|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Virtual PTP 1588 clock for use with LM-safe VMclock device. | 
|  | * | 
|  | * Copyright © 2024 Amazon.com, Inc. or its affiliates. | 
|  | */ | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <uapi/linux/vmclock-abi.h> | 
|  |  | 
|  | #include <linux/ptp_clock_kernel.h> | 
|  |  | 
|  | #ifdef CONFIG_X86 | 
|  | #include <asm/pvclock.h> | 
|  | #include <asm/kvmclock.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KVM_GUEST | 
|  | #define SUPPORT_KVMCLOCK | 
|  | #endif | 
|  |  | 
|  | static DEFINE_IDA(vmclock_ida); | 
|  |  | 
|  | ACPI_MODULE_NAME("vmclock"); | 
|  |  | 
|  | struct vmclock_state { | 
|  | struct resource res; | 
|  | struct vmclock_abi *clk; | 
|  | struct miscdevice miscdev; | 
|  | struct ptp_clock_info ptp_clock_info; | 
|  | struct ptp_clock *ptp_clock; | 
|  | enum clocksource_ids cs_id, sys_cs_id; | 
|  | int index; | 
|  | char *name; | 
|  | }; | 
|  |  | 
|  | #define VMCLOCK_MAX_WAIT ms_to_ktime(100) | 
|  |  | 
|  | /* Require at least the flags field to be present. All else can be optional. */ | 
|  | #define VMCLOCK_MIN_SIZE offsetof(struct vmclock_abi, pad) | 
|  |  | 
|  | #define VMCLOCK_FIELD_PRESENT(_c, _f)			  \ | 
|  | (le32_to_cpu((_c)->size) >= (offsetof(struct vmclock_abi, _f) +	\ | 
|  | sizeof((_c)->_f))) | 
|  |  | 
|  | /* | 
|  | * Multiply a 64-bit count by a 64-bit tick 'period' in units of seconds >> 64 | 
|  | * and add the fractional second part of the reference time. | 
|  | * | 
|  | * The result is a 128-bit value, the top 64 bits of which are seconds, and | 
|  | * the low 64 bits are (seconds >> 64). | 
|  | */ | 
|  | static uint64_t mul_u64_u64_shr_add_u64(uint64_t *res_hi, uint64_t delta, | 
|  | uint64_t period, uint8_t shift, | 
|  | uint64_t frac_sec) | 
|  | { | 
|  | unsigned __int128 res = (unsigned __int128)delta * period; | 
|  |  | 
|  | res >>= shift; | 
|  | res += frac_sec; | 
|  | *res_hi = res >> 64; | 
|  | return (uint64_t)res; | 
|  | } | 
|  |  | 
|  | static bool tai_adjust(struct vmclock_abi *clk, uint64_t *sec) | 
|  | { | 
|  | if (likely(clk->time_type == VMCLOCK_TIME_UTC)) | 
|  | return true; | 
|  |  | 
|  | if (clk->time_type == VMCLOCK_TIME_TAI && | 
|  | (le64_to_cpu(clk->flags) & VMCLOCK_FLAG_TAI_OFFSET_VALID)) { | 
|  | if (sec) | 
|  | *sec += (int16_t)le16_to_cpu(clk->tai_offset_sec); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int vmclock_get_crosststamp(struct vmclock_state *st, | 
|  | struct ptp_system_timestamp *sts, | 
|  | struct system_counterval_t *system_counter, | 
|  | struct timespec64 *tspec) | 
|  | { | 
|  | ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT); | 
|  | struct system_time_snapshot systime_snapshot; | 
|  | uint64_t cycle, delta, seq, frac_sec; | 
|  |  | 
|  | #ifdef CONFIG_X86 | 
|  | /* | 
|  | * We'd expect the hypervisor to know this and to report the clock | 
|  | * status as VMCLOCK_STATUS_UNRELIABLE. But be paranoid. | 
|  | */ | 
|  | if (check_tsc_unstable()) | 
|  | return -EINVAL; | 
|  | #endif | 
|  |  | 
|  | while (1) { | 
|  | seq = le32_to_cpu(st->clk->seq_count) & ~1ULL; | 
|  |  | 
|  | /* | 
|  | * This pairs with a write barrier in the hypervisor | 
|  | * which populates this structure. | 
|  | */ | 
|  | virt_rmb(); | 
|  |  | 
|  | if (st->clk->clock_status == VMCLOCK_STATUS_UNRELIABLE) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * When invoked for gettimex64(), fill in the pre/post system | 
|  | * times. The simple case is when system time is based on the | 
|  | * same counter as st->cs_id, in which case all three times | 
|  | * will be derived from the *same* counter value. | 
|  | * | 
|  | * If the system isn't using the same counter, then the value | 
|  | * from ktime_get_snapshot() will still be used as pre_ts, and | 
|  | * ptp_read_system_postts() is called to populate postts after | 
|  | * calling get_cycles(). | 
|  | * | 
|  | * The conversion to timespec64 happens further down, outside | 
|  | * the seq_count loop. | 
|  | */ | 
|  | if (sts) { | 
|  | ktime_get_snapshot(&systime_snapshot); | 
|  | if (systime_snapshot.cs_id == st->cs_id) { | 
|  | cycle = systime_snapshot.cycles; | 
|  | } else { | 
|  | cycle = get_cycles(); | 
|  | ptp_read_system_postts(sts); | 
|  | } | 
|  | } else { | 
|  | cycle = get_cycles(); | 
|  | } | 
|  |  | 
|  | delta = cycle - le64_to_cpu(st->clk->counter_value); | 
|  |  | 
|  | frac_sec = mul_u64_u64_shr_add_u64(&tspec->tv_sec, delta, | 
|  | le64_to_cpu(st->clk->counter_period_frac_sec), | 
|  | st->clk->counter_period_shift, | 
|  | le64_to_cpu(st->clk->time_frac_sec)); | 
|  | tspec->tv_nsec = mul_u64_u64_shr(frac_sec, NSEC_PER_SEC, 64); | 
|  | tspec->tv_sec += le64_to_cpu(st->clk->time_sec); | 
|  |  | 
|  | if (!tai_adjust(st->clk, &tspec->tv_sec)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * This pairs with a write barrier in the hypervisor | 
|  | * which populates this structure. | 
|  | */ | 
|  | virt_rmb(); | 
|  | if (seq == le32_to_cpu(st->clk->seq_count)) | 
|  | break; | 
|  |  | 
|  | if (ktime_after(ktime_get(), deadline)) | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | if (system_counter) { | 
|  | system_counter->cycles = cycle; | 
|  | system_counter->cs_id = st->cs_id; | 
|  | } | 
|  |  | 
|  | if (sts) { | 
|  | sts->pre_ts = ktime_to_timespec64(systime_snapshot.real); | 
|  | if (systime_snapshot.cs_id == st->cs_id) | 
|  | sts->post_ts = sts->pre_ts; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef SUPPORT_KVMCLOCK | 
|  | /* | 
|  | * In the case where the system is using the KVM clock for timekeeping, convert | 
|  | * the TSC value into a KVM clock time in order to return a paired reading that | 
|  | * get_device_system_crosststamp() can cope with. | 
|  | */ | 
|  | static int vmclock_get_crosststamp_kvmclock(struct vmclock_state *st, | 
|  | struct ptp_system_timestamp *sts, | 
|  | struct system_counterval_t *system_counter, | 
|  | struct timespec64 *tspec) | 
|  | { | 
|  | struct pvclock_vcpu_time_info *pvti = this_cpu_pvti(); | 
|  | unsigned int pvti_ver; | 
|  | int ret; | 
|  |  | 
|  | preempt_disable_notrace(); | 
|  |  | 
|  | do { | 
|  | pvti_ver = pvclock_read_begin(pvti); | 
|  |  | 
|  | ret = vmclock_get_crosststamp(st, sts, system_counter, tspec); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | system_counter->cycles = __pvclock_read_cycles(pvti, | 
|  | system_counter->cycles); | 
|  | system_counter->cs_id = CSID_X86_KVM_CLK; | 
|  |  | 
|  | /* | 
|  | * This retry should never really happen; if the TSC is | 
|  | * stable and reliable enough across vCPUS that it is sane | 
|  | * for the hypervisor to expose a VMCLOCK device which uses | 
|  | * it as the reference counter, then the KVM clock sohuld be | 
|  | * in 'master clock mode' and basically never changed. But | 
|  | * the KVM clock is a fickle and often broken thing, so do | 
|  | * it "properly" just in case. | 
|  | */ | 
|  | } while (pvclock_read_retry(pvti, pvti_ver)); | 
|  |  | 
|  | preempt_enable_notrace(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int ptp_vmclock_get_time_fn(ktime_t *device_time, | 
|  | struct system_counterval_t *system_counter, | 
|  | void *ctx) | 
|  | { | 
|  | struct vmclock_state *st = ctx; | 
|  | struct timespec64 tspec; | 
|  | int ret; | 
|  |  | 
|  | #ifdef SUPPORT_KVMCLOCK | 
|  | if (READ_ONCE(st->sys_cs_id) == CSID_X86_KVM_CLK) | 
|  | ret = vmclock_get_crosststamp_kvmclock(st, NULL, system_counter, | 
|  | &tspec); | 
|  | else | 
|  | #endif | 
|  | ret = vmclock_get_crosststamp(st, NULL, system_counter, &tspec); | 
|  |  | 
|  | if (!ret) | 
|  | *device_time = timespec64_to_ktime(tspec); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ptp_vmclock_getcrosststamp(struct ptp_clock_info *ptp, | 
|  | struct system_device_crosststamp *xtstamp) | 
|  | { | 
|  | struct vmclock_state *st = container_of(ptp, struct vmclock_state, | 
|  | ptp_clock_info); | 
|  | int ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn, st, | 
|  | NULL, xtstamp); | 
|  | #ifdef SUPPORT_KVMCLOCK | 
|  | /* | 
|  | * On x86, the KVM clock may be used for the system time. We can | 
|  | * actually convert a TSC reading to that, and return a paired | 
|  | * timestamp that get_device_system_crosststamp() *can* handle. | 
|  | */ | 
|  | if (ret == -ENODEV) { | 
|  | struct system_time_snapshot systime_snapshot; | 
|  |  | 
|  | ktime_get_snapshot(&systime_snapshot); | 
|  |  | 
|  | if (systime_snapshot.cs_id == CSID_X86_TSC || | 
|  | systime_snapshot.cs_id == CSID_X86_KVM_CLK) { | 
|  | WRITE_ONCE(st->sys_cs_id, systime_snapshot.cs_id); | 
|  | ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn, | 
|  | st, NULL, xtstamp); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PTP clock operations | 
|  | */ | 
|  |  | 
|  | static int ptp_vmclock_adjfine(struct ptp_clock_info *ptp, long delta) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int ptp_vmclock_adjtime(struct ptp_clock_info *ptp, s64 delta) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int ptp_vmclock_settime(struct ptp_clock_info *ptp, | 
|  | const struct timespec64 *ts) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int ptp_vmclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, | 
|  | struct ptp_system_timestamp *sts) | 
|  | { | 
|  | struct vmclock_state *st = container_of(ptp, struct vmclock_state, | 
|  | ptp_clock_info); | 
|  |  | 
|  | return vmclock_get_crosststamp(st, sts, NULL, ts); | 
|  | } | 
|  |  | 
|  | static int ptp_vmclock_enable(struct ptp_clock_info *ptp, | 
|  | struct ptp_clock_request *rq, int on) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static const struct ptp_clock_info ptp_vmclock_info = { | 
|  | .owner		= THIS_MODULE, | 
|  | .max_adj	= 0, | 
|  | .n_ext_ts	= 0, | 
|  | .n_pins		= 0, | 
|  | .pps		= 0, | 
|  | .adjfine	= ptp_vmclock_adjfine, | 
|  | .adjtime	= ptp_vmclock_adjtime, | 
|  | .gettimex64	= ptp_vmclock_gettimex, | 
|  | .settime64	= ptp_vmclock_settime, | 
|  | .enable		= ptp_vmclock_enable, | 
|  | .getcrosststamp = ptp_vmclock_getcrosststamp, | 
|  | }; | 
|  |  | 
|  | static struct ptp_clock *vmclock_ptp_register(struct device *dev, | 
|  | struct vmclock_state *st) | 
|  | { | 
|  | enum clocksource_ids cs_id; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARM64) && | 
|  | st->clk->counter_id == VMCLOCK_COUNTER_ARM_VCNT) { | 
|  | /* Can we check it's the virtual counter? */ | 
|  | cs_id = CSID_ARM_ARCH_COUNTER; | 
|  | } else if (IS_ENABLED(CONFIG_X86) && | 
|  | st->clk->counter_id == VMCLOCK_COUNTER_X86_TSC) { | 
|  | cs_id = CSID_X86_TSC; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Only UTC, or TAI with offset */ | 
|  | if (!tai_adjust(st->clk, NULL)) { | 
|  | dev_info(dev, "vmclock does not provide unambiguous UTC\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | st->sys_cs_id = cs_id; | 
|  | st->cs_id = cs_id; | 
|  | st->ptp_clock_info = ptp_vmclock_info; | 
|  | strscpy(st->ptp_clock_info.name, st->name); | 
|  |  | 
|  | return ptp_clock_register(&st->ptp_clock_info, dev); | 
|  | } | 
|  |  | 
|  | static int vmclock_miscdev_mmap(struct file *fp, struct vm_area_struct *vma) | 
|  | { | 
|  | struct vmclock_state *st = container_of(fp->private_data, | 
|  | struct vmclock_state, miscdev); | 
|  |  | 
|  | if ((vma->vm_flags & (VM_READ|VM_WRITE)) != VM_READ) | 
|  | return -EROFS; | 
|  |  | 
|  | if (vma->vm_end - vma->vm_start != PAGE_SIZE || vma->vm_pgoff) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (io_remap_pfn_range(vma, vma->vm_start, | 
|  | st->res.start >> PAGE_SHIFT, PAGE_SIZE, | 
|  | vma->vm_page_prot)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t vmclock_miscdev_read(struct file *fp, char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct vmclock_state *st = container_of(fp->private_data, | 
|  | struct vmclock_state, miscdev); | 
|  | ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT); | 
|  | size_t max_count; | 
|  | uint32_t seq; | 
|  |  | 
|  | if (*ppos >= PAGE_SIZE) | 
|  | return 0; | 
|  |  | 
|  | max_count = PAGE_SIZE - *ppos; | 
|  | if (count > max_count) | 
|  | count = max_count; | 
|  |  | 
|  | while (1) { | 
|  | seq = le32_to_cpu(st->clk->seq_count) & ~1U; | 
|  | /* Pairs with hypervisor wmb */ | 
|  | virt_rmb(); | 
|  |  | 
|  | if (copy_to_user(buf, ((char *)st->clk) + *ppos, count)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Pairs with hypervisor wmb */ | 
|  | virt_rmb(); | 
|  | if (seq == le32_to_cpu(st->clk->seq_count)) | 
|  | break; | 
|  |  | 
|  | if (ktime_after(ktime_get(), deadline)) | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | *ppos += count; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations vmclock_miscdev_fops = { | 
|  | .owner = THIS_MODULE, | 
|  | .mmap = vmclock_miscdev_mmap, | 
|  | .read = vmclock_miscdev_read, | 
|  | }; | 
|  |  | 
|  | /* module operations */ | 
|  |  | 
|  | static void vmclock_remove(void *data) | 
|  | { | 
|  | struct vmclock_state *st = data; | 
|  |  | 
|  | if (st->ptp_clock) | 
|  | ptp_clock_unregister(st->ptp_clock); | 
|  |  | 
|  | if (st->miscdev.minor != MISC_DYNAMIC_MINOR) | 
|  | misc_deregister(&st->miscdev); | 
|  | } | 
|  |  | 
|  | static acpi_status vmclock_acpi_resources(struct acpi_resource *ares, void *data) | 
|  | { | 
|  | struct vmclock_state *st = data; | 
|  | struct resource_win win; | 
|  | struct resource *res = &win.res; | 
|  |  | 
|  | if (ares->type == ACPI_RESOURCE_TYPE_END_TAG) | 
|  | return AE_OK; | 
|  |  | 
|  | /* There can be only one */ | 
|  | if (resource_type(&st->res) == IORESOURCE_MEM) | 
|  | return AE_ERROR; | 
|  |  | 
|  | if (acpi_dev_resource_memory(ares, res) || | 
|  | acpi_dev_resource_address_space(ares, &win)) { | 
|  |  | 
|  | if (resource_type(res) != IORESOURCE_MEM || | 
|  | resource_size(res) < sizeof(st->clk)) | 
|  | return AE_ERROR; | 
|  |  | 
|  | st->res = *res; | 
|  | return AE_OK; | 
|  | } | 
|  |  | 
|  | return AE_ERROR; | 
|  | } | 
|  |  | 
|  | static int vmclock_probe_acpi(struct device *dev, struct vmclock_state *st) | 
|  | { | 
|  | struct acpi_device *adev = ACPI_COMPANION(dev); | 
|  | acpi_status status; | 
|  |  | 
|  | /* | 
|  | * This should never happen as this function is only called when | 
|  | * has_acpi_companion(dev) is true, but the logic is sufficiently | 
|  | * complex that Coverity can't see the tautology. | 
|  | */ | 
|  | if (!adev) | 
|  | return -ENODEV; | 
|  |  | 
|  | status = acpi_walk_resources(adev->handle, METHOD_NAME__CRS, | 
|  | vmclock_acpi_resources, st); | 
|  | if (ACPI_FAILURE(status) || resource_type(&st->res) != IORESOURCE_MEM) { | 
|  | dev_err(dev, "failed to get resources\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmclock_put_idx(void *data) | 
|  | { | 
|  | struct vmclock_state *st = data; | 
|  |  | 
|  | ida_free(&vmclock_ida, st->index); | 
|  | } | 
|  |  | 
|  | static int vmclock_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct vmclock_state *st; | 
|  | int ret; | 
|  |  | 
|  | st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL); | 
|  | if (!st) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (has_acpi_companion(dev)) | 
|  | ret = vmclock_probe_acpi(dev, st); | 
|  | else | 
|  | ret = -EINVAL; /* Only ACPI for now */ | 
|  |  | 
|  | if (ret) { | 
|  | dev_info(dev, "Failed to obtain physical address: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (resource_size(&st->res) < VMCLOCK_MIN_SIZE) { | 
|  | dev_info(dev, "Region too small (0x%llx)\n", | 
|  | resource_size(&st->res)); | 
|  | return -EINVAL; | 
|  | } | 
|  | st->clk = devm_memremap(dev, st->res.start, resource_size(&st->res), | 
|  | MEMREMAP_WB | MEMREMAP_DEC); | 
|  | if (IS_ERR(st->clk)) { | 
|  | ret = PTR_ERR(st->clk); | 
|  | dev_info(dev, "failed to map shared memory\n"); | 
|  | st->clk = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (le32_to_cpu(st->clk->magic) != VMCLOCK_MAGIC || | 
|  | le32_to_cpu(st->clk->size) > resource_size(&st->res) || | 
|  | le16_to_cpu(st->clk->version) != 1) { | 
|  | dev_info(dev, "vmclock magic fields invalid\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = ida_alloc(&vmclock_ida, GFP_KERNEL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | st->index = ret; | 
|  | ret = devm_add_action_or_reset(&pdev->dev, vmclock_put_idx, st); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | st->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "vmclock%d", st->index); | 
|  | if (!st->name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | st->miscdev.minor = MISC_DYNAMIC_MINOR; | 
|  |  | 
|  | ret = devm_add_action_or_reset(&pdev->dev, vmclock_remove, st); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If the structure is big enough, it can be mapped to userspace. | 
|  | * Theoretically a guest OS even using larger pages could still | 
|  | * use 4KiB PTEs to map smaller MMIO regions like this, but let's | 
|  | * cross that bridge if/when we come to it. | 
|  | */ | 
|  | if (le32_to_cpu(st->clk->size) >= PAGE_SIZE) { | 
|  | st->miscdev.fops = &vmclock_miscdev_fops; | 
|  | st->miscdev.name = st->name; | 
|  |  | 
|  | ret = misc_register(&st->miscdev); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* If there is valid clock information, register a PTP clock */ | 
|  | if (VMCLOCK_FIELD_PRESENT(st->clk, time_frac_sec)) { | 
|  | /* Can return a silent NULL, or an error. */ | 
|  | st->ptp_clock = vmclock_ptp_register(dev, st); | 
|  | if (IS_ERR(st->ptp_clock)) { | 
|  | ret = PTR_ERR(st->ptp_clock); | 
|  | st->ptp_clock = NULL; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!st->miscdev.minor && !st->ptp_clock) { | 
|  | /* Neither miscdev nor PTP registered */ | 
|  | dev_info(dev, "vmclock: Neither miscdev nor PTP available; not registering\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | dev_info(dev, "%s: registered %s%s%s\n", st->name, | 
|  | st->miscdev.minor ? "miscdev" : "", | 
|  | (st->miscdev.minor && st->ptp_clock) ? ", " : "", | 
|  | st->ptp_clock ? "PTP" : ""); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct acpi_device_id vmclock_acpi_ids[] = { | 
|  | { "AMZNC10C", 0 }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(acpi, vmclock_acpi_ids); | 
|  |  | 
|  | static struct platform_driver vmclock_platform_driver = { | 
|  | .probe		= vmclock_probe, | 
|  | .driver	= { | 
|  | .name	= "vmclock", | 
|  | .acpi_match_table = vmclock_acpi_ids, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(vmclock_platform_driver) | 
|  |  | 
|  | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | 
|  | MODULE_DESCRIPTION("PTP clock using VMCLOCK"); | 
|  | MODULE_LICENSE("GPL"); |