| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Memory merging support. | 
 |  * | 
 |  * This code enables dynamic sharing of identical pages found in different | 
 |  * memory areas, even if they are not shared by fork() | 
 |  * | 
 |  * Copyright (C) 2008-2009 Red Hat, Inc. | 
 |  * Authors: | 
 |  *	Izik Eidus | 
 |  *	Andrea Arcangeli | 
 |  *	Chris Wright | 
 |  *	Hugh Dickins | 
 |  */ | 
 |  | 
 | #include <linux/errno.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/cputime.h> | 
 | #include <linux/rwsem.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/xxhash.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/hashtable.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/numa.h> | 
 | #include <linux/pagewalk.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 | #include "internal.h" | 
 | #include "mm_slot.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/ksm.h> | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | #define NUMA(x)		(x) | 
 | #define DO_NUMA(x)	do { (x); } while (0) | 
 | #else | 
 | #define NUMA(x)		(0) | 
 | #define DO_NUMA(x)	do { } while (0) | 
 | #endif | 
 |  | 
 | typedef u8 rmap_age_t; | 
 |  | 
 | /** | 
 |  * DOC: Overview | 
 |  * | 
 |  * A few notes about the KSM scanning process, | 
 |  * to make it easier to understand the data structures below: | 
 |  * | 
 |  * In order to reduce excessive scanning, KSM sorts the memory pages by their | 
 |  * contents into a data structure that holds pointers to the pages' locations. | 
 |  * | 
 |  * Since the contents of the pages may change at any moment, KSM cannot just | 
 |  * insert the pages into a normal sorted tree and expect it to find anything. | 
 |  * Therefore KSM uses two data structures - the stable and the unstable tree. | 
 |  * | 
 |  * The stable tree holds pointers to all the merged pages (ksm pages), sorted | 
 |  * by their contents.  Because each such page is write-protected, searching on | 
 |  * this tree is fully assured to be working (except when pages are unmapped), | 
 |  * and therefore this tree is called the stable tree. | 
 |  * | 
 |  * The stable tree node includes information required for reverse | 
 |  * mapping from a KSM page to virtual addresses that map this page. | 
 |  * | 
 |  * In order to avoid large latencies of the rmap walks on KSM pages, | 
 |  * KSM maintains two types of nodes in the stable tree: | 
 |  * | 
 |  * * the regular nodes that keep the reverse mapping structures in a | 
 |  *   linked list | 
 |  * * the "chains" that link nodes ("dups") that represent the same | 
 |  *   write protected memory content, but each "dup" corresponds to a | 
 |  *   different KSM page copy of that content | 
 |  * | 
 |  * Internally, the regular nodes, "dups" and "chains" are represented | 
 |  * using the same struct ksm_stable_node structure. | 
 |  * | 
 |  * In addition to the stable tree, KSM uses a second data structure called the | 
 |  * unstable tree: this tree holds pointers to pages which have been found to | 
 |  * be "unchanged for a period of time".  The unstable tree sorts these pages | 
 |  * by their contents, but since they are not write-protected, KSM cannot rely | 
 |  * upon the unstable tree to work correctly - the unstable tree is liable to | 
 |  * be corrupted as its contents are modified, and so it is called unstable. | 
 |  * | 
 |  * KSM solves this problem by several techniques: | 
 |  * | 
 |  * 1) The unstable tree is flushed every time KSM completes scanning all | 
 |  *    memory areas, and then the tree is rebuilt again from the beginning. | 
 |  * 2) KSM will only insert into the unstable tree, pages whose hash value | 
 |  *    has not changed since the previous scan of all memory areas. | 
 |  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the | 
 |  *    colors of the nodes and not on their contents, assuring that even when | 
 |  *    the tree gets "corrupted" it won't get out of balance, so scanning time | 
 |  *    remains the same (also, searching and inserting nodes in an rbtree uses | 
 |  *    the same algorithm, so we have no overhead when we flush and rebuild). | 
 |  * 4) KSM never flushes the stable tree, which means that even if it were to | 
 |  *    take 10 attempts to find a page in the unstable tree, once it is found, | 
 |  *    it is secured in the stable tree.  (When we scan a new page, we first | 
 |  *    compare it against the stable tree, and then against the unstable tree.) | 
 |  * | 
 |  * If the merge_across_nodes tunable is unset, then KSM maintains multiple | 
 |  * stable trees and multiple unstable trees: one of each for each NUMA node. | 
 |  */ | 
 |  | 
 | /** | 
 |  * struct ksm_mm_slot - ksm information per mm that is being scanned | 
 |  * @slot: hash lookup from mm to mm_slot | 
 |  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items | 
 |  */ | 
 | struct ksm_mm_slot { | 
 | 	struct mm_slot slot; | 
 | 	struct ksm_rmap_item *rmap_list; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct ksm_scan - cursor for scanning | 
 |  * @mm_slot: the current mm_slot we are scanning | 
 |  * @address: the next address inside that to be scanned | 
 |  * @rmap_list: link to the next rmap to be scanned in the rmap_list | 
 |  * @seqnr: count of completed full scans (needed when removing unstable node) | 
 |  * | 
 |  * There is only the one ksm_scan instance of this cursor structure. | 
 |  */ | 
 | struct ksm_scan { | 
 | 	struct ksm_mm_slot *mm_slot; | 
 | 	unsigned long address; | 
 | 	struct ksm_rmap_item **rmap_list; | 
 | 	unsigned long seqnr; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct ksm_stable_node - node of the stable rbtree | 
 |  * @node: rb node of this ksm page in the stable tree | 
 |  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list | 
 |  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain | 
 |  * @list: linked into migrate_nodes, pending placement in the proper node tree | 
 |  * @hlist: hlist head of rmap_items using this ksm page | 
 |  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) | 
 |  * @chain_prune_time: time of the last full garbage collection | 
 |  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN | 
 |  * @nid: NUMA node id of stable tree in which linked (may not match kpfn) | 
 |  */ | 
 | struct ksm_stable_node { | 
 | 	union { | 
 | 		struct rb_node node;	/* when node of stable tree */ | 
 | 		struct {		/* when listed for migration */ | 
 | 			struct list_head *head; | 
 | 			struct { | 
 | 				struct hlist_node hlist_dup; | 
 | 				struct list_head list; | 
 | 			}; | 
 | 		}; | 
 | 	}; | 
 | 	struct hlist_head hlist; | 
 | 	union { | 
 | 		unsigned long kpfn; | 
 | 		unsigned long chain_prune_time; | 
 | 	}; | 
 | 	/* | 
 | 	 * STABLE_NODE_CHAIN can be any negative number in | 
 | 	 * rmap_hlist_len negative range, but better not -1 to be able | 
 | 	 * to reliably detect underflows. | 
 | 	 */ | 
 | #define STABLE_NODE_CHAIN -1024 | 
 | 	int rmap_hlist_len; | 
 | #ifdef CONFIG_NUMA | 
 | 	int nid; | 
 | #endif | 
 | }; | 
 |  | 
 | /** | 
 |  * struct ksm_rmap_item - reverse mapping item for virtual addresses | 
 |  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list | 
 |  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree | 
 |  * @nid: NUMA node id of unstable tree in which linked (may not match page) | 
 |  * @mm: the memory structure this rmap_item is pointing into | 
 |  * @address: the virtual address this rmap_item tracks (+ flags in low bits) | 
 |  * @oldchecksum: previous checksum of the page at that virtual address | 
 |  * @node: rb node of this rmap_item in the unstable tree | 
 |  * @head: pointer to stable_node heading this list in the stable tree | 
 |  * @hlist: link into hlist of rmap_items hanging off that stable_node | 
 |  * @age: number of scan iterations since creation | 
 |  * @remaining_skips: how many scans to skip | 
 |  */ | 
 | struct ksm_rmap_item { | 
 | 	struct ksm_rmap_item *rmap_list; | 
 | 	union { | 
 | 		struct anon_vma *anon_vma;	/* when stable */ | 
 | #ifdef CONFIG_NUMA | 
 | 		int nid;		/* when node of unstable tree */ | 
 | #endif | 
 | 	}; | 
 | 	struct mm_struct *mm; | 
 | 	unsigned long address;		/* + low bits used for flags below */ | 
 | 	unsigned int oldchecksum;	/* when unstable */ | 
 | 	rmap_age_t age; | 
 | 	rmap_age_t remaining_skips; | 
 | 	union { | 
 | 		struct rb_node node;	/* when node of unstable tree */ | 
 | 		struct {		/* when listed from stable tree */ | 
 | 			struct ksm_stable_node *head; | 
 | 			struct hlist_node hlist; | 
 | 		}; | 
 | 	}; | 
 | }; | 
 |  | 
 | #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */ | 
 | #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */ | 
 | #define STABLE_FLAG	0x200	/* is listed from the stable tree */ | 
 |  | 
 | /* The stable and unstable tree heads */ | 
 | static struct rb_root one_stable_tree[1] = { RB_ROOT }; | 
 | static struct rb_root one_unstable_tree[1] = { RB_ROOT }; | 
 | static struct rb_root *root_stable_tree = one_stable_tree; | 
 | static struct rb_root *root_unstable_tree = one_unstable_tree; | 
 |  | 
 | /* Recently migrated nodes of stable tree, pending proper placement */ | 
 | static LIST_HEAD(migrate_nodes); | 
 | #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) | 
 |  | 
 | #define MM_SLOTS_HASH_BITS 10 | 
 | static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | 
 |  | 
 | static struct ksm_mm_slot ksm_mm_head = { | 
 | 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), | 
 | }; | 
 | static struct ksm_scan ksm_scan = { | 
 | 	.mm_slot = &ksm_mm_head, | 
 | }; | 
 |  | 
 | static struct kmem_cache *rmap_item_cache; | 
 | static struct kmem_cache *stable_node_cache; | 
 | static struct kmem_cache *mm_slot_cache; | 
 |  | 
 | /* Default number of pages to scan per batch */ | 
 | #define DEFAULT_PAGES_TO_SCAN 100 | 
 |  | 
 | /* The number of pages scanned */ | 
 | static unsigned long ksm_pages_scanned; | 
 |  | 
 | /* The number of nodes in the stable tree */ | 
 | static unsigned long ksm_pages_shared; | 
 |  | 
 | /* The number of page slots additionally sharing those nodes */ | 
 | static unsigned long ksm_pages_sharing; | 
 |  | 
 | /* The number of nodes in the unstable tree */ | 
 | static unsigned long ksm_pages_unshared; | 
 |  | 
 | /* The number of rmap_items in use: to calculate pages_volatile */ | 
 | static unsigned long ksm_rmap_items; | 
 |  | 
 | /* The number of stable_node chains */ | 
 | static unsigned long ksm_stable_node_chains; | 
 |  | 
 | /* The number of stable_node dups linked to the stable_node chains */ | 
 | static unsigned long ksm_stable_node_dups; | 
 |  | 
 | /* Delay in pruning stale stable_node_dups in the stable_node_chains */ | 
 | static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; | 
 |  | 
 | /* Maximum number of page slots sharing a stable node */ | 
 | static int ksm_max_page_sharing = 256; | 
 |  | 
 | /* Number of pages ksmd should scan in one batch */ | 
 | static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; | 
 |  | 
 | /* Milliseconds ksmd should sleep between batches */ | 
 | static unsigned int ksm_thread_sleep_millisecs = 20; | 
 |  | 
 | /* Checksum of an empty (zeroed) page */ | 
 | static unsigned int zero_checksum __read_mostly; | 
 |  | 
 | /* Whether to merge empty (zeroed) pages with actual zero pages */ | 
 | static bool ksm_use_zero_pages __read_mostly; | 
 |  | 
 | /* Skip pages that couldn't be de-duplicated previously */ | 
 | /* Default to true at least temporarily, for testing */ | 
 | static bool ksm_smart_scan = true; | 
 |  | 
 | /* The number of zero pages which is placed by KSM */ | 
 | atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0); | 
 |  | 
 | /* The number of pages that have been skipped due to "smart scanning" */ | 
 | static unsigned long ksm_pages_skipped; | 
 |  | 
 | /* Don't scan more than max pages per batch. */ | 
 | static unsigned long ksm_advisor_max_pages_to_scan = 30000; | 
 |  | 
 | /* Min CPU for scanning pages per scan */ | 
 | #define KSM_ADVISOR_MIN_CPU 10 | 
 |  | 
 | /* Max CPU for scanning pages per scan */ | 
 | static unsigned int ksm_advisor_max_cpu =  70; | 
 |  | 
 | /* Target scan time in seconds to analyze all KSM candidate pages. */ | 
 | static unsigned long ksm_advisor_target_scan_time = 200; | 
 |  | 
 | /* Exponentially weighted moving average. */ | 
 | #define EWMA_WEIGHT 30 | 
 |  | 
 | /** | 
 |  * struct advisor_ctx - metadata for KSM advisor | 
 |  * @start_scan: start time of the current scan | 
 |  * @scan_time: scan time of previous scan | 
 |  * @change: change in percent to pages_to_scan parameter | 
 |  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan | 
 |  */ | 
 | struct advisor_ctx { | 
 | 	ktime_t start_scan; | 
 | 	unsigned long scan_time; | 
 | 	unsigned long change; | 
 | 	unsigned long long cpu_time; | 
 | }; | 
 | static struct advisor_ctx advisor_ctx; | 
 |  | 
 | /* Define different advisor's */ | 
 | enum ksm_advisor_type { | 
 | 	KSM_ADVISOR_NONE, | 
 | 	KSM_ADVISOR_SCAN_TIME, | 
 | }; | 
 | static enum ksm_advisor_type ksm_advisor; | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | /* | 
 |  * Only called through the sysfs control interface: | 
 |  */ | 
 |  | 
 | /* At least scan this many pages per batch. */ | 
 | static unsigned long ksm_advisor_min_pages_to_scan = 500; | 
 |  | 
 | static void set_advisor_defaults(void) | 
 | { | 
 | 	if (ksm_advisor == KSM_ADVISOR_NONE) { | 
 | 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; | 
 | 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { | 
 | 		advisor_ctx = (const struct advisor_ctx){ 0 }; | 
 | 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | static inline void advisor_start_scan(void) | 
 | { | 
 | 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) | 
 | 		advisor_ctx.start_scan = ktime_get(); | 
 | } | 
 |  | 
 | /* | 
 |  * Use previous scan time if available, otherwise use current scan time as an | 
 |  * approximation for the previous scan time. | 
 |  */ | 
 | static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, | 
 | 					   unsigned long scan_time) | 
 | { | 
 | 	return ctx->scan_time ? ctx->scan_time : scan_time; | 
 | } | 
 |  | 
 | /* Calculate exponential weighted moving average */ | 
 | static unsigned long ewma(unsigned long prev, unsigned long curr) | 
 | { | 
 | 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; | 
 | } | 
 |  | 
 | /* | 
 |  * The scan time advisor is based on the current scan rate and the target | 
 |  * scan rate. | 
 |  * | 
 |  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) | 
 |  * | 
 |  * To avoid perturbations it calculates a change factor of previous changes. | 
 |  * A new change factor is calculated for each iteration and it uses an | 
 |  * exponentially weighted moving average. The new pages_to_scan value is | 
 |  * multiplied with that change factor: | 
 |  * | 
 |  *      new_pages_to_scan *= change facor | 
 |  * | 
 |  * The new_pages_to_scan value is limited by the cpu min and max values. It | 
 |  * calculates the cpu percent for the last scan and calculates the new | 
 |  * estimated cpu percent cost for the next scan. That value is capped by the | 
 |  * cpu min and max setting. | 
 |  * | 
 |  * In addition the new pages_to_scan value is capped by the max and min | 
 |  * limits. | 
 |  */ | 
 | static void scan_time_advisor(void) | 
 | { | 
 | 	unsigned int cpu_percent; | 
 | 	unsigned long cpu_time; | 
 | 	unsigned long cpu_time_diff; | 
 | 	unsigned long cpu_time_diff_ms; | 
 | 	unsigned long pages; | 
 | 	unsigned long per_page_cost; | 
 | 	unsigned long factor; | 
 | 	unsigned long change; | 
 | 	unsigned long last_scan_time; | 
 | 	unsigned long scan_time; | 
 |  | 
 | 	/* Convert scan time to seconds */ | 
 | 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), | 
 | 			    MSEC_PER_SEC); | 
 | 	scan_time = scan_time ? scan_time : 1; | 
 |  | 
 | 	/* Calculate CPU consumption of ksmd background thread */ | 
 | 	cpu_time = task_sched_runtime(current); | 
 | 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time; | 
 | 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; | 
 |  | 
 | 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); | 
 | 	cpu_percent = cpu_percent ? cpu_percent : 1; | 
 | 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time); | 
 |  | 
 | 	/* Calculate scan time as percentage of target scan time */ | 
 | 	factor = ksm_advisor_target_scan_time * 100 / scan_time; | 
 | 	factor = factor ? factor : 1; | 
 |  | 
 | 	/* | 
 | 	 * Calculate scan time as percentage of last scan time and use | 
 | 	 * exponentially weighted average to smooth it | 
 | 	 */ | 
 | 	change = scan_time * 100 / last_scan_time; | 
 | 	change = change ? change : 1; | 
 | 	change = ewma(advisor_ctx.change, change); | 
 |  | 
 | 	/* Calculate new scan rate based on target scan rate. */ | 
 | 	pages = ksm_thread_pages_to_scan * 100 / factor; | 
 | 	/* Update pages_to_scan by weighted change percentage. */ | 
 | 	pages = pages * change / 100; | 
 |  | 
 | 	/* Cap new pages_to_scan value */ | 
 | 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent; | 
 | 	per_page_cost = per_page_cost ? per_page_cost : 1; | 
 |  | 
 | 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu); | 
 | 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); | 
 | 	pages = min(pages, ksm_advisor_max_pages_to_scan); | 
 |  | 
 | 	/* Update advisor context */ | 
 | 	advisor_ctx.change = change; | 
 | 	advisor_ctx.scan_time = scan_time; | 
 | 	advisor_ctx.cpu_time = cpu_time; | 
 |  | 
 | 	ksm_thread_pages_to_scan = pages; | 
 | 	trace_ksm_advisor(scan_time, pages, cpu_percent); | 
 | } | 
 |  | 
 | static void advisor_stop_scan(void) | 
 | { | 
 | 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) | 
 | 		scan_time_advisor(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* Zeroed when merging across nodes is not allowed */ | 
 | static unsigned int ksm_merge_across_nodes = 1; | 
 | static int ksm_nr_node_ids = 1; | 
 | #else | 
 | #define ksm_merge_across_nodes	1U | 
 | #define ksm_nr_node_ids		1 | 
 | #endif | 
 |  | 
 | #define KSM_RUN_STOP	0 | 
 | #define KSM_RUN_MERGE	1 | 
 | #define KSM_RUN_UNMERGE	2 | 
 | #define KSM_RUN_OFFLINE	4 | 
 | static unsigned long ksm_run = KSM_RUN_STOP; | 
 | static void wait_while_offlining(void); | 
 |  | 
 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); | 
 | static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); | 
 | static DEFINE_MUTEX(ksm_thread_mutex); | 
 | static DEFINE_SPINLOCK(ksm_mmlist_lock); | 
 |  | 
 | static int __init ksm_slab_init(void) | 
 | { | 
 | 	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0); | 
 | 	if (!rmap_item_cache) | 
 | 		goto out; | 
 |  | 
 | 	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0); | 
 | 	if (!stable_node_cache) | 
 | 		goto out_free1; | 
 |  | 
 | 	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0); | 
 | 	if (!mm_slot_cache) | 
 | 		goto out_free2; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free2: | 
 | 	kmem_cache_destroy(stable_node_cache); | 
 | out_free1: | 
 | 	kmem_cache_destroy(rmap_item_cache); | 
 | out: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void __init ksm_slab_free(void) | 
 | { | 
 | 	kmem_cache_destroy(mm_slot_cache); | 
 | 	kmem_cache_destroy(stable_node_cache); | 
 | 	kmem_cache_destroy(rmap_item_cache); | 
 | 	mm_slot_cache = NULL; | 
 | } | 
 |  | 
 | static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) | 
 | { | 
 | 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN; | 
 | } | 
 |  | 
 | static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) | 
 | { | 
 | 	return dup->head == STABLE_NODE_DUP_HEAD; | 
 | } | 
 |  | 
 | static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, | 
 | 					     struct ksm_stable_node *chain) | 
 | { | 
 | 	VM_BUG_ON(is_stable_node_dup(dup)); | 
 | 	dup->head = STABLE_NODE_DUP_HEAD; | 
 | 	VM_BUG_ON(!is_stable_node_chain(chain)); | 
 | 	hlist_add_head(&dup->hlist_dup, &chain->hlist); | 
 | 	ksm_stable_node_dups++; | 
 | } | 
 |  | 
 | static inline void __stable_node_dup_del(struct ksm_stable_node *dup) | 
 | { | 
 | 	VM_BUG_ON(!is_stable_node_dup(dup)); | 
 | 	hlist_del(&dup->hlist_dup); | 
 | 	ksm_stable_node_dups--; | 
 | } | 
 |  | 
 | static inline void stable_node_dup_del(struct ksm_stable_node *dup) | 
 | { | 
 | 	VM_BUG_ON(is_stable_node_chain(dup)); | 
 | 	if (is_stable_node_dup(dup)) | 
 | 		__stable_node_dup_del(dup); | 
 | 	else | 
 | 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	dup->head = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | static inline struct ksm_rmap_item *alloc_rmap_item(void) | 
 | { | 
 | 	struct ksm_rmap_item *rmap_item; | 
 |  | 
 | 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | | 
 | 						__GFP_NORETRY | __GFP_NOWARN); | 
 | 	if (rmap_item) | 
 | 		ksm_rmap_items++; | 
 | 	return rmap_item; | 
 | } | 
 |  | 
 | static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) | 
 | { | 
 | 	ksm_rmap_items--; | 
 | 	rmap_item->mm->ksm_rmap_items--; | 
 | 	rmap_item->mm = NULL;	/* debug safety */ | 
 | 	kmem_cache_free(rmap_item_cache, rmap_item); | 
 | } | 
 |  | 
 | static inline struct ksm_stable_node *alloc_stable_node(void) | 
 | { | 
 | 	/* | 
 | 	 * The allocation can take too long with GFP_KERNEL when memory is under | 
 | 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH | 
 | 	 * grants access to memory reserves, helping to avoid this problem. | 
 | 	 */ | 
 | 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); | 
 | } | 
 |  | 
 | static inline void free_stable_node(struct ksm_stable_node *stable_node) | 
 | { | 
 | 	VM_BUG_ON(stable_node->rmap_hlist_len && | 
 | 		  !is_stable_node_chain(stable_node)); | 
 | 	kmem_cache_free(stable_node_cache, stable_node); | 
 | } | 
 |  | 
 | /* | 
 |  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's | 
 |  * page tables after it has passed through ksm_exit() - which, if necessary, | 
 |  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set | 
 |  * a special flag: they can just back out as soon as mm_users goes to zero. | 
 |  * ksm_test_exit() is used throughout to make this test for exit: in some | 
 |  * places for correctness, in some places just to avoid unnecessary work. | 
 |  */ | 
 | static inline bool ksm_test_exit(struct mm_struct *mm) | 
 | { | 
 | 	return atomic_read(&mm->mm_users) == 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We use break_ksm to break COW on a ksm page by triggering unsharing, | 
 |  * such that the ksm page will get replaced by an exclusive anonymous page. | 
 |  * | 
 |  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, | 
 |  * in case the application has unmapped and remapped mm,addr meanwhile. | 
 |  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP | 
 |  * mmap of /dev/mem, where we would not want to touch it. | 
 |  * | 
 |  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context | 
 |  * of the process that owns 'vma'.  We also do not want to enforce | 
 |  * protection keys here anyway. | 
 |  */ | 
 | static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) | 
 | { | 
 | 	vm_fault_t ret = 0; | 
 |  | 
 | 	if (lock_vma) | 
 | 		vma_start_write(vma); | 
 |  | 
 | 	do { | 
 | 		bool ksm_page = false; | 
 | 		struct folio_walk fw; | 
 | 		struct folio *folio; | 
 |  | 
 | 		cond_resched(); | 
 | 		folio = folio_walk_start(&fw, vma, addr, | 
 | 					 FW_MIGRATION | FW_ZEROPAGE); | 
 | 		if (folio) { | 
 | 			/* Small folio implies FW_LEVEL_PTE. */ | 
 | 			if (!folio_test_large(folio) && | 
 | 			    (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte))) | 
 | 				ksm_page = true; | 
 | 			folio_walk_end(&fw, vma); | 
 | 		} | 
 |  | 
 | 		if (!ksm_page) | 
 | 			return 0; | 
 | 		ret = handle_mm_fault(vma, addr, | 
 | 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, | 
 | 				      NULL); | 
 | 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); | 
 | 	/* | 
 | 	 * We must loop until we no longer find a KSM page because | 
 | 	 * handle_mm_fault() may back out if there's any difficulty e.g. if | 
 | 	 * pte accessed bit gets updated concurrently. | 
 | 	 * | 
 | 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the | 
 | 	 * backing file, which also invalidates anonymous pages: that's | 
 | 	 * okay, that truncation will have unmapped the KSM page for us. | 
 | 	 * | 
 | 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting | 
 | 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the | 
 | 	 * current task has TIF_MEMDIE set, and will be OOM killed on return | 
 | 	 * to user; and ksmd, having no mm, would never be chosen for that. | 
 | 	 * | 
 | 	 * But if the mm is in a limited mem_cgroup, then the fault may fail | 
 | 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and | 
 | 	 * even ksmd can fail in this way - though it's usually breaking ksm | 
 | 	 * just to undo a merge it made a moment before, so unlikely to oom. | 
 | 	 * | 
 | 	 * That's a pity: we might therefore have more kernel pages allocated | 
 | 	 * than we're counting as nodes in the stable tree; but ksm_do_scan | 
 | 	 * will retry to break_cow on each pass, so should recover the page | 
 | 	 * in due course.  The important thing is to not let VM_MERGEABLE | 
 | 	 * be cleared while any such pages might remain in the area. | 
 | 	 */ | 
 | 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; | 
 | } | 
 |  | 
 | static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags) | 
 | { | 
 | 	if (vm_flags & (VM_SHARED  | VM_MAYSHARE | VM_SPECIAL | | 
 | 			VM_HUGETLB | VM_DROPPABLE)) | 
 | 		return false;		/* just ignore the advice */ | 
 |  | 
 | 	if (file_is_dax(file)) | 
 | 		return false; | 
 |  | 
 | #ifdef VM_SAO | 
 | 	if (vm_flags & VM_SAO) | 
 | 		return false; | 
 | #endif | 
 | #ifdef VM_SPARC_ADI | 
 | 	if (vm_flags & VM_SPARC_ADI) | 
 | 		return false; | 
 | #endif | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool vma_ksm_compatible(struct vm_area_struct *vma) | 
 | { | 
 | 	return ksm_compatible(vma->vm_file, vma->vm_flags); | 
 | } | 
 |  | 
 | static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, | 
 | 		unsigned long addr) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	if (ksm_test_exit(mm)) | 
 | 		return NULL; | 
 | 	vma = vma_lookup(mm, addr); | 
 | 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | 
 | 		return NULL; | 
 | 	return vma; | 
 | } | 
 |  | 
 | static void break_cow(struct ksm_rmap_item *rmap_item) | 
 | { | 
 | 	struct mm_struct *mm = rmap_item->mm; | 
 | 	unsigned long addr = rmap_item->address; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	/* | 
 | 	 * It is not an accident that whenever we want to break COW | 
 | 	 * to undo, we also need to drop a reference to the anon_vma. | 
 | 	 */ | 
 | 	put_anon_vma(rmap_item->anon_vma); | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	vma = find_mergeable_vma(mm, addr); | 
 | 	if (vma) | 
 | 		break_ksm(vma, addr, false); | 
 | 	mmap_read_unlock(mm); | 
 | } | 
 |  | 
 | static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) | 
 | { | 
 | 	struct mm_struct *mm = rmap_item->mm; | 
 | 	unsigned long addr = rmap_item->address; | 
 | 	struct vm_area_struct *vma; | 
 | 	struct page *page = NULL; | 
 | 	struct folio_walk fw; | 
 | 	struct folio *folio; | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	vma = find_mergeable_vma(mm, addr); | 
 | 	if (!vma) | 
 | 		goto out; | 
 |  | 
 | 	folio = folio_walk_start(&fw, vma, addr, 0); | 
 | 	if (folio) { | 
 | 		if (!folio_is_zone_device(folio) && | 
 | 		    folio_test_anon(folio)) { | 
 | 			folio_get(folio); | 
 | 			page = fw.page; | 
 | 		} | 
 | 		folio_walk_end(&fw, vma); | 
 | 	} | 
 | out: | 
 | 	if (page) { | 
 | 		flush_anon_page(vma, page, addr); | 
 | 		flush_dcache_page(page); | 
 | 	} | 
 | 	mmap_read_unlock(mm); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * This helper is used for getting right index into array of tree roots. | 
 |  * When merge_across_nodes knob is set to 1, there are only two rb-trees for | 
 |  * stable and unstable pages from all nodes with roots in index 0. Otherwise, | 
 |  * every node has its own stable and unstable tree. | 
 |  */ | 
 | static inline int get_kpfn_nid(unsigned long kpfn) | 
 | { | 
 | 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); | 
 | } | 
 |  | 
 | static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, | 
 | 						   struct rb_root *root) | 
 | { | 
 | 	struct ksm_stable_node *chain = alloc_stable_node(); | 
 | 	VM_BUG_ON(is_stable_node_chain(dup)); | 
 | 	if (likely(chain)) { | 
 | 		INIT_HLIST_HEAD(&chain->hlist); | 
 | 		chain->chain_prune_time = jiffies; | 
 | 		chain->rmap_hlist_len = STABLE_NODE_CHAIN; | 
 | #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) | 
 | 		chain->nid = NUMA_NO_NODE; /* debug */ | 
 | #endif | 
 | 		ksm_stable_node_chains++; | 
 |  | 
 | 		/* | 
 | 		 * Put the stable node chain in the first dimension of | 
 | 		 * the stable tree and at the same time remove the old | 
 | 		 * stable node. | 
 | 		 */ | 
 | 		rb_replace_node(&dup->node, &chain->node, root); | 
 |  | 
 | 		/* | 
 | 		 * Move the old stable node to the second dimension | 
 | 		 * queued in the hlist_dup. The invariant is that all | 
 | 		 * dup stable_nodes in the chain->hlist point to pages | 
 | 		 * that are write protected and have the exact same | 
 | 		 * content. | 
 | 		 */ | 
 | 		stable_node_chain_add_dup(dup, chain); | 
 | 	} | 
 | 	return chain; | 
 | } | 
 |  | 
 | static inline void free_stable_node_chain(struct ksm_stable_node *chain, | 
 | 					  struct rb_root *root) | 
 | { | 
 | 	rb_erase(&chain->node, root); | 
 | 	free_stable_node(chain); | 
 | 	ksm_stable_node_chains--; | 
 | } | 
 |  | 
 | static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) | 
 | { | 
 | 	struct ksm_rmap_item *rmap_item; | 
 |  | 
 | 	/* check it's not STABLE_NODE_CHAIN or negative */ | 
 | 	BUG_ON(stable_node->rmap_hlist_len < 0); | 
 |  | 
 | 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { | 
 | 		if (rmap_item->hlist.next) { | 
 | 			ksm_pages_sharing--; | 
 | 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); | 
 | 		} else { | 
 | 			ksm_pages_shared--; | 
 | 		} | 
 |  | 
 | 		rmap_item->mm->ksm_merging_pages--; | 
 |  | 
 | 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0); | 
 | 		stable_node->rmap_hlist_len--; | 
 | 		put_anon_vma(rmap_item->anon_vma); | 
 | 		rmap_item->address &= PAGE_MASK; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need the second aligned pointer of the migrate_nodes | 
 | 	 * list_head to stay clear from the rb_parent_color union | 
 | 	 * (aligned and different than any node) and also different | 
 | 	 * from &migrate_nodes. This will verify that future list.h changes | 
 | 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); | 
 | 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); | 
 |  | 
 | 	trace_ksm_remove_ksm_page(stable_node->kpfn); | 
 | 	if (stable_node->head == &migrate_nodes) | 
 | 		list_del(&stable_node->list); | 
 | 	else | 
 | 		stable_node_dup_del(stable_node); | 
 | 	free_stable_node(stable_node); | 
 | } | 
 |  | 
 | enum ksm_get_folio_flags { | 
 | 	KSM_GET_FOLIO_NOLOCK, | 
 | 	KSM_GET_FOLIO_LOCK, | 
 | 	KSM_GET_FOLIO_TRYLOCK | 
 | }; | 
 |  | 
 | /* | 
 |  * ksm_get_folio: checks if the page indicated by the stable node | 
 |  * is still its ksm page, despite having held no reference to it. | 
 |  * In which case we can trust the content of the page, and it | 
 |  * returns the gotten page; but if the page has now been zapped, | 
 |  * remove the stale node from the stable tree and return NULL. | 
 |  * But beware, the stable node's page might be being migrated. | 
 |  * | 
 |  * You would expect the stable_node to hold a reference to the ksm page. | 
 |  * But if it increments the page's count, swapping out has to wait for | 
 |  * ksmd to come around again before it can free the page, which may take | 
 |  * seconds or even minutes: much too unresponsive.  So instead we use a | 
 |  * "keyhole reference": access to the ksm page from the stable node peeps | 
 |  * out through its keyhole to see if that page still holds the right key, | 
 |  * pointing back to this stable node.  This relies on freeing a PageAnon | 
 |  * page to reset its page->mapping to NULL, and relies on no other use of | 
 |  * a page to put something that might look like our key in page->mapping. | 
 |  * is on its way to being freed; but it is an anomaly to bear in mind. | 
 |  */ | 
 | static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node, | 
 | 				 enum ksm_get_folio_flags flags) | 
 | { | 
 | 	struct folio *folio; | 
 | 	void *expected_mapping; | 
 | 	unsigned long kpfn; | 
 |  | 
 | 	expected_mapping = (void *)((unsigned long)stable_node | | 
 | 					FOLIO_MAPPING_KSM); | 
 | again: | 
 | 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ | 
 | 	folio = pfn_folio(kpfn); | 
 | 	if (READ_ONCE(folio->mapping) != expected_mapping) | 
 | 		goto stale; | 
 |  | 
 | 	/* | 
 | 	 * We cannot do anything with the page while its refcount is 0. | 
 | 	 * Usually 0 means free, or tail of a higher-order page: in which | 
 | 	 * case this node is no longer referenced, and should be freed; | 
 | 	 * however, it might mean that the page is under page_ref_freeze(). | 
 | 	 * The __remove_mapping() case is easy, again the node is now stale; | 
 | 	 * the same is in reuse_ksm_page() case; but if page is swapcache | 
 | 	 * in folio_migrate_mapping(), it might still be our page, | 
 | 	 * in which case it's essential to keep the node. | 
 | 	 */ | 
 | 	while (!folio_try_get(folio)) { | 
 | 		/* | 
 | 		 * Another check for folio->mapping != expected_mapping | 
 | 		 * would work here too.  We have chosen to test the | 
 | 		 * swapcache flag to optimize the common case, when the | 
 | 		 * folio is or is about to be freed: the swapcache flag | 
 | 		 * is cleared (under spin_lock_irq) in the ref_freeze | 
 | 		 * section of __remove_mapping(); but anon folio->mapping | 
 | 		 * is reset to NULL later, in free_pages_prepare(). | 
 | 		 */ | 
 | 		if (!folio_test_swapcache(folio)) | 
 | 			goto stale; | 
 | 		cpu_relax(); | 
 | 	} | 
 |  | 
 | 	if (READ_ONCE(folio->mapping) != expected_mapping) { | 
 | 		folio_put(folio); | 
 | 		goto stale; | 
 | 	} | 
 |  | 
 | 	if (flags == KSM_GET_FOLIO_TRYLOCK) { | 
 | 		if (!folio_trylock(folio)) { | 
 | 			folio_put(folio); | 
 | 			return ERR_PTR(-EBUSY); | 
 | 		} | 
 | 	} else if (flags == KSM_GET_FOLIO_LOCK) | 
 | 		folio_lock(folio); | 
 |  | 
 | 	if (flags != KSM_GET_FOLIO_NOLOCK) { | 
 | 		if (READ_ONCE(folio->mapping) != expected_mapping) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			goto stale; | 
 | 		} | 
 | 	} | 
 | 	return folio; | 
 |  | 
 | stale: | 
 | 	/* | 
 | 	 * We come here from above when folio->mapping or the swapcache flag | 
 | 	 * suggests that the node is stale; but it might be under migration. | 
 | 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), | 
 | 	 * before checking whether node->kpfn has been changed. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	if (READ_ONCE(stable_node->kpfn) != kpfn) | 
 | 		goto again; | 
 | 	remove_node_from_stable_tree(stable_node); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Removing rmap_item from stable or unstable tree. | 
 |  * This function will clean the information from the stable/unstable tree. | 
 |  */ | 
 | static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) | 
 | { | 
 | 	if (rmap_item->address & STABLE_FLAG) { | 
 | 		struct ksm_stable_node *stable_node; | 
 | 		struct folio *folio; | 
 |  | 
 | 		stable_node = rmap_item->head; | 
 | 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); | 
 | 		if (!folio) | 
 | 			goto out; | 
 |  | 
 | 		hlist_del(&rmap_item->hlist); | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 |  | 
 | 		if (!hlist_empty(&stable_node->hlist)) | 
 | 			ksm_pages_sharing--; | 
 | 		else | 
 | 			ksm_pages_shared--; | 
 |  | 
 | 		rmap_item->mm->ksm_merging_pages--; | 
 |  | 
 | 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0); | 
 | 		stable_node->rmap_hlist_len--; | 
 |  | 
 | 		put_anon_vma(rmap_item->anon_vma); | 
 | 		rmap_item->head = NULL; | 
 | 		rmap_item->address &= PAGE_MASK; | 
 |  | 
 | 	} else if (rmap_item->address & UNSTABLE_FLAG) { | 
 | 		unsigned char age; | 
 | 		/* | 
 | 		 * Usually ksmd can and must skip the rb_erase, because | 
 | 		 * root_unstable_tree was already reset to RB_ROOT. | 
 | 		 * But be careful when an mm is exiting: do the rb_erase | 
 | 		 * if this rmap_item was inserted by this scan, rather | 
 | 		 * than left over from before. | 
 | 		 */ | 
 | 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); | 
 | 		BUG_ON(age > 1); | 
 | 		if (!age) | 
 | 			rb_erase(&rmap_item->node, | 
 | 				 root_unstable_tree + NUMA(rmap_item->nid)); | 
 | 		ksm_pages_unshared--; | 
 | 		rmap_item->address &= PAGE_MASK; | 
 | 	} | 
 | out: | 
 | 	cond_resched();		/* we're called from many long loops */ | 
 | } | 
 |  | 
 | static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) | 
 | { | 
 | 	while (*rmap_list) { | 
 | 		struct ksm_rmap_item *rmap_item = *rmap_list; | 
 | 		*rmap_list = rmap_item->rmap_list; | 
 | 		remove_rmap_item_from_tree(rmap_item); | 
 | 		free_rmap_item(rmap_item); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Though it's very tempting to unmerge rmap_items from stable tree rather | 
 |  * than check every pte of a given vma, the locking doesn't quite work for | 
 |  * that - an rmap_item is assigned to the stable tree after inserting ksm | 
 |  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing | 
 |  * rmap_items from parent to child at fork time (so as not to waste time | 
 |  * if exit comes before the next scan reaches it). | 
 |  * | 
 |  * Similarly, although we'd like to remove rmap_items (so updating counts | 
 |  * and freeing memory) when unmerging an area, it's easier to leave that | 
 |  * to the next pass of ksmd - consider, for example, how ksmd might be | 
 |  * in cmp_and_merge_page on one of the rmap_items we would be removing. | 
 |  */ | 
 | static int unmerge_ksm_pages(struct vm_area_struct *vma, | 
 | 			     unsigned long start, unsigned long end, bool lock_vma) | 
 | { | 
 | 	unsigned long addr; | 
 | 	int err = 0; | 
 |  | 
 | 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) { | 
 | 		if (ksm_test_exit(vma->vm_mm)) | 
 | 			break; | 
 | 		if (signal_pending(current)) | 
 | 			err = -ERESTARTSYS; | 
 | 		else | 
 | 			err = break_ksm(vma, addr, lock_vma); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline | 
 | struct ksm_stable_node *folio_stable_node(const struct folio *folio) | 
 | { | 
 | 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; | 
 | } | 
 |  | 
 | static inline struct ksm_stable_node *page_stable_node(struct page *page) | 
 | { | 
 | 	return folio_stable_node(page_folio(page)); | 
 | } | 
 |  | 
 | static inline void folio_set_stable_node(struct folio *folio, | 
 | 					 struct ksm_stable_node *stable_node) | 
 | { | 
 | 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio); | 
 | 	folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | /* | 
 |  * Only called through the sysfs control interface: | 
 |  */ | 
 | static int remove_stable_node(struct ksm_stable_node *stable_node) | 
 | { | 
 | 	struct folio *folio; | 
 | 	int err; | 
 |  | 
 | 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); | 
 | 	if (!folio) { | 
 | 		/* | 
 | 		 * ksm_get_folio did remove_node_from_stable_tree itself. | 
 | 		 */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Page could be still mapped if this races with __mmput() running in | 
 | 	 * between ksm_exit() and exit_mmap(). Just refuse to let | 
 | 	 * merge_across_nodes/max_page_sharing be switched. | 
 | 	 */ | 
 | 	err = -EBUSY; | 
 | 	if (!folio_mapped(folio)) { | 
 | 		/* | 
 | 		 * The stable node did not yet appear stale to ksm_get_folio(), | 
 | 		 * since that allows for an unmapped ksm folio to be recognized | 
 | 		 * right up until it is freed; but the node is safe to remove. | 
 | 		 * This folio might be in an LRU cache waiting to be freed, | 
 | 		 * or it might be in the swapcache (perhaps under writeback), | 
 | 		 * or it might have been removed from swapcache a moment ago. | 
 | 		 */ | 
 | 		folio_set_stable_node(folio, NULL); | 
 | 		remove_node_from_stable_tree(stable_node); | 
 | 		err = 0; | 
 | 	} | 
 |  | 
 | 	folio_unlock(folio); | 
 | 	folio_put(folio); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int remove_stable_node_chain(struct ksm_stable_node *stable_node, | 
 | 				    struct rb_root *root) | 
 | { | 
 | 	struct ksm_stable_node *dup; | 
 | 	struct hlist_node *hlist_safe; | 
 |  | 
 | 	if (!is_stable_node_chain(stable_node)) { | 
 | 		VM_BUG_ON(is_stable_node_dup(stable_node)); | 
 | 		if (remove_stable_node(stable_node)) | 
 | 			return true; | 
 | 		else | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	hlist_for_each_entry_safe(dup, hlist_safe, | 
 | 				  &stable_node->hlist, hlist_dup) { | 
 | 		VM_BUG_ON(!is_stable_node_dup(dup)); | 
 | 		if (remove_stable_node(dup)) | 
 | 			return true; | 
 | 	} | 
 | 	BUG_ON(!hlist_empty(&stable_node->hlist)); | 
 | 	free_stable_node_chain(stable_node, root); | 
 | 	return false; | 
 | } | 
 |  | 
 | static int remove_all_stable_nodes(void) | 
 | { | 
 | 	struct ksm_stable_node *stable_node, *next; | 
 | 	int nid; | 
 | 	int err = 0; | 
 |  | 
 | 	for (nid = 0; nid < ksm_nr_node_ids; nid++) { | 
 | 		while (root_stable_tree[nid].rb_node) { | 
 | 			stable_node = rb_entry(root_stable_tree[nid].rb_node, | 
 | 						struct ksm_stable_node, node); | 
 | 			if (remove_stable_node_chain(stable_node, | 
 | 						     root_stable_tree + nid)) { | 
 | 				err = -EBUSY; | 
 | 				break;	/* proceed to next nid */ | 
 | 			} | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 | 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { | 
 | 		if (remove_stable_node(stable_node)) | 
 | 			err = -EBUSY; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int unmerge_and_remove_all_rmap_items(void) | 
 | { | 
 | 	struct ksm_mm_slot *mm_slot; | 
 | 	struct mm_slot *slot; | 
 | 	struct mm_struct *mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	int err = 0; | 
 |  | 
 | 	spin_lock(&ksm_mmlist_lock); | 
 | 	slot = list_entry(ksm_mm_head.slot.mm_node.next, | 
 | 			  struct mm_slot, mm_node); | 
 | 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); | 
 | 	spin_unlock(&ksm_mmlist_lock); | 
 |  | 
 | 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; | 
 | 	     mm_slot = ksm_scan.mm_slot) { | 
 | 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); | 
 |  | 
 | 		mm = mm_slot->slot.mm; | 
 | 		mmap_read_lock(mm); | 
 |  | 
 | 		/* | 
 | 		 * Exit right away if mm is exiting to avoid lockdep issue in | 
 | 		 * the maple tree | 
 | 		 */ | 
 | 		if (ksm_test_exit(mm)) | 
 | 			goto mm_exiting; | 
 |  | 
 | 		for_each_vma(vmi, vma) { | 
 | 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | 
 | 				continue; | 
 | 			err = unmerge_ksm_pages(vma, | 
 | 						vma->vm_start, vma->vm_end, false); | 
 | 			if (err) | 
 | 				goto error; | 
 | 		} | 
 |  | 
 | mm_exiting: | 
 | 		remove_trailing_rmap_items(&mm_slot->rmap_list); | 
 | 		mmap_read_unlock(mm); | 
 |  | 
 | 		spin_lock(&ksm_mmlist_lock); | 
 | 		slot = list_entry(mm_slot->slot.mm_node.next, | 
 | 				  struct mm_slot, mm_node); | 
 | 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); | 
 | 		if (ksm_test_exit(mm)) { | 
 | 			hash_del(&mm_slot->slot.hash); | 
 | 			list_del(&mm_slot->slot.mm_node); | 
 | 			spin_unlock(&ksm_mmlist_lock); | 
 |  | 
 | 			mm_slot_free(mm_slot_cache, mm_slot); | 
 | 			clear_bit(MMF_VM_MERGEABLE, &mm->flags); | 
 | 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags); | 
 | 			mmdrop(mm); | 
 | 		} else | 
 | 			spin_unlock(&ksm_mmlist_lock); | 
 | 	} | 
 |  | 
 | 	/* Clean up stable nodes, but don't worry if some are still busy */ | 
 | 	remove_all_stable_nodes(); | 
 | 	ksm_scan.seqnr = 0; | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	mmap_read_unlock(mm); | 
 | 	spin_lock(&ksm_mmlist_lock); | 
 | 	ksm_scan.mm_slot = &ksm_mm_head; | 
 | 	spin_unlock(&ksm_mmlist_lock); | 
 | 	return err; | 
 | } | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | static u32 calc_checksum(struct page *page) | 
 | { | 
 | 	u32 checksum; | 
 | 	void *addr = kmap_local_page(page); | 
 | 	checksum = xxhash(addr, PAGE_SIZE, 0); | 
 | 	kunmap_local(addr); | 
 | 	return checksum; | 
 | } | 
 |  | 
 | static int write_protect_page(struct vm_area_struct *vma, struct folio *folio, | 
 | 			      pte_t *orig_pte) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0); | 
 | 	int swapped; | 
 | 	int err = -EFAULT; | 
 | 	struct mmu_notifier_range range; | 
 | 	bool anon_exclusive; | 
 | 	pte_t entry; | 
 |  | 
 | 	if (WARN_ON_ONCE(folio_test_large(folio))) | 
 | 		return err; | 
 |  | 
 | 	pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma); | 
 | 	if (pvmw.address == -EFAULT) | 
 | 		goto out; | 
 |  | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, | 
 | 				pvmw.address + PAGE_SIZE); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	if (!page_vma_mapped_walk(&pvmw)) | 
 | 		goto out_mn; | 
 | 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) | 
 | 		goto out_unlock; | 
 |  | 
 | 	entry = ptep_get(pvmw.pte); | 
 | 	/* | 
 | 	 * Handle PFN swap PTEs, such as device-exclusive ones, that actually | 
 | 	 * map pages: give up just like the next folio_walk would. | 
 | 	 */ | 
 | 	if (unlikely(!pte_present(entry))) | 
 | 		goto out_unlock; | 
 |  | 
 | 	anon_exclusive = PageAnonExclusive(&folio->page); | 
 | 	if (pte_write(entry) || pte_dirty(entry) || | 
 | 	    anon_exclusive || mm_tlb_flush_pending(mm)) { | 
 | 		swapped = folio_test_swapcache(folio); | 
 | 		flush_cache_page(vma, pvmw.address, folio_pfn(folio)); | 
 | 		/* | 
 | 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't | 
 | 		 * take any lock, therefore the check that we are going to make | 
 | 		 * with the pagecount against the mapcount is racy and | 
 | 		 * O_DIRECT can happen right after the check. | 
 | 		 * So we clear the pte and flush the tlb before the check | 
 | 		 * this assure us that no O_DIRECT can happen after the check | 
 | 		 * or in the middle of the check. | 
 | 		 * | 
 | 		 * No need to notify as we are downgrading page table to read | 
 | 		 * only not changing it to point to a new page. | 
 | 		 * | 
 | 		 * See Documentation/mm/mmu_notifier.rst | 
 | 		 */ | 
 | 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); | 
 | 		/* | 
 | 		 * Check that no O_DIRECT or similar I/O is in progress on the | 
 | 		 * page | 
 | 		 */ | 
 | 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) { | 
 | 			set_pte_at(mm, pvmw.address, pvmw.pte, entry); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */ | 
 | 		if (anon_exclusive && | 
 | 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) { | 
 | 			set_pte_at(mm, pvmw.address, pvmw.pte, entry); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (pte_dirty(entry)) | 
 | 			folio_mark_dirty(folio); | 
 | 		entry = pte_mkclean(entry); | 
 |  | 
 | 		if (pte_write(entry)) | 
 | 			entry = pte_wrprotect(entry); | 
 |  | 
 | 		set_pte_at(mm, pvmw.address, pvmw.pte, entry); | 
 | 	} | 
 | 	*orig_pte = entry; | 
 | 	err = 0; | 
 |  | 
 | out_unlock: | 
 | 	page_vma_mapped_walk_done(&pvmw); | 
 | out_mn: | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * replace_page - replace page in vma by new ksm page | 
 |  * @vma:      vma that holds the pte pointing to page | 
 |  * @page:     the page we are replacing by kpage | 
 |  * @kpage:    the ksm page we replace page by | 
 |  * @orig_pte: the original value of the pte | 
 |  * | 
 |  * Returns 0 on success, -EFAULT on failure. | 
 |  */ | 
 | static int replace_page(struct vm_area_struct *vma, struct page *page, | 
 | 			struct page *kpage, pte_t orig_pte) | 
 | { | 
 | 	struct folio *kfolio = page_folio(kpage); | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct folio *folio = page_folio(page); | 
 | 	pmd_t *pmd; | 
 | 	pmd_t pmde; | 
 | 	pte_t *ptep; | 
 | 	pte_t newpte; | 
 | 	spinlock_t *ptl; | 
 | 	unsigned long addr; | 
 | 	int err = -EFAULT; | 
 | 	struct mmu_notifier_range range; | 
 |  | 
 | 	addr = page_address_in_vma(folio, page, vma); | 
 | 	if (addr == -EFAULT) | 
 | 		goto out; | 
 |  | 
 | 	pmd = mm_find_pmd(mm, addr); | 
 | 	if (!pmd) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() | 
 | 	 * without holding anon_vma lock for write.  So when looking for a | 
 | 	 * genuine pmde (in which to find pte), test present and !THP together. | 
 | 	 */ | 
 | 	pmde = pmdp_get_lockless(pmd); | 
 | 	if (!pmd_present(pmde) || pmd_trans_huge(pmde)) | 
 | 		goto out; | 
 |  | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, | 
 | 				addr + PAGE_SIZE); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
 | 	if (!ptep) | 
 | 		goto out_mn; | 
 | 	if (!pte_same(ptep_get(ptep), orig_pte)) { | 
 | 		pte_unmap_unlock(ptep, ptl); | 
 | 		goto out_mn; | 
 | 	} | 
 | 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page); | 
 | 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), | 
 | 			kfolio); | 
 |  | 
 | 	/* | 
 | 	 * No need to check ksm_use_zero_pages here: we can only have a | 
 | 	 * zero_page here if ksm_use_zero_pages was enabled already. | 
 | 	 */ | 
 | 	if (!is_zero_pfn(page_to_pfn(kpage))) { | 
 | 		folio_get(kfolio); | 
 | 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); | 
 | 		newpte = mk_pte(kpage, vma->vm_page_prot); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then | 
 | 		 * we can easily track all KSM-placed zero pages by checking if | 
 | 		 * the dirty bit in zero page's PTE is set. | 
 | 		 */ | 
 | 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); | 
 | 		ksm_map_zero_page(mm); | 
 | 		/* | 
 | 		 * We're replacing an anonymous page with a zero page, which is | 
 | 		 * not anonymous. We need to do proper accounting otherwise we | 
 | 		 * will get wrong values in /proc, and a BUG message in dmesg | 
 | 		 * when tearing down the mm. | 
 | 		 */ | 
 | 		dec_mm_counter(mm, MM_ANONPAGES); | 
 | 	} | 
 |  | 
 | 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); | 
 | 	/* | 
 | 	 * No need to notify as we are replacing a read only page with another | 
 | 	 * read only page with the same content. | 
 | 	 * | 
 | 	 * See Documentation/mm/mmu_notifier.rst | 
 | 	 */ | 
 | 	ptep_clear_flush(vma, addr, ptep); | 
 | 	set_pte_at(mm, addr, ptep, newpte); | 
 |  | 
 | 	folio_remove_rmap_pte(folio, page, vma); | 
 | 	if (!folio_mapped(folio)) | 
 | 		folio_free_swap(folio); | 
 | 	folio_put(folio); | 
 |  | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	err = 0; | 
 | out_mn: | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * try_to_merge_one_page - take two pages and merge them into one | 
 |  * @vma: the vma that holds the pte pointing to page | 
 |  * @page: the PageAnon page that we want to replace with kpage | 
 |  * @kpage: the KSM page that we want to map instead of page, | 
 |  *         or NULL the first time when we want to use page as kpage. | 
 |  * | 
 |  * This function returns 0 if the pages were merged, -EFAULT otherwise. | 
 |  */ | 
 | static int try_to_merge_one_page(struct vm_area_struct *vma, | 
 | 				 struct page *page, struct page *kpage) | 
 | { | 
 | 	struct folio *folio = page_folio(page); | 
 | 	pte_t orig_pte = __pte(0); | 
 | 	int err = -EFAULT; | 
 |  | 
 | 	if (page == kpage)			/* ksm page forked */ | 
 | 		return 0; | 
 |  | 
 | 	if (!folio_test_anon(folio)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We need the folio lock to read a stable swapcache flag in | 
 | 	 * write_protect_page().  We trylock because we don't want to wait | 
 | 	 * here - we prefer to continue scanning and merging different | 
 | 	 * pages, then come back to this page when it is unlocked. | 
 | 	 */ | 
 | 	if (!folio_trylock(folio)) | 
 | 		goto out; | 
 |  | 
 | 	if (folio_test_large(folio)) { | 
 | 		if (split_huge_page(page)) | 
 | 			goto out_unlock; | 
 | 		folio = page_folio(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this anonymous page is mapped only here, its pte may need | 
 | 	 * to be write-protected.  If it's mapped elsewhere, all of its | 
 | 	 * ptes are necessarily already write-protected.  But in either | 
 | 	 * case, we need to lock and check page_count is not raised. | 
 | 	 */ | 
 | 	if (write_protect_page(vma, folio, &orig_pte) == 0) { | 
 | 		if (!kpage) { | 
 | 			/* | 
 | 			 * While we hold folio lock, upgrade folio from | 
 | 			 * anon to a NULL stable_node with the KSM flag set: | 
 | 			 * stable_tree_insert() will update stable_node. | 
 | 			 */ | 
 | 			folio_set_stable_node(folio, NULL); | 
 | 			folio_mark_accessed(folio); | 
 | 			/* | 
 | 			 * Page reclaim just frees a clean folio with no dirty | 
 | 			 * ptes: make sure that the ksm page would be swapped. | 
 | 			 */ | 
 | 			if (!folio_test_dirty(folio)) | 
 | 				folio_mark_dirty(folio); | 
 | 			err = 0; | 
 | 		} else if (pages_identical(page, kpage)) | 
 | 			err = replace_page(vma, page, kpage, orig_pte); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	folio_unlock(folio); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns 0 if the pages were merged or if they are | 
 |  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise. | 
 |  */ | 
 | static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item, | 
 | 				       struct page *page) | 
 | { | 
 | 	struct mm_struct *mm = rmap_item->mm; | 
 | 	int err = -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * Same checksum as an empty page. We attempt to merge it with the | 
 | 	 * appropriate zero page if the user enabled this via sysfs. | 
 | 	 */ | 
 | 	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) { | 
 | 		struct vm_area_struct *vma; | 
 |  | 
 | 		mmap_read_lock(mm); | 
 | 		vma = find_mergeable_vma(mm, rmap_item->address); | 
 | 		if (vma) { | 
 | 			err = try_to_merge_one_page(vma, page, | 
 | 					ZERO_PAGE(rmap_item->address)); | 
 | 			trace_ksm_merge_one_page( | 
 | 				page_to_pfn(ZERO_PAGE(rmap_item->address)), | 
 | 				rmap_item, mm, err); | 
 | 		} else { | 
 | 			/* | 
 | 			 * If the vma is out of date, we do not need to | 
 | 			 * continue. | 
 | 			 */ | 
 | 			err = 0; | 
 | 		} | 
 | 		mmap_read_unlock(mm); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * try_to_merge_with_ksm_page - like try_to_merge_two_pages, | 
 |  * but no new kernel page is allocated: kpage must already be a ksm page. | 
 |  * | 
 |  * This function returns 0 if the pages were merged, -EFAULT otherwise. | 
 |  */ | 
 | static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, | 
 | 				      struct page *page, struct page *kpage) | 
 | { | 
 | 	struct mm_struct *mm = rmap_item->mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	int err = -EFAULT; | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	vma = find_mergeable_vma(mm, rmap_item->address); | 
 | 	if (!vma) | 
 | 		goto out; | 
 |  | 
 | 	err = try_to_merge_one_page(vma, page, kpage); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Unstable nid is in union with stable anon_vma: remove first */ | 
 | 	remove_rmap_item_from_tree(rmap_item); | 
 |  | 
 | 	/* Must get reference to anon_vma while still holding mmap_lock */ | 
 | 	rmap_item->anon_vma = vma->anon_vma; | 
 | 	get_anon_vma(vma->anon_vma); | 
 | out: | 
 | 	mmap_read_unlock(mm); | 
 | 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), | 
 | 				rmap_item, mm, err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * try_to_merge_two_pages - take two identical pages and prepare them | 
 |  * to be merged into one page. | 
 |  * | 
 |  * This function returns the kpage if we successfully merged two identical | 
 |  * pages into one ksm page, NULL otherwise. | 
 |  * | 
 |  * Note that this function upgrades page to ksm page: if one of the pages | 
 |  * is already a ksm page, try_to_merge_with_ksm_page should be used. | 
 |  */ | 
 | static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, | 
 | 					   struct page *page, | 
 | 					   struct ksm_rmap_item *tree_rmap_item, | 
 | 					   struct page *tree_page) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL); | 
 | 	if (!err) { | 
 | 		err = try_to_merge_with_ksm_page(tree_rmap_item, | 
 | 							tree_page, page); | 
 | 		/* | 
 | 		 * If that fails, we have a ksm page with only one pte | 
 | 		 * pointing to it: so break it. | 
 | 		 */ | 
 | 		if (err) | 
 | 			break_cow(rmap_item); | 
 | 	} | 
 | 	return err ? NULL : page_folio(page); | 
 | } | 
 |  | 
 | static __always_inline | 
 | bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) | 
 | { | 
 | 	VM_BUG_ON(stable_node->rmap_hlist_len < 0); | 
 | 	/* | 
 | 	 * Check that at least one mapping still exists, otherwise | 
 | 	 * there's no much point to merge and share with this | 
 | 	 * stable_node, as the underlying tree_page of the other | 
 | 	 * sharer is going to be freed soon. | 
 | 	 */ | 
 | 	return stable_node->rmap_hlist_len && | 
 | 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; | 
 | } | 
 |  | 
 | static __always_inline | 
 | bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) | 
 | { | 
 | 	return __is_page_sharing_candidate(stable_node, 0); | 
 | } | 
 |  | 
 | static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup, | 
 | 				     struct ksm_stable_node **_stable_node, | 
 | 				     struct rb_root *root, | 
 | 				     bool prune_stale_stable_nodes) | 
 | { | 
 | 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; | 
 | 	struct hlist_node *hlist_safe; | 
 | 	struct folio *folio, *tree_folio = NULL; | 
 | 	int found_rmap_hlist_len; | 
 |  | 
 | 	if (!prune_stale_stable_nodes || | 
 | 	    time_before(jiffies, stable_node->chain_prune_time + | 
 | 			msecs_to_jiffies( | 
 | 				ksm_stable_node_chains_prune_millisecs))) | 
 | 		prune_stale_stable_nodes = false; | 
 | 	else | 
 | 		stable_node->chain_prune_time = jiffies; | 
 |  | 
 | 	hlist_for_each_entry_safe(dup, hlist_safe, | 
 | 				  &stable_node->hlist, hlist_dup) { | 
 | 		cond_resched(); | 
 | 		/* | 
 | 		 * We must walk all stable_node_dup to prune the stale | 
 | 		 * stable nodes during lookup. | 
 | 		 * | 
 | 		 * ksm_get_folio can drop the nodes from the | 
 | 		 * stable_node->hlist if they point to freed pages | 
 | 		 * (that's why we do a _safe walk). The "dup" | 
 | 		 * stable_node parameter itself will be freed from | 
 | 		 * under us if it returns NULL. | 
 | 		 */ | 
 | 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK); | 
 | 		if (!folio) | 
 | 			continue; | 
 | 		/* Pick the best candidate if possible. */ | 
 | 		if (!found || (is_page_sharing_candidate(dup) && | 
 | 		    (!is_page_sharing_candidate(found) || | 
 | 		     dup->rmap_hlist_len > found_rmap_hlist_len))) { | 
 | 			if (found) | 
 | 				folio_put(tree_folio); | 
 | 			found = dup; | 
 | 			found_rmap_hlist_len = found->rmap_hlist_len; | 
 | 			tree_folio = folio; | 
 | 			/* skip put_page for found candidate */ | 
 | 			if (!prune_stale_stable_nodes && | 
 | 			    is_page_sharing_candidate(found)) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 | 		folio_put(folio); | 
 | 	} | 
 |  | 
 | 	if (found) { | 
 | 		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) { | 
 | 			/* | 
 | 			 * If there's not just one entry it would | 
 | 			 * corrupt memory, better BUG_ON. In KSM | 
 | 			 * context with no lock held it's not even | 
 | 			 * fatal. | 
 | 			 */ | 
 | 			BUG_ON(stable_node->hlist.first->next); | 
 |  | 
 | 			/* | 
 | 			 * There's just one entry and it is below the | 
 | 			 * deduplication limit so drop the chain. | 
 | 			 */ | 
 | 			rb_replace_node(&stable_node->node, &found->node, | 
 | 					root); | 
 | 			free_stable_node(stable_node); | 
 | 			ksm_stable_node_chains--; | 
 | 			ksm_stable_node_dups--; | 
 | 			/* | 
 | 			 * NOTE: the caller depends on the stable_node | 
 | 			 * to be equal to stable_node_dup if the chain | 
 | 			 * was collapsed. | 
 | 			 */ | 
 | 			*_stable_node = found; | 
 | 			/* | 
 | 			 * Just for robustness, as stable_node is | 
 | 			 * otherwise left as a stable pointer, the | 
 | 			 * compiler shall optimize it away at build | 
 | 			 * time. | 
 | 			 */ | 
 | 			stable_node = NULL; | 
 | 		} else if (stable_node->hlist.first != &found->hlist_dup && | 
 | 			   __is_page_sharing_candidate(found, 1)) { | 
 | 			/* | 
 | 			 * If the found stable_node dup can accept one | 
 | 			 * more future merge (in addition to the one | 
 | 			 * that is underway) and is not at the head of | 
 | 			 * the chain, put it there so next search will | 
 | 			 * be quicker in the !prune_stale_stable_nodes | 
 | 			 * case. | 
 | 			 * | 
 | 			 * NOTE: it would be inaccurate to use nr > 1 | 
 | 			 * instead of checking the hlist.first pointer | 
 | 			 * directly, because in the | 
 | 			 * prune_stale_stable_nodes case "nr" isn't | 
 | 			 * the position of the found dup in the chain, | 
 | 			 * but the total number of dups in the chain. | 
 | 			 */ | 
 | 			hlist_del(&found->hlist_dup); | 
 | 			hlist_add_head(&found->hlist_dup, | 
 | 				       &stable_node->hlist); | 
 | 		} | 
 | 	} else { | 
 | 		/* Its hlist must be empty if no one found. */ | 
 | 		free_stable_node_chain(stable_node, root); | 
 | 	} | 
 |  | 
 | 	*_stable_node_dup = found; | 
 | 	return tree_folio; | 
 | } | 
 |  | 
 | /* | 
 |  * Like for ksm_get_folio, this function can free the *_stable_node and | 
 |  * *_stable_node_dup if the returned tree_page is NULL. | 
 |  * | 
 |  * It can also free and overwrite *_stable_node with the found | 
 |  * stable_node_dup if the chain is collapsed (in which case | 
 |  * *_stable_node will be equal to *_stable_node_dup like if the chain | 
 |  * never existed). It's up to the caller to verify tree_page is not | 
 |  * NULL before dereferencing *_stable_node or *_stable_node_dup. | 
 |  * | 
 |  * *_stable_node_dup is really a second output parameter of this | 
 |  * function and will be overwritten in all cases, the caller doesn't | 
 |  * need to initialize it. | 
 |  */ | 
 | static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, | 
 | 					 struct ksm_stable_node **_stable_node, | 
 | 					 struct rb_root *root, | 
 | 					 bool prune_stale_stable_nodes) | 
 | { | 
 | 	struct ksm_stable_node *stable_node = *_stable_node; | 
 |  | 
 | 	if (!is_stable_node_chain(stable_node)) { | 
 | 		*_stable_node_dup = stable_node; | 
 | 		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK); | 
 | 	} | 
 | 	return stable_node_dup(_stable_node_dup, _stable_node, root, | 
 | 			       prune_stale_stable_nodes); | 
 | } | 
 |  | 
 | static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d, | 
 | 						 struct ksm_stable_node **s_n, | 
 | 						 struct rb_root *root) | 
 | { | 
 | 	return __stable_node_chain(s_n_d, s_n, root, true); | 
 | } | 
 |  | 
 | static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d, | 
 | 					   struct ksm_stable_node **s_n, | 
 | 					   struct rb_root *root) | 
 | { | 
 | 	return __stable_node_chain(s_n_d, s_n, root, false); | 
 | } | 
 |  | 
 | /* | 
 |  * stable_tree_search - search for page inside the stable tree | 
 |  * | 
 |  * This function checks if there is a page inside the stable tree | 
 |  * with identical content to the page that we are scanning right now. | 
 |  * | 
 |  * This function returns the stable tree node of identical content if found, | 
 |  * -EBUSY if the stable node's page is being migrated, NULL otherwise. | 
 |  */ | 
 | static struct folio *stable_tree_search(struct page *page) | 
 | { | 
 | 	int nid; | 
 | 	struct rb_root *root; | 
 | 	struct rb_node **new; | 
 | 	struct rb_node *parent; | 
 | 	struct ksm_stable_node *stable_node, *stable_node_dup; | 
 | 	struct ksm_stable_node *page_node; | 
 | 	struct folio *folio; | 
 |  | 
 | 	folio = page_folio(page); | 
 | 	page_node = folio_stable_node(folio); | 
 | 	if (page_node && page_node->head != &migrate_nodes) { | 
 | 		/* ksm page forked */ | 
 | 		folio_get(folio); | 
 | 		return folio; | 
 | 	} | 
 |  | 
 | 	nid = get_kpfn_nid(folio_pfn(folio)); | 
 | 	root = root_stable_tree + nid; | 
 | again: | 
 | 	new = &root->rb_node; | 
 | 	parent = NULL; | 
 |  | 
 | 	while (*new) { | 
 | 		struct folio *tree_folio; | 
 | 		int ret; | 
 |  | 
 | 		cond_resched(); | 
 | 		stable_node = rb_entry(*new, struct ksm_stable_node, node); | 
 | 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root); | 
 | 		if (!tree_folio) { | 
 | 			/* | 
 | 			 * If we walked over a stale stable_node, | 
 | 			 * ksm_get_folio() will call rb_erase() and it | 
 | 			 * may rebalance the tree from under us. So | 
 | 			 * restart the search from scratch. Returning | 
 | 			 * NULL would be safe too, but we'd generate | 
 | 			 * false negative insertions just because some | 
 | 			 * stable_node was stale. | 
 | 			 */ | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		ret = memcmp_pages(page, &tree_folio->page); | 
 | 		folio_put(tree_folio); | 
 |  | 
 | 		parent = *new; | 
 | 		if (ret < 0) | 
 | 			new = &parent->rb_left; | 
 | 		else if (ret > 0) | 
 | 			new = &parent->rb_right; | 
 | 		else { | 
 | 			if (page_node) { | 
 | 				VM_BUG_ON(page_node->head != &migrate_nodes); | 
 | 				/* | 
 | 				 * If the mapcount of our migrated KSM folio is | 
 | 				 * at most 1, we can merge it with another | 
 | 				 * KSM folio where we know that we have space | 
 | 				 * for one more mapping without exceeding the | 
 | 				 * ksm_max_page_sharing limit: see | 
 | 				 * chain_prune(). This way, we can avoid adding | 
 | 				 * this stable node to the chain. | 
 | 				 */ | 
 | 				if (folio_mapcount(folio) > 1) | 
 | 					goto chain_append; | 
 | 			} | 
 |  | 
 | 			if (!is_page_sharing_candidate(stable_node_dup)) { | 
 | 				/* | 
 | 				 * If the stable_node is a chain and | 
 | 				 * we got a payload match in memcmp | 
 | 				 * but we cannot merge the scanned | 
 | 				 * page in any of the existing | 
 | 				 * stable_node dups because they're | 
 | 				 * all full, we need to wait the | 
 | 				 * scanned page to find itself a match | 
 | 				 * in the unstable tree to create a | 
 | 				 * brand new KSM page to add later to | 
 | 				 * the dups of this stable_node. | 
 | 				 */ | 
 | 				return NULL; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Lock and unlock the stable_node's page (which | 
 | 			 * might already have been migrated) so that page | 
 | 			 * migration is sure to notice its raised count. | 
 | 			 * It would be more elegant to return stable_node | 
 | 			 * than kpage, but that involves more changes. | 
 | 			 */ | 
 | 			tree_folio = ksm_get_folio(stable_node_dup, | 
 | 						   KSM_GET_FOLIO_TRYLOCK); | 
 |  | 
 | 			if (PTR_ERR(tree_folio) == -EBUSY) | 
 | 				return ERR_PTR(-EBUSY); | 
 |  | 
 | 			if (unlikely(!tree_folio)) | 
 | 				/* | 
 | 				 * The tree may have been rebalanced, | 
 | 				 * so re-evaluate parent and new. | 
 | 				 */ | 
 | 				goto again; | 
 | 			folio_unlock(tree_folio); | 
 |  | 
 | 			if (get_kpfn_nid(stable_node_dup->kpfn) != | 
 | 			    NUMA(stable_node_dup->nid)) { | 
 | 				folio_put(tree_folio); | 
 | 				goto replace; | 
 | 			} | 
 | 			return tree_folio; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!page_node) | 
 | 		return NULL; | 
 |  | 
 | 	list_del(&page_node->list); | 
 | 	DO_NUMA(page_node->nid = nid); | 
 | 	rb_link_node(&page_node->node, parent, new); | 
 | 	rb_insert_color(&page_node->node, root); | 
 | out: | 
 | 	if (is_page_sharing_candidate(page_node)) { | 
 | 		folio_get(folio); | 
 | 		return folio; | 
 | 	} else | 
 | 		return NULL; | 
 |  | 
 | replace: | 
 | 	/* | 
 | 	 * If stable_node was a chain and chain_prune collapsed it, | 
 | 	 * stable_node has been updated to be the new regular | 
 | 	 * stable_node. A collapse of the chain is indistinguishable | 
 | 	 * from the case there was no chain in the stable | 
 | 	 * rbtree. Otherwise stable_node is the chain and | 
 | 	 * stable_node_dup is the dup to replace. | 
 | 	 */ | 
 | 	if (stable_node_dup == stable_node) { | 
 | 		VM_BUG_ON(is_stable_node_chain(stable_node_dup)); | 
 | 		VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | 
 | 		/* there is no chain */ | 
 | 		if (page_node) { | 
 | 			VM_BUG_ON(page_node->head != &migrate_nodes); | 
 | 			list_del(&page_node->list); | 
 | 			DO_NUMA(page_node->nid = nid); | 
 | 			rb_replace_node(&stable_node_dup->node, | 
 | 					&page_node->node, | 
 | 					root); | 
 | 			if (is_page_sharing_candidate(page_node)) | 
 | 				folio_get(folio); | 
 | 			else | 
 | 				folio = NULL; | 
 | 		} else { | 
 | 			rb_erase(&stable_node_dup->node, root); | 
 | 			folio = NULL; | 
 | 		} | 
 | 	} else { | 
 | 		VM_BUG_ON(!is_stable_node_chain(stable_node)); | 
 | 		__stable_node_dup_del(stable_node_dup); | 
 | 		if (page_node) { | 
 | 			VM_BUG_ON(page_node->head != &migrate_nodes); | 
 | 			list_del(&page_node->list); | 
 | 			DO_NUMA(page_node->nid = nid); | 
 | 			stable_node_chain_add_dup(page_node, stable_node); | 
 | 			if (is_page_sharing_candidate(page_node)) | 
 | 				folio_get(folio); | 
 | 			else | 
 | 				folio = NULL; | 
 | 		} else { | 
 | 			folio = NULL; | 
 | 		} | 
 | 	} | 
 | 	stable_node_dup->head = &migrate_nodes; | 
 | 	list_add(&stable_node_dup->list, stable_node_dup->head); | 
 | 	return folio; | 
 |  | 
 | chain_append: | 
 | 	/* | 
 | 	 * If stable_node was a chain and chain_prune collapsed it, | 
 | 	 * stable_node has been updated to be the new regular | 
 | 	 * stable_node. A collapse of the chain is indistinguishable | 
 | 	 * from the case there was no chain in the stable | 
 | 	 * rbtree. Otherwise stable_node is the chain and | 
 | 	 * stable_node_dup is the dup to replace. | 
 | 	 */ | 
 | 	if (stable_node_dup == stable_node) { | 
 | 		VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | 
 | 		/* chain is missing so create it */ | 
 | 		stable_node = alloc_stable_node_chain(stable_node_dup, | 
 | 						      root); | 
 | 		if (!stable_node) | 
 | 			return NULL; | 
 | 	} | 
 | 	/* | 
 | 	 * Add this stable_node dup that was | 
 | 	 * migrated to the stable_node chain | 
 | 	 * of the current nid for this page | 
 | 	 * content. | 
 | 	 */ | 
 | 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); | 
 | 	VM_BUG_ON(page_node->head != &migrate_nodes); | 
 | 	list_del(&page_node->list); | 
 | 	DO_NUMA(page_node->nid = nid); | 
 | 	stable_node_chain_add_dup(page_node, stable_node); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /* | 
 |  * stable_tree_insert - insert stable tree node pointing to new ksm page | 
 |  * into the stable tree. | 
 |  * | 
 |  * This function returns the stable tree node just allocated on success, | 
 |  * NULL otherwise. | 
 |  */ | 
 | static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio) | 
 | { | 
 | 	int nid; | 
 | 	unsigned long kpfn; | 
 | 	struct rb_root *root; | 
 | 	struct rb_node **new; | 
 | 	struct rb_node *parent; | 
 | 	struct ksm_stable_node *stable_node, *stable_node_dup; | 
 | 	bool need_chain = false; | 
 |  | 
 | 	kpfn = folio_pfn(kfolio); | 
 | 	nid = get_kpfn_nid(kpfn); | 
 | 	root = root_stable_tree + nid; | 
 | again: | 
 | 	parent = NULL; | 
 | 	new = &root->rb_node; | 
 |  | 
 | 	while (*new) { | 
 | 		struct folio *tree_folio; | 
 | 		int ret; | 
 |  | 
 | 		cond_resched(); | 
 | 		stable_node = rb_entry(*new, struct ksm_stable_node, node); | 
 | 		tree_folio = chain(&stable_node_dup, &stable_node, root); | 
 | 		if (!tree_folio) { | 
 | 			/* | 
 | 			 * If we walked over a stale stable_node, | 
 | 			 * ksm_get_folio() will call rb_erase() and it | 
 | 			 * may rebalance the tree from under us. So | 
 | 			 * restart the search from scratch. Returning | 
 | 			 * NULL would be safe too, but we'd generate | 
 | 			 * false negative insertions just because some | 
 | 			 * stable_node was stale. | 
 | 			 */ | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		ret = memcmp_pages(&kfolio->page, &tree_folio->page); | 
 | 		folio_put(tree_folio); | 
 |  | 
 | 		parent = *new; | 
 | 		if (ret < 0) | 
 | 			new = &parent->rb_left; | 
 | 		else if (ret > 0) | 
 | 			new = &parent->rb_right; | 
 | 		else { | 
 | 			need_chain = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	stable_node_dup = alloc_stable_node(); | 
 | 	if (!stable_node_dup) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_HLIST_HEAD(&stable_node_dup->hlist); | 
 | 	stable_node_dup->kpfn = kpfn; | 
 | 	stable_node_dup->rmap_hlist_len = 0; | 
 | 	DO_NUMA(stable_node_dup->nid = nid); | 
 | 	if (!need_chain) { | 
 | 		rb_link_node(&stable_node_dup->node, parent, new); | 
 | 		rb_insert_color(&stable_node_dup->node, root); | 
 | 	} else { | 
 | 		if (!is_stable_node_chain(stable_node)) { | 
 | 			struct ksm_stable_node *orig = stable_node; | 
 | 			/* chain is missing so create it */ | 
 | 			stable_node = alloc_stable_node_chain(orig, root); | 
 | 			if (!stable_node) { | 
 | 				free_stable_node(stable_node_dup); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 		stable_node_chain_add_dup(stable_node_dup, stable_node); | 
 | 	} | 
 |  | 
 | 	folio_set_stable_node(kfolio, stable_node_dup); | 
 |  | 
 | 	return stable_node_dup; | 
 | } | 
 |  | 
 | /* | 
 |  * unstable_tree_search_insert - search for identical page, | 
 |  * else insert rmap_item into the unstable tree. | 
 |  * | 
 |  * This function searches for a page in the unstable tree identical to the | 
 |  * page currently being scanned; and if no identical page is found in the | 
 |  * tree, we insert rmap_item as a new object into the unstable tree. | 
 |  * | 
 |  * This function returns pointer to rmap_item found to be identical | 
 |  * to the currently scanned page, NULL otherwise. | 
 |  * | 
 |  * This function does both searching and inserting, because they share | 
 |  * the same walking algorithm in an rbtree. | 
 |  */ | 
 | static | 
 | struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, | 
 | 					      struct page *page, | 
 | 					      struct page **tree_pagep) | 
 | { | 
 | 	struct rb_node **new; | 
 | 	struct rb_root *root; | 
 | 	struct rb_node *parent = NULL; | 
 | 	int nid; | 
 |  | 
 | 	nid = get_kpfn_nid(page_to_pfn(page)); | 
 | 	root = root_unstable_tree + nid; | 
 | 	new = &root->rb_node; | 
 |  | 
 | 	while (*new) { | 
 | 		struct ksm_rmap_item *tree_rmap_item; | 
 | 		struct page *tree_page; | 
 | 		int ret; | 
 |  | 
 | 		cond_resched(); | 
 | 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); | 
 | 		tree_page = get_mergeable_page(tree_rmap_item); | 
 | 		if (!tree_page) | 
 | 			return NULL; | 
 |  | 
 | 		/* | 
 | 		 * Don't substitute a ksm page for a forked page. | 
 | 		 */ | 
 | 		if (page == tree_page) { | 
 | 			put_page(tree_page); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		ret = memcmp_pages(page, tree_page); | 
 |  | 
 | 		parent = *new; | 
 | 		if (ret < 0) { | 
 | 			put_page(tree_page); | 
 | 			new = &parent->rb_left; | 
 | 		} else if (ret > 0) { | 
 | 			put_page(tree_page); | 
 | 			new = &parent->rb_right; | 
 | 		} else if (!ksm_merge_across_nodes && | 
 | 			   page_to_nid(tree_page) != nid) { | 
 | 			/* | 
 | 			 * If tree_page has been migrated to another NUMA node, | 
 | 			 * it will be flushed out and put in the right unstable | 
 | 			 * tree next time: only merge with it when across_nodes. | 
 | 			 */ | 
 | 			put_page(tree_page); | 
 | 			return NULL; | 
 | 		} else { | 
 | 			*tree_pagep = tree_page; | 
 | 			return tree_rmap_item; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rmap_item->address |= UNSTABLE_FLAG; | 
 | 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); | 
 | 	DO_NUMA(rmap_item->nid = nid); | 
 | 	rb_link_node(&rmap_item->node, parent, new); | 
 | 	rb_insert_color(&rmap_item->node, root); | 
 |  | 
 | 	ksm_pages_unshared++; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * stable_tree_append - add another rmap_item to the linked list of | 
 |  * rmap_items hanging off a given node of the stable tree, all sharing | 
 |  * the same ksm page. | 
 |  */ | 
 | static void stable_tree_append(struct ksm_rmap_item *rmap_item, | 
 | 			       struct ksm_stable_node *stable_node, | 
 | 			       bool max_page_sharing_bypass) | 
 | { | 
 | 	/* | 
 | 	 * rmap won't find this mapping if we don't insert the | 
 | 	 * rmap_item in the right stable_node | 
 | 	 * duplicate. page_migration could break later if rmap breaks, | 
 | 	 * so we can as well crash here. We really need to check for | 
 | 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check | 
 | 	 * for other negative values as an underflow if detected here | 
 | 	 * for the first time (and not when decreasing rmap_hlist_len) | 
 | 	 * would be sign of memory corruption in the stable_node. | 
 | 	 */ | 
 | 	BUG_ON(stable_node->rmap_hlist_len < 0); | 
 |  | 
 | 	stable_node->rmap_hlist_len++; | 
 | 	if (!max_page_sharing_bypass) | 
 | 		/* possibly non fatal but unexpected overflow, only warn */ | 
 | 		WARN_ON_ONCE(stable_node->rmap_hlist_len > | 
 | 			     ksm_max_page_sharing); | 
 |  | 
 | 	rmap_item->head = stable_node; | 
 | 	rmap_item->address |= STABLE_FLAG; | 
 | 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist); | 
 |  | 
 | 	if (rmap_item->hlist.next) | 
 | 		ksm_pages_sharing++; | 
 | 	else | 
 | 		ksm_pages_shared++; | 
 |  | 
 | 	rmap_item->mm->ksm_merging_pages++; | 
 | } | 
 |  | 
 | /* | 
 |  * cmp_and_merge_page - first see if page can be merged into the stable tree; | 
 |  * if not, compare checksum to previous and if it's the same, see if page can | 
 |  * be inserted into the unstable tree, or merged with a page already there and | 
 |  * both transferred to the stable tree. | 
 |  * | 
 |  * @page: the page that we are searching identical page to. | 
 |  * @rmap_item: the reverse mapping into the virtual address of this page | 
 |  */ | 
 | static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) | 
 | { | 
 | 	struct ksm_rmap_item *tree_rmap_item; | 
 | 	struct page *tree_page = NULL; | 
 | 	struct ksm_stable_node *stable_node; | 
 | 	struct folio *kfolio; | 
 | 	unsigned int checksum; | 
 | 	int err; | 
 | 	bool max_page_sharing_bypass = false; | 
 |  | 
 | 	stable_node = page_stable_node(page); | 
 | 	if (stable_node) { | 
 | 		if (stable_node->head != &migrate_nodes && | 
 | 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != | 
 | 		    NUMA(stable_node->nid)) { | 
 | 			stable_node_dup_del(stable_node); | 
 | 			stable_node->head = &migrate_nodes; | 
 | 			list_add(&stable_node->list, stable_node->head); | 
 | 		} | 
 | 		if (stable_node->head != &migrate_nodes && | 
 | 		    rmap_item->head == stable_node) | 
 | 			return; | 
 | 		/* | 
 | 		 * If it's a KSM fork, allow it to go over the sharing limit | 
 | 		 * without warnings. | 
 | 		 */ | 
 | 		if (!is_page_sharing_candidate(stable_node)) | 
 | 			max_page_sharing_bypass = true; | 
 | 	} else { | 
 | 		remove_rmap_item_from_tree(rmap_item); | 
 |  | 
 | 		/* | 
 | 		 * If the hash value of the page has changed from the last time | 
 | 		 * we calculated it, this page is changing frequently: therefore we | 
 | 		 * don't want to insert it in the unstable tree, and we don't want | 
 | 		 * to waste our time searching for something identical to it there. | 
 | 		 */ | 
 | 		checksum = calc_checksum(page); | 
 | 		if (rmap_item->oldchecksum != checksum) { | 
 | 			rmap_item->oldchecksum = checksum; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (!try_to_merge_with_zero_page(rmap_item, page)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* Start by searching for the folio in the stable tree */ | 
 | 	kfolio = stable_tree_search(page); | 
 | 	if (&kfolio->page == page && rmap_item->head == stable_node) { | 
 | 		folio_put(kfolio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	remove_rmap_item_from_tree(rmap_item); | 
 |  | 
 | 	if (kfolio) { | 
 | 		if (kfolio == ERR_PTR(-EBUSY)) | 
 | 			return; | 
 |  | 
 | 		err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page); | 
 | 		if (!err) { | 
 | 			/* | 
 | 			 * The page was successfully merged: | 
 | 			 * add its rmap_item to the stable tree. | 
 | 			 */ | 
 | 			folio_lock(kfolio); | 
 | 			stable_tree_append(rmap_item, folio_stable_node(kfolio), | 
 | 					   max_page_sharing_bypass); | 
 | 			folio_unlock(kfolio); | 
 | 		} | 
 | 		folio_put(kfolio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tree_rmap_item = | 
 | 		unstable_tree_search_insert(rmap_item, page, &tree_page); | 
 | 	if (tree_rmap_item) { | 
 | 		bool split; | 
 |  | 
 | 		kfolio = try_to_merge_two_pages(rmap_item, page, | 
 | 						tree_rmap_item, tree_page); | 
 | 		/* | 
 | 		 * If both pages we tried to merge belong to the same compound | 
 | 		 * page, then we actually ended up increasing the reference | 
 | 		 * count of the same compound page twice, and split_huge_page | 
 | 		 * failed. | 
 | 		 * Here we set a flag if that happened, and we use it later to | 
 | 		 * try split_huge_page again. Since we call put_page right | 
 | 		 * afterwards, the reference count will be correct and | 
 | 		 * split_huge_page should succeed. | 
 | 		 */ | 
 | 		split = PageTransCompound(page) | 
 | 			&& compound_head(page) == compound_head(tree_page); | 
 | 		put_page(tree_page); | 
 | 		if (kfolio) { | 
 | 			/* | 
 | 			 * The pages were successfully merged: insert new | 
 | 			 * node in the stable tree and add both rmap_items. | 
 | 			 */ | 
 | 			folio_lock(kfolio); | 
 | 			stable_node = stable_tree_insert(kfolio); | 
 | 			if (stable_node) { | 
 | 				stable_tree_append(tree_rmap_item, stable_node, | 
 | 						   false); | 
 | 				stable_tree_append(rmap_item, stable_node, | 
 | 						   false); | 
 | 			} | 
 | 			folio_unlock(kfolio); | 
 |  | 
 | 			/* | 
 | 			 * If we fail to insert the page into the stable tree, | 
 | 			 * we will have 2 virtual addresses that are pointing | 
 | 			 * to a ksm page left outside the stable tree, | 
 | 			 * in which case we need to break_cow on both. | 
 | 			 */ | 
 | 			if (!stable_node) { | 
 | 				break_cow(tree_rmap_item); | 
 | 				break_cow(rmap_item); | 
 | 			} | 
 | 		} else if (split) { | 
 | 			/* | 
 | 			 * We are here if we tried to merge two pages and | 
 | 			 * failed because they both belonged to the same | 
 | 			 * compound page. We will split the page now, but no | 
 | 			 * merging will take place. | 
 | 			 * We do not want to add the cost of a full lock; if | 
 | 			 * the page is locked, it is better to skip it and | 
 | 			 * perhaps try again later. | 
 | 			 */ | 
 | 			if (!trylock_page(page)) | 
 | 				return; | 
 | 			split_huge_page(page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, | 
 | 					    struct ksm_rmap_item **rmap_list, | 
 | 					    unsigned long addr) | 
 | { | 
 | 	struct ksm_rmap_item *rmap_item; | 
 |  | 
 | 	while (*rmap_list) { | 
 | 		rmap_item = *rmap_list; | 
 | 		if ((rmap_item->address & PAGE_MASK) == addr) | 
 | 			return rmap_item; | 
 | 		if (rmap_item->address > addr) | 
 | 			break; | 
 | 		*rmap_list = rmap_item->rmap_list; | 
 | 		remove_rmap_item_from_tree(rmap_item); | 
 | 		free_rmap_item(rmap_item); | 
 | 	} | 
 |  | 
 | 	rmap_item = alloc_rmap_item(); | 
 | 	if (rmap_item) { | 
 | 		/* It has already been zeroed */ | 
 | 		rmap_item->mm = mm_slot->slot.mm; | 
 | 		rmap_item->mm->ksm_rmap_items++; | 
 | 		rmap_item->address = addr; | 
 | 		rmap_item->rmap_list = *rmap_list; | 
 | 		*rmap_list = rmap_item; | 
 | 	} | 
 | 	return rmap_item; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate skip age for the ksm page age. The age determines how often | 
 |  * de-duplicating has already been tried unsuccessfully. If the age is | 
 |  * smaller, the scanning of this page is skipped for less scans. | 
 |  * | 
 |  * @age: rmap_item age of page | 
 |  */ | 
 | static unsigned int skip_age(rmap_age_t age) | 
 | { | 
 | 	if (age <= 3) | 
 | 		return 1; | 
 | 	if (age <= 5) | 
 | 		return 2; | 
 | 	if (age <= 8) | 
 | 		return 4; | 
 |  | 
 | 	return 8; | 
 | } | 
 |  | 
 | /* | 
 |  * Determines if a page should be skipped for the current scan. | 
 |  * | 
 |  * @folio: folio containing the page to check | 
 |  * @rmap_item: associated rmap_item of page | 
 |  */ | 
 | static bool should_skip_rmap_item(struct folio *folio, | 
 | 				  struct ksm_rmap_item *rmap_item) | 
 | { | 
 | 	rmap_age_t age; | 
 |  | 
 | 	if (!ksm_smart_scan) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Never skip pages that are already KSM; pages cmp_and_merge_page() | 
 | 	 * will essentially ignore them, but we still have to process them | 
 | 	 * properly. | 
 | 	 */ | 
 | 	if (folio_test_ksm(folio)) | 
 | 		return false; | 
 |  | 
 | 	age = rmap_item->age; | 
 | 	if (age != U8_MAX) | 
 | 		rmap_item->age++; | 
 |  | 
 | 	/* | 
 | 	 * Smaller ages are not skipped, they need to get a chance to go | 
 | 	 * through the different phases of the KSM merging. | 
 | 	 */ | 
 | 	if (age < 3) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Are we still allowed to skip? If not, then don't skip it | 
 | 	 * and determine how much more often we are allowed to skip next. | 
 | 	 */ | 
 | 	if (!rmap_item->remaining_skips) { | 
 | 		rmap_item->remaining_skips = skip_age(age); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Skip this page */ | 
 | 	ksm_pages_skipped++; | 
 | 	rmap_item->remaining_skips--; | 
 | 	remove_rmap_item_from_tree(rmap_item); | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	struct ksm_mm_slot *mm_slot; | 
 | 	struct mm_slot *slot; | 
 | 	struct vm_area_struct *vma; | 
 | 	struct ksm_rmap_item *rmap_item; | 
 | 	struct vma_iterator vmi; | 
 | 	int nid; | 
 |  | 
 | 	if (list_empty(&ksm_mm_head.slot.mm_node)) | 
 | 		return NULL; | 
 |  | 
 | 	mm_slot = ksm_scan.mm_slot; | 
 | 	if (mm_slot == &ksm_mm_head) { | 
 | 		advisor_start_scan(); | 
 | 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); | 
 |  | 
 | 		/* | 
 | 		 * A number of pages can hang around indefinitely in per-cpu | 
 | 		 * LRU cache, raised page count preventing write_protect_page | 
 | 		 * from merging them.  Though it doesn't really matter much, | 
 | 		 * it is puzzling to see some stuck in pages_volatile until | 
 | 		 * other activity jostles them out, and they also prevented | 
 | 		 * LTP's KSM test from succeeding deterministically; so drain | 
 | 		 * them here (here rather than on entry to ksm_do_scan(), | 
 | 		 * so we don't IPI too often when pages_to_scan is set low). | 
 | 		 */ | 
 | 		lru_add_drain_all(); | 
 |  | 
 | 		/* | 
 | 		 * Whereas stale stable_nodes on the stable_tree itself | 
 | 		 * get pruned in the regular course of stable_tree_search(), | 
 | 		 * those moved out to the migrate_nodes list can accumulate: | 
 | 		 * so prune them once before each full scan. | 
 | 		 */ | 
 | 		if (!ksm_merge_across_nodes) { | 
 | 			struct ksm_stable_node *stable_node, *next; | 
 | 			struct folio *folio; | 
 |  | 
 | 			list_for_each_entry_safe(stable_node, next, | 
 | 						 &migrate_nodes, list) { | 
 | 				folio = ksm_get_folio(stable_node, | 
 | 						      KSM_GET_FOLIO_NOLOCK); | 
 | 				if (folio) | 
 | 					folio_put(folio); | 
 | 				cond_resched(); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for (nid = 0; nid < ksm_nr_node_ids; nid++) | 
 | 			root_unstable_tree[nid] = RB_ROOT; | 
 |  | 
 | 		spin_lock(&ksm_mmlist_lock); | 
 | 		slot = list_entry(mm_slot->slot.mm_node.next, | 
 | 				  struct mm_slot, mm_node); | 
 | 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); | 
 | 		ksm_scan.mm_slot = mm_slot; | 
 | 		spin_unlock(&ksm_mmlist_lock); | 
 | 		/* | 
 | 		 * Although we tested list_empty() above, a racing __ksm_exit | 
 | 		 * of the last mm on the list may have removed it since then. | 
 | 		 */ | 
 | 		if (mm_slot == &ksm_mm_head) | 
 | 			return NULL; | 
 | next_mm: | 
 | 		ksm_scan.address = 0; | 
 | 		ksm_scan.rmap_list = &mm_slot->rmap_list; | 
 | 	} | 
 |  | 
 | 	slot = &mm_slot->slot; | 
 | 	mm = slot->mm; | 
 | 	vma_iter_init(&vmi, mm, ksm_scan.address); | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	if (ksm_test_exit(mm)) | 
 | 		goto no_vmas; | 
 |  | 
 | 	for_each_vma(vmi, vma) { | 
 | 		if (!(vma->vm_flags & VM_MERGEABLE)) | 
 | 			continue; | 
 | 		if (ksm_scan.address < vma->vm_start) | 
 | 			ksm_scan.address = vma->vm_start; | 
 | 		if (!vma->anon_vma) | 
 | 			ksm_scan.address = vma->vm_end; | 
 |  | 
 | 		while (ksm_scan.address < vma->vm_end) { | 
 | 			struct page *tmp_page = NULL; | 
 | 			struct folio_walk fw; | 
 | 			struct folio *folio; | 
 |  | 
 | 			if (ksm_test_exit(mm)) | 
 | 				break; | 
 |  | 
 | 			folio = folio_walk_start(&fw, vma, ksm_scan.address, 0); | 
 | 			if (folio) { | 
 | 				if (!folio_is_zone_device(folio) && | 
 | 				     folio_test_anon(folio)) { | 
 | 					folio_get(folio); | 
 | 					tmp_page = fw.page; | 
 | 				} | 
 | 				folio_walk_end(&fw, vma); | 
 | 			} | 
 |  | 
 | 			if (tmp_page) { | 
 | 				flush_anon_page(vma, tmp_page, ksm_scan.address); | 
 | 				flush_dcache_page(tmp_page); | 
 | 				rmap_item = get_next_rmap_item(mm_slot, | 
 | 					ksm_scan.rmap_list, ksm_scan.address); | 
 | 				if (rmap_item) { | 
 | 					ksm_scan.rmap_list = | 
 | 							&rmap_item->rmap_list; | 
 |  | 
 | 					if (should_skip_rmap_item(folio, rmap_item)) { | 
 | 						folio_put(folio); | 
 | 						goto next_page; | 
 | 					} | 
 |  | 
 | 					ksm_scan.address += PAGE_SIZE; | 
 | 					*page = tmp_page; | 
 | 				} else { | 
 | 					folio_put(folio); | 
 | 				} | 
 | 				mmap_read_unlock(mm); | 
 | 				return rmap_item; | 
 | 			} | 
 | next_page: | 
 | 			ksm_scan.address += PAGE_SIZE; | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ksm_test_exit(mm)) { | 
 | no_vmas: | 
 | 		ksm_scan.address = 0; | 
 | 		ksm_scan.rmap_list = &mm_slot->rmap_list; | 
 | 	} | 
 | 	/* | 
 | 	 * Nuke all the rmap_items that are above this current rmap: | 
 | 	 * because there were no VM_MERGEABLE vmas with such addresses. | 
 | 	 */ | 
 | 	remove_trailing_rmap_items(ksm_scan.rmap_list); | 
 |  | 
 | 	spin_lock(&ksm_mmlist_lock); | 
 | 	slot = list_entry(mm_slot->slot.mm_node.next, | 
 | 			  struct mm_slot, mm_node); | 
 | 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); | 
 | 	if (ksm_scan.address == 0) { | 
 | 		/* | 
 | 		 * We've completed a full scan of all vmas, holding mmap_lock | 
 | 		 * throughout, and found no VM_MERGEABLE: so do the same as | 
 | 		 * __ksm_exit does to remove this mm from all our lists now. | 
 | 		 * This applies either when cleaning up after __ksm_exit | 
 | 		 * (but beware: we can reach here even before __ksm_exit), | 
 | 		 * or when all VM_MERGEABLE areas have been unmapped (and | 
 | 		 * mmap_lock then protects against race with MADV_MERGEABLE). | 
 | 		 */ | 
 | 		hash_del(&mm_slot->slot.hash); | 
 | 		list_del(&mm_slot->slot.mm_node); | 
 | 		spin_unlock(&ksm_mmlist_lock); | 
 |  | 
 | 		mm_slot_free(mm_slot_cache, mm_slot); | 
 | 		clear_bit(MMF_VM_MERGEABLE, &mm->flags); | 
 | 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags); | 
 | 		mmap_read_unlock(mm); | 
 | 		mmdrop(mm); | 
 | 	} else { | 
 | 		mmap_read_unlock(mm); | 
 | 		/* | 
 | 		 * mmap_read_unlock(mm) first because after | 
 | 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may | 
 | 		 * already have been freed under us by __ksm_exit() | 
 | 		 * because the "mm_slot" is still hashed and | 
 | 		 * ksm_scan.mm_slot doesn't point to it anymore. | 
 | 		 */ | 
 | 		spin_unlock(&ksm_mmlist_lock); | 
 | 	} | 
 |  | 
 | 	/* Repeat until we've completed scanning the whole list */ | 
 | 	mm_slot = ksm_scan.mm_slot; | 
 | 	if (mm_slot != &ksm_mm_head) | 
 | 		goto next_mm; | 
 |  | 
 | 	advisor_stop_scan(); | 
 |  | 
 | 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); | 
 | 	ksm_scan.seqnr++; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ksm_do_scan  - the ksm scanner main worker function. | 
 |  * @scan_npages:  number of pages we want to scan before we return. | 
 |  */ | 
 | static void ksm_do_scan(unsigned int scan_npages) | 
 | { | 
 | 	struct ksm_rmap_item *rmap_item; | 
 | 	struct page *page; | 
 |  | 
 | 	while (scan_npages-- && likely(!freezing(current))) { | 
 | 		cond_resched(); | 
 | 		rmap_item = scan_get_next_rmap_item(&page); | 
 | 		if (!rmap_item) | 
 | 			return; | 
 | 		cmp_and_merge_page(page, rmap_item); | 
 | 		put_page(page); | 
 | 		ksm_pages_scanned++; | 
 | 	} | 
 | } | 
 |  | 
 | static int ksmd_should_run(void) | 
 | { | 
 | 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); | 
 | } | 
 |  | 
 | static int ksm_scan_thread(void *nothing) | 
 | { | 
 | 	unsigned int sleep_ms; | 
 |  | 
 | 	set_freezable(); | 
 | 	set_user_nice(current, 5); | 
 |  | 
 | 	while (!kthread_should_stop()) { | 
 | 		mutex_lock(&ksm_thread_mutex); | 
 | 		wait_while_offlining(); | 
 | 		if (ksmd_should_run()) | 
 | 			ksm_do_scan(ksm_thread_pages_to_scan); | 
 | 		mutex_unlock(&ksm_thread_mutex); | 
 |  | 
 | 		if (ksmd_should_run()) { | 
 | 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); | 
 | 			wait_event_freezable_timeout(ksm_iter_wait, | 
 | 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), | 
 | 				msecs_to_jiffies(sleep_ms)); | 
 | 		} else { | 
 | 			wait_event_freezable(ksm_thread_wait, | 
 | 				ksmd_should_run() || kthread_should_stop()); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags) | 
 | { | 
 | 	if (vm_flags & VM_MERGEABLE) | 
 | 		return false; | 
 |  | 
 | 	return ksm_compatible(file, vm_flags); | 
 | } | 
 |  | 
 | static void __ksm_add_vma(struct vm_area_struct *vma) | 
 | { | 
 | 	if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags)) | 
 | 		vm_flags_set(vma, VM_MERGEABLE); | 
 | } | 
 |  | 
 | static int __ksm_del_vma(struct vm_area_struct *vma) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!(vma->vm_flags & VM_MERGEABLE)) | 
 | 		return 0; | 
 |  | 
 | 	if (vma->anon_vma) { | 
 | 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	vm_flags_clear(vma, VM_MERGEABLE); | 
 | 	return 0; | 
 | } | 
 | /** | 
 |  * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible | 
 |  * | 
 |  * @mm:       Proposed VMA's mm_struct | 
 |  * @file:     Proposed VMA's file-backed mapping, if any. | 
 |  * @vm_flags: Proposed VMA"s flags. | 
 |  * | 
 |  * Returns: @vm_flags possibly updated to mark mergeable. | 
 |  */ | 
 | vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file, | 
 | 			 vm_flags_t vm_flags) | 
 | { | 
 | 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags) && | 
 | 	    __ksm_should_add_vma(file, vm_flags)) | 
 | 		vm_flags |= VM_MERGEABLE; | 
 |  | 
 | 	return vm_flags; | 
 | } | 
 |  | 
 | static void ksm_add_vmas(struct mm_struct *mm) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	VMA_ITERATOR(vmi, mm, 0); | 
 | 	for_each_vma(vmi, vma) | 
 | 		__ksm_add_vma(vma); | 
 | } | 
 |  | 
 | static int ksm_del_vmas(struct mm_struct *mm) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	int err; | 
 |  | 
 | 	VMA_ITERATOR(vmi, mm, 0); | 
 | 	for_each_vma(vmi, vma) { | 
 | 		err = __ksm_del_vma(vma); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all | 
 |  *                        compatible VMA's | 
 |  * | 
 |  * @mm:  Pointer to mm | 
 |  * | 
 |  * Returns 0 on success, otherwise error code | 
 |  */ | 
 | int ksm_enable_merge_any(struct mm_struct *mm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) | 
 | 		return 0; | 
 |  | 
 | 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { | 
 | 		err = __ksm_enter(mm); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	set_bit(MMF_VM_MERGE_ANY, &mm->flags); | 
 | 	ksm_add_vmas(mm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, | 
 |  *			   previously enabled via ksm_enable_merge_any(). | 
 |  * | 
 |  * Disabling merging implies unmerging any merged pages, like setting | 
 |  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and | 
 |  * merging on all compatible VMA's remains enabled. | 
 |  * | 
 |  * @mm: Pointer to mm | 
 |  * | 
 |  * Returns 0 on success, otherwise error code | 
 |  */ | 
 | int ksm_disable_merge_any(struct mm_struct *mm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) | 
 | 		return 0; | 
 |  | 
 | 	err = ksm_del_vmas(mm); | 
 | 	if (err) { | 
 | 		ksm_add_vmas(mm); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ksm_disable(struct mm_struct *mm) | 
 | { | 
 | 	mmap_assert_write_locked(mm); | 
 |  | 
 | 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) | 
 | 		return 0; | 
 | 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) | 
 | 		return ksm_disable_merge_any(mm); | 
 | 	return ksm_del_vmas(mm); | 
 | } | 
 |  | 
 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, | 
 | 		unsigned long end, int advice, vm_flags_t *vm_flags) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	int err; | 
 |  | 
 | 	switch (advice) { | 
 | 	case MADV_MERGEABLE: | 
 | 		if (vma->vm_flags & VM_MERGEABLE) | 
 | 			return 0; | 
 | 		if (!vma_ksm_compatible(vma)) | 
 | 			return 0; | 
 |  | 
 | 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { | 
 | 			err = __ksm_enter(mm); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		*vm_flags |= VM_MERGEABLE; | 
 | 		break; | 
 |  | 
 | 	case MADV_UNMERGEABLE: | 
 | 		if (!(*vm_flags & VM_MERGEABLE)) | 
 | 			return 0;		/* just ignore the advice */ | 
 |  | 
 | 		if (vma->anon_vma) { | 
 | 			err = unmerge_ksm_pages(vma, start, end, true); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		*vm_flags &= ~VM_MERGEABLE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ksm_madvise); | 
 |  | 
 | int __ksm_enter(struct mm_struct *mm) | 
 | { | 
 | 	struct ksm_mm_slot *mm_slot; | 
 | 	struct mm_slot *slot; | 
 | 	int needs_wakeup; | 
 |  | 
 | 	mm_slot = mm_slot_alloc(mm_slot_cache); | 
 | 	if (!mm_slot) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	slot = &mm_slot->slot; | 
 |  | 
 | 	/* Check ksm_run too?  Would need tighter locking */ | 
 | 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); | 
 |  | 
 | 	spin_lock(&ksm_mmlist_lock); | 
 | 	mm_slot_insert(mm_slots_hash, mm, slot); | 
 | 	/* | 
 | 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP), | 
 | 	 * insert just behind the scanning cursor, to let the area settle | 
 | 	 * down a little; when fork is followed by immediate exec, we don't | 
 | 	 * want ksmd to waste time setting up and tearing down an rmap_list. | 
 | 	 * | 
 | 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its | 
 | 	 * scanning cursor, otherwise KSM pages in newly forked mms will be | 
 | 	 * missed: then we might as well insert at the end of the list. | 
 | 	 */ | 
 | 	if (ksm_run & KSM_RUN_UNMERGE) | 
 | 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); | 
 | 	else | 
 | 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); | 
 | 	spin_unlock(&ksm_mmlist_lock); | 
 |  | 
 | 	set_bit(MMF_VM_MERGEABLE, &mm->flags); | 
 | 	mmgrab(mm); | 
 |  | 
 | 	if (needs_wakeup) | 
 | 		wake_up_interruptible(&ksm_thread_wait); | 
 |  | 
 | 	trace_ksm_enter(mm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __ksm_exit(struct mm_struct *mm) | 
 | { | 
 | 	struct ksm_mm_slot *mm_slot; | 
 | 	struct mm_slot *slot; | 
 | 	int easy_to_free = 0; | 
 |  | 
 | 	/* | 
 | 	 * This process is exiting: if it's straightforward (as is the | 
 | 	 * case when ksmd was never running), free mm_slot immediately. | 
 | 	 * But if it's at the cursor or has rmap_items linked to it, use | 
 | 	 * mmap_lock to synchronize with any break_cows before pagetables | 
 | 	 * are freed, and leave the mm_slot on the list for ksmd to free. | 
 | 	 * Beware: ksm may already have noticed it exiting and freed the slot. | 
 | 	 */ | 
 |  | 
 | 	spin_lock(&ksm_mmlist_lock); | 
 | 	slot = mm_slot_lookup(mm_slots_hash, mm); | 
 | 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); | 
 | 	if (mm_slot && ksm_scan.mm_slot != mm_slot) { | 
 | 		if (!mm_slot->rmap_list) { | 
 | 			hash_del(&slot->hash); | 
 | 			list_del(&slot->mm_node); | 
 | 			easy_to_free = 1; | 
 | 		} else { | 
 | 			list_move(&slot->mm_node, | 
 | 				  &ksm_scan.mm_slot->slot.mm_node); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&ksm_mmlist_lock); | 
 |  | 
 | 	if (easy_to_free) { | 
 | 		mm_slot_free(mm_slot_cache, mm_slot); | 
 | 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags); | 
 | 		clear_bit(MMF_VM_MERGEABLE, &mm->flags); | 
 | 		mmdrop(mm); | 
 | 	} else if (mm_slot) { | 
 | 		mmap_write_lock(mm); | 
 | 		mmap_write_unlock(mm); | 
 | 	} | 
 |  | 
 | 	trace_ksm_exit(mm); | 
 | } | 
 |  | 
 | struct folio *ksm_might_need_to_copy(struct folio *folio, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	struct page *page = folio_page(folio, 0); | 
 | 	struct anon_vma *anon_vma = folio_anon_vma(folio); | 
 | 	struct folio *new_folio; | 
 |  | 
 | 	if (folio_test_large(folio)) | 
 | 		return folio; | 
 |  | 
 | 	if (folio_test_ksm(folio)) { | 
 | 		if (folio_stable_node(folio) && | 
 | 		    !(ksm_run & KSM_RUN_UNMERGE)) | 
 | 			return folio;	/* no need to copy it */ | 
 | 	} else if (!anon_vma) { | 
 | 		return folio;		/* no need to copy it */ | 
 | 	} else if (folio->index == linear_page_index(vma, addr) && | 
 | 			anon_vma->root == vma->anon_vma->root) { | 
 | 		return folio;		/* still no need to copy it */ | 
 | 	} | 
 | 	if (PageHWPoison(page)) | 
 | 		return ERR_PTR(-EHWPOISON); | 
 | 	if (!folio_test_uptodate(folio)) | 
 | 		return folio;		/* let do_swap_page report the error */ | 
 |  | 
 | 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); | 
 | 	if (new_folio && | 
 | 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { | 
 | 		folio_put(new_folio); | 
 | 		new_folio = NULL; | 
 | 	} | 
 | 	if (new_folio) { | 
 | 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page, | 
 | 								addr, vma)) { | 
 | 			folio_put(new_folio); | 
 | 			return ERR_PTR(-EHWPOISON); | 
 | 		} | 
 | 		folio_set_dirty(new_folio); | 
 | 		__folio_mark_uptodate(new_folio); | 
 | 		__folio_set_locked(new_folio); | 
 | #ifdef CONFIG_SWAP | 
 | 		count_vm_event(KSM_SWPIN_COPY); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return new_folio; | 
 | } | 
 |  | 
 | void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) | 
 | { | 
 | 	struct ksm_stable_node *stable_node; | 
 | 	struct ksm_rmap_item *rmap_item; | 
 | 	int search_new_forks = 0; | 
 |  | 
 | 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); | 
 |  | 
 | 	/* | 
 | 	 * Rely on the page lock to protect against concurrent modifications | 
 | 	 * to that page's node of the stable tree. | 
 | 	 */ | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
 |  | 
 | 	stable_node = folio_stable_node(folio); | 
 | 	if (!stable_node) | 
 | 		return; | 
 | again: | 
 | 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { | 
 | 		struct anon_vma *anon_vma = rmap_item->anon_vma; | 
 | 		struct anon_vma_chain *vmac; | 
 | 		struct vm_area_struct *vma; | 
 |  | 
 | 		cond_resched(); | 
 | 		if (!anon_vma_trylock_read(anon_vma)) { | 
 | 			if (rwc->try_lock) { | 
 | 				rwc->contended = true; | 
 | 				return; | 
 | 			} | 
 | 			anon_vma_lock_read(anon_vma); | 
 | 		} | 
 | 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, | 
 | 					       0, ULONG_MAX) { | 
 | 			unsigned long addr; | 
 |  | 
 | 			cond_resched(); | 
 | 			vma = vmac->vma; | 
 |  | 
 | 			/* Ignore the stable/unstable/sqnr flags */ | 
 | 			addr = rmap_item->address & PAGE_MASK; | 
 |  | 
 | 			if (addr < vma->vm_start || addr >= vma->vm_end) | 
 | 				continue; | 
 | 			/* | 
 | 			 * Initially we examine only the vma which covers this | 
 | 			 * rmap_item; but later, if there is still work to do, | 
 | 			 * we examine covering vmas in other mms: in case they | 
 | 			 * were forked from the original since ksmd passed. | 
 | 			 */ | 
 | 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks) | 
 | 				continue; | 
 |  | 
 | 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
 | 				continue; | 
 |  | 
 | 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { | 
 | 				anon_vma_unlock_read(anon_vma); | 
 | 				return; | 
 | 			} | 
 | 			if (rwc->done && rwc->done(folio)) { | 
 | 				anon_vma_unlock_read(anon_vma); | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 		anon_vma_unlock_read(anon_vma); | 
 | 	} | 
 | 	if (!search_new_forks++) | 
 | 		goto again; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_FAILURE | 
 | /* | 
 |  * Collect processes when the error hit an ksm page. | 
 |  */ | 
 | void collect_procs_ksm(const struct folio *folio, const struct page *page, | 
 | 		struct list_head *to_kill, int force_early) | 
 | { | 
 | 	struct ksm_stable_node *stable_node; | 
 | 	struct ksm_rmap_item *rmap_item; | 
 | 	struct vm_area_struct *vma; | 
 | 	struct task_struct *tsk; | 
 |  | 
 | 	stable_node = folio_stable_node(folio); | 
 | 	if (!stable_node) | 
 | 		return; | 
 | 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { | 
 | 		struct anon_vma *av = rmap_item->anon_vma; | 
 |  | 
 | 		anon_vma_lock_read(av); | 
 | 		rcu_read_lock(); | 
 | 		for_each_process(tsk) { | 
 | 			struct anon_vma_chain *vmac; | 
 | 			unsigned long addr; | 
 | 			struct task_struct *t = | 
 | 				task_early_kill(tsk, force_early); | 
 | 			if (!t) | 
 | 				continue; | 
 | 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, | 
 | 						       ULONG_MAX) | 
 | 			{ | 
 | 				vma = vmac->vma; | 
 | 				if (vma->vm_mm == t->mm) { | 
 | 					addr = rmap_item->address & PAGE_MASK; | 
 | 					add_to_kill_ksm(t, page, vma, to_kill, | 
 | 							addr); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 		anon_vma_unlock_read(av); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) | 
 | { | 
 | 	struct ksm_stable_node *stable_node; | 
 |  | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); | 
 | 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); | 
 |  | 
 | 	stable_node = folio_stable_node(folio); | 
 | 	if (stable_node) { | 
 | 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); | 
 | 		stable_node->kpfn = folio_pfn(newfolio); | 
 | 		/* | 
 | 		 * newfolio->mapping was set in advance; now we need smp_wmb() | 
 | 		 * to make sure that the new stable_node->kpfn is visible | 
 | 		 * to ksm_get_folio() before it can see that folio->mapping | 
 | 		 * has gone stale (or that the swapcache flag has been cleared). | 
 | 		 */ | 
 | 		smp_wmb(); | 
 | 		folio_set_stable_node(folio, NULL); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_MIGRATION */ | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
 | static void wait_while_offlining(void) | 
 | { | 
 | 	while (ksm_run & KSM_RUN_OFFLINE) { | 
 | 		mutex_unlock(&ksm_thread_mutex); | 
 | 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), | 
 | 			    TASK_UNINTERRUPTIBLE); | 
 | 		mutex_lock(&ksm_thread_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, | 
 | 					 unsigned long start_pfn, | 
 | 					 unsigned long end_pfn) | 
 | { | 
 | 	if (stable_node->kpfn >= start_pfn && | 
 | 	    stable_node->kpfn < end_pfn) { | 
 | 		/* | 
 | 		 * Don't ksm_get_folio, page has already gone: | 
 | 		 * which is why we keep kpfn instead of page* | 
 | 		 */ | 
 | 		remove_node_from_stable_tree(stable_node); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, | 
 | 					   unsigned long start_pfn, | 
 | 					   unsigned long end_pfn, | 
 | 					   struct rb_root *root) | 
 | { | 
 | 	struct ksm_stable_node *dup; | 
 | 	struct hlist_node *hlist_safe; | 
 |  | 
 | 	if (!is_stable_node_chain(stable_node)) { | 
 | 		VM_BUG_ON(is_stable_node_dup(stable_node)); | 
 | 		return stable_node_dup_remove_range(stable_node, start_pfn, | 
 | 						    end_pfn); | 
 | 	} | 
 |  | 
 | 	hlist_for_each_entry_safe(dup, hlist_safe, | 
 | 				  &stable_node->hlist, hlist_dup) { | 
 | 		VM_BUG_ON(!is_stable_node_dup(dup)); | 
 | 		stable_node_dup_remove_range(dup, start_pfn, end_pfn); | 
 | 	} | 
 | 	if (hlist_empty(&stable_node->hlist)) { | 
 | 		free_stable_node_chain(stable_node, root); | 
 | 		return true; /* notify caller that tree was rebalanced */ | 
 | 	} else | 
 | 		return false; | 
 | } | 
 |  | 
 | static void ksm_check_stable_tree(unsigned long start_pfn, | 
 | 				  unsigned long end_pfn) | 
 | { | 
 | 	struct ksm_stable_node *stable_node, *next; | 
 | 	struct rb_node *node; | 
 | 	int nid; | 
 |  | 
 | 	for (nid = 0; nid < ksm_nr_node_ids; nid++) { | 
 | 		node = rb_first(root_stable_tree + nid); | 
 | 		while (node) { | 
 | 			stable_node = rb_entry(node, struct ksm_stable_node, node); | 
 | 			if (stable_node_chain_remove_range(stable_node, | 
 | 							   start_pfn, end_pfn, | 
 | 							   root_stable_tree + | 
 | 							   nid)) | 
 | 				node = rb_first(root_stable_tree + nid); | 
 | 			else | 
 | 				node = rb_next(node); | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 | 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { | 
 | 		if (stable_node->kpfn >= start_pfn && | 
 | 		    stable_node->kpfn < end_pfn) | 
 | 			remove_node_from_stable_tree(stable_node); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | static int ksm_memory_callback(struct notifier_block *self, | 
 | 			       unsigned long action, void *arg) | 
 | { | 
 | 	struct memory_notify *mn = arg; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_OFFLINE: | 
 | 		/* | 
 | 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() | 
 | 		 * and remove_all_stable_nodes() while memory is going offline: | 
 | 		 * it is unsafe for them to touch the stable tree at this time. | 
 | 		 * But unmerge_ksm_pages(), rmap lookups and other entry points | 
 | 		 * which do not need the ksm_thread_mutex are all safe. | 
 | 		 */ | 
 | 		mutex_lock(&ksm_thread_mutex); | 
 | 		ksm_run |= KSM_RUN_OFFLINE; | 
 | 		mutex_unlock(&ksm_thread_mutex); | 
 | 		break; | 
 |  | 
 | 	case MEM_OFFLINE: | 
 | 		/* | 
 | 		 * Most of the work is done by page migration; but there might | 
 | 		 * be a few stable_nodes left over, still pointing to struct | 
 | 		 * pages which have been offlined: prune those from the tree, | 
 | 		 * otherwise ksm_get_folio() might later try to access a | 
 | 		 * non-existent struct page. | 
 | 		 */ | 
 | 		ksm_check_stable_tree(mn->start_pfn, | 
 | 				      mn->start_pfn + mn->nr_pages); | 
 | 		fallthrough; | 
 | 	case MEM_CANCEL_OFFLINE: | 
 | 		mutex_lock(&ksm_thread_mutex); | 
 | 		ksm_run &= ~KSM_RUN_OFFLINE; | 
 | 		mutex_unlock(&ksm_thread_mutex); | 
 |  | 
 | 		smp_mb();	/* wake_up_bit advises this */ | 
 | 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); | 
 | 		break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 | #else | 
 | static void wait_while_offlining(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | /* | 
 |  * The process is mergeable only if any VMA is currently | 
 |  * applicable to KSM. | 
 |  * | 
 |  * The mmap lock must be held in read mode. | 
 |  */ | 
 | bool ksm_process_mergeable(struct mm_struct *mm) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	mmap_assert_locked(mm); | 
 | 	VMA_ITERATOR(vmi, mm, 0); | 
 | 	for_each_vma(vmi, vma) | 
 | 		if (vma->vm_flags & VM_MERGEABLE) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | long ksm_process_profit(struct mm_struct *mm) | 
 | { | 
 | 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE - | 
 | 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); | 
 | } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | /* | 
 |  * This all compiles without CONFIG_SYSFS, but is a waste of space. | 
 |  */ | 
 |  | 
 | #define KSM_ATTR_RO(_name) \ | 
 | 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
 | #define KSM_ATTR(_name) \ | 
 | 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name) | 
 |  | 
 | static ssize_t sleep_millisecs_show(struct kobject *kobj, | 
 | 				    struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); | 
 | } | 
 |  | 
 | static ssize_t sleep_millisecs_store(struct kobject *kobj, | 
 | 				     struct kobj_attribute *attr, | 
 | 				     const char *buf, size_t count) | 
 | { | 
 | 	unsigned int msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &msecs); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_thread_sleep_millisecs = msecs; | 
 | 	wake_up_interruptible(&ksm_iter_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(sleep_millisecs); | 
 |  | 
 | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); | 
 | } | 
 |  | 
 | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	unsigned int nr_pages; | 
 | 	int err; | 
 |  | 
 | 	if (ksm_advisor != KSM_ADVISOR_NONE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &nr_pages); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_thread_pages_to_scan = nr_pages; | 
 |  | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(pages_to_scan); | 
 |  | 
 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, | 
 | 			char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_run); | 
 | } | 
 |  | 
 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, | 
 | 			 const char *buf, size_t count) | 
 | { | 
 | 	unsigned int flags; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &flags); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 | 	if (flags > KSM_RUN_UNMERGE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. | 
 | 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, | 
 | 	 * breaking COW to free the pages_shared (but leaves mm_slots | 
 | 	 * on the list for when ksmd may be set running again). | 
 | 	 */ | 
 |  | 
 | 	mutex_lock(&ksm_thread_mutex); | 
 | 	wait_while_offlining(); | 
 | 	if (ksm_run != flags) { | 
 | 		ksm_run = flags; | 
 | 		if (flags & KSM_RUN_UNMERGE) { | 
 | 			set_current_oom_origin(); | 
 | 			err = unmerge_and_remove_all_rmap_items(); | 
 | 			clear_current_oom_origin(); | 
 | 			if (err) { | 
 | 				ksm_run = KSM_RUN_STOP; | 
 | 				count = err; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&ksm_thread_mutex); | 
 |  | 
 | 	if (flags & KSM_RUN_MERGE) | 
 | 		wake_up_interruptible(&ksm_thread_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(run); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static ssize_t merge_across_nodes_show(struct kobject *kobj, | 
 | 				       struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); | 
 | } | 
 |  | 
 | static ssize_t merge_across_nodes_store(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long knob; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &knob); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (knob > 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&ksm_thread_mutex); | 
 | 	wait_while_offlining(); | 
 | 	if (ksm_merge_across_nodes != knob) { | 
 | 		if (ksm_pages_shared || remove_all_stable_nodes()) | 
 | 			err = -EBUSY; | 
 | 		else if (root_stable_tree == one_stable_tree) { | 
 | 			struct rb_root *buf; | 
 | 			/* | 
 | 			 * This is the first time that we switch away from the | 
 | 			 * default of merging across nodes: must now allocate | 
 | 			 * a buffer to hold as many roots as may be needed. | 
 | 			 * Allocate stable and unstable together: | 
 | 			 * MAXSMP NODES_SHIFT 10 will use 16kB. | 
 | 			 */ | 
 | 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), | 
 | 				      GFP_KERNEL); | 
 | 			/* Let us assume that RB_ROOT is NULL is zero */ | 
 | 			if (!buf) | 
 | 				err = -ENOMEM; | 
 | 			else { | 
 | 				root_stable_tree = buf; | 
 | 				root_unstable_tree = buf + nr_node_ids; | 
 | 				/* Stable tree is empty but not the unstable */ | 
 | 				root_unstable_tree[0] = one_unstable_tree[0]; | 
 | 			} | 
 | 		} | 
 | 		if (!err) { | 
 | 			ksm_merge_across_nodes = knob; | 
 | 			ksm_nr_node_ids = knob ? 1 : nr_node_ids; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&ksm_thread_mutex); | 
 |  | 
 | 	return err ? err : count; | 
 | } | 
 | KSM_ATTR(merge_across_nodes); | 
 | #endif | 
 |  | 
 | static ssize_t use_zero_pages_show(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); | 
 | } | 
 | static ssize_t use_zero_pages_store(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	bool value; | 
 |  | 
 | 	err = kstrtobool(buf, &value); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_use_zero_pages = value; | 
 |  | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(use_zero_pages); | 
 |  | 
 | static ssize_t max_page_sharing_show(struct kobject *kobj, | 
 | 				     struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); | 
 | } | 
 |  | 
 | static ssize_t max_page_sharing_store(struct kobject *kobj, | 
 | 				      struct kobj_attribute *attr, | 
 | 				      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	int knob; | 
 |  | 
 | 	err = kstrtoint(buf, 10, &knob); | 
 | 	if (err) | 
 | 		return err; | 
 | 	/* | 
 | 	 * When a KSM page is created it is shared by 2 mappings. This | 
 | 	 * being a signed comparison, it implicitly verifies it's not | 
 | 	 * negative. | 
 | 	 */ | 
 | 	if (knob < 2) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (READ_ONCE(ksm_max_page_sharing) == knob) | 
 | 		return count; | 
 |  | 
 | 	mutex_lock(&ksm_thread_mutex); | 
 | 	wait_while_offlining(); | 
 | 	if (ksm_max_page_sharing != knob) { | 
 | 		if (ksm_pages_shared || remove_all_stable_nodes()) | 
 | 			err = -EBUSY; | 
 | 		else | 
 | 			ksm_max_page_sharing = knob; | 
 | 	} | 
 | 	mutex_unlock(&ksm_thread_mutex); | 
 |  | 
 | 	return err ? err : count; | 
 | } | 
 | KSM_ATTR(max_page_sharing); | 
 |  | 
 | static ssize_t pages_scanned_show(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); | 
 | } | 
 | KSM_ATTR_RO(pages_scanned); | 
 |  | 
 | static ssize_t pages_shared_show(struct kobject *kobj, | 
 | 				 struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared); | 
 | } | 
 | KSM_ATTR_RO(pages_shared); | 
 |  | 
 | static ssize_t pages_sharing_show(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); | 
 | } | 
 | KSM_ATTR_RO(pages_sharing); | 
 |  | 
 | static ssize_t pages_unshared_show(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); | 
 | } | 
 | KSM_ATTR_RO(pages_unshared); | 
 |  | 
 | static ssize_t pages_volatile_show(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	long ksm_pages_volatile; | 
 |  | 
 | 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared | 
 | 				- ksm_pages_sharing - ksm_pages_unshared; | 
 | 	/* | 
 | 	 * It was not worth any locking to calculate that statistic, | 
 | 	 * but it might therefore sometimes be negative: conceal that. | 
 | 	 */ | 
 | 	if (ksm_pages_volatile < 0) | 
 | 		ksm_pages_volatile = 0; | 
 | 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); | 
 | } | 
 | KSM_ATTR_RO(pages_volatile); | 
 |  | 
 | static ssize_t pages_skipped_show(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); | 
 | } | 
 | KSM_ATTR_RO(pages_skipped); | 
 |  | 
 | static ssize_t ksm_zero_pages_show(struct kobject *kobj, | 
 | 				struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages)); | 
 | } | 
 | KSM_ATTR_RO(ksm_zero_pages); | 
 |  | 
 | static ssize_t general_profit_show(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	long general_profit; | 
 |  | 
 | 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE - | 
 | 				ksm_rmap_items * sizeof(struct ksm_rmap_item); | 
 |  | 
 | 	return sysfs_emit(buf, "%ld\n", general_profit); | 
 | } | 
 | KSM_ATTR_RO(general_profit); | 
 |  | 
 | static ssize_t stable_node_dups_show(struct kobject *kobj, | 
 | 				     struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); | 
 | } | 
 | KSM_ATTR_RO(stable_node_dups); | 
 |  | 
 | static ssize_t stable_node_chains_show(struct kobject *kobj, | 
 | 				       struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); | 
 | } | 
 | KSM_ATTR_RO(stable_node_chains); | 
 |  | 
 | static ssize_t | 
 | stable_node_chains_prune_millisecs_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, | 
 | 					char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); | 
 | } | 
 |  | 
 | static ssize_t | 
 | stable_node_chains_prune_millisecs_store(struct kobject *kobj, | 
 | 					 struct kobj_attribute *attr, | 
 | 					 const char *buf, size_t count) | 
 | { | 
 | 	unsigned int msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &msecs); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_stable_node_chains_prune_millisecs = msecs; | 
 |  | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(stable_node_chains_prune_millisecs); | 
 |  | 
 | static ssize_t full_scans_show(struct kobject *kobj, | 
 | 			       struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); | 
 | } | 
 | KSM_ATTR_RO(full_scans); | 
 |  | 
 | static ssize_t smart_scan_show(struct kobject *kobj, | 
 | 			       struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_smart_scan); | 
 | } | 
 |  | 
 | static ssize_t smart_scan_store(struct kobject *kobj, | 
 | 				struct kobj_attribute *attr, | 
 | 				const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	bool value; | 
 |  | 
 | 	err = kstrtobool(buf, &value); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_smart_scan = value; | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(smart_scan); | 
 |  | 
 | static ssize_t advisor_mode_show(struct kobject *kobj, | 
 | 				 struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	const char *output; | 
 |  | 
 | 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) | 
 | 		output = "none [scan-time]"; | 
 | 	else | 
 | 		output = "[none] scan-time"; | 
 |  | 
 | 	return sysfs_emit(buf, "%s\n", output); | 
 | } | 
 |  | 
 | static ssize_t advisor_mode_store(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, const char *buf, | 
 | 				  size_t count) | 
 | { | 
 | 	enum ksm_advisor_type curr_advisor = ksm_advisor; | 
 |  | 
 | 	if (sysfs_streq("scan-time", buf)) | 
 | 		ksm_advisor = KSM_ADVISOR_SCAN_TIME; | 
 | 	else if (sysfs_streq("none", buf)) | 
 | 		ksm_advisor = KSM_ADVISOR_NONE; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Set advisor default values */ | 
 | 	if (curr_advisor != ksm_advisor) | 
 | 		set_advisor_defaults(); | 
 |  | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(advisor_mode); | 
 |  | 
 | static ssize_t advisor_max_cpu_show(struct kobject *kobj, | 
 | 				    struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); | 
 | } | 
 |  | 
 | static ssize_t advisor_max_cpu_store(struct kobject *kobj, | 
 | 				     struct kobj_attribute *attr, | 
 | 				     const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long value; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &value); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_advisor_max_cpu = value; | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(advisor_max_cpu); | 
 |  | 
 | static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); | 
 | } | 
 |  | 
 | static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, | 
 | 					const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long value; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &value); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_advisor_min_pages_to_scan = value; | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(advisor_min_pages_to_scan); | 
 |  | 
 | static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); | 
 | } | 
 |  | 
 | static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, | 
 | 					const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long value; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &value); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_advisor_max_pages_to_scan = value; | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(advisor_max_pages_to_scan); | 
 |  | 
 | static ssize_t advisor_target_scan_time_show(struct kobject *kobj, | 
 | 					     struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); | 
 | } | 
 |  | 
 | static ssize_t advisor_target_scan_time_store(struct kobject *kobj, | 
 | 					      struct kobj_attribute *attr, | 
 | 					      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long value; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &value); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 | 	if (value < 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ksm_advisor_target_scan_time = value; | 
 | 	return count; | 
 | } | 
 | KSM_ATTR(advisor_target_scan_time); | 
 |  | 
 | static struct attribute *ksm_attrs[] = { | 
 | 	&sleep_millisecs_attr.attr, | 
 | 	&pages_to_scan_attr.attr, | 
 | 	&run_attr.attr, | 
 | 	&pages_scanned_attr.attr, | 
 | 	&pages_shared_attr.attr, | 
 | 	&pages_sharing_attr.attr, | 
 | 	&pages_unshared_attr.attr, | 
 | 	&pages_volatile_attr.attr, | 
 | 	&pages_skipped_attr.attr, | 
 | 	&ksm_zero_pages_attr.attr, | 
 | 	&full_scans_attr.attr, | 
 | #ifdef CONFIG_NUMA | 
 | 	&merge_across_nodes_attr.attr, | 
 | #endif | 
 | 	&max_page_sharing_attr.attr, | 
 | 	&stable_node_chains_attr.attr, | 
 | 	&stable_node_dups_attr.attr, | 
 | 	&stable_node_chains_prune_millisecs_attr.attr, | 
 | 	&use_zero_pages_attr.attr, | 
 | 	&general_profit_attr.attr, | 
 | 	&smart_scan_attr.attr, | 
 | 	&advisor_mode_attr.attr, | 
 | 	&advisor_max_cpu_attr.attr, | 
 | 	&advisor_min_pages_to_scan_attr.attr, | 
 | 	&advisor_max_pages_to_scan_attr.attr, | 
 | 	&advisor_target_scan_time_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group ksm_attr_group = { | 
 | 	.attrs = ksm_attrs, | 
 | 	.name = "ksm", | 
 | }; | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | static int __init ksm_init(void) | 
 | { | 
 | 	struct task_struct *ksm_thread; | 
 | 	int err; | 
 |  | 
 | 	/* The correct value depends on page size and endianness */ | 
 | 	zero_checksum = calc_checksum(ZERO_PAGE(0)); | 
 | 	/* Default to false for backwards compatibility */ | 
 | 	ksm_use_zero_pages = false; | 
 |  | 
 | 	err = ksm_slab_init(); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | 
 | 	if (IS_ERR(ksm_thread)) { | 
 | 		pr_err("ksm: creating kthread failed\n"); | 
 | 		err = PTR_ERR(ksm_thread); | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | 	err = sysfs_create_group(mm_kobj, &ksm_attr_group); | 
 | 	if (err) { | 
 | 		pr_err("ksm: register sysfs failed\n"); | 
 | 		kthread_stop(ksm_thread); | 
 | 		goto out_free; | 
 | 	} | 
 | #else | 
 | 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */ | 
 |  | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
 | 	/* There is no significance to this priority 100 */ | 
 | 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); | 
 | #endif | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	ksm_slab_free(); | 
 | out: | 
 | 	return err; | 
 | } | 
 | subsys_initcall(ksm_init); |