|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2003 Jana Saout <jana@saout.de> | 
|  | * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> | 
|  | * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. | 
|  | * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include <linux/completion.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/blk-integrity.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <asm/page.h> | 
|  | #include <linux/unaligned.h> | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/md5.h> | 
|  | #include <crypto/skcipher.h> | 
|  | #include <crypto/aead.h> | 
|  | #include <crypto/authenc.h> | 
|  | #include <crypto/utils.h> | 
|  | #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ | 
|  | #include <linux/key-type.h> | 
|  | #include <keys/user-type.h> | 
|  | #include <keys/encrypted-type.h> | 
|  | #include <keys/trusted-type.h> | 
|  |  | 
|  | #include <linux/device-mapper.h> | 
|  |  | 
|  | #include "dm-audit.h" | 
|  |  | 
|  | #define DM_MSG_PREFIX "crypt" | 
|  |  | 
|  | static DEFINE_IDA(workqueue_ida); | 
|  |  | 
|  | /* | 
|  | * context holding the current state of a multi-part conversion | 
|  | */ | 
|  | struct convert_context { | 
|  | struct completion restart; | 
|  | struct bio *bio_in; | 
|  | struct bvec_iter iter_in; | 
|  | struct bio *bio_out; | 
|  | struct bvec_iter iter_out; | 
|  | atomic_t cc_pending; | 
|  | unsigned int tag_offset; | 
|  | u64 cc_sector; | 
|  | union { | 
|  | struct skcipher_request *req; | 
|  | struct aead_request *req_aead; | 
|  | } r; | 
|  | bool aead_recheck; | 
|  | bool aead_failed; | 
|  |  | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * per bio private data | 
|  | */ | 
|  | struct dm_crypt_io { | 
|  | struct crypt_config *cc; | 
|  | struct bio *base_bio; | 
|  | u8 *integrity_metadata; | 
|  | bool integrity_metadata_from_pool:1; | 
|  |  | 
|  | struct work_struct work; | 
|  |  | 
|  | struct convert_context ctx; | 
|  |  | 
|  | atomic_t io_pending; | 
|  | blk_status_t error; | 
|  | sector_t sector; | 
|  |  | 
|  | struct bvec_iter saved_bi_iter; | 
|  |  | 
|  | struct rb_node rb_node; | 
|  | } CRYPTO_MINALIGN_ATTR; | 
|  |  | 
|  | struct dm_crypt_request { | 
|  | struct convert_context *ctx; | 
|  | struct scatterlist sg_in[4]; | 
|  | struct scatterlist sg_out[4]; | 
|  | u64 iv_sector; | 
|  | }; | 
|  |  | 
|  | struct crypt_config; | 
|  |  | 
|  | struct crypt_iv_operations { | 
|  | int (*ctr)(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts); | 
|  | void (*dtr)(struct crypt_config *cc); | 
|  | int (*init)(struct crypt_config *cc); | 
|  | int (*wipe)(struct crypt_config *cc); | 
|  | int (*generator)(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq); | 
|  | int (*post)(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq); | 
|  | }; | 
|  |  | 
|  | struct iv_benbi_private { | 
|  | int shift; | 
|  | }; | 
|  |  | 
|  | #define LMK_SEED_SIZE 64 /* hash + 0 */ | 
|  | struct iv_lmk_private { | 
|  | struct crypto_shash *hash_tfm; | 
|  | u8 *seed; | 
|  | }; | 
|  |  | 
|  | #define TCW_WHITENING_SIZE 16 | 
|  | struct iv_tcw_private { | 
|  | u8 *iv_seed; | 
|  | u8 *whitening; | 
|  | }; | 
|  |  | 
|  | #define ELEPHANT_MAX_KEY_SIZE 32 | 
|  | struct iv_elephant_private { | 
|  | struct crypto_skcipher *tfm; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Crypt: maps a linear range of a block device | 
|  | * and encrypts / decrypts at the same time. | 
|  | */ | 
|  | enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, | 
|  | DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, | 
|  | DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, | 
|  | DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; | 
|  |  | 
|  | enum cipher_flags { | 
|  | CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */ | 
|  | CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */ | 
|  | CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */ | 
|  | CRYPT_KEY_MAC_SIZE_SET,		/* The integrity_key_size option was used */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The fields in here must be read only after initialization. | 
|  | */ | 
|  | struct crypt_config { | 
|  | struct dm_dev *dev; | 
|  | sector_t start; | 
|  |  | 
|  | struct percpu_counter n_allocated_pages; | 
|  |  | 
|  | struct workqueue_struct *io_queue; | 
|  | struct workqueue_struct *crypt_queue; | 
|  |  | 
|  | spinlock_t write_thread_lock; | 
|  | struct task_struct *write_thread; | 
|  | struct rb_root write_tree; | 
|  |  | 
|  | char *cipher_string; | 
|  | char *cipher_auth; | 
|  | char *key_string; | 
|  |  | 
|  | const struct crypt_iv_operations *iv_gen_ops; | 
|  | union { | 
|  | struct iv_benbi_private benbi; | 
|  | struct iv_lmk_private lmk; | 
|  | struct iv_tcw_private tcw; | 
|  | struct iv_elephant_private elephant; | 
|  | } iv_gen_private; | 
|  | u64 iv_offset; | 
|  | unsigned int iv_size; | 
|  | unsigned short sector_size; | 
|  | unsigned char sector_shift; | 
|  |  | 
|  | union { | 
|  | struct crypto_skcipher **tfms; | 
|  | struct crypto_aead **tfms_aead; | 
|  | } cipher_tfm; | 
|  | unsigned int tfms_count; | 
|  | int workqueue_id; | 
|  | unsigned long cipher_flags; | 
|  |  | 
|  | /* | 
|  | * Layout of each crypto request: | 
|  | * | 
|  | *   struct skcipher_request | 
|  | *      context | 
|  | *      padding | 
|  | *   struct dm_crypt_request | 
|  | *      padding | 
|  | *   IV | 
|  | * | 
|  | * The padding is added so that dm_crypt_request and the IV are | 
|  | * correctly aligned. | 
|  | */ | 
|  | unsigned int dmreq_start; | 
|  |  | 
|  | unsigned int per_bio_data_size; | 
|  |  | 
|  | unsigned long flags; | 
|  | unsigned int key_size; | 
|  | unsigned int key_parts;      /* independent parts in key buffer */ | 
|  | unsigned int key_extra_size; /* additional keys length */ | 
|  | unsigned int key_mac_size;   /* MAC key size for authenc(...) */ | 
|  |  | 
|  | unsigned int integrity_tag_size; | 
|  | unsigned int integrity_iv_size; | 
|  | unsigned int used_tag_size; | 
|  | unsigned int tuple_size; | 
|  |  | 
|  | /* | 
|  | * pool for per bio private data, crypto requests, | 
|  | * encryption requeusts/buffer pages and integrity tags | 
|  | */ | 
|  | unsigned int tag_pool_max_sectors; | 
|  | mempool_t tag_pool; | 
|  | mempool_t req_pool; | 
|  | mempool_t page_pool; | 
|  |  | 
|  | struct bio_set bs; | 
|  | struct mutex bio_alloc_lock; | 
|  |  | 
|  | u8 *authenc_key; /* space for keys in authenc() format (if used) */ | 
|  | u8 key[] __counted_by(key_size); | 
|  | }; | 
|  |  | 
|  | #define MIN_IOS		64 | 
|  | #define MAX_TAG_SIZE	480 | 
|  | #define POOL_ENTRY_SIZE	512 | 
|  |  | 
|  | static DEFINE_SPINLOCK(dm_crypt_clients_lock); | 
|  | static unsigned int dm_crypt_clients_n; | 
|  | static volatile unsigned long dm_crypt_pages_per_client; | 
|  | #define DM_CRYPT_MEMORY_PERCENT			2 | 
|  | #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16) | 
|  | #define DM_CRYPT_DEFAULT_MAX_READ_SIZE		131072 | 
|  | #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE		131072 | 
|  |  | 
|  | static unsigned int max_read_size = 0; | 
|  | module_param(max_read_size, uint, 0644); | 
|  | MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); | 
|  | static unsigned int max_write_size = 0; | 
|  | module_param(max_write_size, uint, 0644); | 
|  | MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); | 
|  |  | 
|  | static unsigned get_max_request_sectors(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | unsigned val, sector_align; | 
|  | bool wrt = op_is_write(bio_op(bio)); | 
|  |  | 
|  | if (wrt) { | 
|  | /* | 
|  | * For zoned devices, splitting write operations creates the | 
|  | * risk of deadlocking queue freeze operations with zone write | 
|  | * plugging BIO work when the reminder of a split BIO is | 
|  | * issued. So always allow the entire BIO to proceed. | 
|  | */ | 
|  | if (ti->emulate_zone_append) | 
|  | return bio_sectors(bio); | 
|  |  | 
|  | val = min_not_zero(READ_ONCE(max_write_size), | 
|  | DM_CRYPT_DEFAULT_MAX_WRITE_SIZE); | 
|  | } else { | 
|  | val = min_not_zero(READ_ONCE(max_read_size), | 
|  | DM_CRYPT_DEFAULT_MAX_READ_SIZE); | 
|  | } | 
|  |  | 
|  | if (wrt || cc->used_tag_size) | 
|  | val = min(val, BIO_MAX_VECS << PAGE_SHIFT); | 
|  |  | 
|  | sector_align = max(bdev_logical_block_size(cc->dev->bdev), | 
|  | (unsigned)cc->sector_size); | 
|  | val = round_down(val, sector_align); | 
|  | if (unlikely(!val)) | 
|  | val = sector_align; | 
|  | return val >> SECTOR_SHIFT; | 
|  | } | 
|  |  | 
|  | static void crypt_endio(struct bio *clone); | 
|  | static void kcryptd_queue_crypt(struct dm_crypt_io *io); | 
|  | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, | 
|  | struct scatterlist *sg); | 
|  |  | 
|  | static bool crypt_integrity_aead(struct crypt_config *cc); | 
|  |  | 
|  | /* | 
|  | * Use this to access cipher attributes that are independent of the key. | 
|  | */ | 
|  | static struct crypto_skcipher *any_tfm(struct crypt_config *cc) | 
|  | { | 
|  | return cc->cipher_tfm.tfms[0]; | 
|  | } | 
|  |  | 
|  | static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) | 
|  | { | 
|  | return cc->cipher_tfm.tfms_aead[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Different IV generation algorithms: | 
|  | * | 
|  | * plain: the initial vector is the 32-bit little-endian version of the sector | 
|  | *        number, padded with zeros if necessary. | 
|  | * | 
|  | * plain64: the initial vector is the 64-bit little-endian version of the sector | 
|  | *        number, padded with zeros if necessary. | 
|  | * | 
|  | * plain64be: the initial vector is the 64-bit big-endian version of the sector | 
|  | *        number, padded with zeros if necessary. | 
|  | * | 
|  | * essiv: "encrypted sector|salt initial vector", the sector number is | 
|  | *        encrypted with the bulk cipher using a salt as key. The salt | 
|  | *        should be derived from the bulk cipher's key via hashing. | 
|  | * | 
|  | * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 | 
|  | *        (needed for LRW-32-AES and possible other narrow block modes) | 
|  | * | 
|  | * null: the initial vector is always zero.  Provides compatibility with | 
|  | *       obsolete loop_fish2 devices.  Do not use for new devices. | 
|  | * | 
|  | * lmk:  Compatible implementation of the block chaining mode used | 
|  | *       by the Loop-AES block device encryption system | 
|  | *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ | 
|  | *       It operates on full 512 byte sectors and uses CBC | 
|  | *       with an IV derived from the sector number, the data and | 
|  | *       optionally extra IV seed. | 
|  | *       This means that after decryption the first block | 
|  | *       of sector must be tweaked according to decrypted data. | 
|  | *       Loop-AES can use three encryption schemes: | 
|  | *         version 1: is plain aes-cbc mode | 
|  | *         version 2: uses 64 multikey scheme with lmk IV generator | 
|  | *         version 3: the same as version 2 with additional IV seed | 
|  | *                   (it uses 65 keys, last key is used as IV seed) | 
|  | * | 
|  | * tcw:  Compatible implementation of the block chaining mode used | 
|  | *       by the TrueCrypt device encryption system (prior to version 4.1). | 
|  | *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat | 
|  | *       It operates on full 512 byte sectors and uses CBC | 
|  | *       with an IV derived from initial key and the sector number. | 
|  | *       In addition, whitening value is applied on every sector, whitening | 
|  | *       is calculated from initial key, sector number and mixed using CRC32. | 
|  | *       Note that this encryption scheme is vulnerable to watermarking attacks | 
|  | *       and should be used for old compatible containers access only. | 
|  | * | 
|  | * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) | 
|  | *        The IV is encrypted little-endian byte-offset (with the same key | 
|  | *        and cipher as the volume). | 
|  | * | 
|  | * elephant: The extended version of eboiv with additional Elephant diffuser | 
|  | *           used with Bitlocker CBC mode. | 
|  | *           This mode was used in older Windows systems | 
|  | *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf | 
|  | */ | 
|  |  | 
|  | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  | /* iv_size is at least of size u64; usually it is 16 bytes */ | 
|  | *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | /* | 
|  | * ESSIV encryption of the IV is now handled by the crypto API, | 
|  | * so just pass the plain sector number here. | 
|  | */ | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | unsigned int bs; | 
|  | int log; | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) | 
|  | bs = crypto_aead_blocksize(any_tfm_aead(cc)); | 
|  | else | 
|  | bs = crypto_skcipher_blocksize(any_tfm(cc)); | 
|  | log = ilog2(bs); | 
|  |  | 
|  | /* | 
|  | * We need to calculate how far we must shift the sector count | 
|  | * to get the cipher block count, we use this shift in _gen. | 
|  | */ | 
|  | if (1 << log != bs) { | 
|  | ti->error = "cypher blocksize is not a power of 2"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (log > 9) { | 
|  | ti->error = "cypher blocksize is > 512"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cc->iv_gen_private.benbi.shift = 9 - log; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_benbi_dtr(struct crypt_config *cc) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | __be64 val; | 
|  |  | 
|  | memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ | 
|  |  | 
|  | val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); | 
|  | put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_lmk_dtr(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  |  | 
|  | if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) | 
|  | crypto_free_shash(lmk->hash_tfm); | 
|  | lmk->hash_tfm = NULL; | 
|  |  | 
|  | kfree_sensitive(lmk->seed); | 
|  | lmk->seed = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  |  | 
|  | if (cc->sector_size != (1 << SECTOR_SHIFT)) { | 
|  | ti->error = "Unsupported sector size for LMK"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | lmk->hash_tfm = crypto_alloc_shash("md5", 0, | 
|  | CRYPTO_ALG_ALLOCATES_MEMORY); | 
|  | if (IS_ERR(lmk->hash_tfm)) { | 
|  | ti->error = "Error initializing LMK hash"; | 
|  | return PTR_ERR(lmk->hash_tfm); | 
|  | } | 
|  |  | 
|  | /* No seed in LMK version 2 */ | 
|  | if (cc->key_parts == cc->tfms_count) { | 
|  | lmk->seed = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); | 
|  | if (!lmk->seed) { | 
|  | crypt_iv_lmk_dtr(cc); | 
|  | ti->error = "Error kmallocing seed storage in LMK"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_init(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | int subkey_size = cc->key_size / cc->key_parts; | 
|  |  | 
|  | /* LMK seed is on the position of LMK_KEYS + 1 key */ | 
|  | if (lmk->seed) | 
|  | memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), | 
|  | crypto_shash_digestsize(lmk->hash_tfm)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_wipe(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  |  | 
|  | if (lmk->seed) | 
|  | memset(lmk->seed, 0, LMK_SEED_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq, | 
|  | u8 *data) | 
|  | { | 
|  | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); | 
|  | union { | 
|  | struct md5_state md5state; | 
|  | u8 state[CRYPTO_MD5_STATESIZE]; | 
|  | } u; | 
|  | __le32 buf[4]; | 
|  | int i, r; | 
|  |  | 
|  | desc->tfm = lmk->hash_tfm; | 
|  |  | 
|  | r = crypto_shash_init(desc); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (lmk->seed) { | 
|  | r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* Sector is always 512B, block size 16, add data of blocks 1-31 */ | 
|  | r = crypto_shash_update(desc, data + 16, 16 * 31); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* Sector is cropped to 56 bits here */ | 
|  | buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); | 
|  | buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); | 
|  | buf[2] = cpu_to_le32(4024); | 
|  | buf[3] = 0; | 
|  | r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* No MD5 padding here */ | 
|  | r = crypto_shash_export(desc, &u.md5state); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | for (i = 0; i < MD5_HASH_WORDS; i++) | 
|  | __cpu_to_le32s(&u.md5state.hash[i]); | 
|  | memcpy(iv, &u.md5state.hash, cc->iv_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | u8 *src; | 
|  | int r = 0; | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
|  | sg = crypt_get_sg_data(cc, dmreq->sg_in); | 
|  | src = kmap_local_page(sg_page(sg)); | 
|  | r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); | 
|  | kunmap_local(src); | 
|  | } else | 
|  | memset(iv, 0, cc->iv_size); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | u8 *dst; | 
|  | int r; | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) | 
|  | return 0; | 
|  |  | 
|  | sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
|  | dst = kmap_local_page(sg_page(sg)); | 
|  | r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); | 
|  |  | 
|  | /* Tweak the first block of plaintext sector */ | 
|  | if (!r) | 
|  | crypto_xor(dst + sg->offset, iv, cc->iv_size); | 
|  |  | 
|  | kunmap_local(dst); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_tcw_dtr(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  |  | 
|  | kfree_sensitive(tcw->iv_seed); | 
|  | tcw->iv_seed = NULL; | 
|  | kfree_sensitive(tcw->whitening); | 
|  | tcw->whitening = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  |  | 
|  | if (cc->sector_size != (1 << SECTOR_SHIFT)) { | 
|  | ti->error = "Unsupported sector size for TCW"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { | 
|  | ti->error = "Wrong key size for TCW"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); | 
|  | tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); | 
|  | if (!tcw->iv_seed || !tcw->whitening) { | 
|  | crypt_iv_tcw_dtr(cc); | 
|  | ti->error = "Error allocating seed storage in TCW"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_init(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; | 
|  |  | 
|  | memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); | 
|  | memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], | 
|  | TCW_WHITENING_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_wipe(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  |  | 
|  | memset(tcw->iv_seed, 0, cc->iv_size); | 
|  | memset(tcw->whitening, 0, TCW_WHITENING_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_tcw_whitening(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq, u8 *data) | 
|  | { | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | __le64 sector = cpu_to_le64(dmreq->iv_sector); | 
|  | u8 buf[TCW_WHITENING_SIZE]; | 
|  | int i; | 
|  |  | 
|  | /* xor whitening with sector number */ | 
|  | crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); | 
|  | crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); | 
|  |  | 
|  | /* calculate crc32 for every 32bit part and xor it */ | 
|  | for (i = 0; i < 4; i++) | 
|  | put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]); | 
|  | crypto_xor(&buf[0], &buf[12], 4); | 
|  | crypto_xor(&buf[4], &buf[8], 4); | 
|  |  | 
|  | /* apply whitening (8 bytes) to whole sector */ | 
|  | for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) | 
|  | crypto_xor(data + i * 8, buf, 8); | 
|  | memzero_explicit(buf, sizeof(buf)); | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | __le64 sector = cpu_to_le64(dmreq->iv_sector); | 
|  | u8 *src; | 
|  |  | 
|  | /* Remove whitening from ciphertext */ | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { | 
|  | sg = crypt_get_sg_data(cc, dmreq->sg_in); | 
|  | src = kmap_local_page(sg_page(sg)); | 
|  | crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); | 
|  | kunmap_local(src); | 
|  | } | 
|  |  | 
|  | /* Calculate IV */ | 
|  | crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); | 
|  | if (cc->iv_size > 8) | 
|  | crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, | 
|  | cc->iv_size - 8); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | u8 *dst; | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) | 
|  | return 0; | 
|  |  | 
|  | /* Apply whitening on ciphertext */ | 
|  | sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
|  | dst = kmap_local_page(sg_page(sg)); | 
|  | crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); | 
|  | kunmap_local(dst); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | /* Used only for writes, there must be an additional space to store IV */ | 
|  | get_random_bytes(iv, cc->iv_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | if (crypt_integrity_aead(cc)) { | 
|  | ti->error = "AEAD transforms not supported for EBOIV"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { | 
|  | ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = any_tfm(cc); | 
|  | struct skcipher_request *req; | 
|  | struct scatterlist src, dst; | 
|  | DECLARE_CRYPTO_WAIT(wait); | 
|  | unsigned int reqsize; | 
|  | int err; | 
|  | u8 *buf; | 
|  |  | 
|  | reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); | 
|  | reqsize = ALIGN(reqsize, __alignof__(__le64)); | 
|  |  | 
|  | req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); | 
|  | if (!req) | 
|  | return -ENOMEM; | 
|  |  | 
|  | skcipher_request_set_tfm(req, tfm); | 
|  |  | 
|  | buf = (u8 *)req + reqsize; | 
|  | memset(buf, 0, cc->iv_size); | 
|  | *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); | 
|  |  | 
|  | sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); | 
|  | sg_init_one(&dst, iv, cc->iv_size); | 
|  | skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); | 
|  | skcipher_request_set_callback(req, 0, crypto_req_done, &wait); | 
|  | err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
|  | kfree_sensitive(req); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_elephant_dtr(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
|  |  | 
|  | crypto_free_skcipher(elephant->tfm); | 
|  | elephant->tfm = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
|  | int r; | 
|  |  | 
|  | elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, | 
|  | CRYPTO_ALG_ALLOCATES_MEMORY); | 
|  | if (IS_ERR(elephant->tfm)) { | 
|  | r = PTR_ERR(elephant->tfm); | 
|  | elephant->tfm = NULL; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = crypt_iv_eboiv_ctr(cc, ti, NULL); | 
|  | if (r) | 
|  | crypt_iv_elephant_dtr(cc); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void diffuser_disk_to_cpu(u32 *d, size_t n) | 
|  | { | 
|  | #ifndef __LITTLE_ENDIAN | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | d[i] = le32_to_cpu((__le32)d[i]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void diffuser_cpu_to_disk(__le32 *d, size_t n) | 
|  | { | 
|  | #ifndef __LITTLE_ENDIAN | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | d[i] = cpu_to_le32((u32)d[i]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void diffuser_a_decrypt(u32 *d, size_t n) | 
|  | { | 
|  | int i, i1, i2, i3; | 
|  |  | 
|  | for (i = 0; i < 5; i++) { | 
|  | i1 = 0; | 
|  | i2 = n - 2; | 
|  | i3 = n - 5; | 
|  |  | 
|  | while (i1 < (n - 1)) { | 
|  | d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); | 
|  | i1++; i2++; i3++; | 
|  |  | 
|  | if (i3 >= n) | 
|  | i3 -= n; | 
|  |  | 
|  | d[i1] += d[i2] ^ d[i3]; | 
|  | i1++; i2++; i3++; | 
|  |  | 
|  | if (i2 >= n) | 
|  | i2 -= n; | 
|  |  | 
|  | d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); | 
|  | i1++; i2++; i3++; | 
|  |  | 
|  | d[i1] += d[i2] ^ d[i3]; | 
|  | i1++; i2++; i3++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void diffuser_a_encrypt(u32 *d, size_t n) | 
|  | { | 
|  | int i, i1, i2, i3; | 
|  |  | 
|  | for (i = 0; i < 5; i++) { | 
|  | i1 = n - 1; | 
|  | i2 = n - 2 - 1; | 
|  | i3 = n - 5 - 1; | 
|  |  | 
|  | while (i1 > 0) { | 
|  | d[i1] -= d[i2] ^ d[i3]; | 
|  | i1--; i2--; i3--; | 
|  |  | 
|  | d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); | 
|  | i1--; i2--; i3--; | 
|  |  | 
|  | if (i2 < 0) | 
|  | i2 += n; | 
|  |  | 
|  | d[i1] -= d[i2] ^ d[i3]; | 
|  | i1--; i2--; i3--; | 
|  |  | 
|  | if (i3 < 0) | 
|  | i3 += n; | 
|  |  | 
|  | d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); | 
|  | i1--; i2--; i3--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void diffuser_b_decrypt(u32 *d, size_t n) | 
|  | { | 
|  | int i, i1, i2, i3; | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | i1 = 0; | 
|  | i2 = 2; | 
|  | i3 = 5; | 
|  |  | 
|  | while (i1 < (n - 1)) { | 
|  | d[i1] += d[i2] ^ d[i3]; | 
|  | i1++; i2++; i3++; | 
|  |  | 
|  | d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); | 
|  | i1++; i2++; i3++; | 
|  |  | 
|  | if (i2 >= n) | 
|  | i2 -= n; | 
|  |  | 
|  | d[i1] += d[i2] ^ d[i3]; | 
|  | i1++; i2++; i3++; | 
|  |  | 
|  | if (i3 >= n) | 
|  | i3 -= n; | 
|  |  | 
|  | d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); | 
|  | i1++; i2++; i3++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void diffuser_b_encrypt(u32 *d, size_t n) | 
|  | { | 
|  | int i, i1, i2, i3; | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | i1 = n - 1; | 
|  | i2 = 2 - 1; | 
|  | i3 = 5 - 1; | 
|  |  | 
|  | while (i1 > 0) { | 
|  | d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); | 
|  | i1--; i2--; i3--; | 
|  |  | 
|  | if (i3 < 0) | 
|  | i3 += n; | 
|  |  | 
|  | d[i1] -= d[i2] ^ d[i3]; | 
|  | i1--; i2--; i3--; | 
|  |  | 
|  | if (i2 < 0) | 
|  | i2 += n; | 
|  |  | 
|  | d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); | 
|  | i1--; i2--; i3--; | 
|  |  | 
|  | d[i1] -= d[i2] ^ d[i3]; | 
|  | i1--; i2--; i3--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
|  | u8 *es, *ks, *data, *data2, *data_offset; | 
|  | struct skcipher_request *req; | 
|  | struct scatterlist *sg, *sg2, src, dst; | 
|  | DECLARE_CRYPTO_WAIT(wait); | 
|  | int i, r; | 
|  |  | 
|  | req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); | 
|  | es = kzalloc(16, GFP_NOIO); /* Key for AES */ | 
|  | ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ | 
|  |  | 
|  | if (!req || !es || !ks) { | 
|  | r = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); | 
|  |  | 
|  | /* E(Ks, e(s)) */ | 
|  | sg_init_one(&src, es, 16); | 
|  | sg_init_one(&dst, ks, 16); | 
|  | skcipher_request_set_crypt(req, &src, &dst, 16, NULL); | 
|  | skcipher_request_set_callback(req, 0, crypto_req_done, &wait); | 
|  | r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | /* E(Ks, e'(s)) */ | 
|  | es[15] = 0x80; | 
|  | sg_init_one(&dst, &ks[16], 16); | 
|  | r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
|  | data = kmap_local_page(sg_page(sg)); | 
|  | data_offset = data + sg->offset; | 
|  |  | 
|  | /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
|  | sg2 = crypt_get_sg_data(cc, dmreq->sg_in); | 
|  | data2 = kmap_local_page(sg_page(sg2)); | 
|  | memcpy(data_offset, data2 + sg2->offset, cc->sector_size); | 
|  | kunmap_local(data2); | 
|  | } | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { | 
|  | diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < (cc->sector_size / 32); i++) | 
|  | crypto_xor(data_offset + i * 32, ks, 32); | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
|  | diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); | 
|  | } | 
|  |  | 
|  | kunmap_local(data); | 
|  | out: | 
|  | kfree_sensitive(ks); | 
|  | kfree_sensitive(es); | 
|  | skcipher_request_free(req); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
|  | r = crypt_iv_elephant(cc, dmreq); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return crypt_iv_eboiv_gen(cc, iv, dmreq); | 
|  | } | 
|  |  | 
|  | static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) | 
|  | return crypt_iv_elephant(cc, dmreq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_elephant_init(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
|  | int key_offset = cc->key_size - cc->key_extra_size; | 
|  |  | 
|  | return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); | 
|  | } | 
|  |  | 
|  | static int crypt_iv_elephant_wipe(struct crypt_config *cc) | 
|  | { | 
|  | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
|  | u8 key[ELEPHANT_MAX_KEY_SIZE]; | 
|  |  | 
|  | memset(key, 0, cc->key_extra_size); | 
|  | return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); | 
|  | } | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_plain_ops = { | 
|  | .generator = crypt_iv_plain_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_plain64_ops = { | 
|  | .generator = crypt_iv_plain64_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_plain64be_ops = { | 
|  | .generator = crypt_iv_plain64be_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_essiv_ops = { | 
|  | .generator = crypt_iv_essiv_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_benbi_ops = { | 
|  | .ctr	   = crypt_iv_benbi_ctr, | 
|  | .dtr	   = crypt_iv_benbi_dtr, | 
|  | .generator = crypt_iv_benbi_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_null_ops = { | 
|  | .generator = crypt_iv_null_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_lmk_ops = { | 
|  | .ctr	   = crypt_iv_lmk_ctr, | 
|  | .dtr	   = crypt_iv_lmk_dtr, | 
|  | .init	   = crypt_iv_lmk_init, | 
|  | .wipe	   = crypt_iv_lmk_wipe, | 
|  | .generator = crypt_iv_lmk_gen, | 
|  | .post	   = crypt_iv_lmk_post | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_tcw_ops = { | 
|  | .ctr	   = crypt_iv_tcw_ctr, | 
|  | .dtr	   = crypt_iv_tcw_dtr, | 
|  | .init	   = crypt_iv_tcw_init, | 
|  | .wipe	   = crypt_iv_tcw_wipe, | 
|  | .generator = crypt_iv_tcw_gen, | 
|  | .post	   = crypt_iv_tcw_post | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_random_ops = { | 
|  | .generator = crypt_iv_random_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_eboiv_ops = { | 
|  | .ctr	   = crypt_iv_eboiv_ctr, | 
|  | .generator = crypt_iv_eboiv_gen | 
|  | }; | 
|  |  | 
|  | static const struct crypt_iv_operations crypt_iv_elephant_ops = { | 
|  | .ctr	   = crypt_iv_elephant_ctr, | 
|  | .dtr	   = crypt_iv_elephant_dtr, | 
|  | .init	   = crypt_iv_elephant_init, | 
|  | .wipe	   = crypt_iv_elephant_wipe, | 
|  | .generator = crypt_iv_elephant_gen, | 
|  | .post	   = crypt_iv_elephant_post | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Integrity extensions | 
|  | */ | 
|  | static bool crypt_integrity_aead(struct crypt_config *cc) | 
|  | { | 
|  | return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); | 
|  | } | 
|  |  | 
|  | static bool crypt_integrity_hmac(struct crypt_config *cc) | 
|  | { | 
|  | return crypt_integrity_aead(cc) && cc->key_mac_size; | 
|  | } | 
|  |  | 
|  | /* Get sg containing data */ | 
|  | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, | 
|  | struct scatterlist *sg) | 
|  | { | 
|  | if (unlikely(crypt_integrity_aead(cc))) | 
|  | return &sg[2]; | 
|  |  | 
|  | return sg; | 
|  | } | 
|  |  | 
|  | static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) | 
|  | { | 
|  | struct bio_integrity_payload *bip; | 
|  | unsigned int tag_len; | 
|  | int ret; | 
|  |  | 
|  | if (!bio_sectors(bio) || !io->cc->tuple_size) | 
|  | return 0; | 
|  |  | 
|  | bip = bio_integrity_alloc(bio, GFP_NOIO, 1); | 
|  | if (IS_ERR(bip)) | 
|  | return PTR_ERR(bip); | 
|  |  | 
|  | tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); | 
|  |  | 
|  | bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; | 
|  |  | 
|  | ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), | 
|  | tag_len, offset_in_page(io->integrity_metadata)); | 
|  | if (unlikely(ret != tag_len)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) | 
|  | { | 
|  | #ifdef CONFIG_BLK_DEV_INTEGRITY | 
|  | struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); | 
|  | struct mapped_device *md = dm_table_get_md(ti->table); | 
|  |  | 
|  | /* We require an underlying device with non-PI metadata */ | 
|  | if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { | 
|  | ti->error = "Integrity profile not supported."; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (bi->metadata_size < cc->used_tag_size) { | 
|  | ti->error = "Integrity profile tag size mismatch."; | 
|  | return -EINVAL; | 
|  | } | 
|  | cc->tuple_size = bi->metadata_size; | 
|  | if (1 << bi->interval_exp != cc->sector_size) { | 
|  | ti->error = "Integrity profile sector size mismatch."; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) { | 
|  | cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; | 
|  | DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), | 
|  | cc->integrity_tag_size, cc->integrity_iv_size); | 
|  |  | 
|  | if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { | 
|  | ti->error = "Integrity AEAD auth tag size is not supported."; | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (cc->integrity_iv_size) | 
|  | DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), | 
|  | cc->integrity_iv_size); | 
|  |  | 
|  | if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { | 
|  | ti->error = "Not enough space for integrity tag in the profile."; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | #else | 
|  | ti->error = "Integrity profile not supported."; | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void crypt_convert_init(struct crypt_config *cc, | 
|  | struct convert_context *ctx, | 
|  | struct bio *bio_out, struct bio *bio_in, | 
|  | sector_t sector) | 
|  | { | 
|  | ctx->bio_in = bio_in; | 
|  | ctx->bio_out = bio_out; | 
|  | if (bio_in) | 
|  | ctx->iter_in = bio_in->bi_iter; | 
|  | if (bio_out) | 
|  | ctx->iter_out = bio_out->bi_iter; | 
|  | ctx->cc_sector = sector + cc->iv_offset; | 
|  | ctx->tag_offset = 0; | 
|  | init_completion(&ctx->restart); | 
|  | } | 
|  |  | 
|  | static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, | 
|  | void *req) | 
|  | { | 
|  | return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); | 
|  | } | 
|  |  | 
|  | static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) | 
|  | { | 
|  | return (void *)((char *)dmreq - cc->dmreq_start); | 
|  | } | 
|  |  | 
|  | static u8 *iv_of_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | if (crypt_integrity_aead(cc)) | 
|  | return (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
|  | crypto_aead_alignmask(any_tfm_aead(cc)) + 1); | 
|  | else | 
|  | return (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
|  | crypto_skcipher_alignmask(any_tfm(cc)) + 1); | 
|  | } | 
|  |  | 
|  | static u8 *org_iv_of_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | return iv_of_dmreq(cc, dmreq) + cc->iv_size; | 
|  | } | 
|  |  | 
|  | static __le64 *org_sector_of_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; | 
|  |  | 
|  | return (__le64 *) ptr; | 
|  | } | 
|  |  | 
|  | static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + | 
|  | cc->iv_size + sizeof(uint64_t); | 
|  |  | 
|  | return (unsigned int *)ptr; | 
|  | } | 
|  |  | 
|  | static void *tag_from_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | struct convert_context *ctx = dmreq->ctx; | 
|  | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
|  |  | 
|  | return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * | 
|  | cc->tuple_size]; | 
|  | } | 
|  |  | 
|  | static void *iv_tag_from_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; | 
|  | } | 
|  |  | 
|  | static int crypt_convert_block_aead(struct crypt_config *cc, | 
|  | struct convert_context *ctx, | 
|  | struct aead_request *req, | 
|  | unsigned int tag_offset) | 
|  | { | 
|  | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); | 
|  | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); | 
|  | struct dm_crypt_request *dmreq; | 
|  | u8 *iv, *org_iv, *tag_iv, *tag; | 
|  | __le64 *sector; | 
|  | int r = 0; | 
|  |  | 
|  | BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); | 
|  |  | 
|  | /* Reject unexpected unaligned bio. */ | 
|  | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) | 
|  | return -EIO; | 
|  |  | 
|  | dmreq = dmreq_of_req(cc, req); | 
|  | dmreq->iv_sector = ctx->cc_sector; | 
|  | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
|  | dmreq->iv_sector >>= cc->sector_shift; | 
|  | dmreq->ctx = ctx; | 
|  |  | 
|  | *org_tag_of_dmreq(cc, dmreq) = tag_offset; | 
|  |  | 
|  | sector = org_sector_of_dmreq(cc, dmreq); | 
|  | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); | 
|  |  | 
|  | iv = iv_of_dmreq(cc, dmreq); | 
|  | org_iv = org_iv_of_dmreq(cc, dmreq); | 
|  | tag = tag_from_dmreq(cc, dmreq); | 
|  | tag_iv = iv_tag_from_dmreq(cc, dmreq); | 
|  |  | 
|  | /* AEAD request: | 
|  | *  |----- AAD -------|------ DATA -------|-- AUTH TAG --| | 
|  | *  | (authenticated) | (auth+encryption) |              | | 
|  | *  | sector_LE |  IV |  sector in/out    |  tag in/out  | | 
|  | */ | 
|  | sg_init_table(dmreq->sg_in, 4); | 
|  | sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); | 
|  | sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); | 
|  | sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); | 
|  | sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); | 
|  |  | 
|  | sg_init_table(dmreq->sg_out, 4); | 
|  | sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); | 
|  | sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); | 
|  | sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); | 
|  | sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); | 
|  |  | 
|  | if (cc->iv_gen_ops) { | 
|  | /* For READs use IV stored in integrity metadata */ | 
|  | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { | 
|  | memcpy(org_iv, tag_iv, cc->iv_size); | 
|  | } else { | 
|  | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); | 
|  | if (r < 0) | 
|  | return r; | 
|  | /* Store generated IV in integrity metadata */ | 
|  | if (cc->integrity_iv_size) | 
|  | memcpy(tag_iv, org_iv, cc->iv_size); | 
|  | } | 
|  | /* Working copy of IV, to be modified in crypto API */ | 
|  | memcpy(iv, org_iv, cc->iv_size); | 
|  | } | 
|  |  | 
|  | aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); | 
|  | if (bio_data_dir(ctx->bio_in) == WRITE) { | 
|  | aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, | 
|  | cc->sector_size, iv); | 
|  | r = crypto_aead_encrypt(req); | 
|  | if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) | 
|  | memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, | 
|  | cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); | 
|  | } else { | 
|  | aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, | 
|  | cc->sector_size + cc->integrity_tag_size, iv); | 
|  | r = crypto_aead_decrypt(req); | 
|  | } | 
|  |  | 
|  | if (r == -EBADMSG) { | 
|  | sector_t s = le64_to_cpu(*sector); | 
|  |  | 
|  | ctx->aead_failed = true; | 
|  | if (ctx->aead_recheck) { | 
|  | DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", | 
|  | ctx->bio_in->bi_bdev, s); | 
|  | dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", | 
|  | ctx->bio_in, s, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); | 
|  |  | 
|  | bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); | 
|  | bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_convert_block_skcipher(struct crypt_config *cc, | 
|  | struct convert_context *ctx, | 
|  | struct skcipher_request *req, | 
|  | unsigned int tag_offset) | 
|  | { | 
|  | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); | 
|  | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); | 
|  | struct scatterlist *sg_in, *sg_out; | 
|  | struct dm_crypt_request *dmreq; | 
|  | u8 *iv, *org_iv, *tag_iv; | 
|  | __le64 *sector; | 
|  | int r = 0; | 
|  |  | 
|  | /* Reject unexpected unaligned bio. */ | 
|  | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) | 
|  | return -EIO; | 
|  |  | 
|  | dmreq = dmreq_of_req(cc, req); | 
|  | dmreq->iv_sector = ctx->cc_sector; | 
|  | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
|  | dmreq->iv_sector >>= cc->sector_shift; | 
|  | dmreq->ctx = ctx; | 
|  |  | 
|  | *org_tag_of_dmreq(cc, dmreq) = tag_offset; | 
|  |  | 
|  | iv = iv_of_dmreq(cc, dmreq); | 
|  | org_iv = org_iv_of_dmreq(cc, dmreq); | 
|  | tag_iv = iv_tag_from_dmreq(cc, dmreq); | 
|  |  | 
|  | sector = org_sector_of_dmreq(cc, dmreq); | 
|  | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); | 
|  |  | 
|  | /* For skcipher we use only the first sg item */ | 
|  | sg_in  = &dmreq->sg_in[0]; | 
|  | sg_out = &dmreq->sg_out[0]; | 
|  |  | 
|  | sg_init_table(sg_in, 1); | 
|  | sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); | 
|  |  | 
|  | sg_init_table(sg_out, 1); | 
|  | sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); | 
|  |  | 
|  | if (cc->iv_gen_ops) { | 
|  | /* For READs use IV stored in integrity metadata */ | 
|  | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { | 
|  | memcpy(org_iv, tag_iv, cc->integrity_iv_size); | 
|  | } else { | 
|  | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); | 
|  | if (r < 0) | 
|  | return r; | 
|  | /* Data can be already preprocessed in generator */ | 
|  | if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) | 
|  | sg_in = sg_out; | 
|  | /* Store generated IV in integrity metadata */ | 
|  | if (cc->integrity_iv_size) | 
|  | memcpy(tag_iv, org_iv, cc->integrity_iv_size); | 
|  | } | 
|  | /* Working copy of IV, to be modified in crypto API */ | 
|  | memcpy(iv, org_iv, cc->iv_size); | 
|  | } | 
|  |  | 
|  | skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); | 
|  |  | 
|  | if (bio_data_dir(ctx->bio_in) == WRITE) | 
|  | r = crypto_skcipher_encrypt(req); | 
|  | else | 
|  | r = crypto_skcipher_decrypt(req); | 
|  |  | 
|  | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); | 
|  |  | 
|  | bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); | 
|  | bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kcryptd_async_done(void *async_req, int error); | 
|  |  | 
|  | static int crypt_alloc_req_skcipher(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  | { | 
|  | unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); | 
|  |  | 
|  | if (!ctx->r.req) { | 
|  | ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); | 
|  | if (!ctx->r.req) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); | 
|  |  | 
|  | /* | 
|  | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs | 
|  | * requests if driver request queue is full. | 
|  | */ | 
|  | skcipher_request_set_callback(ctx->r.req, | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_alloc_req_aead(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  | { | 
|  | if (!ctx->r.req_aead) { | 
|  | ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); | 
|  | if (!ctx->r.req_aead) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); | 
|  |  | 
|  | /* | 
|  | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs | 
|  | * requests if driver request queue is full. | 
|  | */ | 
|  | aead_request_set_callback(ctx->r.req_aead, | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_alloc_req(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  | { | 
|  | if (crypt_integrity_aead(cc)) | 
|  | return crypt_alloc_req_aead(cc, ctx); | 
|  | else | 
|  | return crypt_alloc_req_skcipher(cc, ctx); | 
|  | } | 
|  |  | 
|  | static void crypt_free_req_skcipher(struct crypt_config *cc, | 
|  | struct skcipher_request *req, struct bio *base_bio) | 
|  | { | 
|  | struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); | 
|  |  | 
|  | if ((struct skcipher_request *)(io + 1) != req) | 
|  | mempool_free(req, &cc->req_pool); | 
|  | } | 
|  |  | 
|  | static void crypt_free_req_aead(struct crypt_config *cc, | 
|  | struct aead_request *req, struct bio *base_bio) | 
|  | { | 
|  | struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); | 
|  |  | 
|  | if ((struct aead_request *)(io + 1) != req) | 
|  | mempool_free(req, &cc->req_pool); | 
|  | } | 
|  |  | 
|  | static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) | 
|  | { | 
|  | if (crypt_integrity_aead(cc)) | 
|  | crypt_free_req_aead(cc, req, base_bio); | 
|  | else | 
|  | crypt_free_req_skcipher(cc, req, base_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encrypt / decrypt data from one bio to another one (can be the same one) | 
|  | */ | 
|  | static blk_status_t crypt_convert(struct crypt_config *cc, | 
|  | struct convert_context *ctx, bool atomic, bool reset_pending) | 
|  | { | 
|  | unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; | 
|  | int r; | 
|  |  | 
|  | /* | 
|  | * if reset_pending is set we are dealing with the bio for the first time, | 
|  | * else we're continuing to work on the previous bio, so don't mess with | 
|  | * the cc_pending counter | 
|  | */ | 
|  | if (reset_pending) | 
|  | atomic_set(&ctx->cc_pending, 1); | 
|  |  | 
|  | while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { | 
|  |  | 
|  | r = crypt_alloc_req(cc, ctx); | 
|  | if (r) { | 
|  | complete(&ctx->restart); | 
|  | return BLK_STS_DEV_RESOURCE; | 
|  | } | 
|  |  | 
|  | atomic_inc(&ctx->cc_pending); | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) | 
|  | r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset); | 
|  | else | 
|  | r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset); | 
|  |  | 
|  | switch (r) { | 
|  | /* | 
|  | * The request was queued by a crypto driver | 
|  | * but the driver request queue is full, let's wait. | 
|  | */ | 
|  | case -EBUSY: | 
|  | if (in_interrupt()) { | 
|  | if (try_wait_for_completion(&ctx->restart)) { | 
|  | /* | 
|  | * we don't have to block to wait for completion, | 
|  | * so proceed | 
|  | */ | 
|  | } else { | 
|  | /* | 
|  | * we can't wait for completion without blocking | 
|  | * exit and continue processing in a workqueue | 
|  | */ | 
|  | ctx->r.req = NULL; | 
|  | ctx->tag_offset++; | 
|  | ctx->cc_sector += sector_step; | 
|  | return BLK_STS_DEV_RESOURCE; | 
|  | } | 
|  | } else { | 
|  | wait_for_completion(&ctx->restart); | 
|  | } | 
|  | reinit_completion(&ctx->restart); | 
|  | fallthrough; | 
|  | /* | 
|  | * The request is queued and processed asynchronously, | 
|  | * completion function kcryptd_async_done() will be called. | 
|  | */ | 
|  | case -EINPROGRESS: | 
|  | ctx->r.req = NULL; | 
|  | ctx->tag_offset++; | 
|  | ctx->cc_sector += sector_step; | 
|  | continue; | 
|  | /* | 
|  | * The request was already processed (synchronously). | 
|  | */ | 
|  | case 0: | 
|  | atomic_dec(&ctx->cc_pending); | 
|  | ctx->cc_sector += sector_step; | 
|  | ctx->tag_offset++; | 
|  | if (!atomic) | 
|  | cond_resched(); | 
|  | continue; | 
|  | /* | 
|  | * There was a data integrity error. | 
|  | */ | 
|  | case -EBADMSG: | 
|  | atomic_dec(&ctx->cc_pending); | 
|  | return BLK_STS_PROTECTION; | 
|  | /* | 
|  | * There was an error while processing the request. | 
|  | */ | 
|  | default: | 
|  | atomic_dec(&ctx->cc_pending); | 
|  | return BLK_STS_IOERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); | 
|  |  | 
|  | /* | 
|  | * Generate a new unfragmented bio with the given size | 
|  | * This should never violate the device limitations (but if it did then block | 
|  | * core should split the bio as needed). | 
|  | * | 
|  | * This function may be called concurrently. If we allocate from the mempool | 
|  | * concurrently, there is a possibility of deadlock. For example, if we have | 
|  | * mempool of 256 pages, two processes, each wanting 256, pages allocate from | 
|  | * the mempool concurrently, it may deadlock in a situation where both processes | 
|  | * have allocated 128 pages and the mempool is exhausted. | 
|  | * | 
|  | * In order to avoid this scenario we allocate the pages under a mutex. | 
|  | * | 
|  | * In order to not degrade performance with excessive locking, we try | 
|  | * non-blocking allocations without a mutex first but on failure we fallback | 
|  | * to blocking allocations with a mutex. | 
|  | * | 
|  | * In order to reduce allocation overhead, we try to allocate compound pages in | 
|  | * the first pass. If they are not available, we fall back to the mempool. | 
|  | */ | 
|  | static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct bio *clone; | 
|  | unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; | 
|  | unsigned int remaining_size; | 
|  | unsigned int order = MAX_PAGE_ORDER; | 
|  |  | 
|  | retry: | 
|  | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | mutex_lock(&cc->bio_alloc_lock); | 
|  |  | 
|  | clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, | 
|  | GFP_NOIO, &cc->bs); | 
|  | clone->bi_private = io; | 
|  | clone->bi_end_io = crypt_endio; | 
|  | clone->bi_ioprio = io->base_bio->bi_ioprio; | 
|  | clone->bi_iter.bi_sector = cc->start + io->sector; | 
|  |  | 
|  | remaining_size = size; | 
|  |  | 
|  | while (remaining_size) { | 
|  | struct page *pages; | 
|  | unsigned size_to_add; | 
|  | unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); | 
|  | order = min(order, remaining_order); | 
|  |  | 
|  | while (order > 0) { | 
|  | if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + | 
|  | (1 << order) > dm_crypt_pages_per_client)) | 
|  | goto decrease_order; | 
|  | pages = alloc_pages(gfp_mask | 
|  | | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, | 
|  | order); | 
|  | if (likely(pages != NULL)) { | 
|  | percpu_counter_add(&cc->n_allocated_pages, 1 << order); | 
|  | goto have_pages; | 
|  | } | 
|  | decrease_order: | 
|  | order--; | 
|  | } | 
|  |  | 
|  | pages = mempool_alloc(&cc->page_pool, gfp_mask); | 
|  | if (!pages) { | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  | bio_put(clone); | 
|  | gfp_mask |= __GFP_DIRECT_RECLAIM; | 
|  | order = 0; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | have_pages: | 
|  | size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); | 
|  | __bio_add_page(clone, pages, size_to_add, 0); | 
|  | remaining_size -= size_to_add; | 
|  | } | 
|  |  | 
|  | /* Allocate space for integrity tags */ | 
|  | if (dm_crypt_integrity_io_alloc(io, clone)) { | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  | bio_put(clone); | 
|  | clone = NULL; | 
|  | } | 
|  |  | 
|  | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | mutex_unlock(&cc->bio_alloc_lock); | 
|  |  | 
|  | return clone; | 
|  | } | 
|  |  | 
|  | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) | 
|  | { | 
|  | struct folio_iter fi; | 
|  |  | 
|  | if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ | 
|  | bio_for_each_folio_all(fi, clone) { | 
|  | if (folio_test_large(fi.folio)) { | 
|  | percpu_counter_sub(&cc->n_allocated_pages, | 
|  | 1 << folio_order(fi.folio)); | 
|  | folio_put(fi.folio); | 
|  | } else { | 
|  | mempool_free(&fi.folio->page, &cc->page_pool); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, | 
|  | struct bio *bio, sector_t sector) | 
|  | { | 
|  | io->cc = cc; | 
|  | io->base_bio = bio; | 
|  | io->sector = sector; | 
|  | io->error = 0; | 
|  | io->ctx.aead_recheck = false; | 
|  | io->ctx.aead_failed = false; | 
|  | io->ctx.r.req = NULL; | 
|  | io->integrity_metadata = NULL; | 
|  | io->integrity_metadata_from_pool = false; | 
|  | atomic_set(&io->io_pending, 0); | 
|  | } | 
|  |  | 
|  | static void crypt_inc_pending(struct dm_crypt_io *io) | 
|  | { | 
|  | atomic_inc(&io->io_pending); | 
|  | } | 
|  |  | 
|  | static void kcryptd_queue_read(struct dm_crypt_io *io); | 
|  |  | 
|  | /* | 
|  | * One of the bios was finished. Check for completion of | 
|  | * the whole request and correctly clean up the buffer. | 
|  | */ | 
|  | static void crypt_dec_pending(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct bio *base_bio = io->base_bio; | 
|  | blk_status_t error = io->error; | 
|  |  | 
|  | if (!atomic_dec_and_test(&io->io_pending)) | 
|  | return; | 
|  |  | 
|  | if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && | 
|  | cc->used_tag_size && bio_data_dir(base_bio) == READ) { | 
|  | io->ctx.aead_recheck = true; | 
|  | io->ctx.aead_failed = false; | 
|  | io->error = 0; | 
|  | kcryptd_queue_read(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (io->ctx.r.req) | 
|  | crypt_free_req(cc, io->ctx.r.req, base_bio); | 
|  |  | 
|  | if (unlikely(io->integrity_metadata_from_pool)) | 
|  | mempool_free(io->integrity_metadata, &io->cc->tag_pool); | 
|  | else | 
|  | kfree(io->integrity_metadata); | 
|  |  | 
|  | base_bio->bi_status = error; | 
|  |  | 
|  | bio_endio(base_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kcryptd/kcryptd_io: | 
|  | * | 
|  | * Needed because it would be very unwise to do decryption in an | 
|  | * interrupt context. | 
|  | * | 
|  | * kcryptd performs the actual encryption or decryption. | 
|  | * | 
|  | * kcryptd_io performs the IO submission. | 
|  | * | 
|  | * They must be separated as otherwise the final stages could be | 
|  | * starved by new requests which can block in the first stages due | 
|  | * to memory allocation. | 
|  | * | 
|  | * The work is done per CPU global for all dm-crypt instances. | 
|  | * They should not depend on each other and do not block. | 
|  | */ | 
|  | static void crypt_endio(struct bio *clone) | 
|  | { | 
|  | struct dm_crypt_io *io = clone->bi_private; | 
|  | struct crypt_config *cc = io->cc; | 
|  | unsigned int rw = bio_data_dir(clone); | 
|  | blk_status_t error = clone->bi_status; | 
|  |  | 
|  | if (io->ctx.aead_recheck && !error) { | 
|  | kcryptd_queue_crypt(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free the processed pages | 
|  | */ | 
|  | if (rw == WRITE || io->ctx.aead_recheck) | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  |  | 
|  | bio_put(clone); | 
|  |  | 
|  | if (rw == READ && !error) { | 
|  | kcryptd_queue_crypt(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(error)) | 
|  | io->error = error; | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | #define CRYPT_MAP_READ_GFP GFP_NOWAIT | 
|  |  | 
|  | static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct bio *clone; | 
|  |  | 
|  | if (io->ctx.aead_recheck) { | 
|  | if (!(gfp & __GFP_DIRECT_RECLAIM)) | 
|  | return 1; | 
|  | crypt_inc_pending(io); | 
|  | clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); | 
|  | if (unlikely(!clone)) { | 
|  | crypt_dec_pending(io); | 
|  | return 1; | 
|  | } | 
|  | crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); | 
|  | io->saved_bi_iter = clone->bi_iter; | 
|  | dm_submit_bio_remap(io->base_bio, clone); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need the original biovec array in order to decrypt the whole bio | 
|  | * data *afterwards* -- thanks to immutable biovecs we don't need to | 
|  | * worry about the block layer modifying the biovec array; so leverage | 
|  | * bio_alloc_clone(). | 
|  | */ | 
|  | clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); | 
|  | if (!clone) | 
|  | return 1; | 
|  |  | 
|  | clone->bi_iter.bi_sector = cc->start + io->sector; | 
|  | clone->bi_private = io; | 
|  | clone->bi_end_io = crypt_endio; | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  |  | 
|  | if (dm_crypt_integrity_io_alloc(io, clone)) { | 
|  | crypt_dec_pending(io); | 
|  | bio_put(clone); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | dm_submit_bio_remap(io->base_bio, clone); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kcryptd_io_read_work(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  | if (kcryptd_io_read(io, GFP_NOIO)) | 
|  | io->error = BLK_STS_RESOURCE; | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_queue_read(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  |  | 
|  | INIT_WORK(&io->work, kcryptd_io_read_work); | 
|  | queue_work(cc->io_queue, &io->work); | 
|  | } | 
|  |  | 
|  | static void kcryptd_io_write(struct dm_crypt_io *io) | 
|  | { | 
|  | struct bio *clone = io->ctx.bio_out; | 
|  |  | 
|  | dm_submit_bio_remap(io->base_bio, clone); | 
|  | } | 
|  |  | 
|  | #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) | 
|  |  | 
|  | static int dmcrypt_write(void *data) | 
|  | { | 
|  | struct crypt_config *cc = data; | 
|  | struct dm_crypt_io *io; | 
|  |  | 
|  | while (1) { | 
|  | struct rb_root write_tree; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | spin_lock_irq(&cc->write_thread_lock); | 
|  | continue_locked: | 
|  |  | 
|  | if (!RB_EMPTY_ROOT(&cc->write_tree)) | 
|  | goto pop_from_list; | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  |  | 
|  | spin_unlock_irq(&cc->write_thread_lock); | 
|  |  | 
|  | if (unlikely(kthread_should_stop())) { | 
|  | set_current_state(TASK_RUNNING); | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | spin_lock_irq(&cc->write_thread_lock); | 
|  | goto continue_locked; | 
|  |  | 
|  | pop_from_list: | 
|  | write_tree = cc->write_tree; | 
|  | cc->write_tree = RB_ROOT; | 
|  | spin_unlock_irq(&cc->write_thread_lock); | 
|  |  | 
|  | BUG_ON(rb_parent(write_tree.rb_node)); | 
|  |  | 
|  | /* | 
|  | * Note: we cannot walk the tree here with rb_next because | 
|  | * the structures may be freed when kcryptd_io_write is called. | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  | do { | 
|  | io = crypt_io_from_node(rb_first(&write_tree)); | 
|  | rb_erase(&io->rb_node, &write_tree); | 
|  | kcryptd_io_write(io); | 
|  | cond_resched(); | 
|  | } while (!RB_EMPTY_ROOT(&write_tree)); | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) | 
|  | { | 
|  | struct bio *clone = io->ctx.bio_out; | 
|  | struct crypt_config *cc = io->cc; | 
|  | unsigned long flags; | 
|  | sector_t sector; | 
|  | struct rb_node **rbp, *parent; | 
|  |  | 
|  | if (unlikely(io->error)) { | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  | bio_put(clone); | 
|  | crypt_dec_pending(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* crypt_convert should have filled the clone bio */ | 
|  | BUG_ON(io->ctx.iter_out.bi_size); | 
|  |  | 
|  | if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || | 
|  | test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { | 
|  | dm_submit_bio_remap(io->base_bio, clone); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&cc->write_thread_lock, flags); | 
|  | if (RB_EMPTY_ROOT(&cc->write_tree)) | 
|  | wake_up_process(cc->write_thread); | 
|  | rbp = &cc->write_tree.rb_node; | 
|  | parent = NULL; | 
|  | sector = io->sector; | 
|  | while (*rbp) { | 
|  | parent = *rbp; | 
|  | if (sector < crypt_io_from_node(parent)->sector) | 
|  | rbp = &(*rbp)->rb_left; | 
|  | else | 
|  | rbp = &(*rbp)->rb_right; | 
|  | } | 
|  | rb_link_node(&io->rb_node, parent, rbp); | 
|  | rb_insert_color(&io->rb_node, &cc->write_tree); | 
|  | spin_unlock_irqrestore(&cc->write_thread_lock, flags); | 
|  | } | 
|  |  | 
|  | static bool kcryptd_crypt_write_inline(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  |  | 
|  | { | 
|  | if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering | 
|  | * constraints so they do not need to be issued inline by | 
|  | * kcryptd_crypt_write_convert(). | 
|  | */ | 
|  | switch (bio_op(ctx->bio_in)) { | 
|  | case REQ_OP_WRITE: | 
|  | case REQ_OP_WRITE_ZEROES: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_write_continue(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct convert_context *ctx = &io->ctx; | 
|  | int crypt_finished; | 
|  | blk_status_t r; | 
|  |  | 
|  | wait_for_completion(&ctx->restart); | 
|  | reinit_completion(&ctx->restart); | 
|  |  | 
|  | r = crypt_convert(cc, &io->ctx, false, false); | 
|  | if (r) | 
|  | io->error = r; | 
|  | crypt_finished = atomic_dec_and_test(&ctx->cc_pending); | 
|  | if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { | 
|  | /* Wait for completion signaled by kcryptd_async_done() */ | 
|  | wait_for_completion(&ctx->restart); | 
|  | crypt_finished = 1; | 
|  | } | 
|  |  | 
|  | /* Encryption was already finished, submit io now */ | 
|  | if (crypt_finished) | 
|  | kcryptd_crypt_write_io_submit(io, 0); | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | struct convert_context *ctx = &io->ctx; | 
|  | struct bio *clone; | 
|  | int crypt_finished; | 
|  | blk_status_t r; | 
|  |  | 
|  | /* | 
|  | * Prevent io from disappearing until this function completes. | 
|  | */ | 
|  | crypt_inc_pending(io); | 
|  | crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector); | 
|  |  | 
|  | clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); | 
|  | if (unlikely(!clone)) { | 
|  | io->error = BLK_STS_IOERR; | 
|  | goto dec; | 
|  | } | 
|  |  | 
|  | io->ctx.bio_out = clone; | 
|  | io->ctx.iter_out = clone->bi_iter; | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) { | 
|  | bio_copy_data(clone, io->base_bio); | 
|  | io->ctx.bio_in = clone; | 
|  | io->ctx.iter_in = clone->bi_iter; | 
|  | } | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  | r = crypt_convert(cc, ctx, | 
|  | test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); | 
|  | /* | 
|  | * Crypto API backlogged the request, because its queue was full | 
|  | * and we're in softirq context, so continue from a workqueue | 
|  | * (TODO: is it actually possible to be in softirq in the write path?) | 
|  | */ | 
|  | if (r == BLK_STS_DEV_RESOURCE) { | 
|  | INIT_WORK(&io->work, kcryptd_crypt_write_continue); | 
|  | queue_work(cc->crypt_queue, &io->work); | 
|  | return; | 
|  | } | 
|  | if (r) | 
|  | io->error = r; | 
|  | crypt_finished = atomic_dec_and_test(&ctx->cc_pending); | 
|  | if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { | 
|  | /* Wait for completion signaled by kcryptd_async_done() */ | 
|  | wait_for_completion(&ctx->restart); | 
|  | crypt_finished = 1; | 
|  | } | 
|  |  | 
|  | /* Encryption was already finished, submit io now */ | 
|  | if (crypt_finished) | 
|  | kcryptd_crypt_write_io_submit(io, 0); | 
|  |  | 
|  | dec: | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_read_done(struct dm_crypt_io *io) | 
|  | { | 
|  | if (io->ctx.aead_recheck) { | 
|  | if (!io->error) { | 
|  | io->ctx.bio_in->bi_iter = io->saved_bi_iter; | 
|  | bio_copy_data(io->base_bio, io->ctx.bio_in); | 
|  | } | 
|  | crypt_free_buffer_pages(io->cc, io->ctx.bio_in); | 
|  | bio_put(io->ctx.bio_in); | 
|  | } | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_read_continue(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  | struct crypt_config *cc = io->cc; | 
|  | blk_status_t r; | 
|  |  | 
|  | wait_for_completion(&io->ctx.restart); | 
|  | reinit_completion(&io->ctx.restart); | 
|  |  | 
|  | r = crypt_convert(cc, &io->ctx, false, false); | 
|  | if (r) | 
|  | io->error = r; | 
|  |  | 
|  | if (atomic_dec_and_test(&io->ctx.cc_pending)) | 
|  | kcryptd_crypt_read_done(io); | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  | blk_status_t r; | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  |  | 
|  | if (io->ctx.aead_recheck) { | 
|  | r = crypt_convert(cc, &io->ctx, | 
|  | test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); | 
|  | } else { | 
|  | crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, | 
|  | io->sector); | 
|  |  | 
|  | r = crypt_convert(cc, &io->ctx, | 
|  | test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); | 
|  | } | 
|  | /* | 
|  | * Crypto API backlogged the request, because its queue was full | 
|  | * and we're in softirq context, so continue from a workqueue | 
|  | */ | 
|  | if (r == BLK_STS_DEV_RESOURCE) { | 
|  | INIT_WORK(&io->work, kcryptd_crypt_read_continue); | 
|  | queue_work(cc->crypt_queue, &io->work); | 
|  | return; | 
|  | } | 
|  | if (r) | 
|  | io->error = r; | 
|  |  | 
|  | if (atomic_dec_and_test(&io->ctx.cc_pending)) | 
|  | kcryptd_crypt_read_done(io); | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_async_done(void *data, int error) | 
|  | { | 
|  | struct dm_crypt_request *dmreq = data; | 
|  | struct convert_context *ctx = dmreq->ctx; | 
|  | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
|  | struct crypt_config *cc = io->cc; | 
|  |  | 
|  | /* | 
|  | * A request from crypto driver backlog is going to be processed now, | 
|  | * finish the completion and continue in crypt_convert(). | 
|  | * (Callback will be called for the second time for this request.) | 
|  | */ | 
|  | if (error == -EINPROGRESS) { | 
|  | complete(&ctx->restart); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); | 
|  |  | 
|  | if (error == -EBADMSG) { | 
|  | sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); | 
|  |  | 
|  | ctx->aead_failed = true; | 
|  | if (ctx->aead_recheck) { | 
|  | DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", | 
|  | ctx->bio_in->bi_bdev, s); | 
|  | dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", | 
|  | ctx->bio_in, s, 0); | 
|  | } | 
|  | io->error = BLK_STS_PROTECTION; | 
|  | } else if (error < 0) | 
|  | io->error = BLK_STS_IOERR; | 
|  |  | 
|  | crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); | 
|  |  | 
|  | if (!atomic_dec_and_test(&ctx->cc_pending)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The request is fully completed: for inline writes, let | 
|  | * kcryptd_crypt_write_convert() do the IO submission. | 
|  | */ | 
|  | if (bio_data_dir(io->base_bio) == READ) { | 
|  | kcryptd_crypt_read_done(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (kcryptd_crypt_write_inline(cc, ctx)) { | 
|  | complete(&ctx->restart); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kcryptd_crypt_write_io_submit(io, 1); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) | 
|  | kcryptd_crypt_read_convert(io); | 
|  | else | 
|  | kcryptd_crypt_write_convert(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_queue_crypt(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->cc; | 
|  |  | 
|  | if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || | 
|  | (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { | 
|  | /* | 
|  | * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. | 
|  | * irqs_disabled(): the kernel may run some IO completion from the idle thread, but | 
|  | * it is being executed with irqs disabled. | 
|  | */ | 
|  | if (in_hardirq() || irqs_disabled()) { | 
|  | INIT_WORK(&io->work, kcryptd_crypt); | 
|  | queue_work(system_bh_wq, &io->work); | 
|  | return; | 
|  | } else { | 
|  | kcryptd_crypt(&io->work); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | INIT_WORK(&io->work, kcryptd_crypt); | 
|  | queue_work(cc->crypt_queue, &io->work); | 
|  | } | 
|  |  | 
|  | static void crypt_free_tfms_aead(struct crypt_config *cc) | 
|  | { | 
|  | if (!cc->cipher_tfm.tfms_aead) | 
|  | return; | 
|  |  | 
|  | if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { | 
|  | crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); | 
|  | cc->cipher_tfm.tfms_aead[0] = NULL; | 
|  | } | 
|  |  | 
|  | kfree(cc->cipher_tfm.tfms_aead); | 
|  | cc->cipher_tfm.tfms_aead = NULL; | 
|  | } | 
|  |  | 
|  | static void crypt_free_tfms_skcipher(struct crypt_config *cc) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (!cc->cipher_tfm.tfms) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < cc->tfms_count; i++) | 
|  | if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { | 
|  | crypto_free_skcipher(cc->cipher_tfm.tfms[i]); | 
|  | cc->cipher_tfm.tfms[i] = NULL; | 
|  | } | 
|  |  | 
|  | kfree(cc->cipher_tfm.tfms); | 
|  | cc->cipher_tfm.tfms = NULL; | 
|  | } | 
|  |  | 
|  | static void crypt_free_tfms(struct crypt_config *cc) | 
|  | { | 
|  | if (crypt_integrity_aead(cc)) | 
|  | crypt_free_tfms_aead(cc); | 
|  | else | 
|  | crypt_free_tfms_skcipher(cc); | 
|  | } | 
|  |  | 
|  | static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) | 
|  | { | 
|  | unsigned int i; | 
|  | int err; | 
|  |  | 
|  | cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, | 
|  | sizeof(struct crypto_skcipher *), | 
|  | GFP_KERNEL); | 
|  | if (!cc->cipher_tfm.tfms) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < cc->tfms_count; i++) { | 
|  | cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, | 
|  | CRYPTO_ALG_ALLOCATES_MEMORY); | 
|  | if (IS_ERR(cc->cipher_tfm.tfms[i])) { | 
|  | err = PTR_ERR(cc->cipher_tfm.tfms[i]); | 
|  | crypt_free_tfms(cc); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dm-crypt performance can vary greatly depending on which crypto | 
|  | * algorithm implementation is used.  Help people debug performance | 
|  | * problems by logging the ->cra_driver_name. | 
|  | */ | 
|  | DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, | 
|  | crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); | 
|  | if (!cc->cipher_tfm.tfms) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, | 
|  | CRYPTO_ALG_ALLOCATES_MEMORY); | 
|  | if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { | 
|  | err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); | 
|  | crypt_free_tfms(cc); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, | 
|  | crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) | 
|  | { | 
|  | if (crypt_integrity_aead(cc)) | 
|  | return crypt_alloc_tfms_aead(cc, ciphermode); | 
|  | else | 
|  | return crypt_alloc_tfms_skcipher(cc, ciphermode); | 
|  | } | 
|  |  | 
|  | static unsigned int crypt_subkey_size(struct crypt_config *cc) | 
|  | { | 
|  | return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); | 
|  | } | 
|  |  | 
|  | static unsigned int crypt_authenckey_size(struct crypt_config *cc) | 
|  | { | 
|  | return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If AEAD is composed like authenc(hmac(sha256),xts(aes)), | 
|  | * the key must be for some reason in special format. | 
|  | * This funcion converts cc->key to this special format. | 
|  | */ | 
|  | static void crypt_copy_authenckey(char *p, const void *key, | 
|  | unsigned int enckeylen, unsigned int authkeylen) | 
|  | { | 
|  | struct crypto_authenc_key_param *param; | 
|  | struct rtattr *rta; | 
|  |  | 
|  | rta = (struct rtattr *)p; | 
|  | param = RTA_DATA(rta); | 
|  | param->enckeylen = cpu_to_be32(enckeylen); | 
|  | rta->rta_len = RTA_LENGTH(sizeof(*param)); | 
|  | rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; | 
|  | p += RTA_SPACE(sizeof(*param)); | 
|  | memcpy(p, key + enckeylen, authkeylen); | 
|  | p += authkeylen; | 
|  | memcpy(p, key, enckeylen); | 
|  | } | 
|  |  | 
|  | static int crypt_setkey(struct crypt_config *cc) | 
|  | { | 
|  | unsigned int subkey_size; | 
|  | int err = 0, i, r; | 
|  |  | 
|  | /* Ignore extra keys (which are used for IV etc) */ | 
|  | subkey_size = crypt_subkey_size(cc); | 
|  |  | 
|  | if (crypt_integrity_hmac(cc)) { | 
|  | if (subkey_size < cc->key_mac_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | crypt_copy_authenckey(cc->authenc_key, cc->key, | 
|  | subkey_size - cc->key_mac_size, | 
|  | cc->key_mac_size); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < cc->tfms_count; i++) { | 
|  | if (crypt_integrity_hmac(cc)) | 
|  | r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], | 
|  | cc->authenc_key, crypt_authenckey_size(cc)); | 
|  | else if (crypt_integrity_aead(cc)) | 
|  | r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], | 
|  | cc->key + (i * subkey_size), | 
|  | subkey_size); | 
|  | else | 
|  | r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], | 
|  | cc->key + (i * subkey_size), | 
|  | subkey_size); | 
|  | if (r) | 
|  | err = r; | 
|  | } | 
|  |  | 
|  | if (crypt_integrity_hmac(cc)) | 
|  | memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEYS | 
|  |  | 
|  | static bool contains_whitespace(const char *str) | 
|  | { | 
|  | while (*str) | 
|  | if (isspace(*str++)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int set_key_user(struct crypt_config *cc, struct key *key) | 
|  | { | 
|  | const struct user_key_payload *ukp; | 
|  |  | 
|  | ukp = user_key_payload_locked(key); | 
|  | if (!ukp) | 
|  | return -EKEYREVOKED; | 
|  |  | 
|  | if (cc->key_size != ukp->datalen) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(cc->key, ukp->data, cc->key_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_key_encrypted(struct crypt_config *cc, struct key *key) | 
|  | { | 
|  | const struct encrypted_key_payload *ekp; | 
|  |  | 
|  | ekp = key->payload.data[0]; | 
|  | if (!ekp) | 
|  | return -EKEYREVOKED; | 
|  |  | 
|  | if (cc->key_size != ekp->decrypted_datalen) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(cc->key, ekp->decrypted_data, cc->key_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_key_trusted(struct crypt_config *cc, struct key *key) | 
|  | { | 
|  | const struct trusted_key_payload *tkp; | 
|  |  | 
|  | tkp = key->payload.data[0]; | 
|  | if (!tkp) | 
|  | return -EKEYREVOKED; | 
|  |  | 
|  | if (cc->key_size != tkp->key_len) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(cc->key, tkp->key, cc->key_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) | 
|  | { | 
|  | char *new_key_string, *key_desc; | 
|  | int ret; | 
|  | struct key_type *type; | 
|  | struct key *key; | 
|  | int (*set_key)(struct crypt_config *cc, struct key *key); | 
|  |  | 
|  | /* | 
|  | * Reject key_string with whitespace. dm core currently lacks code for | 
|  | * proper whitespace escaping in arguments on DM_TABLE_STATUS path. | 
|  | */ | 
|  | if (contains_whitespace(key_string)) { | 
|  | DMERR("whitespace chars not allowed in key string"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* look for next ':' separating key_type from key_description */ | 
|  | key_desc = strchr(key_string, ':'); | 
|  | if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { | 
|  | type = &key_type_logon; | 
|  | set_key = set_key_user; | 
|  | } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { | 
|  | type = &key_type_user; | 
|  | set_key = set_key_user; | 
|  | } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && | 
|  | !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { | 
|  | type = &key_type_encrypted; | 
|  | set_key = set_key_encrypted; | 
|  | } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && | 
|  | !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { | 
|  | type = &key_type_trusted; | 
|  | set_key = set_key_trusted; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | new_key_string = kstrdup(key_string, GFP_KERNEL); | 
|  | if (!new_key_string) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key = request_key(type, key_desc + 1, NULL); | 
|  | if (IS_ERR(key)) { | 
|  | ret = PTR_ERR(key); | 
|  | goto free_new_key_string; | 
|  | } | 
|  |  | 
|  | down_read(&key->sem); | 
|  | ret = set_key(cc, key); | 
|  | up_read(&key->sem); | 
|  | key_put(key); | 
|  | if (ret < 0) | 
|  | goto free_new_key_string; | 
|  |  | 
|  | /* clear the flag since following operations may invalidate previously valid key */ | 
|  | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  |  | 
|  | ret = crypt_setkey(cc); | 
|  | if (ret) | 
|  | goto free_new_key_string; | 
|  |  | 
|  | set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | kfree_sensitive(cc->key_string); | 
|  | cc->key_string = new_key_string; | 
|  | return 0; | 
|  |  | 
|  | free_new_key_string: | 
|  | kfree_sensitive(new_key_string); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int get_key_size(char **key_string) | 
|  | { | 
|  | char *colon, dummy; | 
|  | int ret; | 
|  |  | 
|  | if (*key_string[0] != ':') | 
|  | return strlen(*key_string) >> 1; | 
|  |  | 
|  | /* look for next ':' in key string */ | 
|  | colon = strpbrk(*key_string + 1, ":"); | 
|  | if (!colon) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') | 
|  | return -EINVAL; | 
|  |  | 
|  | *key_string = colon; | 
|  |  | 
|  | /* remaining key string should be :<logon|user>:<key_desc> */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int get_key_size(char **key_string) | 
|  | { | 
|  | return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_KEYS */ | 
|  |  | 
|  | static int crypt_set_key(struct crypt_config *cc, char *key) | 
|  | { | 
|  | int r = -EINVAL; | 
|  | int key_string_len = strlen(key); | 
|  |  | 
|  | /* Hyphen (which gives a key_size of zero) means there is no key. */ | 
|  | if (!cc->key_size && strcmp(key, "-")) | 
|  | goto out; | 
|  |  | 
|  | /* ':' means the key is in kernel keyring, short-circuit normal key processing */ | 
|  | if (key[0] == ':') { | 
|  | r = crypt_set_keyring_key(cc, key + 1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* clear the flag since following operations may invalidate previously valid key */ | 
|  | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  |  | 
|  | /* wipe references to any kernel keyring key */ | 
|  | kfree_sensitive(cc->key_string); | 
|  | cc->key_string = NULL; | 
|  |  | 
|  | /* Decode key from its hex representation. */ | 
|  | if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) | 
|  | goto out; | 
|  |  | 
|  | r = crypt_setkey(cc); | 
|  | if (!r) | 
|  | set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  |  | 
|  | out: | 
|  | /* Hex key string not needed after here, so wipe it. */ | 
|  | memset(key, '0', key_string_len); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int crypt_wipe_key(struct crypt_config *cc) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | get_random_bytes(&cc->key, cc->key_size); | 
|  |  | 
|  | /* Wipe IV private keys */ | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { | 
|  | r = cc->iv_gen_ops->wipe(cc); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | kfree_sensitive(cc->key_string); | 
|  | cc->key_string = NULL; | 
|  | r = crypt_setkey(cc); | 
|  | memset(&cc->key, 0, cc->key_size * sizeof(u8)); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void crypt_calculate_pages_per_client(void) | 
|  | { | 
|  | unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; | 
|  |  | 
|  | if (!dm_crypt_clients_n) | 
|  | return; | 
|  |  | 
|  | pages /= dm_crypt_clients_n; | 
|  | if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) | 
|  | pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; | 
|  | dm_crypt_pages_per_client = pages; | 
|  | } | 
|  |  | 
|  | static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) | 
|  | { | 
|  | struct crypt_config *cc = pool_data; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Note, percpu_counter_read_positive() may over (and under) estimate | 
|  | * the current usage by at most (batch - 1) * num_online_cpus() pages, | 
|  | * but avoids potential spinlock contention of an exact result. | 
|  | */ | 
|  | if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && | 
|  | likely(gfp_mask & __GFP_NORETRY)) | 
|  | return NULL; | 
|  |  | 
|  | page = alloc_page(gfp_mask); | 
|  | if (likely(page != NULL)) | 
|  | percpu_counter_add(&cc->n_allocated_pages, 1); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void crypt_page_free(void *page, void *pool_data) | 
|  | { | 
|  | struct crypt_config *cc = pool_data; | 
|  |  | 
|  | __free_page(page); | 
|  | percpu_counter_sub(&cc->n_allocated_pages, 1); | 
|  | } | 
|  |  | 
|  | static void crypt_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | ti->private = NULL; | 
|  |  | 
|  | if (!cc) | 
|  | return; | 
|  |  | 
|  | if (cc->write_thread) | 
|  | kthread_stop(cc->write_thread); | 
|  |  | 
|  | if (cc->io_queue) | 
|  | destroy_workqueue(cc->io_queue); | 
|  | if (cc->crypt_queue) | 
|  | destroy_workqueue(cc->crypt_queue); | 
|  |  | 
|  | if (cc->workqueue_id) | 
|  | ida_free(&workqueue_ida, cc->workqueue_id); | 
|  |  | 
|  | crypt_free_tfms(cc); | 
|  |  | 
|  | bioset_exit(&cc->bs); | 
|  |  | 
|  | mempool_exit(&cc->page_pool); | 
|  | mempool_exit(&cc->req_pool); | 
|  | mempool_exit(&cc->tag_pool); | 
|  |  | 
|  | WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); | 
|  | percpu_counter_destroy(&cc->n_allocated_pages); | 
|  |  | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
|  | cc->iv_gen_ops->dtr(cc); | 
|  |  | 
|  | if (cc->dev) | 
|  | dm_put_device(ti, cc->dev); | 
|  |  | 
|  | kfree_sensitive(cc->cipher_string); | 
|  | kfree_sensitive(cc->key_string); | 
|  | kfree_sensitive(cc->cipher_auth); | 
|  | kfree_sensitive(cc->authenc_key); | 
|  |  | 
|  | mutex_destroy(&cc->bio_alloc_lock); | 
|  |  | 
|  | /* Must zero key material before freeing */ | 
|  | kfree_sensitive(cc); | 
|  |  | 
|  | spin_lock(&dm_crypt_clients_lock); | 
|  | WARN_ON(!dm_crypt_clients_n); | 
|  | dm_crypt_clients_n--; | 
|  | crypt_calculate_pages_per_client(); | 
|  | spin_unlock(&dm_crypt_clients_lock); | 
|  |  | 
|  | dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); | 
|  | } | 
|  |  | 
|  | static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) | 
|  | cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); | 
|  | else | 
|  | cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); | 
|  |  | 
|  | if (cc->iv_size) | 
|  | /* at least a 64 bit sector number should fit in our buffer */ | 
|  | cc->iv_size = max(cc->iv_size, | 
|  | (unsigned int)(sizeof(u64) / sizeof(u8))); | 
|  | else if (ivmode) { | 
|  | DMWARN("Selected cipher does not support IVs"); | 
|  | ivmode = NULL; | 
|  | } | 
|  |  | 
|  | /* Choose ivmode, see comments at iv code. */ | 
|  | if (ivmode == NULL) | 
|  | cc->iv_gen_ops = NULL; | 
|  | else if (strcmp(ivmode, "plain") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_plain_ops; | 
|  | else if (strcmp(ivmode, "plain64") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_plain64_ops; | 
|  | else if (strcmp(ivmode, "plain64be") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_plain64be_ops; | 
|  | else if (strcmp(ivmode, "essiv") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_essiv_ops; | 
|  | else if (strcmp(ivmode, "benbi") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_benbi_ops; | 
|  | else if (strcmp(ivmode, "null") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_null_ops; | 
|  | else if (strcmp(ivmode, "eboiv") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_eboiv_ops; | 
|  | else if (strcmp(ivmode, "elephant") == 0) { | 
|  | cc->iv_gen_ops = &crypt_iv_elephant_ops; | 
|  | cc->key_parts = 2; | 
|  | cc->key_extra_size = cc->key_size / 2; | 
|  | if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) | 
|  | return -EINVAL; | 
|  | set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); | 
|  | } else if (strcmp(ivmode, "lmk") == 0) { | 
|  | cc->iv_gen_ops = &crypt_iv_lmk_ops; | 
|  | /* | 
|  | * Version 2 and 3 is recognised according | 
|  | * to length of provided multi-key string. | 
|  | * If present (version 3), last key is used as IV seed. | 
|  | * All keys (including IV seed) are always the same size. | 
|  | */ | 
|  | if (cc->key_size % cc->key_parts) { | 
|  | cc->key_parts++; | 
|  | cc->key_extra_size = cc->key_size / cc->key_parts; | 
|  | } | 
|  | } else if (strcmp(ivmode, "tcw") == 0) { | 
|  | cc->iv_gen_ops = &crypt_iv_tcw_ops; | 
|  | cc->key_parts += 2; /* IV + whitening */ | 
|  | cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; | 
|  | } else if (strcmp(ivmode, "random") == 0) { | 
|  | cc->iv_gen_ops = &crypt_iv_random_ops; | 
|  | /* Need storage space in integrity fields. */ | 
|  | cc->integrity_iv_size = cc->iv_size; | 
|  | } else { | 
|  | ti->error = "Invalid IV mode"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Workaround to parse HMAC algorithm from AEAD crypto API spec. | 
|  | * The HMAC is needed to calculate tag size (HMAC digest size). | 
|  | * This should be probably done by crypto-api calls (once available...) | 
|  | */ | 
|  | static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) | 
|  | { | 
|  | char *start, *end, *mac_alg = NULL; | 
|  | struct crypto_ahash *mac; | 
|  |  | 
|  | if (!strstarts(cipher_api, "authenc(")) | 
|  | return 0; | 
|  |  | 
|  | start = strchr(cipher_api, '('); | 
|  | end = strchr(cipher_api, ','); | 
|  | if (!start || !end || ++start > end) | 
|  | return -EINVAL; | 
|  |  | 
|  | mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); | 
|  | if (!mac_alg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); | 
|  | kfree(mac_alg); | 
|  |  | 
|  | if (IS_ERR(mac)) | 
|  | return PTR_ERR(mac); | 
|  |  | 
|  | if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) | 
|  | cc->key_mac_size = crypto_ahash_digestsize(mac); | 
|  | crypto_free_ahash(mac); | 
|  |  | 
|  | cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); | 
|  | if (!cc->authenc_key) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, | 
|  | char **ivmode, char **ivopts) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | cc->tfms_count = 1; | 
|  |  | 
|  | /* | 
|  | * New format (capi: prefix) | 
|  | * capi:cipher_api_spec-iv:ivopts | 
|  | */ | 
|  | tmp = &cipher_in[strlen("capi:")]; | 
|  |  | 
|  | /* Separate IV options if present, it can contain another '-' in hash name */ | 
|  | *ivopts = strrchr(tmp, ':'); | 
|  | if (*ivopts) { | 
|  | **ivopts = '\0'; | 
|  | (*ivopts)++; | 
|  | } | 
|  | /* Parse IV mode */ | 
|  | *ivmode = strrchr(tmp, '-'); | 
|  | if (*ivmode) { | 
|  | **ivmode = '\0'; | 
|  | (*ivmode)++; | 
|  | } | 
|  | /* The rest is crypto API spec */ | 
|  | cipher_api = tmp; | 
|  |  | 
|  | /* Alloc AEAD, can be used only in new format. */ | 
|  | if (crypt_integrity_aead(cc)) { | 
|  | ret = crypt_ctr_auth_cipher(cc, cipher_api); | 
|  | if (ret < 0) { | 
|  | ti->error = "Invalid AEAD cipher spec"; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (*ivmode && !strcmp(*ivmode, "lmk")) | 
|  | cc->tfms_count = 64; | 
|  |  | 
|  | if (*ivmode && !strcmp(*ivmode, "essiv")) { | 
|  | if (!*ivopts) { | 
|  | ti->error = "Digest algorithm missing for ESSIV mode"; | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", | 
|  | cipher_api, *ivopts); | 
|  | if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { | 
|  | ti->error = "Cannot allocate cipher string"; | 
|  | return -ENOMEM; | 
|  | } | 
|  | cipher_api = buf; | 
|  | } | 
|  |  | 
|  | cc->key_parts = cc->tfms_count; | 
|  |  | 
|  | /* Allocate cipher */ | 
|  | ret = crypt_alloc_tfms(cc, cipher_api); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error allocating crypto tfm"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) | 
|  | cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); | 
|  | else | 
|  | cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, | 
|  | char **ivmode, char **ivopts) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | char *tmp, *cipher, *chainmode, *keycount; | 
|  | char *cipher_api = NULL; | 
|  | int ret = -EINVAL; | 
|  | char dummy; | 
|  |  | 
|  | if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { | 
|  | ti->error = "Bad cipher specification"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Legacy dm-crypt cipher specification | 
|  | * cipher[:keycount]-mode-iv:ivopts | 
|  | */ | 
|  | tmp = cipher_in; | 
|  | keycount = strsep(&tmp, "-"); | 
|  | cipher = strsep(&keycount, ":"); | 
|  |  | 
|  | if (!keycount) | 
|  | cc->tfms_count = 1; | 
|  | else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || | 
|  | !is_power_of_2(cc->tfms_count)) { | 
|  | ti->error = "Bad cipher key count specification"; | 
|  | return -EINVAL; | 
|  | } | 
|  | cc->key_parts = cc->tfms_count; | 
|  |  | 
|  | chainmode = strsep(&tmp, "-"); | 
|  | *ivmode = strsep(&tmp, ":"); | 
|  | *ivopts = tmp; | 
|  |  | 
|  | /* | 
|  | * For compatibility with the original dm-crypt mapping format, if | 
|  | * only the cipher name is supplied, use cbc-plain. | 
|  | */ | 
|  | if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { | 
|  | chainmode = "cbc"; | 
|  | *ivmode = "plain"; | 
|  | } | 
|  |  | 
|  | if (strcmp(chainmode, "ecb") && !*ivmode) { | 
|  | ti->error = "IV mechanism required"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); | 
|  | if (!cipher_api) | 
|  | goto bad_mem; | 
|  |  | 
|  | if (*ivmode && !strcmp(*ivmode, "essiv")) { | 
|  | if (!*ivopts) { | 
|  | ti->error = "Digest algorithm missing for ESSIV mode"; | 
|  | kfree(cipher_api); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, | 
|  | "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); | 
|  | } else { | 
|  | ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, | 
|  | "%s(%s)", chainmode, cipher); | 
|  | } | 
|  | if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { | 
|  | kfree(cipher_api); | 
|  | goto bad_mem; | 
|  | } | 
|  |  | 
|  | /* Allocate cipher */ | 
|  | ret = crypt_alloc_tfms(cc, cipher_api); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error allocating crypto tfm"; | 
|  | kfree(cipher_api); | 
|  | return ret; | 
|  | } | 
|  | kfree(cipher_api); | 
|  |  | 
|  | return 0; | 
|  | bad_mem: | 
|  | ti->error = "Cannot allocate cipher strings"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | char *ivmode = NULL, *ivopts = NULL; | 
|  | int ret; | 
|  |  | 
|  | cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); | 
|  | if (!cc->cipher_string) { | 
|  | ti->error = "Cannot allocate cipher strings"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (strstarts(cipher_in, "capi:")) | 
|  | ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); | 
|  | else | 
|  | ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Initialize IV */ | 
|  | ret = crypt_ctr_ivmode(ti, ivmode); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* Initialize and set key */ | 
|  | ret = crypt_set_key(cc, key); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error decoding and setting key"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Allocate IV */ | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { | 
|  | ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error creating IV"; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize IV (set keys for ESSIV etc) */ | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->init) { | 
|  | ret = cc->iv_gen_ops->init(cc); | 
|  | if (ret < 0) { | 
|  | ti->error = "Error initialising IV"; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* wipe the kernel key payload copy */ | 
|  | if (cc->key_string) | 
|  | memset(cc->key, 0, cc->key_size * sizeof(u8)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | struct dm_arg_set as; | 
|  | static const struct dm_arg _args[] = { | 
|  | {0, 9, "Invalid number of feature args"}, | 
|  | }; | 
|  | unsigned int opt_params, val; | 
|  | const char *opt_string, *sval; | 
|  | char dummy; | 
|  | int ret; | 
|  |  | 
|  | /* Optional parameters */ | 
|  | as.argc = argc; | 
|  | as.argv = argv; | 
|  |  | 
|  | ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | while (opt_params--) { | 
|  | opt_string = dm_shift_arg(&as); | 
|  | if (!opt_string) { | 
|  | ti->error = "Not enough feature arguments"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!strcasecmp(opt_string, "allow_discards")) | 
|  | ti->num_discard_bios = 1; | 
|  |  | 
|  | else if (!strcasecmp(opt_string, "same_cpu_crypt")) | 
|  | set_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
|  | else if (!strcasecmp(opt_string, "high_priority")) | 
|  | set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); | 
|  |  | 
|  | else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) | 
|  | set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
|  | else if (!strcasecmp(opt_string, "no_read_workqueue")) | 
|  | set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); | 
|  | else if (!strcasecmp(opt_string, "no_write_workqueue")) | 
|  | set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); | 
|  | else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { | 
|  | if (val == 0 || val > MAX_TAG_SIZE) { | 
|  | ti->error = "Invalid integrity arguments"; | 
|  | return -EINVAL; | 
|  | } | 
|  | cc->used_tag_size = val; | 
|  | sval = strchr(opt_string + strlen("integrity:"), ':') + 1; | 
|  | if (!strcasecmp(sval, "aead")) { | 
|  | set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); | 
|  | } else if (strcasecmp(sval, "none")) { | 
|  | ti->error = "Unknown integrity profile"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cc->cipher_auth = kstrdup(sval, GFP_KERNEL); | 
|  | if (!cc->cipher_auth) | 
|  | return -ENOMEM; | 
|  | } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { | 
|  | if (!val) { | 
|  | ti->error = "Invalid integrity_key_size argument"; | 
|  | return -EINVAL; | 
|  | } | 
|  | cc->key_mac_size = val; | 
|  | set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); | 
|  | } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { | 
|  | if (cc->sector_size < (1 << SECTOR_SHIFT) || | 
|  | cc->sector_size > 4096 || | 
|  | (cc->sector_size & (cc->sector_size - 1))) { | 
|  | ti->error = "Invalid feature value for sector_size"; | 
|  | return -EINVAL; | 
|  | } | 
|  | if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { | 
|  | ti->error = "Device size is not multiple of sector_size feature"; | 
|  | return -EINVAL; | 
|  | } | 
|  | cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; | 
|  | } else if (!strcasecmp(opt_string, "iv_large_sectors")) | 
|  | set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); | 
|  | else { | 
|  | ti->error = "Invalid feature arguments"; | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_ZONED | 
|  | static int crypt_report_zones(struct dm_target *ti, | 
|  | struct dm_report_zones_args *args, unsigned int nr_zones) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | return dm_report_zones(cc->dev->bdev, cc->start, | 
|  | cc->start + dm_target_offset(ti, args->next_sector), | 
|  | args, nr_zones); | 
|  | } | 
|  | #else | 
|  | #define crypt_report_zones NULL | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Construct an encryption mapping: | 
|  | * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> | 
|  | */ | 
|  | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | { | 
|  | struct crypt_config *cc; | 
|  | const char *devname = dm_table_device_name(ti->table); | 
|  | int key_size, wq_id; | 
|  | unsigned int align_mask; | 
|  | unsigned int common_wq_flags; | 
|  | unsigned long long tmpll; | 
|  | int ret; | 
|  | size_t iv_size_padding, additional_req_size; | 
|  | char dummy; | 
|  |  | 
|  | if (argc < 5) { | 
|  | ti->error = "Not enough arguments"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | key_size = get_key_size(&argv[1]); | 
|  | if (key_size < 0) { | 
|  | ti->error = "Cannot parse key size"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); | 
|  | if (!cc) { | 
|  | ti->error = "Cannot allocate encryption context"; | 
|  | return -ENOMEM; | 
|  | } | 
|  | cc->key_size = key_size; | 
|  | cc->sector_size = (1 << SECTOR_SHIFT); | 
|  | cc->sector_shift = 0; | 
|  |  | 
|  | ti->private = cc; | 
|  |  | 
|  | spin_lock(&dm_crypt_clients_lock); | 
|  | dm_crypt_clients_n++; | 
|  | crypt_calculate_pages_per_client(); | 
|  | spin_unlock(&dm_crypt_clients_lock); | 
|  |  | 
|  | ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); | 
|  | if (ret < 0) | 
|  | goto bad; | 
|  |  | 
|  | /* Optional parameters need to be read before cipher constructor */ | 
|  | if (argc > 5) { | 
|  | ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); | 
|  | if (ret) | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | ret = crypt_ctr_cipher(ti, argv[0], argv[1]); | 
|  | if (ret < 0) | 
|  | goto bad; | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) { | 
|  | cc->dmreq_start = sizeof(struct aead_request); | 
|  | cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); | 
|  | align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); | 
|  | } else { | 
|  | cc->dmreq_start = sizeof(struct skcipher_request); | 
|  | cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); | 
|  | align_mask = crypto_skcipher_alignmask(any_tfm(cc)); | 
|  | } | 
|  | cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); | 
|  |  | 
|  | if (align_mask < CRYPTO_MINALIGN) { | 
|  | /* Allocate the padding exactly */ | 
|  | iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) | 
|  | & align_mask; | 
|  | } else { | 
|  | /* | 
|  | * If the cipher requires greater alignment than kmalloc | 
|  | * alignment, we don't know the exact position of the | 
|  | * initialization vector. We must assume worst case. | 
|  | */ | 
|  | iv_size_padding = align_mask; | 
|  | } | 
|  |  | 
|  | /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */ | 
|  | additional_req_size = sizeof(struct dm_crypt_request) + | 
|  | iv_size_padding + cc->iv_size + | 
|  | cc->iv_size + | 
|  | sizeof(uint64_t) + | 
|  | sizeof(unsigned int); | 
|  |  | 
|  | ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate crypt request mempool"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | cc->per_bio_data_size = ti->per_io_data_size = | 
|  | ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, | 
|  | ARCH_DMA_MINALIGN); | 
|  |  | 
|  | ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate page mempool"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate crypt bioset"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | mutex_init(&cc->bio_alloc_lock); | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || | 
|  | (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { | 
|  | ti->error = "Invalid iv_offset sector"; | 
|  | goto bad; | 
|  | } | 
|  | cc->iv_offset = tmpll; | 
|  |  | 
|  | ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); | 
|  | if (ret) { | 
|  | ti->error = "Device lookup failed"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { | 
|  | ti->error = "Invalid device sector"; | 
|  | goto bad; | 
|  | } | 
|  | cc->start = tmpll; | 
|  |  | 
|  | if (bdev_is_zoned(cc->dev->bdev)) { | 
|  | /* | 
|  | * For zoned block devices, we need to preserve the issuer write | 
|  | * ordering. To do so, disable write workqueues and force inline | 
|  | * encryption completion. | 
|  | */ | 
|  | set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); | 
|  | set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); | 
|  |  | 
|  | /* | 
|  | * All zone append writes to a zone of a zoned block device will | 
|  | * have the same BIO sector, the start of the zone. When the | 
|  | * cypher IV mode uses sector values, all data targeting a | 
|  | * zone will be encrypted using the first sector numbers of the | 
|  | * zone. This will not result in write errors but will | 
|  | * cause most reads to fail as reads will use the sector values | 
|  | * for the actual data locations, resulting in IV mismatch. | 
|  | * To avoid this problem, ask DM core to emulate zone append | 
|  | * operations with regular writes. | 
|  | */ | 
|  | DMDEBUG("Zone append operations will be emulated"); | 
|  | ti->emulate_zone_append = true; | 
|  | } | 
|  |  | 
|  | if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { | 
|  | ret = crypt_integrity_ctr(cc, ti); | 
|  | if (ret) | 
|  | goto bad; | 
|  |  | 
|  | cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; | 
|  | if (!cc->tag_pool_max_sectors) | 
|  | cc->tag_pool_max_sectors = 1; | 
|  |  | 
|  | ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, | 
|  | cc->tag_pool_max_sectors * cc->tuple_size); | 
|  | if (ret) { | 
|  | ti->error = "Cannot allocate integrity tags mempool"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | cc->tag_pool_max_sectors <<= cc->sector_shift; | 
|  | } | 
|  |  | 
|  | wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); | 
|  | if (wq_id < 0) { | 
|  | ti->error = "Couldn't get workqueue id"; | 
|  | ret = wq_id; | 
|  | goto bad; | 
|  | } | 
|  | cc->workqueue_id = wq_id; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; | 
|  | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) | 
|  | common_wq_flags |= WQ_HIGHPRI; | 
|  |  | 
|  | cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id); | 
|  | if (!cc->io_queue) { | 
|  | ti->error = "Couldn't create kcryptd io queue"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { | 
|  | cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", | 
|  | common_wq_flags | WQ_CPU_INTENSIVE, | 
|  | 1, devname, wq_id); | 
|  | } else { | 
|  | /* | 
|  | * While crypt_queue is certainly CPU intensive, the use of | 
|  | * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. | 
|  | */ | 
|  | cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", | 
|  | common_wq_flags | WQ_UNBOUND, | 
|  | num_online_cpus(), devname, wq_id); | 
|  | } | 
|  | if (!cc->crypt_queue) { | 
|  | ti->error = "Couldn't create kcryptd queue"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&cc->write_thread_lock); | 
|  | cc->write_tree = RB_ROOT; | 
|  |  | 
|  | cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); | 
|  | if (IS_ERR(cc->write_thread)) { | 
|  | ret = PTR_ERR(cc->write_thread); | 
|  | cc->write_thread = NULL; | 
|  | ti->error = "Couldn't spawn write thread"; | 
|  | goto bad; | 
|  | } | 
|  | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) | 
|  | set_user_nice(cc->write_thread, MIN_NICE); | 
|  |  | 
|  | ti->num_flush_bios = 1; | 
|  | ti->limit_swap_bios = true; | 
|  | ti->accounts_remapped_io = true; | 
|  |  | 
|  | dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); | 
|  | crypt_dtr(ti); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int crypt_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | struct dm_crypt_io *io; | 
|  | struct crypt_config *cc = ti->private; | 
|  | unsigned max_sectors; | 
|  |  | 
|  | /* | 
|  | * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. | 
|  | * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight | 
|  | * - for REQ_OP_DISCARD caller must use flush if IO ordering matters | 
|  | */ | 
|  | if (unlikely(bio->bi_opf & REQ_PREFLUSH || | 
|  | bio_op(bio) == REQ_OP_DISCARD)) { | 
|  | bio_set_dev(bio, cc->dev->bdev); | 
|  | if (bio_sectors(bio)) | 
|  | bio->bi_iter.bi_sector = cc->start + | 
|  | dm_target_offset(ti, bio->bi_iter.bi_sector); | 
|  | return DM_MAPIO_REMAPPED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if bio is too large, split as needed. | 
|  | */ | 
|  | max_sectors = get_max_request_sectors(ti, bio); | 
|  | if (unlikely(bio_sectors(bio) > max_sectors)) | 
|  | dm_accept_partial_bio(bio, max_sectors); | 
|  |  | 
|  | /* | 
|  | * Ensure that bio is a multiple of internal sector encryption size | 
|  | * and is aligned to this size as defined in IO hints. | 
|  | */ | 
|  | if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) | 
|  | return DM_MAPIO_KILL; | 
|  |  | 
|  | if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) | 
|  | return DM_MAPIO_KILL; | 
|  |  | 
|  | io = dm_per_bio_data(bio, cc->per_bio_data_size); | 
|  | crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); | 
|  |  | 
|  | if (cc->tuple_size) { | 
|  | unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); | 
|  |  | 
|  | if (unlikely(tag_len > KMALLOC_MAX_SIZE)) | 
|  | io->integrity_metadata = NULL; | 
|  | else | 
|  | io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
|  |  | 
|  | if (unlikely(!io->integrity_metadata)) { | 
|  | if (bio_sectors(bio) > cc->tag_pool_max_sectors) | 
|  | dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); | 
|  | io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); | 
|  | io->integrity_metadata_from_pool = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (crypt_integrity_aead(cc)) | 
|  | io->ctx.r.req_aead = (struct aead_request *)(io + 1); | 
|  | else | 
|  | io->ctx.r.req = (struct skcipher_request *)(io + 1); | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) { | 
|  | if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) | 
|  | kcryptd_queue_read(io); | 
|  | } else | 
|  | kcryptd_queue_crypt(io); | 
|  |  | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | static char hex2asc(unsigned char c) | 
|  | { | 
|  | return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); | 
|  | } | 
|  |  | 
|  | static void crypt_status(struct dm_target *ti, status_type_t type, | 
|  | unsigned int status_flags, char *result, unsigned int maxlen) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | unsigned int i, sz = 0; | 
|  | int num_feature_args = 0; | 
|  |  | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | result[0] = '\0'; | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s ", cc->cipher_string); | 
|  |  | 
|  | if (cc->key_size > 0) { | 
|  | if (cc->key_string) | 
|  | DMEMIT(":%u:%s", cc->key_size, cc->key_string); | 
|  | else { | 
|  | for (i = 0; i < cc->key_size; i++) { | 
|  | DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), | 
|  | hex2asc(cc->key[i] & 0xf)); | 
|  | } | 
|  | } | 
|  | } else | 
|  | DMEMIT("-"); | 
|  |  | 
|  | DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, | 
|  | cc->dev->name, (unsigned long long)cc->start); | 
|  |  | 
|  | num_feature_args += !!ti->num_discard_bios; | 
|  | num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
|  | num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); | 
|  | num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
|  | num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); | 
|  | num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); | 
|  | num_feature_args += !!cc->used_tag_size; | 
|  | num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); | 
|  | num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); | 
|  | num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); | 
|  | if (num_feature_args) { | 
|  | DMEMIT(" %d", num_feature_args); | 
|  | if (ti->num_discard_bios) | 
|  | DMEMIT(" allow_discards"); | 
|  | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) | 
|  | DMEMIT(" same_cpu_crypt"); | 
|  | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) | 
|  | DMEMIT(" high_priority"); | 
|  | if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) | 
|  | DMEMIT(" submit_from_crypt_cpus"); | 
|  | if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) | 
|  | DMEMIT(" no_read_workqueue"); | 
|  | if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) | 
|  | DMEMIT(" no_write_workqueue"); | 
|  | if (cc->used_tag_size) | 
|  | DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); | 
|  | if (cc->sector_size != (1 << SECTOR_SHIFT)) | 
|  | DMEMIT(" sector_size:%d", cc->sector_size); | 
|  | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
|  | DMEMIT(" iv_large_sectors"); | 
|  | if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) | 
|  | DMEMIT(" integrity_key_size:%u", cc->key_mac_size); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_IMA: | 
|  | DMEMIT_TARGET_NAME_VERSION(ti->type); | 
|  | DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); | 
|  | DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); | 
|  | DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); | 
|  | DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? | 
|  | 'y' : 'n'); | 
|  | DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? | 
|  | 'y' : 'n'); | 
|  | DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? | 
|  | 'y' : 'n'); | 
|  | DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? | 
|  | 'y' : 'n'); | 
|  |  | 
|  | if (cc->used_tag_size) | 
|  | DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", | 
|  | cc->used_tag_size, cc->cipher_auth); | 
|  | if (cc->sector_size != (1 << SECTOR_SHIFT)) | 
|  | DMEMIT(",sector_size=%d", cc->sector_size); | 
|  | if (cc->cipher_string) | 
|  | DMEMIT(",cipher_string=%s", cc->cipher_string); | 
|  |  | 
|  | DMEMIT(",key_size=%u", cc->key_size); | 
|  | DMEMIT(",key_parts=%u", cc->key_parts); | 
|  | DMEMIT(",key_extra_size=%u", cc->key_extra_size); | 
|  | DMEMIT(",key_mac_size=%u", cc->key_mac_size); | 
|  | DMEMIT(";"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void crypt_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | set_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | } | 
|  |  | 
|  | static int crypt_preresume(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { | 
|  | DMERR("aborting resume - crypt key is not set."); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_resume(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | } | 
|  |  | 
|  | /* Message interface | 
|  | *	key set <key> | 
|  | *	key wipe | 
|  | */ | 
|  | static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, | 
|  | char *result, unsigned int maxlen) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | int key_size, ret = -EINVAL; | 
|  |  | 
|  | if (argc < 2) | 
|  | goto error; | 
|  |  | 
|  | if (!strcasecmp(argv[0], "key")) { | 
|  | if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { | 
|  | DMWARN("not suspended during key manipulation."); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (argc == 3 && !strcasecmp(argv[1], "set")) { | 
|  | /* The key size may not be changed. */ | 
|  | key_size = get_key_size(&argv[2]); | 
|  | if (key_size < 0 || cc->key_size != key_size) { | 
|  | memset(argv[2], '0', strlen(argv[2])); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = crypt_set_key(cc, argv[2]); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->init) | 
|  | ret = cc->iv_gen_ops->init(cc); | 
|  | /* wipe the kernel key payload copy */ | 
|  | if (cc->key_string) | 
|  | memset(cc->key, 0, cc->key_size * sizeof(u8)); | 
|  | return ret; | 
|  | } | 
|  | if (argc == 2 && !strcasecmp(argv[1], "wipe")) | 
|  | return crypt_wipe_key(cc); | 
|  | } | 
|  |  | 
|  | error: | 
|  | DMWARN("unrecognised message received."); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int crypt_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | return fn(ti, cc->dev, cc->start, ti->len, data); | 
|  | } | 
|  |  | 
|  | static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | limits->logical_block_size = | 
|  | max_t(unsigned int, limits->logical_block_size, cc->sector_size); | 
|  | limits->physical_block_size = | 
|  | max_t(unsigned int, limits->physical_block_size, cc->sector_size); | 
|  | limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); | 
|  | limits->dma_alignment = limits->logical_block_size - 1; | 
|  |  | 
|  | /* | 
|  | * For zoned dm-crypt targets, there will be no internal splitting of | 
|  | * write BIOs to avoid exceeding BIO_MAX_VECS vectors per BIO. But | 
|  | * without respecting this limit, crypt_alloc_buffer() will trigger a | 
|  | * BUG(). Avoid this by forcing DM core to split write BIOs to this | 
|  | * limit. | 
|  | */ | 
|  | if (ti->emulate_zone_append) | 
|  | limits->max_hw_sectors = min(limits->max_hw_sectors, | 
|  | BIO_MAX_VECS << PAGE_SECTORS_SHIFT); | 
|  | } | 
|  |  | 
|  | static struct target_type crypt_target = { | 
|  | .name   = "crypt", | 
|  | .version = {1, 28, 0}, | 
|  | .module = THIS_MODULE, | 
|  | .ctr    = crypt_ctr, | 
|  | .dtr    = crypt_dtr, | 
|  | .features = DM_TARGET_ZONED_HM, | 
|  | .report_zones = crypt_report_zones, | 
|  | .map    = crypt_map, | 
|  | .status = crypt_status, | 
|  | .postsuspend = crypt_postsuspend, | 
|  | .preresume = crypt_preresume, | 
|  | .resume = crypt_resume, | 
|  | .message = crypt_message, | 
|  | .iterate_devices = crypt_iterate_devices, | 
|  | .io_hints = crypt_io_hints, | 
|  | }; | 
|  | module_dm(crypt); | 
|  |  | 
|  | MODULE_AUTHOR("Jana Saout <jana@saout.de>"); | 
|  | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); | 
|  | MODULE_LICENSE("GPL"); |