC) | 
 | 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); | 
 | 	else | 
 | 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); | 
 |  | 
 | 	block_len = em->disk_num_bytes; | 
 | 	compress_type = btrfs_extent_map_compression(em); | 
 | 	if (compress_type != BTRFS_COMPRESS_NONE) { | 
 | 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start); | 
 | 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); | 
 | 	} else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { | 
 | 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset); | 
 | 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); | 
 | 	} | 
 |  | 
 | 	btrfs_set_stack_file_extent_offset(&fi, extent_offset); | 
 | 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len); | 
 | 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); | 
 | 	btrfs_set_stack_file_extent_compression(&fi, compress_type); | 
 |  | 
 | 	ret = log_extent_csums(trans, inode, log, em, ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If this is the first time we are logging the inode in the current | 
 | 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive | 
 | 	 * because it does a deletion search, which always acquires write locks | 
 | 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time | 
 | 	 * but also adds significant contention in a log tree, since log trees | 
 | 	 * are small, with a root at level 2 or 3 at most, due to their short | 
 | 	 * life span. | 
 | 	 */ | 
 | 	if (ctx->logged_before) { | 
 | 		drop_args.path = path; | 
 | 		drop_args.start = em->start; | 
 | 		drop_args.end = em->start + em->len; | 
 | 		drop_args.replace_extent = true; | 
 | 		drop_args.extent_item_size = sizeof(fi); | 
 | 		ret = btrfs_drop_extents(trans, log, inode, &drop_args); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (!drop_args.extent_inserted) { | 
 | 		key.objectid = btrfs_ino(inode); | 
 | 		key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 		key.offset = em->start; | 
 |  | 
 | 		ret = btrfs_insert_empty_item(trans, log, path, &key, | 
 | 					      sizeof(fi)); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	write_extent_buffer(leaf, &fi, | 
 | 			    btrfs_item_ptr_offset(leaf, path->slots[0]), | 
 | 			    sizeof(fi)); | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Log all prealloc extents beyond the inode's i_size to make sure we do not | 
 |  * lose them after doing a full/fast fsync and replaying the log. We scan the | 
 |  * subvolume's root instead of iterating the inode's extent map tree because | 
 |  * otherwise we can log incorrect extent items based on extent map conversion. | 
 |  * That can happen due to the fact that extent maps are merged when they | 
 |  * are not in the extent map tree's list of modified extents. | 
 |  */ | 
 | static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_inode *inode, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_key key; | 
 | 	const u64 i_size = i_size_read(&inode->vfs_inode); | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	struct btrfs_path *dst_path = NULL; | 
 | 	bool dropped_extents = false; | 
 | 	u64 truncate_offset = i_size; | 
 | 	struct extent_buffer *leaf; | 
 | 	int slot; | 
 | 	int ins_nr = 0; | 
 | 	int start_slot = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (!(inode->flags & BTRFS_INODE_PREALLOC)) | 
 | 		return 0; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = i_size; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We must check if there is a prealloc extent that starts before the | 
 | 	 * i_size and crosses the i_size boundary. This is to ensure later we | 
 | 	 * truncate down to the end of that extent and not to the i_size, as | 
 | 	 * otherwise we end up losing part of the prealloc extent after a log | 
 | 	 * replay and with an implicit hole if there is another prealloc extent | 
 | 	 * that starts at an offset beyond i_size. | 
 | 	 */ | 
 | 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret == 0) { | 
 | 		struct btrfs_file_extent_item *ei; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
 |  | 
 | 		if (btrfs_file_extent_type(leaf, ei) == | 
 | 		    BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 			u64 extent_end; | 
 |  | 
 | 			btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 			extent_end = key.offset + | 
 | 				btrfs_file_extent_num_bytes(leaf, ei); | 
 |  | 
 | 			if (extent_end > i_size) | 
 | 				truncate_offset = extent_end; | 
 | 		} | 
 | 	} else { | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	while (true) { | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			if (ins_nr > 0) { | 
 | 				ret = copy_items(trans, inode, dst_path, path, | 
 | 						 start_slot, ins_nr, 1, 0, ctx); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				ins_nr = 0; | 
 | 			} | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret > 0) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		if (key.objectid > ino) | 
 | 			break; | 
 | 		if (WARN_ON_ONCE(key.objectid < ino) || | 
 | 		    key.type < BTRFS_EXTENT_DATA_KEY || | 
 | 		    key.offset < i_size) { | 
 | 			path->slots[0]++; | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * Avoid overlapping items in the log tree. The first time we | 
 | 		 * get here, get rid of everything from a past fsync. After | 
 | 		 * that, if the current extent starts before the end of the last | 
 | 		 * extent we copied, truncate the last one. This can happen if | 
 | 		 * an ordered extent completion modifies the subvolume tree | 
 | 		 * while btrfs_next_leaf() has the tree unlocked. | 
 | 		 */ | 
 | 		if (!dropped_extents || key.offset < truncate_offset) { | 
 | 			ret = truncate_inode_items(trans, root->log_root, inode, | 
 | 						   min(key.offset, truncate_offset), | 
 | 						   BTRFS_EXTENT_DATA_KEY); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			dropped_extents = true; | 
 | 		} | 
 | 		truncate_offset = btrfs_file_extent_end(path); | 
 | 		if (ins_nr == 0) | 
 | 			start_slot = slot; | 
 | 		ins_nr++; | 
 | 		path->slots[0]++; | 
 | 		if (!dst_path) { | 
 | 			dst_path = btrfs_alloc_path(); | 
 | 			if (!dst_path) { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (ins_nr > 0) | 
 | 		ret = copy_items(trans, inode, dst_path, path, | 
 | 				 start_slot, ins_nr, 1, 0, ctx); | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_free_path(dst_path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_inode *inode, | 
 | 				     struct btrfs_path *path, | 
 | 				     struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_ordered_extent *tmp; | 
 | 	struct extent_map *em, *n; | 
 | 	LIST_HEAD(extents); | 
 | 	struct extent_map_tree *tree = &inode->extent_tree; | 
 | 	int ret = 0; | 
 | 	int num = 0; | 
 |  | 
 | 	write_lock(&tree->lock); | 
 |  | 
 | 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) { | 
 | 		list_del_init(&em->list); | 
 | 		/* | 
 | 		 * Just an arbitrary number, this can be really CPU intensive | 
 | 		 * once we start getting a lot of extents, and really once we | 
 | 		 * have a bunch of extents we just want to commit since it will | 
 | 		 * be faster. | 
 | 		 */ | 
 | 		if (++num > 32768) { | 
 | 			list_del_init(&tree->modified_extents); | 
 | 			ret = -EFBIG; | 
 | 			goto process; | 
 | 		} | 
 |  | 
 | 		if (em->generation < trans->transid) | 
 | 			continue; | 
 |  | 
 | 		/* We log prealloc extents beyond eof later. */ | 
 | 		if ((em->flags & EXTENT_FLAG_PREALLOC) && | 
 | 		    em->start >= i_size_read(&inode->vfs_inode)) | 
 | 			continue; | 
 |  | 
 | 		/* Need a ref to keep it from getting evicted from cache */ | 
 | 		refcount_inc(&em->refs); | 
 | 		em->flags |= EXTENT_FLAG_LOGGING; | 
 | 		list_add_tail(&em->list, &extents); | 
 | 		num++; | 
 | 	} | 
 |  | 
 | 	list_sort(NULL, &extents, extent_cmp); | 
 | process: | 
 | 	while (!list_empty(&extents)) { | 
 | 		em = list_first_entry(&extents, struct extent_map, list); | 
 |  | 
 | 		list_del_init(&em->list); | 
 |  | 
 | 		/* | 
 | 		 * If we had an error we just need to delete everybody from our | 
 | 		 * private list. | 
 | 		 */ | 
 | 		if (ret) { | 
 | 			btrfs_clear_em_logging(inode, em); | 
 | 			btrfs_free_extent_map(em); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		write_unlock(&tree->lock); | 
 |  | 
 | 		ret = log_one_extent(trans, inode, em, path, ctx); | 
 | 		write_lock(&tree->lock); | 
 | 		btrfs_clear_em_logging(inode, em); | 
 | 		btrfs_free_extent_map(em); | 
 | 	} | 
 | 	WARN_ON(!list_empty(&extents)); | 
 | 	write_unlock(&tree->lock); | 
 |  | 
 | 	if (!ret) | 
 | 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * We have logged all extents successfully, now make sure the commit of | 
 | 	 * the current transaction waits for the ordered extents to complete | 
 | 	 * before it commits and wipes out the log trees, otherwise we would | 
 | 	 * lose data if an ordered extents completes after the transaction | 
 | 	 * commits and a power failure happens after the transaction commit. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { | 
 | 		list_del_init(&ordered->log_list); | 
 | 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); | 
 |  | 
 | 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { | 
 | 			spin_lock_irq(&inode->ordered_tree_lock); | 
 | 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { | 
 | 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); | 
 | 				atomic_inc(&trans->transaction->pending_ordered); | 
 | 			} | 
 | 			spin_unlock_irq(&inode->ordered_tree_lock); | 
 | 		} | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, | 
 | 			     struct btrfs_path *path, u64 *size_ret) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = btrfs_ino(inode); | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); | 
 | 	if (ret < 0) { | 
 | 		return ret; | 
 | 	} else if (ret > 0) { | 
 | 		*size_ret = 0; | 
 | 	} else { | 
 | 		struct btrfs_inode_item *item; | 
 |  | 
 | 		item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				      struct btrfs_inode_item); | 
 | 		*size_ret = btrfs_inode_size(path->nodes[0], item); | 
 | 		/* | 
 | 		 * If the in-memory inode's i_size is smaller then the inode | 
 | 		 * size stored in the btree, return the inode's i_size, so | 
 | 		 * that we get a correct inode size after replaying the log | 
 | 		 * when before a power failure we had a shrinking truncate | 
 | 		 * followed by addition of a new name (rename / new hard link). | 
 | 		 * Otherwise return the inode size from the btree, to avoid | 
 | 		 * data loss when replaying a log due to previously doing a | 
 | 		 * write that expands the inode's size and logging a new name | 
 | 		 * immediately after. | 
 | 		 */ | 
 | 		if (*size_ret > inode->vfs_inode.i_size) | 
 | 			*size_ret = inode->vfs_inode.i_size; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * At the moment we always log all xattrs. This is to figure out at log replay | 
 |  * time which xattrs must have their deletion replayed. If a xattr is missing | 
 |  * in the log tree and exists in the fs/subvol tree, we delete it. This is | 
 |  * because if a xattr is deleted, the inode is fsynced and a power failure | 
 |  * happens, causing the log to be replayed the next time the fs is mounted, | 
 |  * we want the xattr to not exist anymore (same behaviour as other filesystems | 
 |  * with a journal, ext3/4, xfs, f2fs, etc). | 
 |  */ | 
 | static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_inode *inode, | 
 | 				struct btrfs_path *path, | 
 | 				struct btrfs_path *dst_path, | 
 | 				struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	int ins_nr = 0; | 
 | 	int start_slot = 0; | 
 | 	bool found_xattrs = false; | 
 |  | 
 | 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) | 
 | 		return 0; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	while (true) { | 
 | 		int slot = path->slots[0]; | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int nritems = btrfs_header_nritems(leaf); | 
 |  | 
 | 		if (slot >= nritems) { | 
 | 			if (ins_nr > 0) { | 
 | 				ret = copy_items(trans, inode, dst_path, path, | 
 | 						 start_slot, ins_nr, 1, 0, ctx); | 
 | 				if (ret < 0) | 
 | 					return ret; | 
 | 				ins_nr = 0; | 
 | 			} | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		if (ins_nr == 0) | 
 | 			start_slot = slot; | 
 | 		ins_nr++; | 
 | 		path->slots[0]++; | 
 | 		found_xattrs = true; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (ins_nr > 0) { | 
 | 		ret = copy_items(trans, inode, dst_path, path, | 
 | 				 start_slot, ins_nr, 1, 0, ctx); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (!found_xattrs) | 
 | 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When using the NO_HOLES feature if we punched a hole that causes the | 
 |  * deletion of entire leafs or all the extent items of the first leaf (the one | 
 |  * that contains the inode item and references) we may end up not processing | 
 |  * any extents, because there are no leafs with a generation matching the | 
 |  * current transaction that have extent items for our inode. So we need to find | 
 |  * if any holes exist and then log them. We also need to log holes after any | 
 |  * truncate operation that changes the inode's size. | 
 |  */ | 
 | static int btrfs_log_holes(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_inode *inode, | 
 | 			   struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_key key; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	const u64 i_size = i_size_read(&inode->vfs_inode); | 
 | 	u64 prev_extent_end = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) | 
 | 		return 0; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 |  | 
 | 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			if (ret > 0) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			leaf = path->nodes[0]; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			break; | 
 |  | 
 | 		/* We have a hole, log it. */ | 
 | 		if (prev_extent_end < key.offset) { | 
 | 			const u64 hole_len = key.offset - prev_extent_end; | 
 |  | 
 | 			/* | 
 | 			 * Release the path to avoid deadlocks with other code | 
 | 			 * paths that search the root while holding locks on | 
 | 			 * leafs from the log root. | 
 | 			 */ | 
 | 			btrfs_release_path(path); | 
 | 			ret = btrfs_insert_hole_extent(trans, root->log_root, | 
 | 						       ino, prev_extent_end, | 
 | 						       hole_len); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 |  | 
 | 			/* | 
 | 			 * Search for the same key again in the root. Since it's | 
 | 			 * an extent item and we are holding the inode lock, the | 
 | 			 * key must still exist. If it doesn't just emit warning | 
 | 			 * and return an error to fall back to a transaction | 
 | 			 * commit. | 
 | 			 */ | 
 | 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			if (WARN_ON(ret > 0)) | 
 | 				return -ENOENT; | 
 | 			leaf = path->nodes[0]; | 
 | 		} | 
 |  | 
 | 		prev_extent_end = btrfs_file_extent_end(path); | 
 | 		path->slots[0]++; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (prev_extent_end < i_size) { | 
 | 		u64 hole_len; | 
 |  | 
 | 		btrfs_release_path(path); | 
 | 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); | 
 | 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino, | 
 | 					       prev_extent_end, hole_len); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When we are logging a new inode X, check if it doesn't have a reference that | 
 |  * matches the reference from some other inode Y created in a past transaction | 
 |  * and that was renamed in the current transaction. If we don't do this, then at | 
 |  * log replay time we can lose inode Y (and all its files if it's a directory): | 
 |  * | 
 |  * mkdir /mnt/x | 
 |  * echo "hello world" > /mnt/x/foobar | 
 |  * sync | 
 |  * mv /mnt/x /mnt/y | 
 |  * mkdir /mnt/x                 # or touch /mnt/x | 
 |  * xfs_io -c fsync /mnt/x | 
 |  * <power fail> | 
 |  * mount fs, trigger log replay | 
 |  * | 
 |  * After the log replay procedure, we would lose the first directory and all its | 
 |  * files (file foobar). | 
 |  * For the case where inode Y is not a directory we simply end up losing it: | 
 |  * | 
 |  * echo "123" > /mnt/foo | 
 |  * sync | 
 |  * mv /mnt/foo /mnt/bar | 
 |  * echo "abc" > /mnt/foo | 
 |  * xfs_io -c fsync /mnt/foo | 
 |  * <power fail> | 
 |  * | 
 |  * We also need this for cases where a snapshot entry is replaced by some other | 
 |  * entry (file or directory) otherwise we end up with an unreplayable log due to | 
 |  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as | 
 |  * if it were a regular entry: | 
 |  * | 
 |  * mkdir /mnt/x | 
 |  * btrfs subvolume snapshot /mnt /mnt/x/snap | 
 |  * btrfs subvolume delete /mnt/x/snap | 
 |  * rmdir /mnt/x | 
 |  * mkdir /mnt/x | 
 |  * fsync /mnt/x or fsync some new file inside it | 
 |  * <power fail> | 
 |  * | 
 |  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in | 
 |  * the same transaction. | 
 |  */ | 
 | static int btrfs_check_ref_name_override(struct extent_buffer *eb, | 
 | 					 const int slot, | 
 | 					 const struct btrfs_key *key, | 
 | 					 struct btrfs_inode *inode, | 
 | 					 u64 *other_ino, u64 *other_parent) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *search_path; | 
 | 	char *name = NULL; | 
 | 	u32 name_len = 0; | 
 | 	u32 item_size = btrfs_item_size(eb, slot); | 
 | 	u32 cur_offset = 0; | 
 | 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot); | 
 |  | 
 | 	search_path = btrfs_alloc_path(); | 
 | 	if (!search_path) | 
 | 		return -ENOMEM; | 
 | 	search_path->search_commit_root = 1; | 
 | 	search_path->skip_locking = 1; | 
 |  | 
 | 	while (cur_offset < item_size) { | 
 | 		u64 parent; | 
 | 		u32 this_name_len; | 
 | 		u32 this_len; | 
 | 		unsigned long name_ptr; | 
 | 		struct btrfs_dir_item *di; | 
 | 		struct fscrypt_str name_str; | 
 |  | 
 | 		if (key->type == BTRFS_INODE_REF_KEY) { | 
 | 			struct btrfs_inode_ref *iref; | 
 |  | 
 | 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset); | 
 | 			parent = key->offset; | 
 | 			this_name_len = btrfs_inode_ref_name_len(eb, iref); | 
 | 			name_ptr = (unsigned long)(iref + 1); | 
 | 			this_len = sizeof(*iref) + this_name_len; | 
 | 		} else { | 
 | 			struct btrfs_inode_extref *extref; | 
 |  | 
 | 			extref = (struct btrfs_inode_extref *)(ptr + | 
 | 							       cur_offset); | 
 | 			parent = btrfs_inode_extref_parent(eb, extref); | 
 | 			this_name_len = btrfs_inode_extref_name_len(eb, extref); | 
 | 			name_ptr = (unsigned long)&extref->name; | 
 | 			this_len = sizeof(*extref) + this_name_len; | 
 | 		} | 
 |  | 
 | 		if (this_name_len > name_len) { | 
 | 			char *new_name; | 
 |  | 
 | 			new_name = krealloc(name, this_name_len, GFP_NOFS); | 
 | 			if (!new_name) { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			name_len = this_name_len; | 
 | 			name = new_name; | 
 | 		} | 
 |  | 
 | 		read_extent_buffer(eb, name, name_ptr, this_name_len); | 
 |  | 
 | 		name_str.name = name; | 
 | 		name_str.len = this_name_len; | 
 | 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path, | 
 | 				parent, &name_str, 0); | 
 | 		if (di && !IS_ERR(di)) { | 
 | 			struct btrfs_key di_key; | 
 |  | 
 | 			btrfs_dir_item_key_to_cpu(search_path->nodes[0], | 
 | 						  di, &di_key); | 
 | 			if (di_key.type == BTRFS_INODE_ITEM_KEY) { | 
 | 				if (di_key.objectid != key->objectid) { | 
 | 					ret = 1; | 
 | 					*other_ino = di_key.objectid; | 
 | 					*other_parent = parent; | 
 | 				} else { | 
 | 					ret = 0; | 
 | 				} | 
 | 			} else { | 
 | 				ret = -EAGAIN; | 
 | 			} | 
 | 			goto out; | 
 | 		} else if (IS_ERR(di)) { | 
 | 			ret = PTR_ERR(di); | 
 | 			goto out; | 
 | 		} | 
 | 		btrfs_release_path(search_path); | 
 |  | 
 | 		cur_offset += this_len; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(search_path); | 
 | 	kfree(name); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if we need to log an inode. This is used in contexts where while | 
 |  * logging an inode we need to log another inode (either that it exists or in | 
 |  * full mode). This is used instead of btrfs_inode_in_log() because the later | 
 |  * requires the inode to be in the log and have the log transaction committed, | 
 |  * while here we do not care if the log transaction was already committed - our | 
 |  * caller will commit the log later - and we want to avoid logging an inode | 
 |  * multiple times when multiple tasks have joined the same log transaction. | 
 |  */ | 
 | static bool need_log_inode(const struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_inode *inode) | 
 | { | 
 | 	/* | 
 | 	 * If a directory was not modified, no dentries added or removed, we can | 
 | 	 * and should avoid logging it. | 
 | 	 */ | 
 | 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If this inode does not have new/updated/deleted xattrs since the last | 
 | 	 * time it was logged and is flagged as logged in the current transaction, | 
 | 	 * we can skip logging it. As for new/deleted names, those are updated in | 
 | 	 * the log by link/unlink/rename operations. | 
 | 	 * In case the inode was logged and then evicted and reloaded, its | 
 | 	 * logged_trans will be 0, in which case we have to fully log it since | 
 | 	 * logged_trans is a transient field, not persisted. | 
 | 	 */ | 
 | 	if (inode_logged(trans, inode, NULL) == 1 && | 
 | 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | struct btrfs_dir_list { | 
 | 	u64 ino; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | /* | 
 |  * Log the inodes of the new dentries of a directory. | 
 |  * See process_dir_items_leaf() for details about why it is needed. | 
 |  * This is a recursive operation - if an existing dentry corresponds to a | 
 |  * directory, that directory's new entries are logged too (same behaviour as | 
 |  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes | 
 |  * the dentries point to we do not acquire their VFS lock, otherwise lockdep | 
 |  * complains about the following circular lock dependency / possible deadlock: | 
 |  * | 
 |  *        CPU0                                        CPU1 | 
 |  *        ----                                        ---- | 
 |  * lock(&type->i_mutex_dir_key#3/2); | 
 |  *                                            lock(sb_internal#2); | 
 |  *                                            lock(&type->i_mutex_dir_key#3/2); | 
 |  * lock(&sb->s_type->i_mutex_key#14); | 
 |  * | 
 |  * Where sb_internal is the lock (a counter that works as a lock) acquired by | 
 |  * sb_start_intwrite() in btrfs_start_transaction(). | 
 |  * Not acquiring the VFS lock of the inodes is still safe because: | 
 |  * | 
 |  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible | 
 |  *    that while logging the inode new references (names) are added or removed | 
 |  *    from the inode, leaving the logged inode item with a link count that does | 
 |  *    not match the number of logged inode reference items. This is fine because | 
 |  *    at log replay time we compute the real number of links and correct the | 
 |  *    link count in the inode item (see replay_one_buffer() and | 
 |  *    link_to_fixup_dir()); | 
 |  * | 
 |  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that | 
 |  *    while logging the inode's items new index items (key type | 
 |  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item | 
 |  *    has a size that doesn't match the sum of the lengths of all the logged | 
 |  *    names - this is ok, not a problem, because at log replay time we set the | 
 |  *    directory's i_size to the correct value (see replay_one_name() and | 
 |  *    overwrite_item()). | 
 |  */ | 
 | static int log_new_dir_dentries(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_inode *start_inode, | 
 | 				struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *root = start_inode->root; | 
 | 	struct btrfs_path *path; | 
 | 	LIST_HEAD(dir_list); | 
 | 	struct btrfs_dir_list *dir_elem; | 
 | 	u64 ino = btrfs_ino(start_inode); | 
 | 	struct btrfs_inode *curr_inode = start_inode; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we are logging a new name, as part of a link or rename operation, | 
 | 	 * don't bother logging new dentries, as we just want to log the names | 
 | 	 * of an inode and that any new parents exist. | 
 | 	 */ | 
 | 	if (ctx->logging_new_name) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Pairs with btrfs_add_delayed_iput below. */ | 
 | 	ihold(&curr_inode->vfs_inode); | 
 |  | 
 | 	while (true) { | 
 | 		struct btrfs_key key; | 
 | 		struct btrfs_key found_key; | 
 | 		u64 next_index; | 
 | 		bool continue_curr_inode = true; | 
 | 		int iter_ret; | 
 |  | 
 | 		key.objectid = ino; | 
 | 		key.type = BTRFS_DIR_INDEX_KEY; | 
 | 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode); | 
 | 		next_index = key.offset; | 
 | again: | 
 | 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { | 
 | 			struct extent_buffer *leaf = path->nodes[0]; | 
 | 			struct btrfs_dir_item *di; | 
 | 			struct btrfs_key di_key; | 
 | 			struct btrfs_inode *di_inode; | 
 | 			int log_mode = LOG_INODE_EXISTS; | 
 | 			int type; | 
 |  | 
 | 			if (found_key.objectid != ino || | 
 | 			    found_key.type != BTRFS_DIR_INDEX_KEY) { | 
 | 				continue_curr_inode = false; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			next_index = found_key.offset + 1; | 
 |  | 
 | 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); | 
 | 			type = btrfs_dir_ftype(leaf, di); | 
 | 			if (btrfs_dir_transid(leaf, di) < trans->transid) | 
 | 				continue; | 
 | 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key); | 
 | 			if (di_key.type == BTRFS_ROOT_ITEM_KEY) | 
 | 				continue; | 
 |  | 
 | 			btrfs_release_path(path); | 
 | 			di_inode = btrfs_iget_logging(di_key.objectid, root); | 
 | 			if (IS_ERR(di_inode)) { | 
 | 				ret = PTR_ERR(di_inode); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (!need_log_inode(trans, di_inode)) { | 
 | 				btrfs_add_delayed_iput(di_inode); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			ctx->log_new_dentries = false; | 
 | 			if (type == BTRFS_FT_DIR) | 
 | 				log_mode = LOG_INODE_ALL; | 
 | 			ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); | 
 | 			btrfs_add_delayed_iput(di_inode); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			if (ctx->log_new_dentries) { | 
 | 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); | 
 | 				if (!dir_elem) { | 
 | 					ret = -ENOMEM; | 
 | 					goto out; | 
 | 				} | 
 | 				dir_elem->ino = di_key.objectid; | 
 | 				list_add_tail(&dir_elem->list, &dir_list); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		if (iter_ret < 0) { | 
 | 			ret = iter_ret; | 
 | 			goto out; | 
 | 		} else if (iter_ret > 0) { | 
 | 			continue_curr_inode = false; | 
 | 		} else { | 
 | 			key = found_key; | 
 | 		} | 
 |  | 
 | 		if (continue_curr_inode && key.offset < (u64)-1) { | 
 | 			key.offset++; | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		btrfs_set_first_dir_index_to_log(curr_inode, next_index); | 
 |  | 
 | 		if (list_empty(&dir_list)) | 
 | 			break; | 
 |  | 
 | 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); | 
 | 		ino = dir_elem->ino; | 
 | 		list_del(&dir_elem->list); | 
 | 		kfree(dir_elem); | 
 |  | 
 | 		btrfs_add_delayed_iput(curr_inode); | 
 |  | 
 | 		curr_inode = btrfs_iget_logging(ino, root); | 
 | 		if (IS_ERR(curr_inode)) { | 
 | 			ret = PTR_ERR(curr_inode); | 
 | 			curr_inode = NULL; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	if (curr_inode) | 
 | 		btrfs_add_delayed_iput(curr_inode); | 
 |  | 
 | 	if (ret) { | 
 | 		struct btrfs_dir_list *next; | 
 |  | 
 | 		list_for_each_entry_safe(dir_elem, next, &dir_list, list) | 
 | 			kfree(dir_elem); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct btrfs_ino_list { | 
 | 	u64 ino; | 
 | 	u64 parent; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_ino_list *curr; | 
 | 	struct btrfs_ino_list *next; | 
 |  | 
 | 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { | 
 | 		list_del(&curr->list); | 
 | 		kfree(curr); | 
 | 	} | 
 | } | 
 |  | 
 | static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, | 
 | 				    struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (WARN_ON_ONCE(ret > 0)) { | 
 | 		/* | 
 | 		 * We have previously found the inode through the commit root | 
 | 		 * so this should not happen. If it does, just error out and | 
 | 		 * fallback to a transaction commit. | 
 | 		 */ | 
 | 		ret = -ENOENT; | 
 | 	} else if (ret == 0) { | 
 | 		struct btrfs_inode_item *item; | 
 |  | 
 | 		item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				      struct btrfs_inode_item); | 
 | 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) | 
 | 			ret = 1; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	path->search_commit_root = 0; | 
 | 	path->skip_locking = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int add_conflicting_inode(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 u64 ino, u64 parent, | 
 | 				 struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_ino_list *ino_elem; | 
 | 	struct btrfs_inode *inode; | 
 |  | 
 | 	/* | 
 | 	 * It's rare to have a lot of conflicting inodes, in practice it is not | 
 | 	 * common to have more than 1 or 2. We don't want to collect too many, | 
 | 	 * as we could end up logging too many inodes (even if only in | 
 | 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction | 
 | 	 * commits. | 
 | 	 */ | 
 | 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) | 
 | 		return BTRFS_LOG_FORCE_COMMIT; | 
 |  | 
 | 	inode = btrfs_iget_logging(ino, root); | 
 | 	/* | 
 | 	 * If the other inode that had a conflicting dir entry was deleted in | 
 | 	 * the current transaction then we either: | 
 | 	 * | 
 | 	 * 1) Log the parent directory (later after adding it to the list) if | 
 | 	 *    the inode is a directory. This is because it may be a deleted | 
 | 	 *    subvolume/snapshot or it may be a regular directory that had | 
 | 	 *    deleted subvolumes/snapshots (or subdirectories that had them), | 
 | 	 *    and at the moment we can't deal with dropping subvolumes/snapshots | 
 | 	 *    during log replay. So we just log the parent, which will result in | 
 | 	 *    a fallback to a transaction commit if we are dealing with those | 
 | 	 *    cases (last_unlink_trans will match the current transaction); | 
 | 	 * | 
 | 	 * 2) Do nothing if it's not a directory. During log replay we simply | 
 | 	 *    unlink the conflicting dentry from the parent directory and then | 
 | 	 *    add the dentry for our inode. Like this we can avoid logging the | 
 | 	 *    parent directory (and maybe fallback to a transaction commit in | 
 | 	 *    case it has a last_unlink_trans == trans->transid, due to moving | 
 | 	 *    some inode from it to some other directory). | 
 | 	 */ | 
 | 	if (IS_ERR(inode)) { | 
 | 		int ret = PTR_ERR(inode); | 
 |  | 
 | 		if (ret != -ENOENT) | 
 | 			return ret; | 
 |  | 
 | 		ret = conflicting_inode_is_dir(root, ino, path); | 
 | 		/* Not a directory or we got an error. */ | 
 | 		if (ret <= 0) | 
 | 			return ret; | 
 |  | 
 | 		/* Conflicting inode is a directory, so we'll log its parent. */ | 
 | 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); | 
 | 		if (!ino_elem) | 
 | 			return -ENOMEM; | 
 | 		ino_elem->ino = ino; | 
 | 		ino_elem->parent = parent; | 
 | 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes); | 
 | 		ctx->num_conflict_inodes++; | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the inode was already logged skip it - otherwise we can hit an | 
 | 	 * infinite loop. Example: | 
 | 	 * | 
 | 	 * From the commit root (previous transaction) we have the following | 
 | 	 * inodes: | 
 | 	 * | 
 | 	 * inode 257 a directory | 
 | 	 * inode 258 with references "zz" and "zz_link" on inode 257 | 
 | 	 * inode 259 with reference "a" on inode 257 | 
 | 	 * | 
 | 	 * And in the current (uncommitted) transaction we have: | 
 | 	 * | 
 | 	 * inode 257 a directory, unchanged | 
 | 	 * inode 258 with references "a" and "a2" on inode 257 | 
 | 	 * inode 259 with reference "zz_link" on inode 257 | 
 | 	 * inode 261 with reference "zz" on inode 257 | 
 | 	 * | 
 | 	 * When logging inode 261 the following infinite loop could | 
 | 	 * happen if we don't skip already logged inodes: | 
 | 	 * | 
 | 	 * - we detect inode 258 as a conflicting inode, with inode 261 | 
 | 	 *   on reference "zz", and log it; | 
 | 	 * | 
 | 	 * - we detect inode 259 as a conflicting inode, with inode 258 | 
 | 	 *   on reference "a", and log it; | 
 | 	 * | 
 | 	 * - we detect inode 258 as a conflicting inode, with inode 259 | 
 | 	 *   on reference "zz_link", and log it - again! After this we | 
 | 	 *   repeat the above steps forever. | 
 | 	 * | 
 | 	 * Here we can use need_log_inode() because we only need to log the | 
 | 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log, | 
 | 	 * so that the log ends up with the new name and without the old name. | 
 | 	 */ | 
 | 	if (!need_log_inode(trans, inode)) { | 
 | 		btrfs_add_delayed_iput(inode); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	btrfs_add_delayed_iput(inode); | 
 |  | 
 | 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); | 
 | 	if (!ino_elem) | 
 | 		return -ENOMEM; | 
 | 	ino_elem->ino = ino; | 
 | 	ino_elem->parent = parent; | 
 | 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes); | 
 | 	ctx->num_conflict_inodes++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int log_conflicting_inodes(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(), | 
 | 	 * otherwise we could have unbounded recursion of btrfs_log_inode() | 
 | 	 * calls. This check guarantees we can have only 1 level of recursion. | 
 | 	 */ | 
 | 	if (ctx->logging_conflict_inodes) | 
 | 		return 0; | 
 |  | 
 | 	ctx->logging_conflict_inodes = true; | 
 |  | 
 | 	/* | 
 | 	 * New conflicting inodes may be found and added to the list while we | 
 | 	 * are logging a conflicting inode, so keep iterating while the list is | 
 | 	 * not empty. | 
 | 	 */ | 
 | 	while (!list_empty(&ctx->conflict_inodes)) { | 
 | 		struct btrfs_ino_list *curr; | 
 | 		struct btrfs_inode *inode; | 
 | 		u64 ino; | 
 | 		u64 parent; | 
 |  | 
 | 		curr = list_first_entry(&ctx->conflict_inodes, | 
 | 					struct btrfs_ino_list, list); | 
 | 		ino = curr->ino; | 
 | 		parent = curr->parent; | 
 | 		list_del(&curr->list); | 
 | 		kfree(curr); | 
 |  | 
 | 		inode = btrfs_iget_logging(ino, root); | 
 | 		/* | 
 | 		 * If the other inode that had a conflicting dir entry was | 
 | 		 * deleted in the current transaction, we need to log its parent | 
 | 		 * directory. See the comment at add_conflicting_inode(). | 
 | 		 */ | 
 | 		if (IS_ERR(inode)) { | 
 | 			ret = PTR_ERR(inode); | 
 | 			if (ret != -ENOENT) | 
 | 				break; | 
 |  | 
 | 			inode = btrfs_iget_logging(parent, root); | 
 | 			if (IS_ERR(inode)) { | 
 | 				ret = PTR_ERR(inode); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Always log the directory, we cannot make this | 
 | 			 * conditional on need_log_inode() because the directory | 
 | 			 * might have been logged in LOG_INODE_EXISTS mode or | 
 | 			 * the dir index of the conflicting inode is not in a | 
 | 			 * dir index key range logged for the directory. So we | 
 | 			 * must make sure the deletion is recorded. | 
 | 			 */ | 
 | 			ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx); | 
 | 			btrfs_add_delayed_iput(inode); | 
 | 			if (ret) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Here we can use need_log_inode() because we only need to log | 
 | 		 * the inode in LOG_INODE_EXISTS mode and rename operations | 
 | 		 * update the log, so that the log ends up with the new name and | 
 | 		 * without the old name. | 
 | 		 * | 
 | 		 * We did this check at add_conflicting_inode(), but here we do | 
 | 		 * it again because if some other task logged the inode after | 
 | 		 * that, we can avoid doing it again. | 
 | 		 */ | 
 | 		if (!need_log_inode(trans, inode)) { | 
 | 			btrfs_add_delayed_iput(inode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We are safe logging the other inode without acquiring its | 
 | 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We | 
 | 		 * are safe against concurrent renames of the other inode as | 
 | 		 * well because during a rename we pin the log and update the | 
 | 		 * log with the new name before we unpin it. | 
 | 		 */ | 
 | 		ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); | 
 | 		btrfs_add_delayed_iput(inode); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	ctx->logging_conflict_inodes = false; | 
 | 	if (ret) | 
 | 		free_conflicting_inodes(ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_inode *inode, | 
 | 				   struct btrfs_key *min_key, | 
 | 				   const struct btrfs_key *max_key, | 
 | 				   struct btrfs_path *path, | 
 | 				   struct btrfs_path *dst_path, | 
 | 				   const u64 logged_isize, | 
 | 				   const int inode_only, | 
 | 				   struct btrfs_log_ctx *ctx, | 
 | 				   bool *need_log_inode_item) | 
 | { | 
 | 	const u64 i_size = i_size_read(&inode->vfs_inode); | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	int ins_start_slot = 0; | 
 | 	int ins_nr = 0; | 
 | 	int ret; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_forward(root, min_key, path, trans->transid); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret > 0) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | again: | 
 | 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */ | 
 | 		if (min_key->objectid != max_key->objectid) | 
 | 			break; | 
 | 		if (min_key->type > max_key->type) | 
 | 			break; | 
 |  | 
 | 		if (min_key->type == BTRFS_INODE_ITEM_KEY) { | 
 | 			*need_log_inode_item = false; | 
 | 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY && | 
 | 			   min_key->offset >= i_size) { | 
 | 			/* | 
 | 			 * Extents at and beyond eof are logged with | 
 | 			 * btrfs_log_prealloc_extents(). | 
 | 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, | 
 | 			 * and no keys greater than that, so bail out. | 
 | 			 */ | 
 | 			break; | 
 | 		} else if ((min_key->type == BTRFS_INODE_REF_KEY || | 
 | 			    min_key->type == BTRFS_INODE_EXTREF_KEY) && | 
 | 			   (inode->generation == trans->transid || | 
 | 			    ctx->logging_conflict_inodes)) { | 
 | 			u64 other_ino = 0; | 
 | 			u64 other_parent = 0; | 
 |  | 
 | 			ret = btrfs_check_ref_name_override(path->nodes[0], | 
 | 					path->slots[0], min_key, inode, | 
 | 					&other_ino, &other_parent); | 
 | 			if (ret < 0) { | 
 | 				return ret; | 
 | 			} else if (ret > 0 && | 
 | 				   other_ino != btrfs_ino(ctx->inode)) { | 
 | 				if (ins_nr > 0) { | 
 | 					ins_nr++; | 
 | 				} else { | 
 | 					ins_nr = 1; | 
 | 					ins_start_slot = path->slots[0]; | 
 | 				} | 
 | 				ret = copy_items(trans, inode, dst_path, path, | 
 | 						 ins_start_slot, ins_nr, | 
 | 						 inode_only, logged_isize, ctx); | 
 | 				if (ret < 0) | 
 | 					return ret; | 
 | 				ins_nr = 0; | 
 |  | 
 | 				btrfs_release_path(path); | 
 | 				ret = add_conflicting_inode(trans, root, path, | 
 | 							    other_ino, | 
 | 							    other_parent, ctx); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 				goto next_key; | 
 | 			} | 
 | 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { | 
 | 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */ | 
 | 			if (ins_nr == 0) | 
 | 				goto next_slot; | 
 | 			ret = copy_items(trans, inode, dst_path, path, | 
 | 					 ins_start_slot, | 
 | 					 ins_nr, inode_only, logged_isize, ctx); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			ins_nr = 0; | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | 
 | 			ins_nr++; | 
 | 			goto next_slot; | 
 | 		} else if (!ins_nr) { | 
 | 			ins_start_slot = path->slots[0]; | 
 | 			ins_nr = 1; | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot, | 
 | 				 ins_nr, inode_only, logged_isize, ctx); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		ins_nr = 1; | 
 | 		ins_start_slot = path->slots[0]; | 
 | next_slot: | 
 | 		path->slots[0]++; | 
 | 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], min_key, | 
 | 					      path->slots[0]); | 
 | 			goto again; | 
 | 		} | 
 | 		if (ins_nr) { | 
 | 			ret = copy_items(trans, inode, dst_path, path, | 
 | 					 ins_start_slot, ins_nr, inode_only, | 
 | 					 logged_isize, ctx); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			ins_nr = 0; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | next_key: | 
 | 		if (min_key->offset < (u64)-1) { | 
 | 			min_key->offset++; | 
 | 		} else if (min_key->type < max_key->type) { | 
 | 			min_key->type++; | 
 | 			min_key->offset = 0; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We may process many leaves full of items for our inode, so | 
 | 		 * avoid monopolizing a cpu for too long by rescheduling while | 
 | 		 * not holding locks on any tree. | 
 | 		 */ | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (ins_nr) { | 
 | 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot, | 
 | 				 ins_nr, inode_only, logged_isize, ctx); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { | 
 | 		/* | 
 | 		 * Release the path because otherwise we might attempt to double | 
 | 		 * lock the same leaf with btrfs_log_prealloc_extents() below. | 
 | 		 */ | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *log, | 
 | 				      struct btrfs_path *path, | 
 | 				      const struct btrfs_item_batch *batch, | 
 | 				      const struct btrfs_delayed_item *first_item) | 
 | { | 
 | 	const struct btrfs_delayed_item *curr = first_item; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_empty_items(trans, log, path, batch); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (int i = 0; i < batch->nr; i++) { | 
 | 		char *data_ptr; | 
 |  | 
 | 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); | 
 | 		write_extent_buffer(path->nodes[0], &curr->data, | 
 | 				    (unsigned long)data_ptr, curr->data_len); | 
 | 		curr = list_next_entry(curr, log_list); | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_inode *inode, | 
 | 				       struct btrfs_path *path, | 
 | 				       const struct list_head *delayed_ins_list, | 
 | 				       struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ | 
 | 	const int max_batch_size = 195; | 
 | 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	struct btrfs_root *log = inode->root->log_root; | 
 | 	struct btrfs_item_batch batch = { | 
 | 		.nr = 0, | 
 | 		.total_data_size = 0, | 
 | 	}; | 
 | 	const struct btrfs_delayed_item *first = NULL; | 
 | 	const struct btrfs_delayed_item *curr; | 
 | 	char *ins_data; | 
 | 	struct btrfs_key *ins_keys; | 
 | 	u32 *ins_sizes; | 
 | 	u64 curr_batch_size = 0; | 
 | 	int batch_idx = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* We are adding dir index items to the log tree. */ | 
 | 	lockdep_assert_held(&inode->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * We collect delayed items before copying index keys from the subvolume | 
 | 	 * to the log tree. However just after we collected them, they may have | 
 | 	 * been flushed (all of them or just some of them), and therefore we | 
 | 	 * could have copied them from the subvolume tree to the log tree. | 
 | 	 * So find the first delayed item that was not yet logged (they are | 
 | 	 * sorted by index number). | 
 | 	 */ | 
 | 	list_for_each_entry(curr, delayed_ins_list, log_list) { | 
 | 		if (curr->index > inode->last_dir_index_offset) { | 
 | 			first = curr; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Empty list or all delayed items were already logged. */ | 
 | 	if (!first) | 
 | 		return 0; | 
 |  | 
 | 	ins_data = kmalloc(max_batch_size * sizeof(u32) + | 
 | 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); | 
 | 	if (!ins_data) | 
 | 		return -ENOMEM; | 
 | 	ins_sizes = (u32 *)ins_data; | 
 | 	batch.data_sizes = ins_sizes; | 
 | 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); | 
 | 	batch.keys = ins_keys; | 
 |  | 
 | 	curr = first; | 
 | 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { | 
 | 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); | 
 |  | 
 | 		if (curr_batch_size + curr_size > leaf_data_size || | 
 | 		    batch.nr == max_batch_size) { | 
 | 			ret = insert_delayed_items_batch(trans, log, path, | 
 | 							 &batch, first); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			batch_idx = 0; | 
 | 			batch.nr = 0; | 
 | 			batch.total_data_size = 0; | 
 | 			curr_batch_size = 0; | 
 | 			first = curr; | 
 | 		} | 
 |  | 
 | 		ins_sizes[batch_idx] = curr->data_len; | 
 | 		ins_keys[batch_idx].objectid = ino; | 
 | 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; | 
 | 		ins_keys[batch_idx].offset = curr->index; | 
 | 		curr_batch_size += curr_size; | 
 | 		batch.total_data_size += curr->data_len; | 
 | 		batch.nr++; | 
 | 		batch_idx++; | 
 | 		curr = list_next_entry(curr, log_list); | 
 | 	} | 
 |  | 
 | 	ASSERT(batch.nr >= 1); | 
 | 	ret = insert_delayed_items_batch(trans, log, path, &batch, first); | 
 |  | 
 | 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, | 
 | 			       log_list); | 
 | 	inode->last_dir_index_offset = curr->index; | 
 | out: | 
 | 	kfree(ins_data); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_inode *inode, | 
 | 				      struct btrfs_path *path, | 
 | 				      const struct list_head *delayed_del_list, | 
 | 				      struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	const struct btrfs_delayed_item *curr; | 
 |  | 
 | 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, | 
 | 				log_list); | 
 |  | 
 | 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) { | 
 | 		u64 first_dir_index = curr->index; | 
 | 		u64 last_dir_index; | 
 | 		const struct btrfs_delayed_item *next; | 
 | 		int ret; | 
 |  | 
 | 		/* | 
 | 		 * Find a range of consecutive dir index items to delete. Like | 
 | 		 * this we log a single dir range item spanning several contiguous | 
 | 		 * dir items instead of logging one range item per dir index item. | 
 | 		 */ | 
 | 		next = list_next_entry(curr, log_list); | 
 | 		while (!list_entry_is_head(next, delayed_del_list, log_list)) { | 
 | 			if (next->index != curr->index + 1) | 
 | 				break; | 
 | 			curr = next; | 
 | 			next = list_next_entry(next, log_list); | 
 | 		} | 
 |  | 
 | 		last_dir_index = curr->index; | 
 | 		ASSERT(last_dir_index >= first_dir_index); | 
 |  | 
 | 		ret = insert_dir_log_key(trans, inode->root->log_root, path, | 
 | 					 ino, first_dir_index, last_dir_index); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		curr = list_next_entry(curr, log_list); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_inode *inode, | 
 | 					struct btrfs_path *path, | 
 | 					const struct list_head *delayed_del_list, | 
 | 					const struct btrfs_delayed_item *first, | 
 | 					const struct btrfs_delayed_item **last_ret) | 
 | { | 
 | 	const struct btrfs_delayed_item *next; | 
 | 	struct extent_buffer *leaf = path->nodes[0]; | 
 | 	const int last_slot = btrfs_header_nritems(leaf) - 1; | 
 | 	int slot = path->slots[0] + 1; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	next = list_next_entry(first, log_list); | 
 |  | 
 | 	while (slot < last_slot && | 
 | 	       !list_entry_is_head(next, delayed_del_list, log_list)) { | 
 | 		struct btrfs_key key; | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		if (key.objectid != ino || | 
 | 		    key.type != BTRFS_DIR_INDEX_KEY || | 
 | 		    key.offset != next->index) | 
 | 			break; | 
 |  | 
 | 		slot++; | 
 | 		*last_ret = next; | 
 | 		next = list_next_entry(next, log_list); | 
 | 	} | 
 |  | 
 | 	return btrfs_del_items(trans, inode->root->log_root, path, | 
 | 			       path->slots[0], slot - path->slots[0]); | 
 | } | 
 |  | 
 | static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, | 
 | 					     struct btrfs_inode *inode, | 
 | 					     struct btrfs_path *path, | 
 | 					     const struct list_head *delayed_del_list, | 
 | 					     struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *log = inode->root->log_root; | 
 | 	const struct btrfs_delayed_item *curr; | 
 | 	u64 last_range_start = 0; | 
 | 	u64 last_range_end = 0; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	key.objectid = btrfs_ino(inode); | 
 | 	key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, | 
 | 				log_list); | 
 |  | 
 | 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) { | 
 | 		const struct btrfs_delayed_item *last = curr; | 
 | 		u64 first_dir_index = curr->index; | 
 | 		u64 last_dir_index; | 
 | 		bool deleted_items = false; | 
 | 		int ret; | 
 |  | 
 | 		key.offset = curr->index; | 
 | 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
 | 		if (ret < 0) { | 
 | 			return ret; | 
 | 		} else if (ret == 0) { | 
 | 			ret = batch_delete_dir_index_items(trans, inode, path, | 
 | 							   delayed_del_list, curr, | 
 | 							   &last); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			deleted_items = true; | 
 | 		} | 
 |  | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		/* | 
 | 		 * If we deleted items from the leaf, it means we have a range | 
 | 		 * item logging their range, so no need to add one or update an | 
 | 		 * existing one. Otherwise we have to log a dir range item. | 
 | 		 */ | 
 | 		if (deleted_items) | 
 | 			goto next_batch; | 
 |  | 
 | 		last_dir_index = last->index; | 
 | 		ASSERT(last_dir_index >= first_dir_index); | 
 | 		/* | 
 | 		 * If this range starts right after where the previous one ends, | 
 | 		 * then we want to reuse the previous range item and change its | 
 | 		 * end offset to the end of this range. This is just to minimize | 
 | 		 * leaf space usage, by avoiding adding a new range item. | 
 | 		 */ | 
 | 		if (last_range_end != 0 && first_dir_index == last_range_end + 1) | 
 | 			first_dir_index = last_range_start; | 
 |  | 
 | 		ret = insert_dir_log_key(trans, log, path, key.objectid, | 
 | 					 first_dir_index, last_dir_index); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		last_range_start = first_dir_index; | 
 | 		last_range_end = last_dir_index; | 
 | next_batch: | 
 | 		curr = list_next_entry(last, log_list); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_inode *inode, | 
 | 				      struct btrfs_path *path, | 
 | 				      const struct list_head *delayed_del_list, | 
 | 				      struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	/* | 
 | 	 * We are deleting dir index items from the log tree or adding range | 
 | 	 * items to it. | 
 | 	 */ | 
 | 	lockdep_assert_held(&inode->log_mutex); | 
 |  | 
 | 	if (list_empty(delayed_del_list)) | 
 | 		return 0; | 
 |  | 
 | 	if (ctx->logged_before) | 
 | 		return log_delayed_deletions_incremental(trans, inode, path, | 
 | 							 delayed_del_list, ctx); | 
 |  | 
 | 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list, | 
 | 					  ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed | 
 |  * items instead of the subvolume tree. | 
 |  */ | 
 | static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_inode *inode, | 
 | 				    const struct list_head *delayed_ins_list, | 
 | 				    struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	const bool orig_log_new_dentries = ctx->log_new_dentries; | 
 | 	struct btrfs_delayed_item *item; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * No need for the log mutex, plus to avoid potential deadlocks or | 
 | 	 * lockdep annotations due to nesting of delayed inode mutexes and log | 
 | 	 * mutexes. | 
 | 	 */ | 
 | 	lockdep_assert_not_held(&inode->log_mutex); | 
 |  | 
 | 	ASSERT(!ctx->logging_new_delayed_dentries); | 
 | 	ctx->logging_new_delayed_dentries = true; | 
 |  | 
 | 	list_for_each_entry(item, delayed_ins_list, log_list) { | 
 | 		struct btrfs_dir_item *dir_item; | 
 | 		struct btrfs_inode *di_inode; | 
 | 		struct btrfs_key key; | 
 | 		int log_mode = LOG_INODE_EXISTS; | 
 |  | 
 | 		dir_item = (struct btrfs_dir_item *)item->data; | 
 | 		btrfs_disk_key_to_cpu(&key, &dir_item->location); | 
 |  | 
 | 		if (key.type == BTRFS_ROOT_ITEM_KEY) | 
 | 			continue; | 
 |  | 
 | 		di_inode = btrfs_iget_logging(key.objectid, inode->root); | 
 | 		if (IS_ERR(di_inode)) { | 
 | 			ret = PTR_ERR(di_inode); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!need_log_inode(trans, di_inode)) { | 
 | 			btrfs_add_delayed_iput(di_inode); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) | 
 | 			log_mode = LOG_INODE_ALL; | 
 |  | 
 | 		ctx->log_new_dentries = false; | 
 | 		ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); | 
 |  | 
 | 		if (!ret && ctx->log_new_dentries) | 
 | 			ret = log_new_dir_dentries(trans, di_inode, ctx); | 
 |  | 
 | 		btrfs_add_delayed_iput(di_inode); | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	ctx->log_new_dentries = orig_log_new_dentries; | 
 | 	ctx->logging_new_delayed_dentries = false; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* log a single inode in the tree log. | 
 |  * At least one parent directory for this inode must exist in the tree | 
 |  * or be logged already. | 
 |  * | 
 |  * Any items from this inode changed by the current transaction are copied | 
 |  * to the log tree.  An extra reference is taken on any extents in this | 
 |  * file, allowing us to avoid a whole pile of corner cases around logging | 
 |  * blocks that have been removed from the tree. | 
 |  * | 
 |  * See LOG_INODE_ALL and related defines for a description of what inode_only | 
 |  * does. | 
 |  * | 
 |  * This handles both files and directories. | 
 |  */ | 
 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_inode *inode, | 
 | 			   int inode_only, | 
 | 			   struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_path *dst_path; | 
 | 	struct btrfs_key min_key; | 
 | 	struct btrfs_key max_key; | 
 | 	struct btrfs_root *log = inode->root->log_root; | 
 | 	int ret; | 
 | 	bool fast_search = false; | 
 | 	u64 ino = btrfs_ino(inode); | 
 | 	struct extent_map_tree *em_tree = &inode->extent_tree; | 
 | 	u64 logged_isize = 0; | 
 | 	bool need_log_inode_item = true; | 
 | 	bool xattrs_logged = false; | 
 | 	bool inode_item_dropped = true; | 
 | 	bool full_dir_logging = false; | 
 | 	LIST_HEAD(delayed_ins_list); | 
 | 	LIST_HEAD(delayed_del_list); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	dst_path = btrfs_alloc_path(); | 
 | 	if (!dst_path) { | 
 | 		btrfs_free_path(path); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	min_key.objectid = ino; | 
 | 	min_key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	min_key.offset = 0; | 
 |  | 
 | 	max_key.objectid = ino; | 
 |  | 
 |  | 
 | 	/* today the code can only do partial logging of directories */ | 
 | 	if (S_ISDIR(inode->vfs_inode.i_mode) || | 
 | 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 		       &inode->runtime_flags) && | 
 | 	     inode_only >= LOG_INODE_EXISTS)) | 
 | 		max_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	else | 
 | 		max_key.type = (u8)-1; | 
 | 	max_key.offset = (u64)-1; | 
 |  | 
 | 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) | 
 | 		full_dir_logging = true; | 
 |  | 
 | 	/* | 
 | 	 * If we are logging a directory while we are logging dentries of the | 
 | 	 * delayed items of some other inode, then we need to flush the delayed | 
 | 	 * items of this directory and not log the delayed items directly. This | 
 | 	 * is to prevent more than one level of recursion into btrfs_log_inode() | 
 | 	 * by having something like this: | 
 | 	 * | 
 | 	 *     $ mkdir -p a/b/c/d/e/f/g/h/... | 
 | 	 *     $ xfs_io -c "fsync" a | 
 | 	 * | 
 | 	 * Where all directories in the path did not exist before and are | 
 | 	 * created in the current transaction. | 
 | 	 * So in such a case we directly log the delayed items of the main | 
 | 	 * directory ("a") without flushing them first, while for each of its | 
 | 	 * subdirectories we flush their delayed items before logging them. | 
 | 	 * This prevents a potential unbounded recursion like this: | 
 | 	 * | 
 | 	 * btrfs_log_inode() | 
 | 	 *   log_new_delayed_dentries() | 
 | 	 *      btrfs_log_inode() | 
 | 	 *        log_new_delayed_dentries() | 
 | 	 *          btrfs_log_inode() | 
 | 	 *            log_new_delayed_dentries() | 
 | 	 *              (...) | 
 | 	 * | 
 | 	 * We have thresholds for the maximum number of delayed items to have in | 
 | 	 * memory, and once they are hit, the items are flushed asynchronously. | 
 | 	 * However the limit is quite high, so lets prevent deep levels of | 
 | 	 * recursion to happen by limiting the maximum depth to be 1. | 
 | 	 */ | 
 | 	if (full_dir_logging && ctx->logging_new_delayed_dentries) { | 
 | 		ret = btrfs_commit_inode_delayed_items(trans, inode); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&inode->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * For symlinks, we must always log their content, which is stored in an | 
 | 	 * inline extent, otherwise we could end up with an empty symlink after | 
 | 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if | 
 | 	 * one attempts to create an empty symlink). | 
 | 	 * We don't need to worry about flushing delalloc, because when we create | 
 | 	 * the inline extent when the symlink is created (we never have delalloc | 
 | 	 * for symlinks). | 
 | 	 */ | 
 | 	if (S_ISLNK(inode->vfs_inode.i_mode)) | 
 | 		inode_only = LOG_INODE_ALL; | 
 |  | 
 | 	/* | 
 | 	 * Before logging the inode item, cache the value returned by | 
 | 	 * inode_logged(), because after that we have the need to figure out if | 
 | 	 * the inode was previously logged in this transaction. | 
 | 	 */ | 
 | 	ret = inode_logged(trans, inode, path); | 
 | 	if (ret < 0) | 
 | 		goto out_unlock; | 
 | 	ctx->logged_before = (ret == 1); | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * This is for cases where logging a directory could result in losing a | 
 | 	 * a file after replaying the log. For example, if we move a file from a | 
 | 	 * directory A to a directory B, then fsync directory A, we have no way | 
 | 	 * to known the file was moved from A to B, so logging just A would | 
 | 	 * result in losing the file after a log replay. | 
 | 	 */ | 
 | 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { | 
 | 		ret = BTRFS_LOG_FORCE_COMMIT; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * a brute force approach to making sure we get the most uptodate | 
 | 	 * copies of everything. | 
 | 	 */ | 
 | 	if (S_ISDIR(inode->vfs_inode.i_mode)) { | 
 | 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); | 
 | 		if (ctx->logged_before) | 
 | 			ret = drop_inode_items(trans, log, path, inode, | 
 | 					       BTRFS_XATTR_ITEM_KEY); | 
 | 	} else { | 
 | 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { | 
 | 			/* | 
 | 			 * Make sure the new inode item we write to the log has | 
 | 			 * the same isize as the current one (if it exists). | 
 | 			 * This is necessary to prevent data loss after log | 
 | 			 * replay, and also to prevent doing a wrong expanding | 
 | 			 * truncate - for e.g. create file, write 4K into offset | 
 | 			 * 0, fsync, write 4K into offset 4096, add hard link, | 
 | 			 * fsync some other file (to sync log), power fail - if | 
 | 			 * we use the inode's current i_size, after log replay | 
 | 			 * we get a 8Kb file, with the last 4Kb extent as a hole | 
 | 			 * (zeroes), as if an expanding truncate happened, | 
 | 			 * instead of getting a file of 4Kb only. | 
 | 			 */ | 
 | 			ret = logged_inode_size(log, inode, path, &logged_isize); | 
 | 			if (ret) | 
 | 				goto out_unlock; | 
 | 		} | 
 | 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 			     &inode->runtime_flags)) { | 
 | 			if (inode_only == LOG_INODE_EXISTS) { | 
 | 				max_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 				if (ctx->logged_before) | 
 | 					ret = drop_inode_items(trans, log, path, | 
 | 							       inode, max_key.type); | 
 | 			} else { | 
 | 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 					  &inode->runtime_flags); | 
 | 				clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
 | 					  &inode->runtime_flags); | 
 | 				if (ctx->logged_before) | 
 | 					ret = truncate_inode_items(trans, log, | 
 | 								   inode, 0, 0); | 
 | 			} | 
 | 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
 | 					      &inode->runtime_flags) || | 
 | 			   inode_only == LOG_INODE_EXISTS) { | 
 | 			if (inode_only == LOG_INODE_ALL) | 
 | 				fast_search = true; | 
 | 			max_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 			if (ctx->logged_before) | 
 | 				ret = drop_inode_items(trans, log, path, inode, | 
 | 						       max_key.type); | 
 | 		} else { | 
 | 			if (inode_only == LOG_INODE_ALL) | 
 | 				fast_search = true; | 
 | 			inode_item_dropped = false; | 
 | 			goto log_extents; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * If we are logging a directory in full mode, collect the delayed items | 
 | 	 * before iterating the subvolume tree, so that we don't miss any new | 
 | 	 * dir index items in case they get flushed while or right after we are | 
 | 	 * iterating the subvolume tree. | 
 | 	 */ | 
 | 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) | 
 | 		btrfs_log_get_delayed_items(inode, &delayed_ins_list, | 
 | 					    &delayed_del_list); | 
 |  | 
 | 	/* | 
 | 	 * If we are fsyncing a file with 0 hard links, then commit the delayed | 
 | 	 * inode because the last inode ref (or extref) item may still be in the | 
 | 	 * subvolume tree and if we log it the file will still exist after a log | 
 | 	 * replay. So commit the delayed inode to delete that last ref and we | 
 | 	 * skip logging it. | 
 | 	 */ | 
 | 	if (inode->vfs_inode.i_nlink == 0) { | 
 | 		ret = btrfs_commit_inode_delayed_inode(inode); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, | 
 | 				      path, dst_path, logged_isize, | 
 | 				      inode_only, ctx, | 
 | 				      &need_log_inode_item); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(dst_path); | 
 | 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 | 	xattrs_logged = true; | 
 | 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { | 
 | 		btrfs_release_path(path); | 
 | 		btrfs_release_path(dst_path); | 
 | 		ret = btrfs_log_holes(trans, inode, path); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 | log_extents: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(dst_path); | 
 | 	if (need_log_inode_item) { | 
 | 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 		/* | 
 | 		 * If we are doing a fast fsync and the inode was logged before | 
 | 		 * in this transaction, we don't need to log the xattrs because | 
 | 		 * they were logged before. If xattrs were added, changed or | 
 | 		 * deleted since the last time we logged the inode, then we have | 
 | 		 * already logged them because the inode had the runtime flag | 
 | 		 * BTRFS_INODE_COPY_EVERYTHING set. | 
 | 		 */ | 
 | 		if (!xattrs_logged && inode->logged_trans < trans->transid) { | 
 | 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); | 
 | 			if (ret) | 
 | 				goto out_unlock; | 
 | 			btrfs_release_path(path); | 
 | 		} | 
 | 	} | 
 | 	if (fast_search) { | 
 | 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} else if (inode_only == LOG_INODE_ALL) { | 
 | 		struct extent_map *em, *n; | 
 |  | 
 | 		write_lock(&em_tree->lock); | 
 | 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) | 
 | 			list_del_init(&em->list); | 
 | 		write_unlock(&em_tree->lock); | 
 | 	} | 
 |  | 
 | 	if (full_dir_logging) { | 
 | 		ret = log_directory_changes(trans, inode, path, dst_path, ctx); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 		ret = log_delayed_insertion_items(trans, inode, path, | 
 | 						  &delayed_ins_list, ctx); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 		ret = log_delayed_deletion_items(trans, inode, path, | 
 | 						 &delayed_del_list, ctx); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	spin_lock(&inode->lock); | 
 | 	inode->logged_trans = trans->transid; | 
 | 	/* | 
 | 	 * Don't update last_log_commit if we logged that an inode exists. | 
 | 	 * We do this for three reasons: | 
 | 	 * | 
 | 	 * 1) We might have had buffered writes to this inode that were | 
 | 	 *    flushed and had their ordered extents completed in this | 
 | 	 *    transaction, but we did not previously log the inode with | 
 | 	 *    LOG_INODE_ALL. Later the inode was evicted and after that | 
 | 	 *    it was loaded again and this LOG_INODE_EXISTS log operation | 
 | 	 *    happened. We must make sure that if an explicit fsync against | 
 | 	 *    the inode is performed later, it logs the new extents, an | 
 | 	 *    updated inode item, etc, and syncs the log. The same logic | 
 | 	 *    applies to direct IO writes instead of buffered writes. | 
 | 	 * | 
 | 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item | 
 | 	 *    is logged with an i_size of 0 or whatever value was logged | 
 | 	 *    before. If later the i_size of the inode is increased by a | 
 | 	 *    truncate operation, the log is synced through an fsync of | 
 | 	 *    some other inode and then finally an explicit fsync against | 
 | 	 *    this inode is made, we must make sure this fsync logs the | 
 | 	 *    inode with the new i_size, the hole between old i_size and | 
 | 	 *    the new i_size, and syncs the log. | 
 | 	 * | 
 | 	 * 3) If we are logging that an ancestor inode exists as part of | 
 | 	 *    logging a new name from a link or rename operation, don't update | 
 | 	 *    its last_log_commit - otherwise if an explicit fsync is made | 
 | 	 *    against an ancestor, the fsync considers the inode in the log | 
 | 	 *    and doesn't sync the log, resulting in the ancestor missing after | 
 | 	 *    a power failure unless the log was synced as part of an fsync | 
 | 	 *    against any other unrelated inode. | 
 | 	 */ | 
 | 	if (inode_only != LOG_INODE_EXISTS) | 
 | 		inode->last_log_commit = inode->last_sub_trans; | 
 | 	spin_unlock(&inode->lock); | 
 |  | 
 | 	/* | 
 | 	 * Reset the last_reflink_trans so that the next fsync does not need to | 
 | 	 * go through the slower path when logging extents and their checksums. | 
 | 	 */ | 
 | 	if (inode_only == LOG_INODE_ALL) | 
 | 		inode->last_reflink_trans = 0; | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&inode->log_mutex); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	btrfs_free_path(dst_path); | 
 |  | 
 | 	if (ret) | 
 | 		free_conflicting_inodes(ctx); | 
 | 	else | 
 | 		ret = log_conflicting_inodes(trans, inode->root, ctx); | 
 |  | 
 | 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) { | 
 | 		if (!ret) | 
 | 			ret = log_new_delayed_dentries(trans, inode, | 
 | 						       &delayed_ins_list, ctx); | 
 |  | 
 | 		btrfs_log_put_delayed_items(inode, &delayed_ins_list, | 
 | 					    &delayed_del_list); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_inode *inode, | 
 | 				 struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->skip_locking = 1; | 
 | 	path->search_commit_root = 1; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int slot = path->slots[0]; | 
 | 		u32 cur_offset = 0; | 
 | 		u32 item_size; | 
 | 		unsigned long ptr; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ | 
 | 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) | 
 | 			break; | 
 |  | 
 | 		item_size = btrfs_item_size(leaf, slot); | 
 | 		ptr = btrfs_item_ptr_offset(leaf, slot); | 
 | 		while (cur_offset < item_size) { | 
 | 			struct btrfs_key inode_key; | 
 | 			struct btrfs_inode *dir_inode; | 
 |  | 
 | 			inode_key.type = BTRFS_INODE_ITEM_KEY; | 
 | 			inode_key.offset = 0; | 
 |  | 
 | 			if (key.type == BTRFS_INODE_EXTREF_KEY) { | 
 | 				struct btrfs_inode_extref *extref; | 
 |  | 
 | 				extref = (struct btrfs_inode_extref *) | 
 | 					(ptr + cur_offset); | 
 | 				inode_key.objectid = btrfs_inode_extref_parent( | 
 | 					leaf, extref); | 
 | 				cur_offset += sizeof(*extref); | 
 | 				cur_offset += btrfs_inode_extref_name_len(leaf, | 
 | 					extref); | 
 | 			} else { | 
 | 				inode_key.objectid = key.offset; | 
 | 				cur_offset = item_size; | 
 | 			} | 
 |  | 
 | 			dir_inode = btrfs_iget_logging(inode_key.objectid, root); | 
 | 			/* | 
 | 			 * If the parent inode was deleted, return an error to | 
 | 			 * fallback to a transaction commit. This is to prevent | 
 | 			 * getting an inode that was moved from one parent A to | 
 | 			 * a parent B, got its former parent A deleted and then | 
 | 			 * it got fsync'ed, from existing at both parents after | 
 | 			 * a log replay (and the old parent still existing). | 
 | 			 * Example: | 
 | 			 * | 
 | 			 * mkdir /mnt/A | 
 | 			 * mkdir /mnt/B | 
 | 			 * touch /mnt/B/bar | 
 | 			 * sync | 
 | 			 * mv /mnt/B/bar /mnt/A/bar | 
 | 			 * mv -T /mnt/A /mnt/B | 
 | 			 * fsync /mnt/B/bar | 
 | 			 * <power fail> | 
 | 			 * | 
 | 			 * If we ignore the old parent B which got deleted, | 
 | 			 * after a log replay we would have file bar linked | 
 | 			 * at both parents and the old parent B would still | 
 | 			 * exist. | 
 | 			 */ | 
 | 			if (IS_ERR(dir_inode)) { | 
 | 				ret = PTR_ERR(dir_inode); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (!need_log_inode(trans, dir_inode)) { | 
 | 				btrfs_add_delayed_iput(dir_inode); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ctx->log_new_dentries = false; | 
 | 			ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx); | 
 | 			if (!ret && ctx->log_new_dentries) | 
 | 				ret = log_new_dir_dentries(trans, dir_inode, ctx); | 
 | 			btrfs_add_delayed_iput(dir_inode); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int log_new_ancestors(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     struct btrfs_path *path, | 
 | 			     struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *leaf; | 
 | 		int slot; | 
 | 		struct btrfs_key search_key; | 
 | 		struct btrfs_inode *inode; | 
 | 		u64 ino; | 
 | 		int ret = 0; | 
 |  | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		ino = found_key.offset; | 
 |  | 
 | 		search_key.objectid = found_key.offset; | 
 | 		search_key.type = BTRFS_INODE_ITEM_KEY; | 
 | 		search_key.offset = 0; | 
 | 		inode = btrfs_iget_logging(ino, root); | 
 | 		if (IS_ERR(inode)) | 
 | 			return PTR_ERR(inode); | 
 |  | 
 | 		if (inode->generation >= trans->transid && | 
 | 		    need_log_inode(trans, inode)) | 
 | 			ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); | 
 | 		btrfs_add_delayed_iput(inode); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) | 
 | 			break; | 
 |  | 
 | 		search_key.type = BTRFS_INODE_REF_KEY; | 
 | 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			else if (ret > 0) | 
 | 				return -ENOENT; | 
 | 			leaf = path->nodes[0]; | 
 | 			slot = path->slots[0]; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 | 		if (found_key.objectid != search_key.objectid || | 
 | 		    found_key.type != BTRFS_INODE_REF_KEY) | 
 | 			return -ENOENT; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_inode *inode, | 
 | 				  struct dentry *parent, | 
 | 				  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct dentry *old_parent = NULL; | 
 | 	struct super_block *sb = inode->vfs_inode.i_sb; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (true) { | 
 | 		if (!parent || d_really_is_negative(parent) || | 
 | 		    sb != parent->d_sb) | 
 | 			break; | 
 |  | 
 | 		inode = BTRFS_I(d_inode(parent)); | 
 | 		if (root != inode->root) | 
 | 			break; | 
 |  | 
 | 		if (inode->generation >= trans->transid && | 
 | 		    need_log_inode(trans, inode)) { | 
 | 			ret = btrfs_log_inode(trans, inode, | 
 | 					      LOG_INODE_EXISTS, ctx); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		if (IS_ROOT(parent)) | 
 | 			break; | 
 |  | 
 | 		parent = dget_parent(parent); | 
 | 		dput(old_parent); | 
 | 		old_parent = parent; | 
 | 	} | 
 | 	dput(old_parent); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int log_all_new_ancestors(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_inode *inode, | 
 | 				 struct dentry *parent, | 
 | 				 struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key search_key; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * For a single hard link case, go through a fast path that does not | 
 | 	 * need to iterate the fs/subvolume tree. | 
 | 	 */ | 
 | 	if (inode->vfs_inode.i_nlink < 2) | 
 | 		return log_new_ancestors_fast(trans, inode, parent, ctx); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	search_key.objectid = ino; | 
 | 	search_key.type = BTRFS_INODE_REF_KEY; | 
 | 	search_key.offset = 0; | 
 | again: | 
 | 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret == 0) | 
 | 		path->slots[0]++; | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int slot = path->slots[0]; | 
 | 		struct btrfs_key found_key; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 | 		if (found_key.objectid != ino || | 
 | 		    found_key.type > BTRFS_INODE_EXTREF_KEY) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Don't deal with extended references because they are rare | 
 | 		 * cases and too complex to deal with (we would need to keep | 
 | 		 * track of which subitem we are processing for each item in | 
 | 		 * this loop, etc). So just return some error to fallback to | 
 | 		 * a transaction commit. | 
 | 		 */ | 
 | 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) { | 
 | 			ret = -EMLINK; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Logging ancestors needs to do more searches on the fs/subvol | 
 | 		 * tree, so it releases the path as needed to avoid deadlocks. | 
 | 		 * Keep track of the last inode ref key and resume from that key | 
 | 		 * after logging all new ancestors for the current hard link. | 
 | 		 */ | 
 | 		memcpy(&search_key, &found_key, sizeof(search_key)); | 
 |  | 
 | 		ret = log_new_ancestors(trans, root, path, ctx); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		btrfs_release_path(path); | 
 | 		goto again; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function around btrfs_log_inode to make sure newly created | 
 |  * parent directories also end up in the log.  A minimal inode and backref | 
 |  * only logging is done of any parent directories that are older than | 
 |  * the last committed transaction | 
 |  */ | 
 | static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_inode *inode, | 
 | 				  struct dentry *parent, | 
 | 				  int inode_only, | 
 | 				  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret = 0; | 
 | 	bool log_dentries; | 
 |  | 
 | 	if (btrfs_test_opt(fs_info, NOTREELOG)) | 
 | 		return BTRFS_LOG_FORCE_COMMIT; | 
 |  | 
 | 	if (btrfs_root_refs(&root->root_item) == 0) | 
 | 		return BTRFS_LOG_FORCE_COMMIT; | 
 |  | 
 | 	/* | 
 | 	 * If we're logging an inode from a subvolume created in the current | 
 | 	 * transaction we must force a commit since the root is not persisted. | 
 | 	 */ | 
 | 	if (btrfs_root_generation(&root->root_item) == trans->transid) | 
 | 		return BTRFS_LOG_FORCE_COMMIT; | 
 |  | 
 | 	/* Skip already logged inodes and without new extents. */ | 
 | 	if (btrfs_inode_in_log(inode, trans->transid) && | 
 | 	    list_empty(&ctx->ordered_extents)) | 
 | 		return BTRFS_NO_LOG_SYNC; | 
 |  | 
 | 	ret = start_log_trans(trans, root, ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_log_inode(trans, inode, inode_only, ctx); | 
 | 	if (ret) | 
 | 		goto end_trans; | 
 |  | 
 | 	/* | 
 | 	 * for regular files, if its inode is already on disk, we don't | 
 | 	 * have to worry about the parents at all.  This is because | 
 | 	 * we can use the last_unlink_trans field to record renames | 
 | 	 * and other fun in this file. | 
 | 	 */ | 
 | 	if (S_ISREG(inode->vfs_inode.i_mode) && | 
 | 	    inode->generation < trans->transid && | 
 | 	    inode->last_unlink_trans < trans->transid) { | 
 | 		ret = 0; | 
 | 		goto end_trans; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Track if we need to log dentries because ctx->log_new_dentries can | 
 | 	 * be modified in the call chains below. | 
 | 	 */ | 
 | 	log_dentries = ctx->log_new_dentries; | 
 |  | 
 | 	/* | 
 | 	 * On unlink we must make sure all our current and old parent directory | 
 | 	 * inodes are fully logged. This is to prevent leaving dangling | 
 | 	 * directory index entries in directories that were our parents but are | 
 | 	 * not anymore. Not doing this results in old parent directory being | 
 | 	 * impossible to delete after log replay (rmdir will always fail with | 
 | 	 * error -ENOTEMPTY). | 
 | 	 * | 
 | 	 * Example 1: | 
 | 	 * | 
 | 	 * mkdir testdir | 
 | 	 * touch testdir/foo | 
 | 	 * ln testdir/foo testdir/bar | 
 | 	 * sync | 
 | 	 * unlink testdir/bar | 
 | 	 * xfs_io -c fsync testdir/foo | 
 | 	 * <power failure> | 
 | 	 * mount fs, triggers log replay | 
 | 	 * | 
 | 	 * If we don't log the parent directory (testdir), after log replay the | 
 | 	 * directory still has an entry pointing to the file inode using the bar | 
 | 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and | 
 | 	 * the file inode has a link count of 1. | 
 | 	 * | 
 | 	 * Example 2: | 
 | 	 * | 
 | 	 * mkdir testdir | 
 | 	 * touch foo | 
 | 	 * ln foo testdir/foo2 | 
 | 	 * ln foo testdir/foo3 | 
 | 	 * sync | 
 | 	 * unlink testdir/foo3 | 
 | 	 * xfs_io -c fsync foo | 
 | 	 * <power failure> | 
 | 	 * mount fs, triggers log replay | 
 | 	 * | 
 | 	 * Similar as the first example, after log replay the parent directory | 
 | 	 * testdir still has an entry pointing to the inode file with name foo3 | 
 | 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item | 
 | 	 * and has a link count of 2. | 
 | 	 */ | 
 | 	if (inode->last_unlink_trans >= trans->transid) { | 
 | 		ret = btrfs_log_all_parents(trans, inode, ctx); | 
 | 		if (ret) | 
 | 			goto end_trans; | 
 | 	} | 
 |  | 
 | 	ret = log_all_new_ancestors(trans, inode, parent, ctx); | 
 | 	if (ret) | 
 | 		goto end_trans; | 
 |  | 
 | 	if (log_dentries) | 
 | 		ret = log_new_dir_dentries(trans, inode, ctx); | 
 | end_trans: | 
 | 	if (ret < 0) { | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 		ret = BTRFS_LOG_FORCE_COMMIT; | 
 | 	} | 
 |  | 
 | 	if (ret) | 
 | 		btrfs_remove_log_ctx(root, ctx); | 
 | 	btrfs_end_log_trans(root); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * it is not safe to log dentry if the chunk root has added new | 
 |  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise. | 
 |  * If this returns 1, you must commit the transaction to safely get your | 
 |  * data on disk. | 
 |  */ | 
 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | 
 | 			  struct dentry *dentry, | 
 | 			  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct dentry *parent = dget_parent(dentry); | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, | 
 | 				     LOG_INODE_ALL, ctx); | 
 | 	dput(parent); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * should be called during mount to recover any replay any log trees | 
 |  * from the FS | 
 |  */ | 
 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | 
 | 	struct walk_control wc = { | 
 | 		.process_func = process_one_buffer, | 
 | 		.stage = LOG_WALK_PIN_ONLY, | 
 | 	}; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
 |  | 
 | 	trans = btrfs_start_transaction(fs_info->tree_root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	wc.trans = trans; | 
 | 	wc.pin = 1; | 
 |  | 
 | 	ret = walk_log_tree(trans, log_root_tree, &wc); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | again: | 
 | 	key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	while (1) { | 
 | 		struct btrfs_root *log; | 
 | 		struct btrfs_key found_key; | 
 |  | 
 | 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | 
 |  | 
 | 		if (ret < 0) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto error; | 
 | 		} | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		btrfs_release_path(path); | 
 | 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
 | 			break; | 
 |  | 
 | 		log = btrfs_read_tree_root(log_root_tree, &found_key); | 
 | 		if (IS_ERR(log)) { | 
 | 			ret = PTR_ERR(log); | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, | 
 | 						   true); | 
 | 		if (IS_ERR(wc.replay_dest)) { | 
 | 			ret = PTR_ERR(wc.replay_dest); | 
 | 			wc.replay_dest = NULL; | 
 | 			if (ret != -ENOENT) { | 
 | 				btrfs_put_root(log); | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 				goto error; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We didn't find the subvol, likely because it was | 
 | 			 * deleted.  This is ok, simply skip this log and go to | 
 | 			 * the next one. | 
 | 			 * | 
 | 			 * We need to exclude the root because we can't have | 
 | 			 * other log replays overwriting this log as we'll read | 
 | 			 * it back in a few more times.  This will keep our | 
 | 			 * block from being modified, and we'll just bail for | 
 | 			 * each subsequent pass. | 
 | 			 */ | 
 | 			ret = btrfs_pin_extent_for_log_replay(trans, log->node); | 
 | 			if (ret) { | 
 | 				btrfs_put_root(log); | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 				goto error; | 
 | 			} | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		wc.replay_dest->log_root = log; | 
 | 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		ret = walk_log_tree(trans, log, &wc); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		if (wc.stage == LOG_WALK_REPLAY_ALL) { | 
 | 			struct btrfs_root *root = wc.replay_dest; | 
 |  | 
 | 			ret = fixup_inode_link_counts(trans, wc.replay_dest, path); | 
 | 			if (ret) { | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 				goto next; | 
 | 			} | 
 | 			/* | 
 | 			 * We have just replayed everything, and the highest | 
 | 			 * objectid of fs roots probably has changed in case | 
 | 			 * some inode_item's got replayed. | 
 | 			 * | 
 | 			 * root->objectid_mutex is not acquired as log replay | 
 | 			 * could only happen during mount. | 
 | 			 */ | 
 | 			ret = btrfs_init_root_free_objectid(root); | 
 | 			if (ret) { | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 				goto next; | 
 | 			} | 
 | 		} | 
 | next: | 
 | 		if (wc.replay_dest) { | 
 | 			wc.replay_dest->log_root = NULL; | 
 | 			btrfs_put_root(wc.replay_dest); | 
 | 		} | 
 | 		btrfs_put_root(log); | 
 |  | 
 | 		if (ret) | 
 | 			goto error; | 
 | 		if (found_key.offset == 0) | 
 | 			break; | 
 | 		key.offset = found_key.offset - 1; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* step one is to pin it all, step two is to replay just inodes */ | 
 | 	if (wc.pin) { | 
 | 		wc.pin = 0; | 
 | 		wc.process_func = replay_one_buffer; | 
 | 		wc.stage = LOG_WALK_REPLAY_INODES; | 
 | 		goto again; | 
 | 	} | 
 | 	/* step three is to replay everything */ | 
 | 	if (wc.stage < LOG_WALK_REPLAY_ALL) { | 
 | 		wc.stage++; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	/* step 4: commit the transaction, which also unpins the blocks */ | 
 | 	ret = btrfs_commit_transaction(trans); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	log_root_tree->log_root = NULL; | 
 | 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
 | 	btrfs_put_root(log_root_tree); | 
 |  | 
 | 	return 0; | 
 | error: | 
 | 	if (wc.trans) | 
 | 		btrfs_end_transaction(wc.trans); | 
 | 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * there are some corner cases where we want to force a full | 
 |  * commit instead of allowing a directory to be logged. | 
 |  * | 
 |  * They revolve around files there were unlinked from the directory, and | 
 |  * this function updates the parent directory so that a full commit is | 
 |  * properly done if it is fsync'd later after the unlinks are done. | 
 |  * | 
 |  * Must be called before the unlink operations (updates to the subvolume tree, | 
 |  * inodes, etc) are done. | 
 |  */ | 
 | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_inode *dir, struct btrfs_inode *inode, | 
 | 			     bool for_rename) | 
 | { | 
 | 	/* | 
 | 	 * when we're logging a file, if it hasn't been renamed | 
 | 	 * or unlinked, and its inode is fully committed on disk, | 
 | 	 * we don't have to worry about walking up the directory chain | 
 | 	 * to log its parents. | 
 | 	 * | 
 | 	 * So, we use the last_unlink_trans field to put this transid | 
 | 	 * into the file.  When the file is logged we check it and | 
 | 	 * don't log the parents if the file is fully on disk. | 
 | 	 */ | 
 | 	mutex_lock(&inode->log_mutex); | 
 | 	inode->last_unlink_trans = trans->transid; | 
 | 	mutex_unlock(&inode->log_mutex); | 
 |  | 
 | 	if (!for_rename) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If this directory was already logged, any new names will be logged | 
 | 	 * with btrfs_log_new_name() and old names will be deleted from the log | 
 | 	 * tree with btrfs_del_dir_entries_in_log() or with | 
 | 	 * btrfs_del_inode_ref_in_log(). | 
 | 	 */ | 
 | 	if (inode_logged(trans, dir, NULL) == 1) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the inode we're about to unlink was logged before, the log will be | 
 | 	 * properly updated with the new name with btrfs_log_new_name() and the | 
 | 	 * old name removed with btrfs_del_dir_entries_in_log() or with | 
 | 	 * btrfs_del_inode_ref_in_log(). | 
 | 	 */ | 
 | 	if (inode_logged(trans, inode, NULL) == 1) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * when renaming files across directories, if the directory | 
 | 	 * there we're unlinking from gets fsync'd later on, there's | 
 | 	 * no way to find the destination directory later and fsync it | 
 | 	 * properly.  So, we have to be conservative and force commits | 
 | 	 * so the new name gets discovered. | 
 | 	 */ | 
 | 	mutex_lock(&dir->log_mutex); | 
 | 	dir->last_unlink_trans = trans->transid; | 
 | 	mutex_unlock(&dir->log_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure that if someone attempts to fsync the parent directory of a deleted | 
 |  * snapshot, it ends up triggering a transaction commit. This is to guarantee | 
 |  * that after replaying the log tree of the parent directory's root we will not | 
 |  * see the snapshot anymore and at log replay time we will not see any log tree | 
 |  * corresponding to the deleted snapshot's root, which could lead to replaying | 
 |  * it after replaying the log tree of the parent directory (which would replay | 
 |  * the snapshot delete operation). | 
 |  * | 
 |  * Must be called before the actual snapshot destroy operation (updates to the | 
 |  * parent root and tree of tree roots trees, etc) are done. | 
 |  */ | 
 | void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_inode *dir) | 
 | { | 
 | 	mutex_lock(&dir->log_mutex); | 
 | 	dir->last_unlink_trans = trans->transid; | 
 | 	mutex_unlock(&dir->log_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * Call this when creating a subvolume in a directory. | 
 |  * Because we don't commit a transaction when creating a subvolume, we can't | 
 |  * allow the directory pointing to the subvolume to be logged with an entry that | 
 |  * points to an unpersisted root if we are still in the transaction used to | 
 |  * create the subvolume, so make any attempt to log the directory to result in a | 
 |  * full log sync. | 
 |  * Also we don't need to worry with renames, since btrfs_rename() marks the log | 
 |  * for full commit when renaming a subvolume. | 
 |  * | 
 |  * Must be called before creating the subvolume entry in its parent directory. | 
 |  */ | 
 | void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_inode *dir) | 
 | { | 
 | 	mutex_lock(&dir->log_mutex); | 
 | 	dir->last_unlink_trans = trans->transid; | 
 | 	mutex_unlock(&dir->log_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the log after adding a new name for an inode. | 
 |  * | 
 |  * @trans:              Transaction handle. | 
 |  * @old_dentry:         The dentry associated with the old name and the old | 
 |  *                      parent directory. | 
 |  * @old_dir:            The inode of the previous parent directory for the case | 
 |  *                      of a rename. For a link operation, it must be NULL. | 
 |  * @old_dir_index:      The index number associated with the old name, meaningful | 
 |  *                      only for rename operations (when @old_dir is not NULL). | 
 |  *                      Ignored for link operations. | 
 |  * @parent:             The dentry associated with the directory under which the | 
 |  *                      new name is located. | 
 |  * | 
 |  * Call this after adding a new name for an inode, as a result of a link or | 
 |  * rename operation, and it will properly update the log to reflect the new name. | 
 |  */ | 
 | void btrfs_log_new_name(struct btrfs_trans_handle *trans, | 
 | 			struct dentry *old_dentry, struct btrfs_inode *old_dir, | 
 | 			u64 old_dir_index, struct dentry *parent) | 
 | { | 
 | 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_log_ctx ctx; | 
 | 	bool log_pinned = false; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_init_log_ctx(&ctx, inode); | 
 | 	ctx.logging_new_name = true; | 
 |  | 
 | 	/* | 
 | 	 * this will force the logging code to walk the dentry chain | 
 | 	 * up for the file | 
 | 	 */ | 
 | 	if (!S_ISDIR(inode->vfs_inode.i_mode)) | 
 | 		inode->last_unlink_trans = trans->transid; | 
 |  | 
 | 	/* | 
 | 	 * if this inode hasn't been logged and directory we're renaming it | 
 | 	 * from hasn't been logged, we don't need to log it | 
 | 	 */ | 
 | 	ret = inode_logged(trans, inode, NULL); | 
 | 	if (ret < 0) { | 
 | 		goto out; | 
 | 	} else if (ret == 0) { | 
 | 		if (!old_dir) | 
 | 			return; | 
 | 		/* | 
 | 		 * If the inode was not logged and we are doing a rename (old_dir is not | 
 | 		 * NULL), check if old_dir was logged - if it was not we can return and | 
 | 		 * do nothing. | 
 | 		 */ | 
 | 		ret = inode_logged(trans, old_dir, NULL); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		else if (ret == 0) | 
 | 			return; | 
 | 	} | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Now that we know we need to update the log, allocate the scratch eb | 
 | 	 * for the context before joining a log transaction below, as this can | 
 | 	 * take time and therefore we could delay log commits from other tasks. | 
 | 	 */ | 
 | 	btrfs_init_log_ctx_scratch_eb(&ctx); | 
 |  | 
 | 	/* | 
 | 	 * If we are doing a rename (old_dir is not NULL) from a directory that | 
 | 	 * was previously logged, make sure that on log replay we get the old | 
 | 	 * dir entry deleted. This is needed because we will also log the new | 
 | 	 * name of the renamed inode, so we need to make sure that after log | 
 | 	 * replay we don't end up with both the new and old dir entries existing. | 
 | 	 */ | 
 | 	if (old_dir && old_dir->logged_trans == trans->transid) { | 
 | 		struct btrfs_root *log = old_dir->root->log_root; | 
 | 		struct btrfs_path *path; | 
 | 		struct fscrypt_name fname; | 
 |  | 
 | 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); | 
 |  | 
 | 		ret = fscrypt_setup_filename(&old_dir->vfs_inode, | 
 | 					     &old_dentry->d_name, 0, &fname); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		path = btrfs_alloc_path(); | 
 | 		if (!path) { | 
 | 			ret = -ENOMEM; | 
 | 			fscrypt_free_filename(&fname); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We have two inodes to update in the log, the old directory and | 
 | 		 * the inode that got renamed, so we must pin the log to prevent | 
 | 		 * anyone from syncing the log until we have updated both inodes | 
 | 		 * in the log. | 
 | 		 */ | 
 | 		ret = join_running_log_trans(root); | 
 | 		/* | 
 | 		 * At least one of the inodes was logged before, so this should | 
 | 		 * not fail, but if it does, it's not serious, just bail out and | 
 | 		 * mark the log for a full commit. | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(ret < 0)) { | 
 | 			btrfs_free_path(path); | 
 | 			fscrypt_free_filename(&fname); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		log_pinned = true; | 
 |  | 
 | 		/* | 
 | 		 * Other concurrent task might be logging the old directory, | 
 | 		 * as it can be triggered when logging other inode that had or | 
 | 		 * still has a dentry in the old directory. We lock the old | 
 | 		 * directory's log_mutex to ensure the deletion of the old | 
 | 		 * name is persisted, because during directory logging we | 
 | 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of | 
 | 		 * the old name's dir index item is in the delayed items, so | 
 | 		 * it could be missed by an in progress directory logging. | 
 | 		 */ | 
 | 		mutex_lock(&old_dir->log_mutex); | 
 | 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), | 
 | 					&fname.disk_name, old_dir_index); | 
 | 		if (ret > 0) { | 
 | 			/* | 
 | 			 * The dentry does not exist in the log, so record its | 
 | 			 * deletion. | 
 | 			 */ | 
 | 			btrfs_release_path(path); | 
 | 			ret = insert_dir_log_key(trans, log, path, | 
 | 						 btrfs_ino(old_dir), | 
 | 						 old_dir_index, old_dir_index); | 
 | 		} | 
 | 		mutex_unlock(&old_dir->log_mutex); | 
 |  | 
 | 		btrfs_free_path(path); | 
 | 		fscrypt_free_filename(&fname); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't care about the return value. If we fail to log the new name | 
 | 	 * then we know the next attempt to sync the log will fallback to a full | 
 | 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so | 
 | 	 * we don't need to worry about getting a log committed that has an | 
 | 	 * inconsistent state after a rename operation. | 
 | 	 */ | 
 | 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); | 
 | 	ASSERT(list_empty(&ctx.conflict_inodes)); | 
 | out: | 
 | 	/* | 
 | 	 * If an error happened mark the log for a full commit because it's not | 
 | 	 * consistent and up to date or we couldn't find out if one of the | 
 | 	 * inodes was logged before in this transaction. Do it before unpinning | 
 | 	 * the log, to avoid any races with someone else trying to commit it. | 
 | 	 */ | 
 | 	if (ret < 0) | 
 | 		btrfs_set_log_full_commit(trans); | 
 | 	if (log_pinned) | 
 | 		btrfs_end_log_trans(root); | 
 | 	free_extent_buffer(ctx.scratch_eb); | 
 | } | 
 |  |