|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (c) 2009, Microsoft Corporation. | 
|  | * | 
|  | * Authors: | 
|  | *   Haiyang Zhang <haiyangz@microsoft.com> | 
|  | *   Hank Janssen  <hjanssen@microsoft.com> | 
|  | *   K. Y. Srinivasan <kys@microsoft.com> | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/hyperv.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/sched/isolation.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/panic_notifier.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/screen_info.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/dma-map-ops.h> | 
|  | #include <linux/pci.h> | 
|  | #include <clocksource/hyperv_timer.h> | 
|  | #include <asm/mshyperv.h> | 
|  | #include "hyperv_vmbus.h" | 
|  |  | 
|  | struct vmbus_dynid { | 
|  | struct list_head node; | 
|  | struct hv_vmbus_device_id id; | 
|  | }; | 
|  |  | 
|  | /* VMBus Root Device */ | 
|  | static struct device  *vmbus_root_device; | 
|  |  | 
|  | static int hyperv_cpuhp_online; | 
|  |  | 
|  | static long __percpu *vmbus_evt; | 
|  |  | 
|  | /* Values parsed from ACPI DSDT */ | 
|  | int vmbus_irq; | 
|  | int vmbus_interrupt; | 
|  |  | 
|  | /* | 
|  | * The panic notifier below is responsible solely for unloading the | 
|  | * vmbus connection, which is necessary in a panic event. | 
|  | * | 
|  | * Notice an intrincate relation of this notifier with Hyper-V | 
|  | * framebuffer panic notifier exists - we need vmbus connection alive | 
|  | * there in order to succeed, so we need to order both with each other | 
|  | * [see hvfb_on_panic()] - this is done using notifiers' priorities. | 
|  | */ | 
|  | static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val, | 
|  | void *args) | 
|  | { | 
|  | vmbus_initiate_unload(true); | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | static struct notifier_block hyperv_panic_vmbus_unload_block = { | 
|  | .notifier_call	= hv_panic_vmbus_unload, | 
|  | .priority	= INT_MIN + 1, /* almost the latest one to execute */ | 
|  | }; | 
|  |  | 
|  | static const char *fb_mmio_name = "fb_range"; | 
|  | static struct resource *fb_mmio; | 
|  | static struct resource *hyperv_mmio; | 
|  | static DEFINE_MUTEX(hyperv_mmio_lock); | 
|  |  | 
|  | struct device *hv_get_vmbus_root_device(void) | 
|  | { | 
|  | return vmbus_root_device; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_get_vmbus_root_device); | 
|  |  | 
|  | static int vmbus_exists(void) | 
|  | { | 
|  | if (vmbus_root_device == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u8 channel_monitor_group(const struct vmbus_channel *channel) | 
|  | { | 
|  | return (u8)channel->offermsg.monitorid / 32; | 
|  | } | 
|  |  | 
|  | static u8 channel_monitor_offset(const struct vmbus_channel *channel) | 
|  | { | 
|  | return (u8)channel->offermsg.monitorid % 32; | 
|  | } | 
|  |  | 
|  | static u32 channel_pending(const struct vmbus_channel *channel, | 
|  | const struct hv_monitor_page *monitor_page) | 
|  | { | 
|  | u8 monitor_group = channel_monitor_group(channel); | 
|  |  | 
|  | return monitor_page->trigger_group[monitor_group].pending; | 
|  | } | 
|  |  | 
|  | static u32 channel_latency(const struct vmbus_channel *channel, | 
|  | const struct hv_monitor_page *monitor_page) | 
|  | { | 
|  | u8 monitor_group = channel_monitor_group(channel); | 
|  | u8 monitor_offset = channel_monitor_offset(channel); | 
|  |  | 
|  | return monitor_page->latency[monitor_group][monitor_offset]; | 
|  | } | 
|  |  | 
|  | static u32 channel_conn_id(struct vmbus_channel *channel, | 
|  | struct hv_monitor_page *monitor_page) | 
|  | { | 
|  | u8 monitor_group = channel_monitor_group(channel); | 
|  | u8 monitor_offset = channel_monitor_offset(channel); | 
|  |  | 
|  | return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; | 
|  | } | 
|  |  | 
|  | static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.child_relid); | 
|  | } | 
|  | static DEVICE_ATTR_RO(id); | 
|  |  | 
|  | static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", hv_dev->channel->state); | 
|  | } | 
|  | static DEVICE_ATTR_RO(state); | 
|  |  | 
|  | static ssize_t monitor_id_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.monitorid); | 
|  | } | 
|  | static DEVICE_ATTR_RO(monitor_id); | 
|  |  | 
|  | static ssize_t class_id_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "{%pUl}\n", | 
|  | &hv_dev->channel->offermsg.offer.if_type); | 
|  | } | 
|  | static DEVICE_ATTR_RO(class_id); | 
|  |  | 
|  | static ssize_t device_id_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "{%pUl}\n", | 
|  | &hv_dev->channel->offermsg.offer.if_instance); | 
|  | } | 
|  | static DEVICE_ATTR_RO(device_id); | 
|  |  | 
|  | static ssize_t modalias_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | return sysfs_emit(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); | 
|  | } | 
|  | static DEVICE_ATTR_RO(modalias); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static ssize_t numa_node_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); | 
|  | } | 
|  | static DEVICE_ATTR_RO(numa_node); | 
|  | #endif | 
|  |  | 
|  | static ssize_t server_monitor_pending_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel, | 
|  | vmbus_connection.monitor_pages[0])); | 
|  | } | 
|  | static DEVICE_ATTR_RO(server_monitor_pending); | 
|  |  | 
|  | static ssize_t client_monitor_pending_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel, | 
|  | vmbus_connection.monitor_pages[1])); | 
|  | } | 
|  | static DEVICE_ATTR_RO(client_monitor_pending); | 
|  |  | 
|  | static ssize_t server_monitor_latency_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel, | 
|  | vmbus_connection.monitor_pages[0])); | 
|  | } | 
|  | static DEVICE_ATTR_RO(server_monitor_latency); | 
|  |  | 
|  | static ssize_t client_monitor_latency_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel, | 
|  | vmbus_connection.monitor_pages[1])); | 
|  | } | 
|  | static DEVICE_ATTR_RO(client_monitor_latency); | 
|  |  | 
|  | static ssize_t server_monitor_conn_id_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel, | 
|  | vmbus_connection.monitor_pages[0])); | 
|  | } | 
|  | static DEVICE_ATTR_RO(server_monitor_conn_id); | 
|  |  | 
|  | static ssize_t client_monitor_conn_id_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  | return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel, | 
|  | vmbus_connection.monitor_pages[1])); | 
|  | } | 
|  | static DEVICE_ATTR_RO(client_monitor_conn_id); | 
|  |  | 
|  | static ssize_t out_intr_mask_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info outbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, | 
|  | &outbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", outbound.current_interrupt_mask); | 
|  | } | 
|  | static DEVICE_ATTR_RO(out_intr_mask); | 
|  |  | 
|  | static ssize_t out_read_index_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info outbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, | 
|  | &outbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return sysfs_emit(buf, "%u\n", outbound.current_read_index); | 
|  | } | 
|  | static DEVICE_ATTR_RO(out_read_index); | 
|  |  | 
|  | static ssize_t out_write_index_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info outbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, | 
|  | &outbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return sysfs_emit(buf, "%u\n", outbound.current_write_index); | 
|  | } | 
|  | static DEVICE_ATTR_RO(out_write_index); | 
|  |  | 
|  | static ssize_t out_read_bytes_avail_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info outbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, | 
|  | &outbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return sysfs_emit(buf, "%d\n", outbound.bytes_avail_toread); | 
|  | } | 
|  | static DEVICE_ATTR_RO(out_read_bytes_avail); | 
|  |  | 
|  | static ssize_t out_write_bytes_avail_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info outbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, | 
|  | &outbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return sysfs_emit(buf, "%d\n", outbound.bytes_avail_towrite); | 
|  | } | 
|  | static DEVICE_ATTR_RO(out_write_bytes_avail); | 
|  |  | 
|  | static ssize_t in_intr_mask_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info inbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", inbound.current_interrupt_mask); | 
|  | } | 
|  | static DEVICE_ATTR_RO(in_intr_mask); | 
|  |  | 
|  | static ssize_t in_read_index_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info inbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", inbound.current_read_index); | 
|  | } | 
|  | static DEVICE_ATTR_RO(in_read_index); | 
|  |  | 
|  | static ssize_t in_write_index_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info inbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", inbound.current_write_index); | 
|  | } | 
|  | static DEVICE_ATTR_RO(in_write_index); | 
|  |  | 
|  | static ssize_t in_read_bytes_avail_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info inbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", inbound.bytes_avail_toread); | 
|  | } | 
|  | static DEVICE_ATTR_RO(in_read_bytes_avail); | 
|  |  | 
|  | static ssize_t in_write_bytes_avail_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct hv_ring_buffer_debug_info inbound; | 
|  | int ret; | 
|  |  | 
|  | if (!hv_dev->channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return sysfs_emit(buf, "%d\n", inbound.bytes_avail_towrite); | 
|  | } | 
|  | static DEVICE_ATTR_RO(in_write_bytes_avail); | 
|  |  | 
|  | static ssize_t channel_vp_mapping_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | struct vmbus_channel *channel = hv_dev->channel, *cur_sc; | 
|  | int n_written; | 
|  | struct list_head *cur; | 
|  |  | 
|  | if (!channel) | 
|  | return -ENODEV; | 
|  |  | 
|  | mutex_lock(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | n_written = sysfs_emit(buf, "%u:%u\n", | 
|  | channel->offermsg.child_relid, | 
|  | channel->target_cpu); | 
|  |  | 
|  | list_for_each(cur, &channel->sc_list) { | 
|  |  | 
|  | cur_sc = list_entry(cur, struct vmbus_channel, sc_list); | 
|  | n_written += sysfs_emit_at(buf, n_written, "%u:%u\n", | 
|  | cur_sc->offermsg.child_relid, | 
|  | cur_sc->target_cpu); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | return n_written; | 
|  | } | 
|  | static DEVICE_ATTR_RO(channel_vp_mapping); | 
|  |  | 
|  | static ssize_t vendor_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | return sysfs_emit(buf, "0x%x\n", hv_dev->vendor_id); | 
|  | } | 
|  | static DEVICE_ATTR_RO(vendor); | 
|  |  | 
|  | static ssize_t device_show(struct device *dev, | 
|  | struct device_attribute *dev_attr, | 
|  | char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | return sysfs_emit(buf, "0x%x\n", hv_dev->device_id); | 
|  | } | 
|  | static DEVICE_ATTR_RO(device); | 
|  |  | 
|  | static ssize_t driver_override_store(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = driver_set_override(dev, &hv_dev->driver_override, buf, count); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t driver_override_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  | ssize_t len; | 
|  |  | 
|  | device_lock(dev); | 
|  | len = sysfs_emit(buf, "%s\n", hv_dev->driver_override); | 
|  | device_unlock(dev); | 
|  |  | 
|  | return len; | 
|  | } | 
|  | static DEVICE_ATTR_RW(driver_override); | 
|  |  | 
|  | /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ | 
|  | static struct attribute *vmbus_dev_attrs[] = { | 
|  | &dev_attr_id.attr, | 
|  | &dev_attr_state.attr, | 
|  | &dev_attr_monitor_id.attr, | 
|  | &dev_attr_class_id.attr, | 
|  | &dev_attr_device_id.attr, | 
|  | &dev_attr_modalias.attr, | 
|  | #ifdef CONFIG_NUMA | 
|  | &dev_attr_numa_node.attr, | 
|  | #endif | 
|  | &dev_attr_server_monitor_pending.attr, | 
|  | &dev_attr_client_monitor_pending.attr, | 
|  | &dev_attr_server_monitor_latency.attr, | 
|  | &dev_attr_client_monitor_latency.attr, | 
|  | &dev_attr_server_monitor_conn_id.attr, | 
|  | &dev_attr_client_monitor_conn_id.attr, | 
|  | &dev_attr_out_intr_mask.attr, | 
|  | &dev_attr_out_read_index.attr, | 
|  | &dev_attr_out_write_index.attr, | 
|  | &dev_attr_out_read_bytes_avail.attr, | 
|  | &dev_attr_out_write_bytes_avail.attr, | 
|  | &dev_attr_in_intr_mask.attr, | 
|  | &dev_attr_in_read_index.attr, | 
|  | &dev_attr_in_write_index.attr, | 
|  | &dev_attr_in_read_bytes_avail.attr, | 
|  | &dev_attr_in_write_bytes_avail.attr, | 
|  | &dev_attr_channel_vp_mapping.attr, | 
|  | &dev_attr_vendor.attr, | 
|  | &dev_attr_device.attr, | 
|  | &dev_attr_driver_override.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Device-level attribute_group callback function. Returns the permission for | 
|  | * each attribute, and returns 0 if an attribute is not visible. | 
|  | */ | 
|  | static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, | 
|  | struct attribute *attr, int idx) | 
|  | { | 
|  | struct device *dev = kobj_to_dev(kobj); | 
|  | const struct hv_device *hv_dev = device_to_hv_device(dev); | 
|  |  | 
|  | /* Hide the monitor attributes if the monitor mechanism is not used. */ | 
|  | if (!hv_dev->channel->offermsg.monitor_allocated && | 
|  | (attr == &dev_attr_monitor_id.attr || | 
|  | attr == &dev_attr_server_monitor_pending.attr || | 
|  | attr == &dev_attr_client_monitor_pending.attr || | 
|  | attr == &dev_attr_server_monitor_latency.attr || | 
|  | attr == &dev_attr_client_monitor_latency.attr || | 
|  | attr == &dev_attr_server_monitor_conn_id.attr || | 
|  | attr == &dev_attr_client_monitor_conn_id.attr)) | 
|  | return 0; | 
|  |  | 
|  | return attr->mode; | 
|  | } | 
|  |  | 
|  | static const struct attribute_group vmbus_dev_group = { | 
|  | .attrs = vmbus_dev_attrs, | 
|  | .is_visible = vmbus_dev_attr_is_visible | 
|  | }; | 
|  | __ATTRIBUTE_GROUPS(vmbus_dev); | 
|  |  | 
|  | /* Set up the attribute for /sys/bus/vmbus/hibernation */ | 
|  | static ssize_t hibernation_show(const struct bus_type *bus, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); | 
|  | } | 
|  |  | 
|  | static BUS_ATTR_RO(hibernation); | 
|  |  | 
|  | static struct attribute *vmbus_bus_attrs[] = { | 
|  | &bus_attr_hibernation.attr, | 
|  | NULL, | 
|  | }; | 
|  | static const struct attribute_group vmbus_bus_group = { | 
|  | .attrs = vmbus_bus_attrs, | 
|  | }; | 
|  | __ATTRIBUTE_GROUPS(vmbus_bus); | 
|  |  | 
|  | /* | 
|  | * vmbus_uevent - add uevent for our device | 
|  | * | 
|  | * This routine is invoked when a device is added or removed on the vmbus to | 
|  | * generate a uevent to udev in the userspace. The udev will then look at its | 
|  | * rule and the uevent generated here to load the appropriate driver | 
|  | * | 
|  | * The alias string will be of the form vmbus:guid where guid is the string | 
|  | * representation of the device guid (each byte of the guid will be | 
|  | * represented with two hex characters. | 
|  | */ | 
|  | static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env) | 
|  | { | 
|  | const struct hv_device *dev = device_to_hv_device(device); | 
|  | const char *format = "MODALIAS=vmbus:%*phN"; | 
|  |  | 
|  | return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); | 
|  | } | 
|  |  | 
|  | static const struct hv_vmbus_device_id * | 
|  | hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) | 
|  | { | 
|  | if (id == NULL) | 
|  | return NULL; /* empty device table */ | 
|  |  | 
|  | for (; !guid_is_null(&id->guid); id++) | 
|  | if (guid_equal(&id->guid, guid)) | 
|  | return id; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static const struct hv_vmbus_device_id * | 
|  | hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) | 
|  | { | 
|  | const struct hv_vmbus_device_id *id = NULL; | 
|  | struct vmbus_dynid *dynid; | 
|  |  | 
|  | spin_lock(&drv->dynids.lock); | 
|  | list_for_each_entry(dynid, &drv->dynids.list, node) { | 
|  | if (guid_equal(&dynid->id.guid, guid)) { | 
|  | id = &dynid->id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&drv->dynids.lock); | 
|  |  | 
|  | return id; | 
|  | } | 
|  |  | 
|  | static const struct hv_vmbus_device_id vmbus_device_null; | 
|  |  | 
|  | /* | 
|  | * Return a matching hv_vmbus_device_id pointer. | 
|  | * If there is no match, return NULL. | 
|  | */ | 
|  | static const struct hv_vmbus_device_id *hv_vmbus_get_id(const struct hv_driver *drv, | 
|  | struct hv_device *dev) | 
|  | { | 
|  | const guid_t *guid = &dev->dev_type; | 
|  | const struct hv_vmbus_device_id *id; | 
|  |  | 
|  | /* When driver_override is set, only bind to the matching driver */ | 
|  | if (dev->driver_override && strcmp(dev->driver_override, drv->name)) | 
|  | return NULL; | 
|  |  | 
|  | /* Look at the dynamic ids first, before the static ones */ | 
|  | id = hv_vmbus_dynid_match((struct hv_driver *)drv, guid); | 
|  | if (!id) | 
|  | id = hv_vmbus_dev_match(drv->id_table, guid); | 
|  |  | 
|  | /* driver_override will always match, send a dummy id */ | 
|  | if (!id && dev->driver_override) | 
|  | id = &vmbus_device_null; | 
|  |  | 
|  | return id; | 
|  | } | 
|  |  | 
|  | /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices | 
|  | * | 
|  | * This function can race with vmbus_device_register(). This function is | 
|  | * typically running on a user thread in response to writing to the "new_id" | 
|  | * sysfs entry for a driver. vmbus_device_register() is running on a | 
|  | * workqueue thread in response to the Hyper-V host offering a device to the | 
|  | * guest. This function calls driver_attach(), which looks for an existing | 
|  | * device matching the new id, and attaches the driver to which the new id | 
|  | * has been assigned. vmbus_device_register() calls device_register(), which | 
|  | * looks for a driver that matches the device being registered. If both | 
|  | * operations are running simultaneously, the device driver probe function runs | 
|  | * on whichever thread establishes the linkage between the driver and device. | 
|  | * | 
|  | * In most cases, it doesn't matter which thread runs the driver probe | 
|  | * function. But if vmbus_device_register() does not find a matching driver, | 
|  | * it proceeds to create the "channels" subdirectory and numbered per-channel | 
|  | * subdirectory in sysfs. While that multi-step creation is in progress, this | 
|  | * function could run the driver probe function. If the probe function checks | 
|  | * for, or operates on, entries in the "channels" subdirectory, including by | 
|  | * calling hv_create_ring_sysfs(), the operation may or may not succeed | 
|  | * depending on the race. The race can't create a kernel failure in VMBus | 
|  | * or device subsystem code, but probe functions in VMBus drivers doing such | 
|  | * operations must be prepared for the failure case. | 
|  | */ | 
|  | static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) | 
|  | { | 
|  | struct vmbus_dynid *dynid; | 
|  |  | 
|  | dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); | 
|  | if (!dynid) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dynid->id.guid = *guid; | 
|  |  | 
|  | spin_lock(&drv->dynids.lock); | 
|  | list_add_tail(&dynid->node, &drv->dynids.list); | 
|  | spin_unlock(&drv->dynids.lock); | 
|  |  | 
|  | return driver_attach(&drv->driver); | 
|  | } | 
|  |  | 
|  | static void vmbus_free_dynids(struct hv_driver *drv) | 
|  | { | 
|  | struct vmbus_dynid *dynid, *n; | 
|  |  | 
|  | spin_lock(&drv->dynids.lock); | 
|  | list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { | 
|  | list_del(&dynid->node); | 
|  | kfree(dynid); | 
|  | } | 
|  | spin_unlock(&drv->dynids.lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * store_new_id - sysfs frontend to vmbus_add_dynid() | 
|  | * | 
|  | * Allow GUIDs to be added to an existing driver via sysfs. | 
|  | */ | 
|  | static ssize_t new_id_store(struct device_driver *driver, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | struct hv_driver *drv = drv_to_hv_drv(driver); | 
|  | guid_t guid; | 
|  | ssize_t retval; | 
|  |  | 
|  | retval = guid_parse(buf, &guid); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (hv_vmbus_dynid_match(drv, &guid)) | 
|  | return -EEXIST; | 
|  |  | 
|  | retval = vmbus_add_dynid(drv, &guid); | 
|  | if (retval) | 
|  | return retval; | 
|  | return count; | 
|  | } | 
|  | static DRIVER_ATTR_WO(new_id); | 
|  |  | 
|  | /* | 
|  | * store_remove_id - remove a PCI device ID from this driver | 
|  | * | 
|  | * Removes a dynamic pci device ID to this driver. | 
|  | */ | 
|  | static ssize_t remove_id_store(struct device_driver *driver, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | struct hv_driver *drv = drv_to_hv_drv(driver); | 
|  | struct vmbus_dynid *dynid, *n; | 
|  | guid_t guid; | 
|  | ssize_t retval; | 
|  |  | 
|  | retval = guid_parse(buf, &guid); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = -ENODEV; | 
|  | spin_lock(&drv->dynids.lock); | 
|  | list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { | 
|  | struct hv_vmbus_device_id *id = &dynid->id; | 
|  |  | 
|  | if (guid_equal(&id->guid, &guid)) { | 
|  | list_del(&dynid->node); | 
|  | kfree(dynid); | 
|  | retval = count; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&drv->dynids.lock); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  | static DRIVER_ATTR_WO(remove_id); | 
|  |  | 
|  | static struct attribute *vmbus_drv_attrs[] = { | 
|  | &driver_attr_new_id.attr, | 
|  | &driver_attr_remove_id.attr, | 
|  | NULL, | 
|  | }; | 
|  | ATTRIBUTE_GROUPS(vmbus_drv); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vmbus_match - Attempt to match the specified device to the specified driver | 
|  | */ | 
|  | static int vmbus_match(struct device *device, const struct device_driver *driver) | 
|  | { | 
|  | const struct hv_driver *drv = drv_to_hv_drv(driver); | 
|  | struct hv_device *hv_dev = device_to_hv_device(device); | 
|  |  | 
|  | /* The hv_sock driver handles all hv_sock offers. */ | 
|  | if (is_hvsock_channel(hv_dev->channel)) | 
|  | return drv->hvsock; | 
|  |  | 
|  | if (hv_vmbus_get_id(drv, hv_dev)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_probe - Add the new vmbus's child device | 
|  | */ | 
|  | static int vmbus_probe(struct device *child_device) | 
|  | { | 
|  | int ret = 0; | 
|  | struct hv_driver *drv = | 
|  | drv_to_hv_drv(child_device->driver); | 
|  | struct hv_device *dev = device_to_hv_device(child_device); | 
|  | const struct hv_vmbus_device_id *dev_id; | 
|  |  | 
|  | dev_id = hv_vmbus_get_id(drv, dev); | 
|  | if (drv->probe) { | 
|  | ret = drv->probe(dev, dev_id); | 
|  | if (ret != 0) | 
|  | pr_err("probe failed for device %s (%d)\n", | 
|  | dev_name(child_device), ret); | 
|  |  | 
|  | } else { | 
|  | pr_err("probe not set for driver %s\n", | 
|  | dev_name(child_device)); | 
|  | ret = -ENODEV; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_dma_configure -- Configure DMA coherence for VMbus device | 
|  | */ | 
|  | static int vmbus_dma_configure(struct device *child_device) | 
|  | { | 
|  | /* | 
|  | * On ARM64, propagate the DMA coherence setting from the top level | 
|  | * VMbus ACPI device to the child VMbus device being added here. | 
|  | * On x86/x64 coherence is assumed and these calls have no effect. | 
|  | */ | 
|  | hv_setup_dma_ops(child_device, | 
|  | device_get_dma_attr(vmbus_root_device) == DEV_DMA_COHERENT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_remove - Remove a vmbus device | 
|  | */ | 
|  | static void vmbus_remove(struct device *child_device) | 
|  | { | 
|  | struct hv_driver *drv; | 
|  | struct hv_device *dev = device_to_hv_device(child_device); | 
|  |  | 
|  | if (child_device->driver) { | 
|  | drv = drv_to_hv_drv(child_device->driver); | 
|  | if (drv->remove) | 
|  | drv->remove(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_shutdown - Shutdown a vmbus device | 
|  | */ | 
|  | static void vmbus_shutdown(struct device *child_device) | 
|  | { | 
|  | struct hv_driver *drv; | 
|  | struct hv_device *dev = device_to_hv_device(child_device); | 
|  |  | 
|  |  | 
|  | /* The device may not be attached yet */ | 
|  | if (!child_device->driver) | 
|  | return; | 
|  |  | 
|  | drv = drv_to_hv_drv(child_device->driver); | 
|  |  | 
|  | if (drv->shutdown) | 
|  | drv->shutdown(dev); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | /* | 
|  | * vmbus_suspend - Suspend a vmbus device | 
|  | */ | 
|  | static int vmbus_suspend(struct device *child_device) | 
|  | { | 
|  | struct hv_driver *drv; | 
|  | struct hv_device *dev = device_to_hv_device(child_device); | 
|  |  | 
|  | /* The device may not be attached yet */ | 
|  | if (!child_device->driver) | 
|  | return 0; | 
|  |  | 
|  | drv = drv_to_hv_drv(child_device->driver); | 
|  | if (!drv->suspend) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return drv->suspend(dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_resume - Resume a vmbus device | 
|  | */ | 
|  | static int vmbus_resume(struct device *child_device) | 
|  | { | 
|  | struct hv_driver *drv; | 
|  | struct hv_device *dev = device_to_hv_device(child_device); | 
|  |  | 
|  | /* The device may not be attached yet */ | 
|  | if (!child_device->driver) | 
|  | return 0; | 
|  |  | 
|  | drv = drv_to_hv_drv(child_device->driver); | 
|  | if (!drv->resume) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return drv->resume(dev); | 
|  | } | 
|  | #else | 
|  | #define vmbus_suspend NULL | 
|  | #define vmbus_resume NULL | 
|  | #endif /* CONFIG_PM_SLEEP */ | 
|  |  | 
|  | /* | 
|  | * vmbus_device_release - Final callback release of the vmbus child device | 
|  | */ | 
|  | static void vmbus_device_release(struct device *device) | 
|  | { | 
|  | struct hv_device *hv_dev = device_to_hv_device(device); | 
|  | struct vmbus_channel *channel = hv_dev->channel; | 
|  |  | 
|  | hv_debug_rm_dev_dir(hv_dev); | 
|  |  | 
|  | mutex_lock(&vmbus_connection.channel_mutex); | 
|  | hv_process_channel_removal(channel); | 
|  | mutex_unlock(&vmbus_connection.channel_mutex); | 
|  | kfree(hv_dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. | 
|  | * | 
|  | * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we | 
|  | * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there | 
|  | * is no way to wake up a Generation-2 VM. | 
|  | * | 
|  | * The other 4 ops are for hibernation. | 
|  | */ | 
|  |  | 
|  | static const struct dev_pm_ops vmbus_pm = { | 
|  | .suspend_noirq	= NULL, | 
|  | .resume_noirq	= NULL, | 
|  | .freeze_noirq	= vmbus_suspend, | 
|  | .thaw_noirq	= vmbus_resume, | 
|  | .poweroff_noirq	= vmbus_suspend, | 
|  | .restore_noirq	= vmbus_resume, | 
|  | }; | 
|  |  | 
|  | /* The one and only one */ | 
|  | static const struct bus_type  hv_bus = { | 
|  | .name =		"vmbus", | 
|  | .match =		vmbus_match, | 
|  | .shutdown =		vmbus_shutdown, | 
|  | .remove =		vmbus_remove, | 
|  | .probe =		vmbus_probe, | 
|  | .uevent =		vmbus_uevent, | 
|  | .dma_configure =	vmbus_dma_configure, | 
|  | .dev_groups =		vmbus_dev_groups, | 
|  | .drv_groups =		vmbus_drv_groups, | 
|  | .bus_groups =		vmbus_bus_groups, | 
|  | .pm =			&vmbus_pm, | 
|  | }; | 
|  |  | 
|  | struct onmessage_work_context { | 
|  | struct work_struct work; | 
|  | struct { | 
|  | struct hv_message_header header; | 
|  | u8 payload[]; | 
|  | } msg; | 
|  | }; | 
|  |  | 
|  | static void vmbus_onmessage_work(struct work_struct *work) | 
|  | { | 
|  | struct onmessage_work_context *ctx; | 
|  |  | 
|  | /* Do not process messages if we're in DISCONNECTED state */ | 
|  | if (vmbus_connection.conn_state == DISCONNECTED) | 
|  | return; | 
|  |  | 
|  | ctx = container_of(work, struct onmessage_work_context, | 
|  | work); | 
|  | vmbus_onmessage((struct vmbus_channel_message_header *) | 
|  | &ctx->msg.payload); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | void vmbus_on_msg_dpc(unsigned long data) | 
|  | { | 
|  | struct hv_per_cpu_context *hv_cpu = (void *)data; | 
|  | void *page_addr = hv_cpu->synic_message_page; | 
|  | struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + | 
|  | VMBUS_MESSAGE_SINT; | 
|  | struct vmbus_channel_message_header *hdr; | 
|  | enum vmbus_channel_message_type msgtype; | 
|  | const struct vmbus_channel_message_table_entry *entry; | 
|  | struct onmessage_work_context *ctx; | 
|  | __u8 payload_size; | 
|  | u32 message_type; | 
|  |  | 
|  | /* | 
|  | * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as | 
|  | * it is being used in 'struct vmbus_channel_message_header' definition | 
|  | * which is supposed to match hypervisor ABI. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); | 
|  |  | 
|  | /* | 
|  | * Since the message is in memory shared with the host, an erroneous or | 
|  | * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() | 
|  | * or individual message handlers are executing; to prevent this, copy | 
|  | * the message into private memory. | 
|  | */ | 
|  | memcpy(&msg_copy, msg, sizeof(struct hv_message)); | 
|  |  | 
|  | message_type = msg_copy.header.message_type; | 
|  | if (message_type == HVMSG_NONE) | 
|  | /* no msg */ | 
|  | return; | 
|  |  | 
|  | hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; | 
|  | msgtype = hdr->msgtype; | 
|  |  | 
|  | trace_vmbus_on_msg_dpc(hdr); | 
|  |  | 
|  | if (msgtype >= CHANNELMSG_COUNT) { | 
|  | WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); | 
|  | goto msg_handled; | 
|  | } | 
|  |  | 
|  | payload_size = msg_copy.header.payload_size; | 
|  | if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { | 
|  | WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); | 
|  | goto msg_handled; | 
|  | } | 
|  |  | 
|  | entry = &channel_message_table[msgtype]; | 
|  |  | 
|  | if (!entry->message_handler) | 
|  | goto msg_handled; | 
|  |  | 
|  | if (payload_size < entry->min_payload_len) { | 
|  | WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); | 
|  | goto msg_handled; | 
|  | } | 
|  |  | 
|  | if (entry->handler_type	== VMHT_BLOCKING) { | 
|  | ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC); | 
|  | if (ctx == NULL) | 
|  | return; | 
|  |  | 
|  | INIT_WORK(&ctx->work, vmbus_onmessage_work); | 
|  | ctx->msg.header = msg_copy.header; | 
|  | memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size); | 
|  |  | 
|  | /* | 
|  | * The host can generate a rescind message while we | 
|  | * may still be handling the original offer. We deal with | 
|  | * this condition by relying on the synchronization provided | 
|  | * by offer_in_progress and by channel_mutex.  See also the | 
|  | * inline comments in vmbus_onoffer_rescind(). | 
|  | */ | 
|  | switch (msgtype) { | 
|  | case CHANNELMSG_RESCIND_CHANNELOFFER: | 
|  | /* | 
|  | * If we are handling the rescind message; | 
|  | * schedule the work on the global work queue. | 
|  | * | 
|  | * The OFFER message and the RESCIND message should | 
|  | * not be handled by the same serialized work queue, | 
|  | * because the OFFER handler may call vmbus_open(), | 
|  | * which tries to open the channel by sending an | 
|  | * OPEN_CHANNEL message to the host and waits for | 
|  | * the host's response; however, if the host has | 
|  | * rescinded the channel before it receives the | 
|  | * OPEN_CHANNEL message, the host just silently | 
|  | * ignores the OPEN_CHANNEL message; as a result, | 
|  | * the guest's OFFER handler hangs for ever, if we | 
|  | * handle the RESCIND message in the same serialized | 
|  | * work queue: the RESCIND handler can not start to | 
|  | * run before the OFFER handler finishes. | 
|  | */ | 
|  | if (vmbus_connection.ignore_any_offer_msg) | 
|  | break; | 
|  | queue_work(vmbus_connection.rescind_work_queue, &ctx->work); | 
|  | break; | 
|  |  | 
|  | case CHANNELMSG_OFFERCHANNEL: | 
|  | /* | 
|  | * The host sends the offer message of a given channel | 
|  | * before sending the rescind message of the same | 
|  | * channel.  These messages are sent to the guest's | 
|  | * connect CPU; the guest then starts processing them | 
|  | * in the tasklet handler on this CPU: | 
|  | * | 
|  | * VMBUS_CONNECT_CPU | 
|  | * | 
|  | * [vmbus_on_msg_dpc()] | 
|  | * atomic_inc()  // CHANNELMSG_OFFERCHANNEL | 
|  | * queue_work() | 
|  | * ... | 
|  | * [vmbus_on_msg_dpc()] | 
|  | * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER | 
|  | * | 
|  | * We rely on the memory-ordering properties of the | 
|  | * queue_work() and schedule_work() primitives, which | 
|  | * guarantee that the atomic increment will be visible | 
|  | * to the CPUs which will execute the offer & rescind | 
|  | * works by the time these works will start execution. | 
|  | */ | 
|  | if (vmbus_connection.ignore_any_offer_msg) | 
|  | break; | 
|  | atomic_inc(&vmbus_connection.offer_in_progress); | 
|  | fallthrough; | 
|  |  | 
|  | default: | 
|  | queue_work(vmbus_connection.work_queue, &ctx->work); | 
|  | } | 
|  | } else | 
|  | entry->message_handler(hdr); | 
|  |  | 
|  | msg_handled: | 
|  | vmbus_signal_eom(msg, message_type); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | /* | 
|  | * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for | 
|  | * hibernation, because hv_sock connections can not persist across hibernation. | 
|  | */ | 
|  | static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) | 
|  | { | 
|  | struct onmessage_work_context *ctx; | 
|  | struct vmbus_channel_rescind_offer *rescind; | 
|  |  | 
|  | WARN_ON(!is_hvsock_channel(channel)); | 
|  |  | 
|  | /* | 
|  | * Allocation size is small and the allocation should really not fail, | 
|  | * otherwise the state of the hv_sock connections ends up in limbo. | 
|  | */ | 
|  | ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  |  | 
|  | /* | 
|  | * So far, these are not really used by Linux. Just set them to the | 
|  | * reasonable values conforming to the definitions of the fields. | 
|  | */ | 
|  | ctx->msg.header.message_type = 1; | 
|  | ctx->msg.header.payload_size = sizeof(*rescind); | 
|  |  | 
|  | /* These values are actually used by Linux. */ | 
|  | rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; | 
|  | rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; | 
|  | rescind->child_relid = channel->offermsg.child_relid; | 
|  |  | 
|  | INIT_WORK(&ctx->work, vmbus_onmessage_work); | 
|  |  | 
|  | queue_work(vmbus_connection.work_queue, &ctx->work); | 
|  | } | 
|  | #endif /* CONFIG_PM_SLEEP */ | 
|  |  | 
|  | /* | 
|  | * Schedule all channels with events pending | 
|  | */ | 
|  | static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) | 
|  | { | 
|  | unsigned long *recv_int_page; | 
|  | u32 maxbits, relid; | 
|  |  | 
|  | /* | 
|  | * The event page can be directly checked to get the id of | 
|  | * the channel that has the interrupt pending. | 
|  | */ | 
|  | void *page_addr = hv_cpu->synic_event_page; | 
|  | union hv_synic_event_flags *event | 
|  | = (union hv_synic_event_flags *)page_addr + | 
|  | VMBUS_MESSAGE_SINT; | 
|  |  | 
|  | maxbits = HV_EVENT_FLAGS_COUNT; | 
|  | recv_int_page = event->flags; | 
|  |  | 
|  | if (unlikely(!recv_int_page)) | 
|  | return; | 
|  |  | 
|  | for_each_set_bit(relid, recv_int_page, maxbits) { | 
|  | void (*callback_fn)(void *context); | 
|  | struct vmbus_channel *channel; | 
|  |  | 
|  | if (!sync_test_and_clear_bit(relid, recv_int_page)) | 
|  | continue; | 
|  |  | 
|  | /* Special case - vmbus channel protocol msg */ | 
|  | if (relid == 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Pairs with the kfree_rcu() in vmbus_chan_release(). | 
|  | * Guarantees that the channel data structure doesn't | 
|  | * get freed while the channel pointer below is being | 
|  | * dereferenced. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* Find channel based on relid */ | 
|  | channel = relid2channel(relid); | 
|  | if (channel == NULL) | 
|  | goto sched_unlock_rcu; | 
|  |  | 
|  | if (channel->rescind) | 
|  | goto sched_unlock_rcu; | 
|  |  | 
|  | /* | 
|  | * Make sure that the ring buffer data structure doesn't get | 
|  | * freed while we dereference the ring buffer pointer.  Test | 
|  | * for the channel's onchannel_callback being NULL within a | 
|  | * sched_lock critical section.  See also the inline comments | 
|  | * in vmbus_reset_channel_cb(). | 
|  | */ | 
|  | spin_lock(&channel->sched_lock); | 
|  |  | 
|  | callback_fn = channel->onchannel_callback; | 
|  | if (unlikely(callback_fn == NULL)) | 
|  | goto sched_unlock; | 
|  |  | 
|  | trace_vmbus_chan_sched(channel); | 
|  |  | 
|  | ++channel->interrupts; | 
|  |  | 
|  | switch (channel->callback_mode) { | 
|  | case HV_CALL_ISR: | 
|  | (*callback_fn)(channel->channel_callback_context); | 
|  | break; | 
|  |  | 
|  | case HV_CALL_BATCHED: | 
|  | hv_begin_read(&channel->inbound); | 
|  | fallthrough; | 
|  | case HV_CALL_DIRECT: | 
|  | tasklet_schedule(&channel->callback_event); | 
|  | } | 
|  |  | 
|  | sched_unlock: | 
|  | spin_unlock(&channel->sched_lock); | 
|  | sched_unlock_rcu: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmbus_isr(void) | 
|  | { | 
|  | struct hv_per_cpu_context *hv_cpu | 
|  | = this_cpu_ptr(hv_context.cpu_context); | 
|  | void *page_addr; | 
|  | struct hv_message *msg; | 
|  |  | 
|  | vmbus_chan_sched(hv_cpu); | 
|  |  | 
|  | page_addr = hv_cpu->synic_message_page; | 
|  | msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; | 
|  |  | 
|  | /* Check if there are actual msgs to be processed */ | 
|  | if (msg->header.message_type != HVMSG_NONE) { | 
|  | if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { | 
|  | hv_stimer0_isr(); | 
|  | vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); | 
|  | } else | 
|  | tasklet_schedule(&hv_cpu->msg_dpc); | 
|  | } | 
|  |  | 
|  | add_interrupt_randomness(vmbus_interrupt); | 
|  | } | 
|  |  | 
|  | static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) | 
|  | { | 
|  | vmbus_isr(); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void vmbus_percpu_work(struct work_struct *work) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | hv_synic_init(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_bus_init -Main vmbus driver initialization routine. | 
|  | * | 
|  | * Here, we | 
|  | *	- initialize the vmbus driver context | 
|  | *	- invoke the vmbus hv main init routine | 
|  | *	- retrieve the channel offers | 
|  | */ | 
|  | static int vmbus_bus_init(void) | 
|  | { | 
|  | int ret, cpu; | 
|  | struct work_struct __percpu *works; | 
|  |  | 
|  | ret = hv_init(); | 
|  | if (ret != 0) { | 
|  | pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = bus_register(&hv_bus); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * VMbus interrupts are best modeled as per-cpu interrupts. If | 
|  | * on an architecture with support for per-cpu IRQs (e.g. ARM64), | 
|  | * allocate a per-cpu IRQ using standard Linux kernel functionality. | 
|  | * If not on such an architecture (e.g., x86/x64), then rely on | 
|  | * code in the arch-specific portion of the code tree to connect | 
|  | * the VMbus interrupt handler. | 
|  | */ | 
|  |  | 
|  | if (vmbus_irq == -1) { | 
|  | hv_setup_vmbus_handler(vmbus_isr); | 
|  | } else { | 
|  | vmbus_evt = alloc_percpu(long); | 
|  | ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, | 
|  | "Hyper-V VMbus", vmbus_evt); | 
|  | if (ret) { | 
|  | pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", | 
|  | vmbus_irq, ret); | 
|  | free_percpu(vmbus_evt); | 
|  | goto err_setup; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = hv_synic_alloc(); | 
|  | if (ret) | 
|  | goto err_alloc; | 
|  |  | 
|  | works = alloc_percpu(struct work_struct); | 
|  | if (!works) { | 
|  | ret = -ENOMEM; | 
|  | goto err_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the per-cpu interrupt state and stimer state. | 
|  | * Then connect to the host. | 
|  | */ | 
|  | cpus_read_lock(); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct work_struct *work = per_cpu_ptr(works, cpu); | 
|  |  | 
|  | INIT_WORK(work, vmbus_percpu_work); | 
|  | schedule_work_on(cpu, work); | 
|  | } | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | flush_work(per_cpu_ptr(works, cpu)); | 
|  |  | 
|  | /* Register the callbacks for possible CPU online/offline'ing */ | 
|  | ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", | 
|  | hv_synic_init, hv_synic_cleanup); | 
|  | cpus_read_unlock(); | 
|  | free_percpu(works); | 
|  | if (ret < 0) | 
|  | goto err_alloc; | 
|  | hyperv_cpuhp_online = ret; | 
|  |  | 
|  | ret = vmbus_connect(); | 
|  | if (ret) | 
|  | goto err_connect; | 
|  |  | 
|  | /* | 
|  | * Always register the vmbus unload panic notifier because we | 
|  | * need to shut the VMbus channel connection on panic. | 
|  | */ | 
|  | atomic_notifier_chain_register(&panic_notifier_list, | 
|  | &hyperv_panic_vmbus_unload_block); | 
|  |  | 
|  | vmbus_request_offers(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_connect: | 
|  | cpuhp_remove_state(hyperv_cpuhp_online); | 
|  | err_alloc: | 
|  | hv_synic_free(); | 
|  | if (vmbus_irq == -1) { | 
|  | hv_remove_vmbus_handler(); | 
|  | } else { | 
|  | free_percpu_irq(vmbus_irq, vmbus_evt); | 
|  | free_percpu(vmbus_evt); | 
|  | } | 
|  | err_setup: | 
|  | bus_unregister(&hv_bus); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __vmbus_driver_register() - Register a vmbus's driver | 
|  | * @hv_driver: Pointer to driver structure you want to register | 
|  | * @owner: owner module of the drv | 
|  | * @mod_name: module name string | 
|  | * | 
|  | * Registers the given driver with Linux through the 'driver_register()' call | 
|  | * and sets up the hyper-v vmbus handling for this driver. | 
|  | * It will return the state of the 'driver_register()' call. | 
|  | * | 
|  | */ | 
|  | int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | pr_info("registering driver %s\n", hv_driver->name); | 
|  |  | 
|  | ret = vmbus_exists(); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | hv_driver->driver.name = hv_driver->name; | 
|  | hv_driver->driver.owner = owner; | 
|  | hv_driver->driver.mod_name = mod_name; | 
|  | hv_driver->driver.bus = &hv_bus; | 
|  |  | 
|  | spin_lock_init(&hv_driver->dynids.lock); | 
|  | INIT_LIST_HEAD(&hv_driver->dynids.list); | 
|  |  | 
|  | ret = driver_register(&hv_driver->driver); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__vmbus_driver_register); | 
|  |  | 
|  | /** | 
|  | * vmbus_driver_unregister() - Unregister a vmbus's driver | 
|  | * @hv_driver: Pointer to driver structure you want to | 
|  | *             un-register | 
|  | * | 
|  | * Un-register the given driver that was previous registered with a call to | 
|  | * vmbus_driver_register() | 
|  | */ | 
|  | void vmbus_driver_unregister(struct hv_driver *hv_driver) | 
|  | { | 
|  | pr_info("unregistering driver %s\n", hv_driver->name); | 
|  |  | 
|  | if (!vmbus_exists()) { | 
|  | driver_unregister(&hv_driver->driver); | 
|  | vmbus_free_dynids(hv_driver); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vmbus_driver_unregister); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Called when last reference to channel is gone. | 
|  | */ | 
|  | static void vmbus_chan_release(struct kobject *kobj) | 
|  | { | 
|  | struct vmbus_channel *channel | 
|  | = container_of(kobj, struct vmbus_channel, kobj); | 
|  |  | 
|  | kfree_rcu(channel, rcu); | 
|  | } | 
|  |  | 
|  | struct vmbus_chan_attribute { | 
|  | struct attribute attr; | 
|  | ssize_t (*show)(struct vmbus_channel *chan, char *buf); | 
|  | ssize_t (*store)(struct vmbus_channel *chan, | 
|  | const char *buf, size_t count); | 
|  | }; | 
|  | #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ | 
|  | struct vmbus_chan_attribute chan_attr_##_name \ | 
|  | = __ATTR(_name, _mode, _show, _store) | 
|  | #define VMBUS_CHAN_ATTR_RW(_name) \ | 
|  | struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) | 
|  | #define VMBUS_CHAN_ATTR_RO(_name) \ | 
|  | struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) | 
|  | #define VMBUS_CHAN_ATTR_WO(_name) \ | 
|  | struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) | 
|  |  | 
|  | static ssize_t vmbus_chan_attr_show(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | const struct vmbus_chan_attribute *attribute | 
|  | = container_of(attr, struct vmbus_chan_attribute, attr); | 
|  | struct vmbus_channel *chan | 
|  | = container_of(kobj, struct vmbus_channel, kobj); | 
|  |  | 
|  | if (!attribute->show) | 
|  | return -EIO; | 
|  |  | 
|  | return attribute->show(chan, buf); | 
|  | } | 
|  |  | 
|  | static ssize_t vmbus_chan_attr_store(struct kobject *kobj, | 
|  | struct attribute *attr, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | const struct vmbus_chan_attribute *attribute | 
|  | = container_of(attr, struct vmbus_chan_attribute, attr); | 
|  | struct vmbus_channel *chan | 
|  | = container_of(kobj, struct vmbus_channel, kobj); | 
|  |  | 
|  | if (!attribute->store) | 
|  | return -EIO; | 
|  |  | 
|  | return attribute->store(chan, buf, count); | 
|  | } | 
|  |  | 
|  | static const struct sysfs_ops vmbus_chan_sysfs_ops = { | 
|  | .show = vmbus_chan_attr_show, | 
|  | .store = vmbus_chan_attr_store, | 
|  | }; | 
|  |  | 
|  | static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->outbound; | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&rbi->ring_buffer_mutex); | 
|  | if (!rbi->ring_buffer) { | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return ret; | 
|  | } | 
|  | static VMBUS_CHAN_ATTR_RO(out_mask); | 
|  |  | 
|  | static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->inbound; | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&rbi->ring_buffer_mutex); | 
|  | if (!rbi->ring_buffer) { | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return ret; | 
|  | } | 
|  | static VMBUS_CHAN_ATTR_RO(in_mask); | 
|  |  | 
|  | static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->inbound; | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&rbi->ring_buffer_mutex); | 
|  | if (!rbi->ring_buffer) { | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return ret; | 
|  | } | 
|  | static VMBUS_CHAN_ATTR_RO(read_avail); | 
|  |  | 
|  | static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->outbound; | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&rbi->ring_buffer_mutex); | 
|  | if (!rbi->ring_buffer) { | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); | 
|  | mutex_unlock(&rbi->ring_buffer_mutex); | 
|  | return ret; | 
|  | } | 
|  | static VMBUS_CHAN_ATTR_RO(write_avail); | 
|  |  | 
|  | static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", channel->target_cpu); | 
|  | } | 
|  |  | 
|  | int vmbus_channel_set_cpu(struct vmbus_channel *channel, u32 target_cpu) | 
|  | { | 
|  | u32 origin_cpu; | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_cpus_held(); | 
|  | lockdep_assert_held(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | if (vmbus_proto_version < VERSION_WIN10_V4_1) | 
|  | return -EIO; | 
|  |  | 
|  | /* Validate target_cpu for the cpumask_test_cpu() operation below. */ | 
|  | if (target_cpu >= nr_cpumask_bits) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!cpu_online(target_cpu)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Synchronizes vmbus_channel_set_cpu() and channel closure: | 
|  | * | 
|  | * { Initially: state = CHANNEL_OPENED } | 
|  | * | 
|  | * CPU1				CPU2 | 
|  | * | 
|  | * [vmbus_channel_set_cpu()]	[vmbus_disconnect_ring()] | 
|  | * | 
|  | * LOCK channel_mutex		LOCK channel_mutex | 
|  | * LOAD r1 = state		LOAD r2 = state | 
|  | * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED) | 
|  | *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN | 
|  | *   [...]			  SEND CLOSECHANNEL | 
|  | * UNLOCK channel_mutex		UNLOCK channel_mutex | 
|  | * | 
|  | * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes | 
|  | * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND | 
|  | * | 
|  | * Note.  The host processes the channel messages "sequentially", in | 
|  | * the order in which they are received on a per-partition basis. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; | 
|  | * avoid sending the message and fail here for such channels. | 
|  | */ | 
|  | if (channel->state != CHANNEL_OPENED_STATE) { | 
|  | ret = -EIO; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | origin_cpu = channel->target_cpu; | 
|  | if (target_cpu == origin_cpu) | 
|  | goto end; | 
|  |  | 
|  | if (vmbus_send_modifychannel(channel, | 
|  | hv_cpu_number_to_vp_number(target_cpu))) { | 
|  | ret = -EIO; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For version before VERSION_WIN10_V5_3, the following warning holds: | 
|  | * | 
|  | * Warning.  At this point, there is *no* guarantee that the host will | 
|  | * have successfully processed the vmbus_send_modifychannel() request. | 
|  | * See the header comment of vmbus_send_modifychannel() for more info. | 
|  | * | 
|  | * Lags in the processing of the above vmbus_send_modifychannel() can | 
|  | * result in missed interrupts if the "old" target CPU is taken offline | 
|  | * before Hyper-V starts sending interrupts to the "new" target CPU. | 
|  | * But apart from this offlining scenario, the code tolerates such | 
|  | * lags.  It will function correctly even if a channel interrupt comes | 
|  | * in on a CPU that is different from the channel target_cpu value. | 
|  | */ | 
|  |  | 
|  | channel->target_cpu = target_cpu; | 
|  |  | 
|  | /* See init_vp_index(). */ | 
|  | if (hv_is_perf_channel(channel)) | 
|  | hv_update_allocated_cpus(origin_cpu, target_cpu); | 
|  |  | 
|  | /* Currently set only for storvsc channels. */ | 
|  | if (channel->change_target_cpu_callback) { | 
|  | (*channel->change_target_cpu_callback)(channel, | 
|  | origin_cpu, target_cpu); | 
|  | } | 
|  |  | 
|  | end: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t target_cpu_store(struct vmbus_channel *channel, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | u32 target_cpu; | 
|  | ssize_t ret; | 
|  |  | 
|  | if (sscanf(buf, "%u", &target_cpu) != 1) | 
|  | return -EIO; | 
|  |  | 
|  | cpus_read_lock(); | 
|  | mutex_lock(&vmbus_connection.channel_mutex); | 
|  | ret = vmbus_channel_set_cpu(channel, target_cpu); | 
|  | mutex_unlock(&vmbus_connection.channel_mutex); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | return ret ?: count; | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); | 
|  |  | 
|  | static ssize_t channel_pending_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", | 
|  | channel_pending(channel, | 
|  | vmbus_connection.monitor_pages[1])); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); | 
|  |  | 
|  | static ssize_t channel_latency_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", | 
|  | channel_latency(channel, | 
|  | vmbus_connection.monitor_pages[1])); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); | 
|  |  | 
|  | static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%llu\n", channel->interrupts); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); | 
|  |  | 
|  | static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%llu\n", channel->sig_events); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); | 
|  |  | 
|  | static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%llu\n", | 
|  | (unsigned long long)channel->intr_in_full); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); | 
|  |  | 
|  | static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%llu\n", | 
|  | (unsigned long long)channel->intr_out_empty); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); | 
|  |  | 
|  | static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%llu\n", | 
|  | (unsigned long long)channel->out_full_first); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); | 
|  |  | 
|  | static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%llu\n", | 
|  | (unsigned long long)channel->out_full_total); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); | 
|  |  | 
|  | static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", channel->offermsg.monitorid); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); | 
|  |  | 
|  | static ssize_t subchannel_id_show(struct vmbus_channel *channel, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", | 
|  | channel->offermsg.offer.sub_channel_index); | 
|  | } | 
|  | static VMBUS_CHAN_ATTR_RO(subchannel_id); | 
|  |  | 
|  | static int hv_mmap_ring_buffer_wrapper(struct file *filp, struct kobject *kobj, | 
|  | const struct bin_attribute *attr, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | struct vmbus_channel *channel = container_of(kobj, struct vmbus_channel, kobj); | 
|  |  | 
|  | /* | 
|  | * hv_(create|remove)_ring_sysfs implementation ensures that mmap_ring_buffer | 
|  | * is not NULL. | 
|  | */ | 
|  | return channel->mmap_ring_buffer(channel, vma); | 
|  | } | 
|  |  | 
|  | static struct bin_attribute chan_attr_ring_buffer = { | 
|  | .attr = { | 
|  | .name = "ring", | 
|  | .mode = 0600, | 
|  | }, | 
|  | .mmap = hv_mmap_ring_buffer_wrapper, | 
|  | }; | 
|  | static struct attribute *vmbus_chan_attrs[] = { | 
|  | &chan_attr_out_mask.attr, | 
|  | &chan_attr_in_mask.attr, | 
|  | &chan_attr_read_avail.attr, | 
|  | &chan_attr_write_avail.attr, | 
|  | &chan_attr_cpu.attr, | 
|  | &chan_attr_pending.attr, | 
|  | &chan_attr_latency.attr, | 
|  | &chan_attr_interrupts.attr, | 
|  | &chan_attr_events.attr, | 
|  | &chan_attr_intr_in_full.attr, | 
|  | &chan_attr_intr_out_empty.attr, | 
|  | &chan_attr_out_full_first.attr, | 
|  | &chan_attr_out_full_total.attr, | 
|  | &chan_attr_monitor_id.attr, | 
|  | &chan_attr_subchannel_id.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const struct bin_attribute *vmbus_chan_bin_attrs[] = { | 
|  | &chan_attr_ring_buffer, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Channel-level attribute_group callback function. Returns the permission for | 
|  | * each attribute, and returns 0 if an attribute is not visible. | 
|  | */ | 
|  | static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, | 
|  | struct attribute *attr, int idx) | 
|  | { | 
|  | const struct vmbus_channel *channel = | 
|  | container_of(kobj, struct vmbus_channel, kobj); | 
|  |  | 
|  | /* Hide the monitor attributes if the monitor mechanism is not used. */ | 
|  | if (!channel->offermsg.monitor_allocated && | 
|  | (attr == &chan_attr_pending.attr || | 
|  | attr == &chan_attr_latency.attr || | 
|  | attr == &chan_attr_monitor_id.attr)) | 
|  | return 0; | 
|  |  | 
|  | return attr->mode; | 
|  | } | 
|  |  | 
|  | static umode_t vmbus_chan_bin_attr_is_visible(struct kobject *kobj, | 
|  | const struct bin_attribute *attr, int idx) | 
|  | { | 
|  | const struct vmbus_channel *channel = | 
|  | container_of(kobj, struct vmbus_channel, kobj); | 
|  |  | 
|  | /* Hide ring attribute if channel's ring_sysfs_visible is set to false */ | 
|  | if (attr ==  &chan_attr_ring_buffer && !channel->ring_sysfs_visible) | 
|  | return 0; | 
|  |  | 
|  | return attr->attr.mode; | 
|  | } | 
|  |  | 
|  | static size_t vmbus_chan_bin_size(struct kobject *kobj, | 
|  | const struct bin_attribute *bin_attr, int a) | 
|  | { | 
|  | const struct vmbus_channel *channel = | 
|  | container_of(kobj, struct vmbus_channel, kobj); | 
|  |  | 
|  | return channel->ringbuffer_pagecount << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static const struct attribute_group vmbus_chan_group = { | 
|  | .attrs = vmbus_chan_attrs, | 
|  | .bin_attrs = vmbus_chan_bin_attrs, | 
|  | .is_visible = vmbus_chan_attr_is_visible, | 
|  | .is_bin_visible = vmbus_chan_bin_attr_is_visible, | 
|  | .bin_size = vmbus_chan_bin_size, | 
|  | }; | 
|  |  | 
|  | static const struct kobj_type vmbus_chan_ktype = { | 
|  | .sysfs_ops = &vmbus_chan_sysfs_ops, | 
|  | .release = vmbus_chan_release, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * hv_create_ring_sysfs() - create "ring" sysfs entry corresponding to ring buffers for a channel. | 
|  | * @channel: Pointer to vmbus_channel structure | 
|  | * @hv_mmap_ring_buffer: function pointer for initializing the function to be called on mmap of | 
|  | *                       channel's "ring" sysfs node, which is for the ring buffer of that channel. | 
|  | *                       Function pointer is of below type: | 
|  | *                       int (*hv_mmap_ring_buffer)(struct vmbus_channel *channel, | 
|  | *                                                  struct vm_area_struct *vma)) | 
|  | *                       This has a pointer to the channel and a pointer to vm_area_struct, | 
|  | *                       used for mmap, as arguments. | 
|  | * | 
|  | * Sysfs node for ring buffer of a channel is created along with other fields, however its | 
|  | * visibility is disabled by default. Sysfs creation needs to be controlled when the use-case | 
|  | * is running. | 
|  | * For example, HV_NIC device is used either by uio_hv_generic or hv_netvsc at any given point of | 
|  | * time, and "ring" sysfs is needed only when uio_hv_generic is bound to that device. To avoid | 
|  | * exposing the ring buffer by default, this function is responsible to enable visibility of | 
|  | * ring for userspace to use. | 
|  | * Note: Race conditions can happen with userspace and it is not encouraged to create new | 
|  | * use-cases for this. This was added to maintain backward compatibility, while solving | 
|  | * one of the race conditions in uio_hv_generic while creating sysfs. See comments with | 
|  | * vmbus_add_dynid() and vmbus_device_register(). | 
|  | * | 
|  | * Returns 0 on success or error code on failure. | 
|  | */ | 
|  | int hv_create_ring_sysfs(struct vmbus_channel *channel, | 
|  | int (*hv_mmap_ring_buffer)(struct vmbus_channel *channel, | 
|  | struct vm_area_struct *vma)) | 
|  | { | 
|  | struct kobject *kobj = &channel->kobj; | 
|  |  | 
|  | channel->mmap_ring_buffer = hv_mmap_ring_buffer; | 
|  | channel->ring_sysfs_visible = true; | 
|  |  | 
|  | return sysfs_update_group(kobj, &vmbus_chan_group); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_create_ring_sysfs); | 
|  |  | 
|  | /** | 
|  | * hv_remove_ring_sysfs() - remove ring sysfs entry corresponding to ring buffers for a channel. | 
|  | * @channel: Pointer to vmbus_channel structure | 
|  | * | 
|  | * Hide "ring" sysfs for a channel by changing its is_visible attribute and updating sysfs group. | 
|  | * | 
|  | * Returns 0 on success or error code on failure. | 
|  | */ | 
|  | int hv_remove_ring_sysfs(struct vmbus_channel *channel) | 
|  | { | 
|  | struct kobject *kobj = &channel->kobj; | 
|  | int ret; | 
|  |  | 
|  | channel->ring_sysfs_visible = false; | 
|  | ret = sysfs_update_group(kobj, &vmbus_chan_group); | 
|  | channel->mmap_ring_buffer = NULL; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_remove_ring_sysfs); | 
|  |  | 
|  | /* | 
|  | * vmbus_add_channel_kobj - setup a sub-directory under device/channels | 
|  | */ | 
|  | int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) | 
|  | { | 
|  | const struct device *device = &dev->device; | 
|  | struct kobject *kobj = &channel->kobj; | 
|  | u32 relid = channel->offermsg.child_relid; | 
|  | int ret; | 
|  |  | 
|  | kobj->kset = dev->channels_kset; | 
|  | ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, | 
|  | "%u", relid); | 
|  | if (ret) { | 
|  | kobject_put(kobj); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = sysfs_create_group(kobj, &vmbus_chan_group); | 
|  |  | 
|  | if (ret) { | 
|  | /* | 
|  | * The calling functions' error handling paths will cleanup the | 
|  | * empty channel directory. | 
|  | */ | 
|  | kobject_put(kobj); | 
|  | dev_err(device, "Unable to set up channel sysfs files\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | kobject_uevent(kobj, KOBJ_ADD); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_remove_channel_attr_group - remove the channel's attribute group | 
|  | */ | 
|  | void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) | 
|  | { | 
|  | sysfs_remove_group(&channel->kobj, &vmbus_chan_group); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_device_create - Creates and registers a new child device | 
|  | * on the vmbus. | 
|  | */ | 
|  | struct hv_device *vmbus_device_create(const guid_t *type, | 
|  | const guid_t *instance, | 
|  | struct vmbus_channel *channel) | 
|  | { | 
|  | struct hv_device *child_device_obj; | 
|  |  | 
|  | child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); | 
|  | if (!child_device_obj) { | 
|  | pr_err("Unable to allocate device object for child device\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | child_device_obj->channel = channel; | 
|  | guid_copy(&child_device_obj->dev_type, type); | 
|  | guid_copy(&child_device_obj->dev_instance, instance); | 
|  | child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT; | 
|  |  | 
|  | return child_device_obj; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_device_register - Register the child device | 
|  | */ | 
|  | int vmbus_device_register(struct hv_device *child_device_obj) | 
|  | { | 
|  | struct kobject *kobj = &child_device_obj->device.kobj; | 
|  | int ret; | 
|  |  | 
|  | dev_set_name(&child_device_obj->device, "%pUl", | 
|  | &child_device_obj->channel->offermsg.offer.if_instance); | 
|  |  | 
|  | child_device_obj->device.bus = &hv_bus; | 
|  | child_device_obj->device.parent = vmbus_root_device; | 
|  | child_device_obj->device.release = vmbus_device_release; | 
|  |  | 
|  | child_device_obj->device.dma_parms = &child_device_obj->dma_parms; | 
|  | child_device_obj->device.dma_mask = &child_device_obj->dma_mask; | 
|  | dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64)); | 
|  |  | 
|  | /* | 
|  | * Register with the LDM. This will kick off the driver/device | 
|  | * binding...which will eventually call vmbus_match() and vmbus_probe() | 
|  | */ | 
|  | ret = device_register(&child_device_obj->device); | 
|  | if (ret) { | 
|  | pr_err("Unable to register child device\n"); | 
|  | put_device(&child_device_obj->device); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If device_register() found a driver to assign to the device, the | 
|  | * driver's probe function has already run at this point. If that | 
|  | * probe function accesses or operates on the "channels" subdirectory | 
|  | * in sysfs, those operations will have failed because the "channels" | 
|  | * subdirectory doesn't exist until the code below runs. Or if the | 
|  | * probe function creates a /dev entry, a user space program could | 
|  | * find and open the /dev entry, and then create a race by accessing | 
|  | * the "channels" subdirectory while the creation steps are in progress | 
|  | * here. The race can't result in a kernel failure, but the user space | 
|  | * program may get an error in accessing "channels" or its | 
|  | * subdirectories. See also comments with vmbus_add_dynid() about a | 
|  | * related race condition. | 
|  | */ | 
|  | child_device_obj->channels_kset = kset_create_and_add("channels", | 
|  | NULL, kobj); | 
|  | if (!child_device_obj->channels_kset) { | 
|  | ret = -ENOMEM; | 
|  | goto err_dev_unregister; | 
|  | } | 
|  |  | 
|  | ret = vmbus_add_channel_kobj(child_device_obj, | 
|  | child_device_obj->channel); | 
|  | if (ret) { | 
|  | pr_err("Unable to register primary channel\n"); | 
|  | goto err_kset_unregister; | 
|  | } | 
|  | hv_debug_add_dev_dir(child_device_obj); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_kset_unregister: | 
|  | kset_unregister(child_device_obj->channels_kset); | 
|  |  | 
|  | err_dev_unregister: | 
|  | device_unregister(&child_device_obj->device); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vmbus_device_unregister - Remove the specified child device | 
|  | * from the vmbus. | 
|  | */ | 
|  | void vmbus_device_unregister(struct hv_device *device_obj) | 
|  | { | 
|  | pr_debug("child device %s unregistered\n", | 
|  | dev_name(&device_obj->device)); | 
|  |  | 
|  | kset_unregister(device_obj->channels_kset); | 
|  |  | 
|  | /* | 
|  | * Kick off the process of unregistering the device. | 
|  | * This will call vmbus_remove() and eventually vmbus_device_release() | 
|  | */ | 
|  | device_unregister(&device_obj->device); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vmbus_device_unregister); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* | 
|  | * VMBUS is an acpi enumerated device. Get the information we | 
|  | * need from DSDT. | 
|  | */ | 
|  | static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) | 
|  | { | 
|  | resource_size_t start = 0; | 
|  | resource_size_t end = 0; | 
|  | struct resource *new_res; | 
|  | struct resource **old_res = &hyperv_mmio; | 
|  | struct resource **prev_res = NULL; | 
|  | struct resource r; | 
|  |  | 
|  | switch (res->type) { | 
|  |  | 
|  | /* | 
|  | * "Address" descriptors are for bus windows. Ignore | 
|  | * "memory" descriptors, which are for registers on | 
|  | * devices. | 
|  | */ | 
|  | case ACPI_RESOURCE_TYPE_ADDRESS32: | 
|  | start = res->data.address32.address.minimum; | 
|  | end = res->data.address32.address.maximum; | 
|  | break; | 
|  |  | 
|  | case ACPI_RESOURCE_TYPE_ADDRESS64: | 
|  | start = res->data.address64.address.minimum; | 
|  | end = res->data.address64.address.maximum; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * The IRQ information is needed only on ARM64, which Hyper-V | 
|  | * sets up in the extended format. IRQ information is present | 
|  | * on x86/x64 in the non-extended format but it is not used by | 
|  | * Linux. So don't bother checking for the non-extended format. | 
|  | */ | 
|  | case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: | 
|  | if (!acpi_dev_resource_interrupt(res, 0, &r)) { | 
|  | pr_err("Unable to parse Hyper-V ACPI interrupt\n"); | 
|  | return AE_ERROR; | 
|  | } | 
|  | /* ARM64 INTID for VMbus */ | 
|  | vmbus_interrupt = res->data.extended_irq.interrupts[0]; | 
|  | /* Linux IRQ number */ | 
|  | vmbus_irq = r.start; | 
|  | return AE_OK; | 
|  |  | 
|  | default: | 
|  | /* Unused resource type */ | 
|  | return AE_OK; | 
|  |  | 
|  | } | 
|  | /* | 
|  | * Ignore ranges that are below 1MB, as they're not | 
|  | * necessary or useful here. | 
|  | */ | 
|  | if (end < 0x100000) | 
|  | return AE_OK; | 
|  |  | 
|  | new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); | 
|  | if (!new_res) | 
|  | return AE_NO_MEMORY; | 
|  |  | 
|  | /* If this range overlaps the virtual TPM, truncate it. */ | 
|  | if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) | 
|  | end = VTPM_BASE_ADDRESS; | 
|  |  | 
|  | new_res->name = "hyperv mmio"; | 
|  | new_res->flags = IORESOURCE_MEM; | 
|  | new_res->start = start; | 
|  | new_res->end = end; | 
|  |  | 
|  | /* | 
|  | * If two ranges are adjacent, merge them. | 
|  | */ | 
|  | do { | 
|  | if (!*old_res) { | 
|  | *old_res = new_res; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (((*old_res)->end + 1) == new_res->start) { | 
|  | (*old_res)->end = new_res->end; | 
|  | kfree(new_res); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((*old_res)->start == new_res->end + 1) { | 
|  | (*old_res)->start = new_res->start; | 
|  | kfree(new_res); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((*old_res)->start > new_res->end) { | 
|  | new_res->sibling = *old_res; | 
|  | if (prev_res) | 
|  | (*prev_res)->sibling = new_res; | 
|  | *old_res = new_res; | 
|  | break; | 
|  | } | 
|  |  | 
|  | prev_res = old_res; | 
|  | old_res = &(*old_res)->sibling; | 
|  |  | 
|  | } while (1); | 
|  |  | 
|  | return AE_OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void vmbus_mmio_remove(void) | 
|  | { | 
|  | struct resource *cur_res; | 
|  | struct resource *next_res; | 
|  |  | 
|  | if (hyperv_mmio) { | 
|  | if (fb_mmio) { | 
|  | __release_region(hyperv_mmio, fb_mmio->start, | 
|  | resource_size(fb_mmio)); | 
|  | fb_mmio = NULL; | 
|  | } | 
|  |  | 
|  | for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { | 
|  | next_res = cur_res->sibling; | 
|  | kfree(cur_res); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __maybe_unused vmbus_reserve_fb(void) | 
|  | { | 
|  | resource_size_t start = 0, size; | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | if (efi_enabled(EFI_BOOT)) { | 
|  | /* Gen2 VM: get FB base from EFI framebuffer */ | 
|  | if (IS_ENABLED(CONFIG_SYSFB)) { | 
|  | start = screen_info.lfb_base; | 
|  | size = max_t(__u32, screen_info.lfb_size, 0x800000); | 
|  | } | 
|  | } else { | 
|  | /* Gen1 VM: get FB base from PCI */ | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT, | 
|  | PCI_DEVICE_ID_HYPERV_VIDEO, NULL); | 
|  | if (!pdev) | 
|  | return; | 
|  |  | 
|  | if (pdev->resource[0].flags & IORESOURCE_MEM) { | 
|  | start = pci_resource_start(pdev, 0); | 
|  | size = pci_resource_len(pdev, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the PCI device so hyperv_drm or hyperv_fb driver can | 
|  | * grab it later. | 
|  | */ | 
|  | pci_dev_put(pdev); | 
|  | } | 
|  |  | 
|  | if (!start) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Make a claim for the frame buffer in the resource tree under the | 
|  | * first node, which will be the one below 4GB.  The length seems to | 
|  | * be underreported, particularly in a Generation 1 VM.  So start out | 
|  | * reserving a larger area and make it smaller until it succeeds. | 
|  | */ | 
|  | for (; !fb_mmio && (size >= 0x100000); size >>= 1) | 
|  | fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. | 
|  | * @new:		If successful, supplied a pointer to the | 
|  | *			allocated MMIO space. | 
|  | * @device_obj:		Identifies the caller | 
|  | * @min:		Minimum guest physical address of the | 
|  | *			allocation | 
|  | * @max:		Maximum guest physical address | 
|  | * @size:		Size of the range to be allocated | 
|  | * @align:		Alignment of the range to be allocated | 
|  | * @fb_overlap_ok:	Whether this allocation can be allowed | 
|  | *			to overlap the video frame buffer. | 
|  | * | 
|  | * This function walks the resources granted to VMBus by the | 
|  | * _CRS object in the ACPI namespace underneath the parent | 
|  | * "bridge" whether that's a root PCI bus in the Generation 1 | 
|  | * case or a Module Device in the Generation 2 case.  It then | 
|  | * attempts to allocate from the global MMIO pool in a way that | 
|  | * matches the constraints supplied in these parameters and by | 
|  | * that _CRS. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, | 
|  | resource_size_t min, resource_size_t max, | 
|  | resource_size_t size, resource_size_t align, | 
|  | bool fb_overlap_ok) | 
|  | { | 
|  | struct resource *iter, *shadow; | 
|  | resource_size_t range_min, range_max, start, end; | 
|  | const char *dev_n = dev_name(&device_obj->device); | 
|  | int retval; | 
|  |  | 
|  | retval = -ENXIO; | 
|  | mutex_lock(&hyperv_mmio_lock); | 
|  |  | 
|  | /* | 
|  | * If overlaps with frame buffers are allowed, then first attempt to | 
|  | * make the allocation from within the reserved region.  Because it | 
|  | * is already reserved, no shadow allocation is necessary. | 
|  | */ | 
|  | if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && | 
|  | !(max < fb_mmio->start)) { | 
|  |  | 
|  | range_min = fb_mmio->start; | 
|  | range_max = fb_mmio->end; | 
|  | start = (range_min + align - 1) & ~(align - 1); | 
|  | for (; start + size - 1 <= range_max; start += align) { | 
|  | *new = request_mem_region_exclusive(start, size, dev_n); | 
|  | if (*new) { | 
|  | retval = 0; | 
|  | goto exit; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (iter = hyperv_mmio; iter; iter = iter->sibling) { | 
|  | if ((iter->start >= max) || (iter->end <= min)) | 
|  | continue; | 
|  |  | 
|  | range_min = iter->start; | 
|  | range_max = iter->end; | 
|  | start = (range_min + align - 1) & ~(align - 1); | 
|  | for (; start + size - 1 <= range_max; start += align) { | 
|  | end = start + size - 1; | 
|  |  | 
|  | /* Skip the whole fb_mmio region if not fb_overlap_ok */ | 
|  | if (!fb_overlap_ok && fb_mmio && | 
|  | (((start >= fb_mmio->start) && (start <= fb_mmio->end)) || | 
|  | ((end >= fb_mmio->start) && (end <= fb_mmio->end)))) | 
|  | continue; | 
|  |  | 
|  | shadow = __request_region(iter, start, size, NULL, | 
|  | IORESOURCE_BUSY); | 
|  | if (!shadow) | 
|  | continue; | 
|  |  | 
|  | *new = request_mem_region_exclusive(start, size, dev_n); | 
|  | if (*new) { | 
|  | shadow->name = (char *)*new; | 
|  | retval = 0; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | __release_region(iter, start, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | exit: | 
|  | mutex_unlock(&hyperv_mmio_lock); | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); | 
|  |  | 
|  | /** | 
|  | * vmbus_free_mmio() - Free a memory-mapped I/O range. | 
|  | * @start:		Base address of region to release. | 
|  | * @size:		Size of the range to be allocated | 
|  | * | 
|  | * This function releases anything requested by | 
|  | * vmbus_mmio_allocate(). | 
|  | */ | 
|  | void vmbus_free_mmio(resource_size_t start, resource_size_t size) | 
|  | { | 
|  | struct resource *iter; | 
|  |  | 
|  | mutex_lock(&hyperv_mmio_lock); | 
|  |  | 
|  | /* | 
|  | * If all bytes of the MMIO range to be released are within the | 
|  | * special case fb_mmio shadow region, skip releasing the shadow | 
|  | * region since no corresponding __request_region() was done | 
|  | * in vmbus_allocate_mmio(). | 
|  | */ | 
|  | if (fb_mmio && start >= fb_mmio->start && | 
|  | (start + size - 1 <= fb_mmio->end)) | 
|  | goto skip_shadow_release; | 
|  |  | 
|  | for (iter = hyperv_mmio; iter; iter = iter->sibling) { | 
|  | if ((iter->start >= start + size) || (iter->end <= start)) | 
|  | continue; | 
|  |  | 
|  | __release_region(iter, start, size); | 
|  | } | 
|  |  | 
|  | skip_shadow_release: | 
|  | release_mem_region(start, size); | 
|  | mutex_unlock(&hyperv_mmio_lock); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vmbus_free_mmio); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static int vmbus_acpi_add(struct platform_device *pdev) | 
|  | { | 
|  | acpi_status result; | 
|  | int ret_val = -ENODEV; | 
|  | struct acpi_device *ancestor; | 
|  | struct acpi_device *device = ACPI_COMPANION(&pdev->dev); | 
|  |  | 
|  | vmbus_root_device = &device->dev; | 
|  |  | 
|  | /* | 
|  | * Older versions of Hyper-V for ARM64 fail to include the _CCA | 
|  | * method on the top level VMbus device in the DSDT. But devices | 
|  | * are hardware coherent in all current Hyper-V use cases, so fix | 
|  | * up the ACPI device to behave as if _CCA is present and indicates | 
|  | * hardware coherence. | 
|  | */ | 
|  | ACPI_COMPANION_SET(&device->dev, device); | 
|  | if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) && | 
|  | device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) { | 
|  | pr_info("No ACPI _CCA found; assuming coherent device I/O\n"); | 
|  | device->flags.cca_seen = true; | 
|  | device->flags.coherent_dma = true; | 
|  | } | 
|  |  | 
|  | result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, | 
|  | vmbus_walk_resources, NULL); | 
|  |  | 
|  | if (ACPI_FAILURE(result)) | 
|  | goto acpi_walk_err; | 
|  | /* | 
|  | * Some ancestor of the vmbus acpi device (Gen1 or Gen2 | 
|  | * firmware) is the VMOD that has the mmio ranges. Get that. | 
|  | */ | 
|  | for (ancestor = acpi_dev_parent(device); | 
|  | ancestor && ancestor->handle != ACPI_ROOT_OBJECT; | 
|  | ancestor = acpi_dev_parent(ancestor)) { | 
|  | result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, | 
|  | vmbus_walk_resources, NULL); | 
|  |  | 
|  | if (ACPI_FAILURE(result)) | 
|  | continue; | 
|  | if (hyperv_mmio) { | 
|  | vmbus_reserve_fb(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | ret_val = 0; | 
|  |  | 
|  | acpi_walk_err: | 
|  | if (ret_val) | 
|  | vmbus_mmio_remove(); | 
|  | return ret_val; | 
|  | } | 
|  | #else | 
|  | static int vmbus_acpi_add(struct platform_device *pdev) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | #ifndef HYPERVISOR_CALLBACK_VECTOR | 
|  | static int vmbus_set_irq(struct platform_device *pdev) | 
|  | { | 
|  | struct irq_data *data; | 
|  | int irq; | 
|  | irq_hw_number_t hwirq; | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | /* platform_get_irq() may not return 0. */ | 
|  | if (irq < 0) | 
|  | return irq; | 
|  |  | 
|  | data = irq_get_irq_data(irq); | 
|  | if (!data) { | 
|  | pr_err("No interrupt data for VMBus virq %d\n", irq); | 
|  | return -ENODEV; | 
|  | } | 
|  | hwirq = irqd_to_hwirq(data); | 
|  |  | 
|  | vmbus_irq = irq; | 
|  | vmbus_interrupt = hwirq; | 
|  | pr_debug("VMBus virq %d, hwirq %d\n", vmbus_irq, vmbus_interrupt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int vmbus_device_add(struct platform_device *pdev) | 
|  | { | 
|  | struct resource **cur_res = &hyperv_mmio; | 
|  | struct of_range range; | 
|  | struct of_range_parser parser; | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  | int ret; | 
|  |  | 
|  | vmbus_root_device = &pdev->dev; | 
|  |  | 
|  | ret = of_range_parser_init(&parser, np); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifndef HYPERVISOR_CALLBACK_VECTOR | 
|  | ret = vmbus_set_irq(pdev); | 
|  | if (ret) | 
|  | return ret; | 
|  | #endif | 
|  | for_each_of_range(&parser, &range) { | 
|  | struct resource *res; | 
|  |  | 
|  | res = kzalloc(sizeof(*res), GFP_KERNEL); | 
|  | if (!res) { | 
|  | vmbus_mmio_remove(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | res->name = "hyperv mmio"; | 
|  | res->flags = range.flags; | 
|  | res->start = range.cpu_addr; | 
|  | res->end = range.cpu_addr + range.size; | 
|  |  | 
|  | *cur_res = res; | 
|  | cur_res = &res->sibling; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int vmbus_platform_driver_probe(struct platform_device *pdev) | 
|  | { | 
|  | if (acpi_disabled) | 
|  | return vmbus_device_add(pdev); | 
|  | else | 
|  | return vmbus_acpi_add(pdev); | 
|  | } | 
|  |  | 
|  | static void vmbus_platform_driver_remove(struct platform_device *pdev) | 
|  | { | 
|  | vmbus_mmio_remove(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int vmbus_bus_suspend(struct device *dev) | 
|  | { | 
|  | struct hv_per_cpu_context *hv_cpu = per_cpu_ptr( | 
|  | hv_context.cpu_context, VMBUS_CONNECT_CPU); | 
|  | struct vmbus_channel *channel, *sc; | 
|  |  | 
|  | tasklet_disable(&hv_cpu->msg_dpc); | 
|  | vmbus_connection.ignore_any_offer_msg = true; | 
|  | /* The tasklet_enable() takes care of providing a memory barrier */ | 
|  | tasklet_enable(&hv_cpu->msg_dpc); | 
|  |  | 
|  | /* Drain all the workqueues as we are in suspend */ | 
|  | drain_workqueue(vmbus_connection.rescind_work_queue); | 
|  | drain_workqueue(vmbus_connection.work_queue); | 
|  | drain_workqueue(vmbus_connection.handle_primary_chan_wq); | 
|  | drain_workqueue(vmbus_connection.handle_sub_chan_wq); | 
|  |  | 
|  | mutex_lock(&vmbus_connection.channel_mutex); | 
|  | list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { | 
|  | if (!is_hvsock_channel(channel)) | 
|  | continue; | 
|  |  | 
|  | vmbus_force_channel_rescinded(channel); | 
|  | } | 
|  | mutex_unlock(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until all the sub-channels and hv_sock channels have been | 
|  | * cleaned up. Sub-channels should be destroyed upon suspend, otherwise | 
|  | * they would conflict with the new sub-channels that will be created | 
|  | * in the resume path. hv_sock channels should also be destroyed, but | 
|  | * a hv_sock channel of an established hv_sock connection can not be | 
|  | * really destroyed since it may still be referenced by the userspace | 
|  | * application, so we just force the hv_sock channel to be rescinded | 
|  | * by vmbus_force_channel_rescinded(), and the userspace application | 
|  | * will thoroughly destroy the channel after hibernation. | 
|  | * | 
|  | * Note: the counter nr_chan_close_on_suspend may never go above 0 if | 
|  | * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. | 
|  | */ | 
|  | if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) | 
|  | wait_for_completion(&vmbus_connection.ready_for_suspend_event); | 
|  |  | 
|  | mutex_lock(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { | 
|  | /* | 
|  | * Remove the channel from the array of channels and invalidate | 
|  | * the channel's relid.  Upon resume, vmbus_onoffer() will fix | 
|  | * up the relid (and other fields, if necessary) and add the | 
|  | * channel back to the array. | 
|  | */ | 
|  | vmbus_channel_unmap_relid(channel); | 
|  | channel->offermsg.child_relid = INVALID_RELID; | 
|  |  | 
|  | if (is_hvsock_channel(channel)) { | 
|  | if (!channel->rescind) { | 
|  | pr_err("hv_sock channel not rescinded!\n"); | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(sc, &channel->sc_list, sc_list) { | 
|  | pr_err("Sub-channel not deleted!\n"); | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | vmbus_initiate_unload(false); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmbus_bus_resume(struct device *dev) | 
|  | { | 
|  | struct vmbus_channel *channel; | 
|  | struct vmbus_channel_msginfo *msginfo; | 
|  | size_t msgsize; | 
|  | int ret; | 
|  |  | 
|  | vmbus_connection.ignore_any_offer_msg = false; | 
|  |  | 
|  | /* | 
|  | * We only use the 'vmbus_proto_version', which was in use before | 
|  | * hibernation, to re-negotiate with the host. | 
|  | */ | 
|  | if (!vmbus_proto_version) { | 
|  | pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | msgsize = sizeof(*msginfo) + | 
|  | sizeof(struct vmbus_channel_initiate_contact); | 
|  |  | 
|  | msginfo = kzalloc(msgsize, GFP_KERNEL); | 
|  |  | 
|  | if (msginfo == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); | 
|  |  | 
|  | kfree(msginfo); | 
|  |  | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | vmbus_request_offers(); | 
|  |  | 
|  | mutex_lock(&vmbus_connection.channel_mutex); | 
|  | list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { | 
|  | if (channel->offermsg.child_relid != INVALID_RELID) | 
|  | continue; | 
|  |  | 
|  | /* hvsock channels are not expected to be present. */ | 
|  | if (is_hvsock_channel(channel)) | 
|  | continue; | 
|  |  | 
|  | pr_err("channel %pUl/%pUl not present after resume.\n", | 
|  | &channel->offermsg.offer.if_type, | 
|  | &channel->offermsg.offer.if_instance); | 
|  | /* ToDo: Cleanup these channels here */ | 
|  | } | 
|  | mutex_unlock(&vmbus_connection.channel_mutex); | 
|  |  | 
|  | /* Reset the event for the next suspend. */ | 
|  | reinit_completion(&vmbus_connection.ready_for_suspend_event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define vmbus_bus_suspend NULL | 
|  | #define vmbus_bus_resume NULL | 
|  | #endif /* CONFIG_PM_SLEEP */ | 
|  |  | 
|  | static const __maybe_unused struct of_device_id vmbus_of_match[] = { | 
|  | { | 
|  | .compatible = "microsoft,vmbus", | 
|  | }, | 
|  | { | 
|  | /* sentinel */ | 
|  | }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, vmbus_of_match); | 
|  |  | 
|  | static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = { | 
|  | {"VMBUS", 0}, | 
|  | {"VMBus", 0}, | 
|  | {"", 0}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); | 
|  |  | 
|  | /* | 
|  | * Note: we must use the "no_irq" ops, otherwise hibernation can not work with | 
|  | * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in | 
|  | * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see | 
|  | * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> | 
|  | * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's | 
|  | * resume callback must also run via the "noirq" ops. | 
|  | * | 
|  | * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment | 
|  | * earlier in this file before vmbus_pm. | 
|  | */ | 
|  |  | 
|  | static const struct dev_pm_ops vmbus_bus_pm = { | 
|  | .suspend_noirq	= NULL, | 
|  | .resume_noirq	= NULL, | 
|  | .freeze_noirq	= vmbus_bus_suspend, | 
|  | .thaw_noirq	= vmbus_bus_resume, | 
|  | .poweroff_noirq	= vmbus_bus_suspend, | 
|  | .restore_noirq	= vmbus_bus_resume | 
|  | }; | 
|  |  | 
|  | static struct platform_driver vmbus_platform_driver = { | 
|  | .probe = vmbus_platform_driver_probe, | 
|  | .remove = vmbus_platform_driver_remove, | 
|  | .driver = { | 
|  | .name = "vmbus", | 
|  | .acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids), | 
|  | .of_match_table = of_match_ptr(vmbus_of_match), | 
|  | .pm = &vmbus_bus_pm, | 
|  | .probe_type = PROBE_FORCE_SYNCHRONOUS, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void hv_kexec_handler(void) | 
|  | { | 
|  | hv_stimer_global_cleanup(); | 
|  | vmbus_initiate_unload(false); | 
|  | /* Make sure conn_state is set as hv_synic_cleanup checks for it */ | 
|  | mb(); | 
|  | cpuhp_remove_state(hyperv_cpuhp_online); | 
|  | }; | 
|  |  | 
|  | static void hv_crash_handler(struct pt_regs *regs) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | vmbus_initiate_unload(true); | 
|  | /* | 
|  | * In crash handler we can't schedule synic cleanup for all CPUs, | 
|  | * doing the cleanup for current CPU only. This should be sufficient | 
|  | * for kdump. | 
|  | */ | 
|  | cpu = smp_processor_id(); | 
|  | hv_stimer_cleanup(cpu); | 
|  | hv_synic_disable_regs(cpu); | 
|  | }; | 
|  |  | 
|  | static int hv_synic_suspend(void) | 
|  | { | 
|  | /* | 
|  | * When we reach here, all the non-boot CPUs have been offlined. | 
|  | * If we're in a legacy configuration where stimer Direct Mode is | 
|  | * not enabled, the stimers on the non-boot CPUs have been unbound | 
|  | * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> | 
|  | * hv_stimer_cleanup() -> clockevents_unbind_device(). | 
|  | * | 
|  | * hv_synic_suspend() only runs on CPU0 with interrupts disabled. | 
|  | * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: | 
|  | * 1) it's unnecessary as interrupts remain disabled between | 
|  | * syscore_suspend() and syscore_resume(): see create_image() and | 
|  | * resume_target_kernel() | 
|  | * 2) the stimer on CPU0 is automatically disabled later by | 
|  | * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... | 
|  | * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() | 
|  | * 3) a warning would be triggered if we call | 
|  | * clockevents_unbind_device(), which may sleep, in an | 
|  | * interrupts-disabled context. | 
|  | */ | 
|  |  | 
|  | hv_synic_disable_regs(0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hv_synic_resume(void) | 
|  | { | 
|  | hv_synic_enable_regs(0); | 
|  |  | 
|  | /* | 
|  | * Note: we don't need to call hv_stimer_init(0), because the timer | 
|  | * on CPU0 is not unbound in hv_synic_suspend(), and the timer is | 
|  | * automatically re-enabled in timekeeping_resume(). | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* The callbacks run only on CPU0, with irqs_disabled. */ | 
|  | static struct syscore_ops hv_synic_syscore_ops = { | 
|  | .suspend = hv_synic_suspend, | 
|  | .resume = hv_synic_resume, | 
|  | }; | 
|  |  | 
|  | static int __init hv_acpi_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!hv_is_hyperv_initialized()) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (hv_root_partition() && !hv_nested) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Get ACPI resources first. | 
|  | */ | 
|  | ret = platform_driver_register(&vmbus_platform_driver); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!vmbus_root_device) { | 
|  | ret = -ENODEV; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're on an architecture with a hardcoded hypervisor | 
|  | * vector (i.e. x86/x64), override the VMbus interrupt found | 
|  | * in the ACPI tables. Ensure vmbus_irq is not set since the | 
|  | * normal Linux IRQ mechanism is not used in this case. | 
|  | */ | 
|  | #ifdef HYPERVISOR_CALLBACK_VECTOR | 
|  | vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; | 
|  | vmbus_irq = -1; | 
|  | #endif | 
|  |  | 
|  | hv_debug_init(); | 
|  |  | 
|  | ret = vmbus_bus_init(); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | hv_setup_kexec_handler(hv_kexec_handler); | 
|  | hv_setup_crash_handler(hv_crash_handler); | 
|  |  | 
|  | register_syscore_ops(&hv_synic_syscore_ops); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | platform_driver_unregister(&vmbus_platform_driver); | 
|  | vmbus_root_device = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit vmbus_exit(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | unregister_syscore_ops(&hv_synic_syscore_ops); | 
|  |  | 
|  | hv_remove_kexec_handler(); | 
|  | hv_remove_crash_handler(); | 
|  | vmbus_connection.conn_state = DISCONNECTED; | 
|  | hv_stimer_global_cleanup(); | 
|  | vmbus_disconnect(); | 
|  | if (vmbus_irq == -1) { | 
|  | hv_remove_vmbus_handler(); | 
|  | } else { | 
|  | free_percpu_irq(vmbus_irq, vmbus_evt); | 
|  | free_percpu(vmbus_evt); | 
|  | } | 
|  | for_each_online_cpu(cpu) { | 
|  | struct hv_per_cpu_context *hv_cpu | 
|  | = per_cpu_ptr(hv_context.cpu_context, cpu); | 
|  |  | 
|  | tasklet_kill(&hv_cpu->msg_dpc); | 
|  | } | 
|  | hv_debug_rm_all_dir(); | 
|  |  | 
|  | vmbus_free_channels(); | 
|  | kfree(vmbus_connection.channels); | 
|  |  | 
|  | /* | 
|  | * The vmbus panic notifier is always registered, hence we should | 
|  | * also unconditionally unregister it here as well. | 
|  | */ | 
|  | atomic_notifier_chain_unregister(&panic_notifier_list, | 
|  | &hyperv_panic_vmbus_unload_block); | 
|  |  | 
|  | bus_unregister(&hv_bus); | 
|  |  | 
|  | cpuhp_remove_state(hyperv_cpuhp_online); | 
|  | hv_synic_free(); | 
|  | platform_driver_unregister(&vmbus_platform_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); | 
|  |  | 
|  | subsys_initcall(hv_acpi_init); | 
|  | module_exit(vmbus_exit); |