|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/fsverity.h> | 
|  | #include "extent_io.h" | 
|  | #include "extent-io-tree.h" | 
|  | #include "extent_map.h" | 
|  | #include "ctree.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "bio.h" | 
|  | #include "locking.h" | 
|  | #include "backref.h" | 
|  | #include "disk-io.h" | 
|  | #include "subpage.h" | 
|  | #include "zoned.h" | 
|  | #include "block-group.h" | 
|  | #include "compression.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "file-item.h" | 
|  | #include "file.h" | 
|  | #include "dev-replace.h" | 
|  | #include "super.h" | 
|  | #include "transaction.h" | 
|  |  | 
|  | static struct kmem_cache *extent_buffer_cache; | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&fs_info->eb_leak_lock, flags); | 
|  | list_add(&eb->leak_list, &fs_info->allocated_ebs); | 
|  | spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&fs_info->eb_leak_lock, flags); | 
|  | list_del(&eb->leak_list); | 
|  | spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); | 
|  | } | 
|  |  | 
|  | void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * If we didn't get into open_ctree our allocated_ebs will not be | 
|  | * initialized, so just skip this. | 
|  | */ | 
|  | if (!fs_info->allocated_ebs.next) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!list_empty(&fs_info->allocated_ebs)); | 
|  | spin_lock_irqsave(&fs_info->eb_leak_lock, flags); | 
|  | while (!list_empty(&fs_info->allocated_ebs)) { | 
|  | eb = list_first_entry(&fs_info->allocated_ebs, | 
|  | struct extent_buffer, leak_list); | 
|  | btrfs_err(fs_info, | 
|  | "buffer leak start %llu len %u refs %d bflags %lu owner %llu", | 
|  | eb->start, eb->len, refcount_read(&eb->refs), eb->bflags, | 
|  | btrfs_header_owner(eb)); | 
|  | list_del(&eb->leak_list); | 
|  | WARN_ON_ONCE(1); | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | } | 
|  | spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); | 
|  | } | 
|  | #else | 
|  | #define btrfs_leak_debug_add_eb(eb)			do {} while (0) | 
|  | #define btrfs_leak_debug_del_eb(eb)			do {} while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Structure to record info about the bio being assembled, and other info like | 
|  | * how many bytes are there before stripe/ordered extent boundary. | 
|  | */ | 
|  | struct btrfs_bio_ctrl { | 
|  | struct btrfs_bio *bbio; | 
|  | /* Last byte contained in bbio + 1 . */ | 
|  | loff_t next_file_offset; | 
|  | enum btrfs_compression_type compress_type; | 
|  | u32 len_to_oe_boundary; | 
|  | blk_opf_t opf; | 
|  | /* | 
|  | * For data read bios, we attempt to optimize csum lookups if the extent | 
|  | * generation is older than the current one. To make this possible, we | 
|  | * need to track the maximum generation of an extent in a bio_ctrl to | 
|  | * make the decision when submitting the bio. | 
|  | * | 
|  | * The pattern between do_readpage(), submit_one_bio() and | 
|  | * submit_extent_folio() is quite subtle, so tracking this is tricky. | 
|  | * | 
|  | * As we process extent E, we might submit a bio with existing built up | 
|  | * extents before adding E to a new bio, or we might just add E to the | 
|  | * bio. As a result, E's generation could apply to the current bio or | 
|  | * to the next one, so we need to be careful to update the bio_ctrl's | 
|  | * generation with E's only when we are sure E is added to bio_ctrl->bbio | 
|  | * in submit_extent_folio(). | 
|  | * | 
|  | * See the comment in btrfs_lookup_bio_sums() for more detail on the | 
|  | * need for this optimization. | 
|  | */ | 
|  | u64 generation; | 
|  | btrfs_bio_end_io_t end_io_func; | 
|  | struct writeback_control *wbc; | 
|  |  | 
|  | /* | 
|  | * The sectors of the page which are going to be submitted by | 
|  | * extent_writepage_io(). | 
|  | * This is to avoid touching ranges covered by compression/inline. | 
|  | */ | 
|  | unsigned long submit_bitmap; | 
|  | struct readahead_control *ractl; | 
|  |  | 
|  | /* | 
|  | * The start offset of the last used extent map by a read operation. | 
|  | * | 
|  | * This is for proper compressed read merge. | 
|  | * U64_MAX means we are starting the read and have made no progress yet. | 
|  | * | 
|  | * The current btrfs_bio_is_contig() only uses disk_bytenr as | 
|  | * the condition to check if the read can be merged with previous | 
|  | * bio, which is not correct. E.g. two file extents pointing to the | 
|  | * same extent but with different offset. | 
|  | * | 
|  | * So here we need to do extra checks to only merge reads that are | 
|  | * covered by the same extent map. | 
|  | * Just extent_map::start will be enough, as they are unique | 
|  | * inside the same inode. | 
|  | */ | 
|  | u64 last_em_start; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Helper to set the csum search commit root option for a bio_ctrl's bbio | 
|  | * before submitting the bio. | 
|  | * | 
|  | * Only for use by submit_one_bio(). | 
|  | */ | 
|  | static void bio_set_csum_search_commit_root(struct btrfs_bio_ctrl *bio_ctrl) | 
|  | { | 
|  | struct btrfs_bio *bbio = bio_ctrl->bbio; | 
|  |  | 
|  | ASSERT(bbio); | 
|  |  | 
|  | if (!(btrfs_op(&bbio->bio) == BTRFS_MAP_READ && is_data_inode(bbio->inode))) | 
|  | return; | 
|  |  | 
|  | bio_ctrl->bbio->csum_search_commit_root = | 
|  | (bio_ctrl->generation && | 
|  | bio_ctrl->generation < btrfs_get_fs_generation(bbio->inode->root->fs_info)); | 
|  | } | 
|  |  | 
|  | static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) | 
|  | { | 
|  | struct btrfs_bio *bbio = bio_ctrl->bbio; | 
|  |  | 
|  | if (!bbio) | 
|  | return; | 
|  |  | 
|  | /* Caller should ensure the bio has at least some range added */ | 
|  | ASSERT(bbio->bio.bi_iter.bi_size); | 
|  |  | 
|  | bio_set_csum_search_commit_root(bio_ctrl); | 
|  |  | 
|  | if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && | 
|  | bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) | 
|  | btrfs_submit_compressed_read(bbio); | 
|  | else | 
|  | btrfs_submit_bbio(bbio, 0); | 
|  |  | 
|  | /* The bbio is owned by the end_io handler now */ | 
|  | bio_ctrl->bbio = NULL; | 
|  | /* | 
|  | * We used the generation to decide whether to lookup csums in the | 
|  | * commit_root or not when we called bio_set_csum_search_commit_root() | 
|  | * above. Now, reset the generation for the next bio. | 
|  | */ | 
|  | bio_ctrl->generation = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit or fail the current bio in the bio_ctrl structure. | 
|  | */ | 
|  | static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) | 
|  | { | 
|  | struct btrfs_bio *bbio = bio_ctrl->bbio; | 
|  |  | 
|  | if (!bbio) | 
|  | return; | 
|  |  | 
|  | if (ret) { | 
|  | ASSERT(ret < 0); | 
|  | btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); | 
|  | /* The bio is owned by the end_io handler now */ | 
|  | bio_ctrl->bbio = NULL; | 
|  | } else { | 
|  | submit_one_bio(bio_ctrl); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __init extent_buffer_init_cachep(void) | 
|  | { | 
|  | extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", | 
|  | sizeof(struct extent_buffer), 0, 0, | 
|  | NULL); | 
|  | if (!extent_buffer_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cold extent_buffer_free_cachep(void) | 
|  | { | 
|  | /* | 
|  | * Make sure all delayed rcu free are flushed before we | 
|  | * destroy caches. | 
|  | */ | 
|  | rcu_barrier(); | 
|  | kmem_cache_destroy(extent_buffer_cache); | 
|  | } | 
|  |  | 
|  | static void process_one_folio(struct btrfs_fs_info *fs_info, | 
|  | struct folio *folio, const struct folio *locked_folio, | 
|  | unsigned long page_ops, u64 start, u64 end) | 
|  | { | 
|  | u32 len; | 
|  |  | 
|  | ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); | 
|  | len = end + 1 - start; | 
|  |  | 
|  | if (page_ops & PAGE_SET_ORDERED) | 
|  | btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); | 
|  | if (page_ops & PAGE_START_WRITEBACK) { | 
|  | btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); | 
|  | btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); | 
|  | } | 
|  | if (page_ops & PAGE_END_WRITEBACK) | 
|  | btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); | 
|  |  | 
|  | if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) | 
|  | btrfs_folio_end_lock(fs_info, folio, start, len); | 
|  | } | 
|  |  | 
|  | static void __process_folios_contig(struct address_space *mapping, | 
|  | const struct folio *locked_folio, u64 start, | 
|  | u64 end, unsigned long page_ops) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); | 
|  | pgoff_t index = start >> PAGE_SHIFT; | 
|  | pgoff_t end_index = end >> PAGE_SHIFT; | 
|  | struct folio_batch fbatch; | 
|  | int i; | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | while (index <= end_index) { | 
|  | int found_folios; | 
|  |  | 
|  | found_folios = filemap_get_folios_contig(mapping, &index, | 
|  | end_index, &fbatch); | 
|  | for (i = 0; i < found_folios; i++) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  |  | 
|  | process_one_folio(fs_info, folio, locked_folio, | 
|  | page_ops, start, end); | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static noinline void unlock_delalloc_folio(const struct inode *inode, | 
|  | struct folio *locked_folio, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | ASSERT(locked_folio); | 
|  |  | 
|  | __process_folios_contig(inode->i_mapping, locked_folio, start, end, | 
|  | PAGE_UNLOCK); | 
|  | } | 
|  |  | 
|  | static noinline int lock_delalloc_folios(struct inode *inode, | 
|  | struct folio *locked_folio, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | pgoff_t index = start >> PAGE_SHIFT; | 
|  | pgoff_t end_index = end >> PAGE_SHIFT; | 
|  | u64 processed_end = start; | 
|  | struct folio_batch fbatch; | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | while (index <= end_index) { | 
|  | unsigned int found_folios, i; | 
|  |  | 
|  | found_folios = filemap_get_folios_contig(mapping, &index, | 
|  | end_index, &fbatch); | 
|  | if (found_folios == 0) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < found_folios; i++) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  | u64 range_start; | 
|  | u32 range_len; | 
|  |  | 
|  | if (folio == locked_folio) | 
|  | continue; | 
|  |  | 
|  | folio_lock(folio); | 
|  | if (!folio_test_dirty(folio) || folio->mapping != mapping) { | 
|  | folio_unlock(folio); | 
|  | goto out; | 
|  | } | 
|  | range_start = max_t(u64, folio_pos(folio), start); | 
|  | range_len = min_t(u64, folio_end(folio), end + 1) - range_start; | 
|  | btrfs_folio_set_lock(fs_info, folio, range_start, range_len); | 
|  |  | 
|  | processed_end = range_start + range_len - 1; | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | folio_batch_release(&fbatch); | 
|  | if (processed_end > start) | 
|  | unlock_delalloc_folio(inode, locked_folio, start, processed_end); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and lock a contiguous range of bytes in the file marked as delalloc, no | 
|  | * more than @max_bytes. | 
|  | * | 
|  | * @start:	The original start bytenr to search. | 
|  | *		Will store the extent range start bytenr. | 
|  | * @end:	The original end bytenr of the search range | 
|  | *		Will store the extent range end bytenr. | 
|  | * | 
|  | * Return true if we find a delalloc range which starts inside the original | 
|  | * range, and @start/@end will store the delalloc range start/end. | 
|  | * | 
|  | * Return false if we can't find any delalloc range which starts inside the | 
|  | * original range, and @start/@end will be the non-delalloc range start/end. | 
|  | */ | 
|  | EXPORT_FOR_TESTS | 
|  | noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, | 
|  | struct folio *locked_folio, | 
|  | u64 *start, u64 *end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
|  | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
|  | const u64 orig_start = *start; | 
|  | const u64 orig_end = *end; | 
|  | /* The sanity tests may not set a valid fs_info. */ | 
|  | u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; | 
|  | u64 delalloc_start; | 
|  | u64 delalloc_end; | 
|  | bool found; | 
|  | struct extent_state *cached_state = NULL; | 
|  | int ret; | 
|  | int loops = 0; | 
|  |  | 
|  | /* Caller should pass a valid @end to indicate the search range end */ | 
|  | ASSERT(orig_end > orig_start); | 
|  |  | 
|  | /* The range should at least cover part of the folio */ | 
|  | ASSERT(!(orig_start >= folio_end(locked_folio) || | 
|  | orig_end <= folio_pos(locked_folio))); | 
|  | again: | 
|  | /* step one, find a bunch of delalloc bytes starting at start */ | 
|  | delalloc_start = *start; | 
|  | delalloc_end = 0; | 
|  |  | 
|  | /* | 
|  | * If @max_bytes is smaller than a block, btrfs_find_delalloc_range() can | 
|  | * return early without handling any dirty ranges. | 
|  | */ | 
|  | ASSERT(max_bytes >= fs_info->sectorsize); | 
|  |  | 
|  | found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, | 
|  | max_bytes, &cached_state); | 
|  | if (!found || delalloc_end <= *start || delalloc_start > orig_end) { | 
|  | *start = delalloc_start; | 
|  |  | 
|  | /* @delalloc_end can be -1, never go beyond @orig_end */ | 
|  | *end = min(delalloc_end, orig_end); | 
|  | btrfs_free_extent_state(cached_state); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start comes from the offset of locked_folio.  We have to lock | 
|  | * folios in order, so we can't process delalloc bytes before | 
|  | * locked_folio | 
|  | */ | 
|  | if (delalloc_start < *start) | 
|  | delalloc_start = *start; | 
|  |  | 
|  | /* | 
|  | * make sure to limit the number of folios we try to lock down | 
|  | */ | 
|  | if (delalloc_end + 1 - delalloc_start > max_bytes) | 
|  | delalloc_end = delalloc_start + max_bytes - 1; | 
|  |  | 
|  | /* step two, lock all the folios after the folios that has start */ | 
|  | ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, | 
|  | delalloc_end); | 
|  | ASSERT(!ret || ret == -EAGAIN); | 
|  | if (ret == -EAGAIN) { | 
|  | /* | 
|  | * Some of the folios are gone, lets avoid looping by | 
|  | * shortening the size of the delalloc range we're searching. | 
|  | */ | 
|  | btrfs_free_extent_state(cached_state); | 
|  | cached_state = NULL; | 
|  | if (!loops) { | 
|  | max_bytes = fs_info->sectorsize; | 
|  | loops = 1; | 
|  | goto again; | 
|  | } else { | 
|  | found = false; | 
|  | goto out_failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* step three, lock the state bits for the whole range */ | 
|  | btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state); | 
|  |  | 
|  | /* then test to make sure it is all still delalloc */ | 
|  | ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end, | 
|  | EXTENT_DELALLOC, cached_state); | 
|  |  | 
|  | btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); | 
|  | if (!ret) { | 
|  | unlock_delalloc_folio(inode, locked_folio, delalloc_start, | 
|  | delalloc_end); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | *start = delalloc_start; | 
|  | *end = delalloc_end; | 
|  | out_failed: | 
|  | return found; | 
|  | } | 
|  |  | 
|  | void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, | 
|  | const struct folio *locked_folio, | 
|  | struct extent_state **cached, | 
|  | u32 clear_bits, unsigned long page_ops) | 
|  | { | 
|  | btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); | 
|  |  | 
|  | __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, | 
|  | end, page_ops); | 
|  | } | 
|  |  | 
|  | static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); | 
|  |  | 
|  | if (!fsverity_active(folio->mapping->host) || | 
|  | btrfs_folio_test_uptodate(fs_info, folio, start, len) || | 
|  | start >= i_size_read(folio->mapping->host)) | 
|  | return true; | 
|  | return fsverity_verify_folio(folio); | 
|  | } | 
|  |  | 
|  | static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); | 
|  |  | 
|  | ASSERT(folio_pos(folio) <= start && | 
|  | start + len <= folio_end(folio)); | 
|  |  | 
|  | if (uptodate && btrfs_verify_folio(folio, start, len)) | 
|  | btrfs_folio_set_uptodate(fs_info, folio, start, len); | 
|  | else | 
|  | btrfs_folio_clear_uptodate(fs_info, folio, start, len); | 
|  |  | 
|  | if (!btrfs_is_subpage(fs_info, folio)) | 
|  | folio_unlock(folio); | 
|  | else | 
|  | btrfs_folio_end_lock(fs_info, folio, start, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a write IO is done, we need to: | 
|  | * | 
|  | * - clear the uptodate bits on error | 
|  | * - clear the writeback bits in the extent tree for the range | 
|  | * - filio_end_writeback()  if there is no more pending io for the folio | 
|  | * | 
|  | * Scheduling is not allowed, so the extent state tree is expected | 
|  | * to have one and only one object corresponding to this IO. | 
|  | */ | 
|  | static void end_bbio_data_write(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bbio->fs_info; | 
|  | struct bio *bio = &bbio->bio; | 
|  | int error = blk_status_to_errno(bio->bi_status); | 
|  | struct folio_iter fi; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_folio_all(fi, bio) { | 
|  | struct folio *folio = fi.folio; | 
|  | u64 start = folio_pos(folio) + fi.offset; | 
|  | u32 len = fi.length; | 
|  |  | 
|  | /* Our read/write should always be sector aligned. */ | 
|  | if (!IS_ALIGNED(fi.offset, sectorsize)) | 
|  | btrfs_err(fs_info, | 
|  | "partial page write in btrfs with offset %zu and length %zu", | 
|  | fi.offset, fi.length); | 
|  | else if (!IS_ALIGNED(fi.length, sectorsize)) | 
|  | btrfs_info(fs_info, | 
|  | "incomplete page write with offset %zu and length %zu", | 
|  | fi.offset, fi.length); | 
|  |  | 
|  | btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, | 
|  | !error); | 
|  | if (error) | 
|  | mapping_set_error(folio->mapping, error); | 
|  | btrfs_folio_clear_writeback(fs_info, folio, start, len); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) | 
|  | { | 
|  | ASSERT(folio_test_locked(folio)); | 
|  | if (!btrfs_is_subpage(fs_info, folio)) | 
|  | return; | 
|  |  | 
|  | ASSERT(folio_test_private(folio)); | 
|  | btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a data read IO is done, we need to: | 
|  | * | 
|  | * - clear the uptodate bits on error | 
|  | * - set the uptodate bits if things worked | 
|  | * - set the folio up to date if all extents in the tree are uptodate | 
|  | * - clear the lock bit in the extent tree | 
|  | * - unlock the folio if there are no other extents locked for it | 
|  | * | 
|  | * Scheduling is not allowed, so the extent state tree is expected | 
|  | * to have one and only one object corresponding to this IO. | 
|  | */ | 
|  | static void end_bbio_data_read(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bbio->fs_info; | 
|  | struct bio *bio = &bbio->bio; | 
|  | struct folio_iter fi; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  | bio_for_each_folio_all(fi, &bbio->bio) { | 
|  | bool uptodate = !bio->bi_status; | 
|  | struct folio *folio = fi.folio; | 
|  | struct inode *inode = folio->mapping->host; | 
|  | u64 start = folio_pos(folio) + fi.offset; | 
|  |  | 
|  | btrfs_debug(fs_info, | 
|  | "%s: bi_sector=%llu, err=%d, mirror=%u", | 
|  | __func__, bio->bi_iter.bi_sector, bio->bi_status, | 
|  | bbio->mirror_num); | 
|  |  | 
|  |  | 
|  | if (likely(uptodate)) { | 
|  | u64 end = start + fi.length - 1; | 
|  | loff_t i_size = i_size_read(inode); | 
|  |  | 
|  | /* | 
|  | * Zero out the remaining part if this range straddles | 
|  | * i_size. | 
|  | * | 
|  | * Here we should only zero the range inside the folio, | 
|  | * not touch anything else. | 
|  | * | 
|  | * NOTE: i_size is exclusive while end is inclusive and | 
|  | * folio_contains() takes PAGE_SIZE units. | 
|  | */ | 
|  | if (folio_contains(folio, i_size >> PAGE_SHIFT) && | 
|  | i_size <= end) { | 
|  | u32 zero_start = max(offset_in_folio(folio, i_size), | 
|  | offset_in_folio(folio, start)); | 
|  | u32 zero_len = offset_in_folio(folio, end) + 1 - | 
|  | zero_start; | 
|  |  | 
|  | folio_zero_range(folio, zero_start, zero_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update page status and unlock. */ | 
|  | end_folio_read(folio, uptodate, start, fi.length); | 
|  | } | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate every free slot in a provided array with folios using GFP_NOFS. | 
|  | * | 
|  | * @nr_folios:   number of folios to allocate | 
|  | * @order:	 the order of the folios to be allocated | 
|  | * @folio_array: the array to fill with folios; any existing non-NULL entries in | 
|  | *		 the array will be skipped | 
|  | * | 
|  | * Return: 0        if all folios were able to be allocated; | 
|  | *         -ENOMEM  otherwise, the partially allocated folios would be freed and | 
|  | *                  the array slots zeroed | 
|  | */ | 
|  | int btrfs_alloc_folio_array(unsigned int nr_folios, unsigned int order, | 
|  | struct folio **folio_array) | 
|  | { | 
|  | for (int i = 0; i < nr_folios; i++) { | 
|  | if (folio_array[i]) | 
|  | continue; | 
|  | folio_array[i] = folio_alloc(GFP_NOFS, order); | 
|  | if (!folio_array[i]) | 
|  | goto error; | 
|  | } | 
|  | return 0; | 
|  | error: | 
|  | for (int i = 0; i < nr_folios; i++) { | 
|  | if (folio_array[i]) | 
|  | folio_put(folio_array[i]); | 
|  | folio_array[i] = NULL; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate every free slot in a provided array with pages, using GFP_NOFS. | 
|  | * | 
|  | * @nr_pages:   number of pages to allocate | 
|  | * @page_array: the array to fill with pages; any existing non-null entries in | 
|  | *		the array will be skipped | 
|  | * @nofail:	whether using __GFP_NOFAIL flag | 
|  | * | 
|  | * Return: 0        if all pages were able to be allocated; | 
|  | *         -ENOMEM  otherwise, the partially allocated pages would be freed and | 
|  | *                  the array slots zeroed | 
|  | */ | 
|  | int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, | 
|  | bool nofail) | 
|  | { | 
|  | const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; | 
|  | unsigned int allocated; | 
|  |  | 
|  | for (allocated = 0; allocated < nr_pages;) { | 
|  | unsigned int last = allocated; | 
|  |  | 
|  | allocated = alloc_pages_bulk(gfp, nr_pages, page_array); | 
|  | if (unlikely(allocated == last)) { | 
|  | /* No progress, fail and do cleanup. */ | 
|  | for (int i = 0; i < allocated; i++) { | 
|  | __free_page(page_array[i]); | 
|  | page_array[i] = NULL; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate needed folios for the extent buffer. | 
|  | * | 
|  | * For now, the folios populated are always in order 0 (aka, single page). | 
|  | */ | 
|  | static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) | 
|  | { | 
|  | struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; | 
|  | int num_pages = num_extent_pages(eb); | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_alloc_page_array(num_pages, page_array, nofail); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | for (int i = 0; i < num_pages; i++) | 
|  | eb->folios[i] = page_folio(page_array[i]); | 
|  | eb->folio_size = PAGE_SIZE; | 
|  | eb->folio_shift = PAGE_SHIFT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, | 
|  | u64 disk_bytenr, loff_t file_offset) | 
|  | { | 
|  | struct bio *bio = &bio_ctrl->bbio->bio; | 
|  | const sector_t sector = disk_bytenr >> SECTOR_SHIFT; | 
|  |  | 
|  | if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { | 
|  | /* | 
|  | * For compression, all IO should have its logical bytenr set | 
|  | * to the starting bytenr of the compressed extent. | 
|  | */ | 
|  | return bio->bi_iter.bi_sector == sector; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To merge into a bio both the disk sector and the logical offset in | 
|  | * the file need to be contiguous. | 
|  | */ | 
|  | return bio_ctrl->next_file_offset == file_offset && | 
|  | bio_end_sector(bio) == sector; | 
|  | } | 
|  |  | 
|  | static void alloc_new_bio(struct btrfs_inode *inode, | 
|  | struct btrfs_bio_ctrl *bio_ctrl, | 
|  | u64 disk_bytenr, u64 file_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_bio *bbio; | 
|  |  | 
|  | bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, | 
|  | bio_ctrl->end_io_func, NULL); | 
|  | bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; | 
|  | bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; | 
|  | bbio->inode = inode; | 
|  | bbio->file_offset = file_offset; | 
|  | bio_ctrl->bbio = bbio; | 
|  | bio_ctrl->len_to_oe_boundary = U32_MAX; | 
|  | bio_ctrl->next_file_offset = file_offset; | 
|  |  | 
|  | /* Limit data write bios to the ordered boundary. */ | 
|  | if (bio_ctrl->wbc) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_extent(inode, file_offset); | 
|  | if (ordered) { | 
|  | bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, | 
|  | ordered->file_offset + | 
|  | ordered->disk_num_bytes - file_offset); | 
|  | bbio->ordered = ordered; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pick the last added device to support cgroup writeback.  For | 
|  | * multi-device file systems this means blk-cgroup policies have | 
|  | * to always be set on the last added/replaced device. | 
|  | * This is a bit odd but has been like that for a long time. | 
|  | */ | 
|  | bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); | 
|  | wbc_init_bio(bio_ctrl->wbc, &bbio->bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @disk_bytenr: logical bytenr where the write will be | 
|  | * @page:	page to add to the bio | 
|  | * @size:	portion of page that we want to write to | 
|  | * @pg_offset:	offset of the new bio or to check whether we are adding | 
|  | *              a contiguous page to the previous one | 
|  | * @read_em_generation: generation of the extent_map we are submitting | 
|  | *			(only used for read) | 
|  | * | 
|  | * The will either add the page into the existing @bio_ctrl->bbio, or allocate a | 
|  | * new one in @bio_ctrl->bbio. | 
|  | * The mirror number for this IO should already be initialized in | 
|  | * @bio_ctrl->mirror_num. | 
|  | */ | 
|  | static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, | 
|  | u64 disk_bytenr, struct folio *folio, | 
|  | size_t size, unsigned long pg_offset, | 
|  | u64 read_em_generation) | 
|  | { | 
|  | struct btrfs_inode *inode = folio_to_inode(folio); | 
|  | loff_t file_offset = folio_pos(folio) + pg_offset; | 
|  |  | 
|  | ASSERT(pg_offset + size <= folio_size(folio)); | 
|  | ASSERT(bio_ctrl->end_io_func); | 
|  |  | 
|  | if (bio_ctrl->bbio && | 
|  | !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset)) | 
|  | submit_one_bio(bio_ctrl); | 
|  |  | 
|  | do { | 
|  | u32 len = size; | 
|  |  | 
|  | /* Allocate new bio if needed */ | 
|  | if (!bio_ctrl->bbio) | 
|  | alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset); | 
|  |  | 
|  | /* Cap to the current ordered extent boundary if there is one. */ | 
|  | if (len > bio_ctrl->len_to_oe_boundary) { | 
|  | ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); | 
|  | ASSERT(is_data_inode(inode)); | 
|  | len = bio_ctrl->len_to_oe_boundary; | 
|  | } | 
|  |  | 
|  | if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { | 
|  | /* bio full: move on to a new one */ | 
|  | submit_one_bio(bio_ctrl); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Now that the folio is definitely added to the bio, include its | 
|  | * generation in the max generation calculation. | 
|  | */ | 
|  | bio_ctrl->generation = max(bio_ctrl->generation, read_em_generation); | 
|  | bio_ctrl->next_file_offset += len; | 
|  |  | 
|  | if (bio_ctrl->wbc) | 
|  | wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len); | 
|  |  | 
|  | size -= len; | 
|  | pg_offset += len; | 
|  | disk_bytenr += len; | 
|  | file_offset += len; | 
|  |  | 
|  | /* | 
|  | * len_to_oe_boundary defaults to U32_MAX, which isn't folio or | 
|  | * sector aligned.  alloc_new_bio() then sets it to the end of | 
|  | * our ordered extent for writes into zoned devices. | 
|  | * | 
|  | * When len_to_oe_boundary is tracking an ordered extent, we | 
|  | * trust the ordered extent code to align things properly, and | 
|  | * the check above to cap our write to the ordered extent | 
|  | * boundary is correct. | 
|  | * | 
|  | * When len_to_oe_boundary is U32_MAX, the cap above would | 
|  | * result in a 4095 byte IO for the last folio right before | 
|  | * we hit the bio limit of UINT_MAX.  bio_add_folio() has all | 
|  | * the checks required to make sure we don't overflow the bio, | 
|  | * and we should just ignore len_to_oe_boundary completely | 
|  | * unless we're using it to track an ordered extent. | 
|  | * | 
|  | * It's pretty hard to make a bio sized U32_MAX, but it can | 
|  | * happen when the page cache is able to feed us contiguous | 
|  | * folios for large extents. | 
|  | */ | 
|  | if (bio_ctrl->len_to_oe_boundary != U32_MAX) | 
|  | bio_ctrl->len_to_oe_boundary -= len; | 
|  |  | 
|  | /* Ordered extent boundary: move on to a new bio. */ | 
|  | if (bio_ctrl->len_to_oe_boundary == 0) | 
|  | submit_one_bio(bio_ctrl); | 
|  | } while (size); | 
|  | } | 
|  |  | 
|  | static int attach_extent_buffer_folio(struct extent_buffer *eb, | 
|  | struct folio *folio, | 
|  | struct btrfs_folio_state *prealloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If the page is mapped to btree inode, we should hold the private | 
|  | * lock to prevent race. | 
|  | * For cloned or dummy extent buffers, their pages are not mapped and | 
|  | * will not race with any other ebs. | 
|  | */ | 
|  | if (folio->mapping) | 
|  | lockdep_assert_held(&folio->mapping->i_private_lock); | 
|  |  | 
|  | if (!btrfs_meta_is_subpage(fs_info)) { | 
|  | if (!folio_test_private(folio)) | 
|  | folio_attach_private(folio, eb); | 
|  | else | 
|  | WARN_ON(folio_get_private(folio) != eb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Already mapped, just free prealloc */ | 
|  | if (folio_test_private(folio)) { | 
|  | btrfs_free_folio_state(prealloc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (prealloc) | 
|  | /* Has preallocated memory for subpage */ | 
|  | folio_attach_private(folio, prealloc); | 
|  | else | 
|  | /* Do new allocation to attach subpage */ | 
|  | ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int set_folio_extent_mapped(struct folio *folio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  |  | 
|  | ASSERT(folio->mapping); | 
|  |  | 
|  | if (folio_test_private(folio)) | 
|  | return 0; | 
|  |  | 
|  | fs_info = folio_to_fs_info(folio); | 
|  |  | 
|  | if (btrfs_is_subpage(fs_info, folio)) | 
|  | return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); | 
|  |  | 
|  | folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void clear_folio_extent_mapped(struct folio *folio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  |  | 
|  | ASSERT(folio->mapping); | 
|  |  | 
|  | if (!folio_test_private(folio)) | 
|  | return; | 
|  |  | 
|  | fs_info = folio_to_fs_info(folio); | 
|  | if (btrfs_is_subpage(fs_info, folio)) | 
|  | return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA); | 
|  |  | 
|  | folio_detach_private(folio); | 
|  | } | 
|  |  | 
|  | static struct extent_map *get_extent_map(struct btrfs_inode *inode, | 
|  | struct folio *folio, u64 start, | 
|  | u64 len, struct extent_map **em_cached) | 
|  | { | 
|  | struct extent_map *em; | 
|  |  | 
|  | ASSERT(em_cached); | 
|  |  | 
|  | if (*em_cached) { | 
|  | em = *em_cached; | 
|  | if (btrfs_extent_map_in_tree(em) && start >= em->start && | 
|  | start < btrfs_extent_map_end(em)) { | 
|  | refcount_inc(&em->refs); | 
|  | return em; | 
|  | } | 
|  |  | 
|  | btrfs_free_extent_map(em); | 
|  | *em_cached = NULL; | 
|  | } | 
|  |  | 
|  | em = btrfs_get_extent(inode, folio, start, len); | 
|  | if (!IS_ERR(em)) { | 
|  | BUG_ON(*em_cached); | 
|  | refcount_inc(&em->refs); | 
|  | *em_cached = em; | 
|  | } | 
|  |  | 
|  | return em; | 
|  | } | 
|  |  | 
|  | static void btrfs_readahead_expand(struct readahead_control *ractl, | 
|  | const struct extent_map *em) | 
|  | { | 
|  | const u64 ra_pos = readahead_pos(ractl); | 
|  | const u64 ra_end = ra_pos + readahead_length(ractl); | 
|  | const u64 em_end = em->start + em->len; | 
|  |  | 
|  | /* No expansion for holes and inline extents. */ | 
|  | if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE) | 
|  | return; | 
|  |  | 
|  | ASSERT(em_end >= ra_pos, | 
|  | "extent_map %llu %llu ends before current readahead position %llu", | 
|  | em->start, em->len, ra_pos); | 
|  | if (em_end > ra_end) | 
|  | readahead_expand(ractl, ra_pos, em_end - ra_pos); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * basic readpage implementation.  Locked extent state structs are inserted | 
|  | * into the tree that are removed when the IO is done (by the end_io | 
|  | * handlers) | 
|  | * XXX JDM: This needs looking at to ensure proper page locking | 
|  | * return 0 on success, otherwise return error | 
|  | */ | 
|  | static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, | 
|  | struct btrfs_bio_ctrl *bio_ctrl) | 
|  | { | 
|  | struct inode *inode = folio->mapping->host; | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
|  | u64 start = folio_pos(folio); | 
|  | const u64 end = start + folio_size(folio) - 1; | 
|  | u64 extent_offset; | 
|  | u64 last_byte = i_size_read(inode); | 
|  | struct extent_map *em; | 
|  | int ret = 0; | 
|  | const size_t blocksize = fs_info->sectorsize; | 
|  |  | 
|  | ret = set_folio_extent_mapped(folio); | 
|  | if (ret < 0) { | 
|  | folio_unlock(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (folio_contains(folio, last_byte >> PAGE_SHIFT)) { | 
|  | size_t zero_offset = offset_in_folio(folio, last_byte); | 
|  |  | 
|  | if (zero_offset) | 
|  | folio_zero_range(folio, zero_offset, | 
|  | folio_size(folio) - zero_offset); | 
|  | } | 
|  | bio_ctrl->end_io_func = end_bbio_data_read; | 
|  | begin_folio_read(fs_info, folio); | 
|  | for (u64 cur = start; cur <= end; cur += blocksize) { | 
|  | enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; | 
|  | unsigned long pg_offset = offset_in_folio(folio, cur); | 
|  | bool force_bio_submit = false; | 
|  | u64 disk_bytenr; | 
|  | u64 block_start; | 
|  | u64 em_gen; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); | 
|  | if (cur >= last_byte) { | 
|  | folio_zero_range(folio, pg_offset, end - cur + 1); | 
|  | end_folio_read(folio, true, cur, end - cur + 1); | 
|  | break; | 
|  | } | 
|  | if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { | 
|  | end_folio_read(folio, true, cur, blocksize); | 
|  | continue; | 
|  | } | 
|  | em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); | 
|  | if (IS_ERR(em)) { | 
|  | end_folio_read(folio, false, cur, end + 1 - cur); | 
|  | return PTR_ERR(em); | 
|  | } | 
|  | extent_offset = cur - em->start; | 
|  | BUG_ON(btrfs_extent_map_end(em) <= cur); | 
|  | BUG_ON(end < cur); | 
|  |  | 
|  | compress_type = btrfs_extent_map_compression(em); | 
|  |  | 
|  | /* | 
|  | * Only expand readahead for extents which are already creating | 
|  | * the pages anyway in add_ra_bio_pages, which is compressed | 
|  | * extents in the non subpage case. | 
|  | */ | 
|  | if (bio_ctrl->ractl && | 
|  | !btrfs_is_subpage(fs_info, folio) && | 
|  | compress_type != BTRFS_COMPRESS_NONE) | 
|  | btrfs_readahead_expand(bio_ctrl->ractl, em); | 
|  |  | 
|  | if (compress_type != BTRFS_COMPRESS_NONE) | 
|  | disk_bytenr = em->disk_bytenr; | 
|  | else | 
|  | disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; | 
|  |  | 
|  | if (em->flags & EXTENT_FLAG_PREALLOC) | 
|  | block_start = EXTENT_MAP_HOLE; | 
|  | else | 
|  | block_start = btrfs_extent_map_block_start(em); | 
|  |  | 
|  | /* | 
|  | * If we have a file range that points to a compressed extent | 
|  | * and it's followed by a consecutive file range that points | 
|  | * to the same compressed extent (possibly with a different | 
|  | * offset and/or length, so it either points to the whole extent | 
|  | * or only part of it), we must make sure we do not submit a | 
|  | * single bio to populate the folios for the 2 ranges because | 
|  | * this makes the compressed extent read zero out the folios | 
|  | * belonging to the 2nd range. Imagine the following scenario: | 
|  | * | 
|  | *  File layout | 
|  | *  [0 - 8K]                     [8K - 24K] | 
|  | *    |                               | | 
|  | *    |                               | | 
|  | * points to extent X,         points to extent X, | 
|  | * offset 4K, length of 8K     offset 0, length 16K | 
|  | * | 
|  | * [extent X, compressed length = 4K uncompressed length = 16K] | 
|  | * | 
|  | * If the bio to read the compressed extent covers both ranges, | 
|  | * it will decompress extent X into the folios belonging to the | 
|  | * first range and then it will stop, zeroing out the remaining | 
|  | * folios that belong to the other range that points to extent X. | 
|  | * So here we make sure we submit 2 bios, one for the first | 
|  | * range and another one for the third range. Both will target | 
|  | * the same physical extent from disk, but we can't currently | 
|  | * make the compressed bio endio callback populate the folios | 
|  | * for both ranges because each compressed bio is tightly | 
|  | * coupled with a single extent map, and each range can have | 
|  | * an extent map with a different offset value relative to the | 
|  | * uncompressed data of our extent and different lengths. This | 
|  | * is a corner case so we prioritize correctness over | 
|  | * non-optimal behavior (submitting 2 bios for the same extent). | 
|  | */ | 
|  | if (compress_type != BTRFS_COMPRESS_NONE && | 
|  | bio_ctrl->last_em_start != U64_MAX && | 
|  | bio_ctrl->last_em_start != em->start) | 
|  | force_bio_submit = true; | 
|  |  | 
|  | bio_ctrl->last_em_start = em->start; | 
|  |  | 
|  | em_gen = em->generation; | 
|  | btrfs_free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | /* we've found a hole, just zero and go on */ | 
|  | if (block_start == EXTENT_MAP_HOLE) { | 
|  | folio_zero_range(folio, pg_offset, blocksize); | 
|  | end_folio_read(folio, true, cur, blocksize); | 
|  | continue; | 
|  | } | 
|  | /* the get_extent function already copied into the folio */ | 
|  | if (block_start == EXTENT_MAP_INLINE) { | 
|  | end_folio_read(folio, true, cur, blocksize); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (bio_ctrl->compress_type != compress_type) { | 
|  | submit_one_bio(bio_ctrl); | 
|  | bio_ctrl->compress_type = compress_type; | 
|  | } | 
|  |  | 
|  | if (force_bio_submit) | 
|  | submit_one_bio(bio_ctrl); | 
|  | submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize, | 
|  | pg_offset, em_gen); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we can skip waiting the @ordered extent covering the block at @fileoff. | 
|  | * | 
|  | * @fileoff:	Both input and output. | 
|  | *		Input as the file offset where the check should start at. | 
|  | *		Output as where the next check should start at, | 
|  | *		if the function returns true. | 
|  | * | 
|  | * Return true if we can skip to @fileoff. The caller needs to check the new | 
|  | * @fileoff value to make sure it covers the full range, before skipping the | 
|  | * full OE. | 
|  | * | 
|  | * Return false if we must wait for the ordered extent. | 
|  | */ | 
|  | static bool can_skip_one_ordered_range(struct btrfs_inode *inode, | 
|  | struct btrfs_ordered_extent *ordered, | 
|  | u64 *fileoff) | 
|  | { | 
|  | const struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct folio *folio; | 
|  | const u32 blocksize = fs_info->sectorsize; | 
|  | u64 cur = *fileoff; | 
|  | bool ret; | 
|  |  | 
|  | folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * We should have locked the folio(s) for range [start, end], thus | 
|  | * there must be a folio and it must be locked. | 
|  | */ | 
|  | ASSERT(!IS_ERR(folio)); | 
|  | ASSERT(folio_test_locked(folio)); | 
|  |  | 
|  | /* | 
|  | * There are several cases for the folio and OE combination: | 
|  | * | 
|  | * 1) Folio has no private flag | 
|  | *    The OE has all its IO done but not yet finished, and folio got | 
|  | *    invalidated. | 
|  | * | 
|  | * Have we have to wait for the OE to finish, as it may contain the | 
|  | * to-be-inserted data checksum. | 
|  | * Without the data checksum inserted into the csum tree, read will | 
|  | * just fail with missing csum. | 
|  | */ | 
|  | if (!folio_test_private(folio)) { | 
|  | ret = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 2) The first block is DIRTY. | 
|  | * | 
|  | * This means the OE is created by some other folios whose file pos is | 
|  | * before this one. And since we are holding the folio lock, the writeback | 
|  | * of this folio cannot start. | 
|  | * | 
|  | * We must skip the whole OE, because it will never start until we | 
|  | * finished our folio read and unlocked the folio. | 
|  | */ | 
|  | if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) { | 
|  | u64 range_len = min(folio_end(folio), | 
|  | ordered->file_offset + ordered->num_bytes) - cur; | 
|  |  | 
|  | ret = true; | 
|  | /* | 
|  | * At least inside the folio, all the remaining blocks should | 
|  | * also be dirty. | 
|  | */ | 
|  | ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len)); | 
|  | *fileoff = ordered->file_offset + ordered->num_bytes; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 3) The first block is uptodate. | 
|  | * | 
|  | * At least the first block can be skipped, but we are still not fully | 
|  | * sure. E.g. if the OE has some other folios in the range that cannot | 
|  | * be skipped. | 
|  | * So we return true and update @next_ret to the OE/folio boundary. | 
|  | */ | 
|  | if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) { | 
|  | u64 range_len = min(folio_end(folio), | 
|  | ordered->file_offset + ordered->num_bytes) - cur; | 
|  |  | 
|  | /* | 
|  | * The whole range to the OE end or folio boundary should also | 
|  | * be uptodate. | 
|  | */ | 
|  | ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len)); | 
|  | ret = true; | 
|  | *fileoff = cur + range_len; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 4) The first block is not uptodate. | 
|  | * | 
|  | * This means the folio is invalidated after the writeback was finished, | 
|  | * but by some other operations (e.g. block aligned buffered write) the | 
|  | * folio is inserted into filemap. | 
|  | * Very much the same as case 1). | 
|  | */ | 
|  | ret = false; | 
|  | out: | 
|  | folio_put(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool can_skip_ordered_extent(struct btrfs_inode *inode, | 
|  | struct btrfs_ordered_extent *ordered, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1); | 
|  | u64 cur = max(start, ordered->file_offset); | 
|  |  | 
|  | while (cur < range_end) { | 
|  | bool can_skip; | 
|  |  | 
|  | can_skip = can_skip_one_ordered_range(inode, ordered, &cur); | 
|  | if (!can_skip) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locking helper to make sure we get a stable view of extent maps for the | 
|  | * involved range. | 
|  | * | 
|  | * This is for folio read paths (read and readahead), thus the involved range | 
|  | * should have all the folios locked. | 
|  | */ | 
|  | static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | u64 cur_pos; | 
|  |  | 
|  | /* Caller must provide a valid @cached_state. */ | 
|  | ASSERT(cached_state); | 
|  |  | 
|  | /* The range must at least be page aligned, as all read paths are folio based. */ | 
|  | ASSERT(IS_ALIGNED(start, PAGE_SIZE)); | 
|  | ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE)); | 
|  |  | 
|  | again: | 
|  | btrfs_lock_extent(&inode->io_tree, start, end, cached_state); | 
|  | cur_pos = start; | 
|  | while (cur_pos < end) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_range(inode, cur_pos, | 
|  | end - cur_pos + 1); | 
|  | /* | 
|  | * No ordered extents in the range, and we hold the extent lock, | 
|  | * no one can modify the extent maps in the range, we're safe to return. | 
|  | */ | 
|  | if (!ordered) | 
|  | break; | 
|  |  | 
|  | /* Check if we can skip waiting for the whole OE. */ | 
|  | if (can_skip_ordered_extent(inode, ordered, start, end)) { | 
|  | cur_pos = min(ordered->file_offset + ordered->num_bytes, | 
|  | end + 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Now wait for the OE to finish. */ | 
|  | btrfs_unlock_extent(&inode->io_tree, start, end, cached_state); | 
|  | btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | /* We have unlocked the whole range, restart from the beginning. */ | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_read_folio(struct file *file, struct folio *folio) | 
|  | { | 
|  | struct btrfs_inode *inode = folio_to_inode(folio); | 
|  | const u64 start = folio_pos(folio); | 
|  | const u64 end = start + folio_size(folio) - 1; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_bio_ctrl bio_ctrl = { | 
|  | .opf = REQ_OP_READ, | 
|  | .last_em_start = U64_MAX, | 
|  | }; | 
|  | struct extent_map *em_cached = NULL; | 
|  | int ret; | 
|  |  | 
|  | lock_extents_for_read(inode, start, end, &cached_state); | 
|  | ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl); | 
|  | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); | 
|  |  | 
|  | btrfs_free_extent_map(em_cached); | 
|  |  | 
|  | /* | 
|  | * If btrfs_do_readpage() failed we will want to submit the assembled | 
|  | * bio to do the cleanup. | 
|  | */ | 
|  | submit_one_bio(&bio_ctrl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, | 
|  | u64 start, u32 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); | 
|  | const u64 folio_start = folio_pos(folio); | 
|  | unsigned int start_bit; | 
|  | unsigned int nbits; | 
|  |  | 
|  | ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio)); | 
|  | start_bit = (start - folio_start) >> fs_info->sectorsize_bits; | 
|  | nbits = len >> fs_info->sectorsize_bits; | 
|  | ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); | 
|  | bitmap_set(delalloc_bitmap, start_bit, nbits); | 
|  | } | 
|  |  | 
|  | static bool find_next_delalloc_bitmap(struct folio *folio, | 
|  | unsigned long *delalloc_bitmap, u64 start, | 
|  | u64 *found_start, u32 *found_len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); | 
|  | const u64 folio_start = folio_pos(folio); | 
|  | const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio); | 
|  | unsigned int start_bit; | 
|  | unsigned int first_zero; | 
|  | unsigned int first_set; | 
|  |  | 
|  | ASSERT(start >= folio_start && start < folio_start + folio_size(folio)); | 
|  |  | 
|  | start_bit = (start - folio_start) >> fs_info->sectorsize_bits; | 
|  | first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); | 
|  | if (first_set >= bitmap_size) | 
|  | return false; | 
|  |  | 
|  | *found_start = folio_start + (first_set << fs_info->sectorsize_bits); | 
|  | first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); | 
|  | *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do all of the delayed allocation setup. | 
|  | * | 
|  | * Return >0 if all the dirty blocks are submitted async (compression) or inlined. | 
|  | * The @folio should no longer be touched (treat it as already unlocked). | 
|  | * | 
|  | * Return 0 if there is still dirty block that needs to be submitted through | 
|  | * extent_writepage_io(). | 
|  | * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be | 
|  | * submitted, and @folio is still kept locked. | 
|  | * | 
|  | * Return <0 if there is any error hit. | 
|  | * Any allocated ordered extent range covering this folio will be marked | 
|  | * finished (IOERR), and @folio is still kept locked. | 
|  | */ | 
|  | static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, | 
|  | struct folio *folio, | 
|  | struct btrfs_bio_ctrl *bio_ctrl) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); | 
|  | struct writeback_control *wbc = bio_ctrl->wbc; | 
|  | const bool is_subpage = btrfs_is_subpage(fs_info, folio); | 
|  | const u64 page_start = folio_pos(folio); | 
|  | const u64 page_end = page_start + folio_size(folio) - 1; | 
|  | const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); | 
|  | unsigned long delalloc_bitmap = 0; | 
|  | /* | 
|  | * Save the last found delalloc end. As the delalloc end can go beyond | 
|  | * page boundary, thus we cannot rely on subpage bitmap to locate the | 
|  | * last delalloc end. | 
|  | */ | 
|  | u64 last_delalloc_end = 0; | 
|  | /* | 
|  | * The range end (exclusive) of the last successfully finished delalloc | 
|  | * range. | 
|  | * Any range covered by ordered extent must either be manually marked | 
|  | * finished (error handling), or has IO submitted (and finish the | 
|  | * ordered extent normally). | 
|  | * | 
|  | * This records the end of ordered extent cleanup if we hit an error. | 
|  | */ | 
|  | u64 last_finished_delalloc_end = page_start; | 
|  | u64 delalloc_start = page_start; | 
|  | u64 delalloc_end = page_end; | 
|  | u64 delalloc_to_write = 0; | 
|  | int ret = 0; | 
|  | int bit; | 
|  |  | 
|  | /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ | 
|  | if (btrfs_is_subpage(fs_info, folio)) { | 
|  | ASSERT(blocks_per_folio > 1); | 
|  | btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); | 
|  | } else { | 
|  | bio_ctrl->submit_bitmap = 1; | 
|  | } | 
|  |  | 
|  | for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { | 
|  | u64 start = page_start + (bit << fs_info->sectorsize_bits); | 
|  |  | 
|  | btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); | 
|  | } | 
|  |  | 
|  | /* Lock all (subpage) delalloc ranges inside the folio first. */ | 
|  | while (delalloc_start < page_end) { | 
|  | delalloc_end = page_end; | 
|  | if (!find_lock_delalloc_range(&inode->vfs_inode, folio, | 
|  | &delalloc_start, &delalloc_end)) { | 
|  | delalloc_start = delalloc_end + 1; | 
|  | continue; | 
|  | } | 
|  | set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, | 
|  | min(delalloc_end, page_end) + 1 - delalloc_start); | 
|  | last_delalloc_end = delalloc_end; | 
|  | delalloc_start = delalloc_end + 1; | 
|  | } | 
|  | delalloc_start = page_start; | 
|  |  | 
|  | if (!last_delalloc_end) | 
|  | goto out; | 
|  |  | 
|  | /* Run the delalloc ranges for the above locked ranges. */ | 
|  | while (delalloc_start < page_end) { | 
|  | u64 found_start; | 
|  | u32 found_len; | 
|  | bool found; | 
|  |  | 
|  | if (!is_subpage) { | 
|  | /* | 
|  | * For non-subpage case, the found delalloc range must | 
|  | * cover this folio and there must be only one locked | 
|  | * delalloc range. | 
|  | */ | 
|  | found_start = page_start; | 
|  | found_len = last_delalloc_end + 1 - found_start; | 
|  | found = true; | 
|  | } else { | 
|  | found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, | 
|  | delalloc_start, &found_start, &found_len); | 
|  | } | 
|  | if (!found) | 
|  | break; | 
|  | /* | 
|  | * The subpage range covers the last sector, the delalloc range may | 
|  | * end beyond the folio boundary, use the saved delalloc_end | 
|  | * instead. | 
|  | */ | 
|  | if (found_start + found_len >= page_end) | 
|  | found_len = last_delalloc_end + 1 - found_start; | 
|  |  | 
|  | if (ret >= 0) { | 
|  | /* | 
|  | * Some delalloc range may be created by previous folios. | 
|  | * Thus we still need to clean up this range during error | 
|  | * handling. | 
|  | */ | 
|  | last_finished_delalloc_end = found_start; | 
|  | /* No errors hit so far, run the current delalloc range. */ | 
|  | ret = btrfs_run_delalloc_range(inode, folio, | 
|  | found_start, | 
|  | found_start + found_len - 1, | 
|  | wbc); | 
|  | if (ret >= 0) | 
|  | last_finished_delalloc_end = found_start + found_len; | 
|  | if (unlikely(ret < 0)) | 
|  | btrfs_err_rl(fs_info, | 
|  | "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", | 
|  | btrfs_root_id(inode->root), | 
|  | btrfs_ino(inode), | 
|  | folio_pos(folio), | 
|  | blocks_per_folio, | 
|  | &bio_ctrl->submit_bitmap, | 
|  | found_start, found_len, ret); | 
|  | } else { | 
|  | /* | 
|  | * We've hit an error during previous delalloc range, | 
|  | * have to cleanup the remaining locked ranges. | 
|  | */ | 
|  | btrfs_unlock_extent(&inode->io_tree, found_start, | 
|  | found_start + found_len - 1, NULL); | 
|  | unlock_delalloc_folio(&inode->vfs_inode, folio, | 
|  | found_start, | 
|  | found_start + found_len - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have some ranges that's going to be submitted asynchronously | 
|  | * (compression or inline).  These range have their own control | 
|  | * on when to unlock the pages.  We should not touch them | 
|  | * anymore, so clear the range from the submission bitmap. | 
|  | */ | 
|  | if (ret > 0) { | 
|  | unsigned int start_bit = (found_start - page_start) >> | 
|  | fs_info->sectorsize_bits; | 
|  | unsigned int end_bit = (min(page_end + 1, found_start + found_len) - | 
|  | page_start) >> fs_info->sectorsize_bits; | 
|  | bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); | 
|  | } | 
|  | /* | 
|  | * Above btrfs_run_delalloc_range() may have unlocked the folio, | 
|  | * thus for the last range, we cannot touch the folio anymore. | 
|  | */ | 
|  | if (found_start + found_len >= last_delalloc_end + 1) | 
|  | break; | 
|  |  | 
|  | delalloc_start = found_start + found_len; | 
|  | } | 
|  | /* | 
|  | * It's possible we had some ordered extents created before we hit | 
|  | * an error, cleanup non-async successfully created delalloc ranges. | 
|  | */ | 
|  | if (unlikely(ret < 0)) { | 
|  | unsigned int bitmap_size = min( | 
|  | (last_finished_delalloc_end - page_start) >> | 
|  | fs_info->sectorsize_bits, | 
|  | blocks_per_folio); | 
|  |  | 
|  | for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) | 
|  | btrfs_mark_ordered_io_finished(inode, folio, | 
|  | page_start + (bit << fs_info->sectorsize_bits), | 
|  | fs_info->sectorsize, false); | 
|  | return ret; | 
|  | } | 
|  | out: | 
|  | if (last_delalloc_end) | 
|  | delalloc_end = last_delalloc_end; | 
|  | else | 
|  | delalloc_end = page_end; | 
|  | /* | 
|  | * delalloc_end is already one less than the total length, so | 
|  | * we don't subtract one from PAGE_SIZE. | 
|  | */ | 
|  | delalloc_to_write += | 
|  | DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * If all ranges are submitted asynchronously, we just need to account | 
|  | * for them here. | 
|  | */ | 
|  | if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) { | 
|  | wbc->nr_to_write -= delalloc_to_write; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (wbc->nr_to_write < delalloc_to_write) { | 
|  | int thresh = 8192; | 
|  |  | 
|  | if (delalloc_to_write < thresh * 2) | 
|  | thresh = delalloc_to_write; | 
|  | wbc->nr_to_write = min_t(u64, delalloc_to_write, | 
|  | thresh); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 0 if we have submitted or queued the sector for submission. | 
|  | * Return <0 for critical errors, and the sector will have its dirty flag cleared. | 
|  | * | 
|  | * Caller should make sure filepos < i_size and handle filepos >= i_size case. | 
|  | */ | 
|  | static int submit_one_sector(struct btrfs_inode *inode, | 
|  | struct folio *folio, | 
|  | u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, | 
|  | loff_t i_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct extent_map *em; | 
|  | u64 block_start; | 
|  | u64 disk_bytenr; | 
|  | u64 extent_offset; | 
|  | u64 em_end; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(filepos, sectorsize)); | 
|  |  | 
|  | /* @filepos >= i_size case should be handled by the caller. */ | 
|  | ASSERT(filepos < i_size); | 
|  |  | 
|  | em = btrfs_get_extent(inode, NULL, filepos, sectorsize); | 
|  | if (IS_ERR(em)) { | 
|  | /* | 
|  | * When submission failed, we should still clear the folio dirty. | 
|  | * Or the folio will be written back again but without any | 
|  | * ordered extent. | 
|  | */ | 
|  | btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); | 
|  | btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); | 
|  | btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize); | 
|  | return PTR_ERR(em); | 
|  | } | 
|  |  | 
|  | extent_offset = filepos - em->start; | 
|  | em_end = btrfs_extent_map_end(em); | 
|  | ASSERT(filepos <= em_end); | 
|  | ASSERT(IS_ALIGNED(em->start, sectorsize)); | 
|  | ASSERT(IS_ALIGNED(em->len, sectorsize)); | 
|  |  | 
|  | block_start = btrfs_extent_map_block_start(em); | 
|  | disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset; | 
|  |  | 
|  | ASSERT(!btrfs_extent_map_is_compressed(em)); | 
|  | ASSERT(block_start != EXTENT_MAP_HOLE); | 
|  | ASSERT(block_start != EXTENT_MAP_INLINE); | 
|  |  | 
|  | btrfs_free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | /* | 
|  | * Although the PageDirty bit is cleared before entering this | 
|  | * function, subpage dirty bit is not cleared. | 
|  | * So clear subpage dirty bit here so next time we won't submit | 
|  | * a folio for a range already written to disk. | 
|  | */ | 
|  | btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); | 
|  | btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); | 
|  | /* | 
|  | * Above call should set the whole folio with writeback flag, even | 
|  | * just for a single subpage sector. | 
|  | * As long as the folio is properly locked and the range is correct, | 
|  | * we should always get the folio with writeback flag. | 
|  | */ | 
|  | ASSERT(folio_test_writeback(folio)); | 
|  |  | 
|  | submit_extent_folio(bio_ctrl, disk_bytenr, folio, | 
|  | sectorsize, filepos - folio_pos(folio), 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for extent_writepage().  This calls the writepage start hooks, | 
|  | * and does the loop to map the page into extents and bios. | 
|  | * | 
|  | * We return 1 if the IO is started and the page is unlocked, | 
|  | * 0 if all went well (page still locked) | 
|  | * < 0 if there were errors (page still locked) | 
|  | */ | 
|  | static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, | 
|  | struct folio *folio, | 
|  | u64 start, u32 len, | 
|  | struct btrfs_bio_ctrl *bio_ctrl, | 
|  | loff_t i_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | unsigned long range_bitmap = 0; | 
|  | bool submitted_io = false; | 
|  | int found_error = 0; | 
|  | const u64 folio_start = folio_pos(folio); | 
|  | const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); | 
|  | u64 cur; | 
|  | int bit; | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(start >= folio_start && | 
|  | start + len <= folio_start + folio_size(folio)); | 
|  |  | 
|  | ret = btrfs_writepage_cow_fixup(folio); | 
|  | if (ret == -EAGAIN) { | 
|  | /* Fixup worker will requeue */ | 
|  | folio_redirty_for_writepage(bio_ctrl->wbc, folio); | 
|  | folio_unlock(folio); | 
|  | return 1; | 
|  | } | 
|  | if (ret < 0) { | 
|  | btrfs_folio_clear_dirty(fs_info, folio, start, len); | 
|  | btrfs_folio_set_writeback(fs_info, folio, start, len); | 
|  | btrfs_folio_clear_writeback(fs_info, folio, start, len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (cur = start; cur < start + len; cur += fs_info->sectorsize) | 
|  | set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); | 
|  | bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, | 
|  | blocks_per_folio); | 
|  |  | 
|  | bio_ctrl->end_io_func = end_bbio_data_write; | 
|  |  | 
|  | for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) { | 
|  | cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); | 
|  |  | 
|  | if (cur >= i_size) { | 
|  | btrfs_mark_ordered_io_finished(inode, folio, cur, | 
|  | start + len - cur, true); | 
|  | /* | 
|  | * This range is beyond i_size, thus we don't need to | 
|  | * bother writing back. | 
|  | * But we still need to clear the dirty subpage bit, or | 
|  | * the next time the folio gets dirtied, we will try to | 
|  | * writeback the sectors with subpage dirty bits, | 
|  | * causing writeback without ordered extent. | 
|  | */ | 
|  | btrfs_folio_clear_dirty(fs_info, folio, cur, | 
|  | start + len - cur); | 
|  | break; | 
|  | } | 
|  | ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); | 
|  | if (unlikely(ret < 0)) { | 
|  | /* | 
|  | * bio_ctrl may contain a bio crossing several folios. | 
|  | * Submit it immediately so that the bio has a chance | 
|  | * to finish normally, other than marked as error. | 
|  | */ | 
|  | submit_one_bio(bio_ctrl); | 
|  | /* | 
|  | * Failed to grab the extent map which should be very rare. | 
|  | * Since there is no bio submitted to finish the ordered | 
|  | * extent, we have to manually finish this sector. | 
|  | */ | 
|  | btrfs_mark_ordered_io_finished(inode, folio, cur, | 
|  | fs_info->sectorsize, false); | 
|  | if (!found_error) | 
|  | found_error = ret; | 
|  | continue; | 
|  | } | 
|  | submitted_io = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we didn't submitted any sector (>= i_size), folio dirty get | 
|  | * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared | 
|  | * by folio_start_writeback() if the folio is not dirty). | 
|  | * | 
|  | * Here we set writeback and clear for the range. If the full folio | 
|  | * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. | 
|  | * | 
|  | * If we hit any error, the corresponding sector will have its dirty | 
|  | * flag cleared and writeback finished, thus no need to handle the error case. | 
|  | */ | 
|  | if (!submitted_io && !found_error) { | 
|  | btrfs_folio_set_writeback(fs_info, folio, start, len); | 
|  | btrfs_folio_clear_writeback(fs_info, folio, start, len); | 
|  | } | 
|  | return found_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the writepage semantics are similar to regular writepage.  extent | 
|  | * records are inserted to lock ranges in the tree, and as dirty areas | 
|  | * are found, they are marked writeback.  Then the lock bits are removed | 
|  | * and the end_io handler clears the writeback ranges | 
|  | * | 
|  | * Return 0 if everything goes well. | 
|  | * Return <0 for error. | 
|  | */ | 
|  | static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | int ret; | 
|  | size_t pg_offset; | 
|  | loff_t i_size = i_size_read(&inode->vfs_inode); | 
|  | const pgoff_t end_index = i_size >> PAGE_SHIFT; | 
|  | const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio); | 
|  |  | 
|  | trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); | 
|  |  | 
|  | WARN_ON(!folio_test_locked(folio)); | 
|  |  | 
|  | pg_offset = offset_in_folio(folio, i_size); | 
|  | if (folio->index > end_index || | 
|  | (folio->index == end_index && !pg_offset)) { | 
|  | folio_invalidate(folio, 0, folio_size(folio)); | 
|  | folio_unlock(folio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (folio_contains(folio, end_index)) | 
|  | folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); | 
|  |  | 
|  | /* | 
|  | * Default to unlock the whole folio. | 
|  | * The proper bitmap can only be initialized until writepage_delalloc(). | 
|  | */ | 
|  | bio_ctrl->submit_bitmap = (unsigned long)-1; | 
|  |  | 
|  | /* | 
|  | * If the page is dirty but without private set, it's marked dirty | 
|  | * without informing the fs. | 
|  | * Nowadays that is a bug, since the introduction of | 
|  | * pin_user_pages*(). | 
|  | * | 
|  | * So here we check if the page has private set to rule out such | 
|  | * case. | 
|  | * But we also have a long history of relying on the COW fixup, | 
|  | * so here we only enable this check for experimental builds until | 
|  | * we're sure it's safe. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && | 
|  | unlikely(!folio_test_private(folio))) { | 
|  | WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); | 
|  | btrfs_err_rl(fs_info, | 
|  | "root %lld ino %llu folio %llu is marked dirty without notifying the fs", | 
|  | btrfs_root_id(inode->root), | 
|  | btrfs_ino(inode), folio_pos(folio)); | 
|  | ret = -EUCLEAN; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ret = set_folio_extent_mapped(folio); | 
|  | if (ret < 0) | 
|  | goto done; | 
|  |  | 
|  | ret = writepage_delalloc(inode, folio, bio_ctrl); | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | if (ret) | 
|  | goto done; | 
|  |  | 
|  | ret = extent_writepage_io(inode, folio, folio_pos(folio), | 
|  | folio_size(folio), bio_ctrl, i_size); | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | if (ret < 0) | 
|  | btrfs_err_rl(fs_info, | 
|  | "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", | 
|  | btrfs_root_id(inode->root), btrfs_ino(inode), | 
|  | folio_pos(folio), blocks_per_folio, | 
|  | &bio_ctrl->submit_bitmap, ret); | 
|  |  | 
|  | bio_ctrl->wbc->nr_to_write--; | 
|  |  | 
|  | done: | 
|  | if (ret < 0) | 
|  | mapping_set_error(folio->mapping, ret); | 
|  | /* | 
|  | * Only unlock ranges that are submitted. As there can be some async | 
|  | * submitted ranges inside the folio. | 
|  | */ | 
|  | btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); | 
|  | ASSERT(ret <= 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock extent buffer status and pages for writeback. | 
|  | * | 
|  | * Return %false if the extent buffer doesn't need to be submitted (e.g. the | 
|  | * extent buffer is not dirty) | 
|  | * Return %true is the extent buffer is submitted to bio. | 
|  | */ | 
|  | static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | bool ret = false; | 
|  |  | 
|  | btrfs_tree_lock(eb); | 
|  | while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { | 
|  | btrfs_tree_unlock(eb); | 
|  | if (wbc->sync_mode != WB_SYNC_ALL) | 
|  | return false; | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  | btrfs_tree_lock(eb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to do this to prevent races in people who check if the eb is | 
|  | * under IO since we can end up having no IO bits set for a short period | 
|  | * of time. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
|  | XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); | 
|  | unsigned long flags; | 
|  |  | 
|  | set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
|  | spin_unlock(&eb->refs_lock); | 
|  |  | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | xas_load(&xas); | 
|  | xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); | 
|  | xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); | 
|  | xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  |  | 
|  | btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); | 
|  | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, | 
|  | -eb->len, | 
|  | fs_info->dirty_metadata_batch); | 
|  | ret = true; | 
|  | } else { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  | btrfs_tree_unlock(eb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void set_btree_ioerr(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  |  | 
|  | set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); | 
|  |  | 
|  | /* | 
|  | * A read may stumble upon this buffer later, make sure that it gets an | 
|  | * error and knows there was an error. | 
|  | */ | 
|  | clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  |  | 
|  | /* | 
|  | * We need to set the mapping with the io error as well because a write | 
|  | * error will flip the file system readonly, and then syncfs() will | 
|  | * return a 0 because we are readonly if we don't modify the err seq for | 
|  | * the superblock. | 
|  | */ | 
|  | mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); | 
|  |  | 
|  | /* | 
|  | * If writeback for a btree extent that doesn't belong to a log tree | 
|  | * failed, increment the counter transaction->eb_write_errors. | 
|  | * We do this because while the transaction is running and before it's | 
|  | * committing (when we call filemap_fdata[write|wait]_range against | 
|  | * the btree inode), we might have | 
|  | * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it | 
|  | * returns an error or an error happens during writeback, when we're | 
|  | * committing the transaction we wouldn't know about it, since the pages | 
|  | * can be no longer dirty nor marked anymore for writeback (if a | 
|  | * subsequent modification to the extent buffer didn't happen before the | 
|  | * transaction commit), which makes filemap_fdata[write|wait]_range not | 
|  | * able to find the pages which contain errors at transaction | 
|  | * commit time. So if this happens we must abort the transaction, | 
|  | * otherwise we commit a super block with btree roots that point to | 
|  | * btree nodes/leafs whose content on disk is invalid - either garbage | 
|  | * or the content of some node/leaf from a past generation that got | 
|  | * cowed or deleted and is no longer valid. | 
|  | * | 
|  | * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would | 
|  | * not be enough - we need to distinguish between log tree extents vs | 
|  | * non-log tree extents, and the next filemap_fdatawait_range() call | 
|  | * will catch and clear such errors in the mapping - and that call might | 
|  | * be from a log sync and not from a transaction commit. Also, checking | 
|  | * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is | 
|  | * not done and would not be reliable - the eb might have been released | 
|  | * from memory and reading it back again means that flag would not be | 
|  | * set (since it's a runtime flag, not persisted on disk). | 
|  | * | 
|  | * Using the flags below in the btree inode also makes us achieve the | 
|  | * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started | 
|  | * writeback for all dirty pages and before filemap_fdatawait_range() | 
|  | * is called, the writeback for all dirty pages had already finished | 
|  | * with errors - because we were not using AS_EIO/AS_ENOSPC, | 
|  | * filemap_fdatawait_range() would return success, as it could not know | 
|  | * that writeback errors happened (the pages were no longer tagged for | 
|  | * writeback). | 
|  | */ | 
|  | switch (eb->log_index) { | 
|  | case -1: | 
|  | set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); | 
|  | break; | 
|  | case 0: | 
|  | set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); | 
|  | break; | 
|  | case 1: | 
|  | set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); | 
|  | break; | 
|  | default: | 
|  | BUG(); /* unexpected, logic error */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); | 
|  | unsigned long flags; | 
|  |  | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | xas_load(&xas); | 
|  | xas_set_mark(&xas, mark); | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | } | 
|  |  | 
|  | static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits); | 
|  | unsigned long flags; | 
|  |  | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | xas_load(&xas); | 
|  | xas_clear_mark(&xas, mark); | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | } | 
|  |  | 
|  | static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | XA_STATE(xas, &fs_info->buffer_tree, start); | 
|  | unsigned int tagged = 0; | 
|  | void *eb; | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) { | 
|  | xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); | 
|  | if (++tagged % XA_CHECK_SCHED) | 
|  | continue; | 
|  | xas_pause(&xas); | 
|  | xas_unlock_irq(&xas); | 
|  | cond_resched(); | 
|  | xas_lock_irq(&xas); | 
|  | } | 
|  | xas_unlock_irq(&xas); | 
|  | } | 
|  |  | 
|  | struct eb_batch { | 
|  | unsigned int nr; | 
|  | unsigned int cur; | 
|  | struct extent_buffer *ebs[PAGEVEC_SIZE]; | 
|  | }; | 
|  |  | 
|  | static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb) | 
|  | { | 
|  | batch->ebs[batch->nr++] = eb; | 
|  | return (batch->nr < PAGEVEC_SIZE); | 
|  | } | 
|  |  | 
|  | static inline void eb_batch_init(struct eb_batch *batch) | 
|  | { | 
|  | batch->nr = 0; | 
|  | batch->cur = 0; | 
|  | } | 
|  |  | 
|  | static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch) | 
|  | { | 
|  | if (batch->cur >= batch->nr) | 
|  | return NULL; | 
|  | return batch->ebs[batch->cur++]; | 
|  | } | 
|  |  | 
|  | static inline void eb_batch_release(struct eb_batch *batch) | 
|  | { | 
|  | for (unsigned int i = 0; i < batch->nr; i++) | 
|  | free_extent_buffer(batch->ebs[i]); | 
|  | eb_batch_init(batch); | 
|  | } | 
|  |  | 
|  | static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max, | 
|  | xa_mark_t mark) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | retry: | 
|  | eb = xas_find_marked(xas, max, mark); | 
|  |  | 
|  | if (xas_retry(xas, eb)) | 
|  | goto retry; | 
|  |  | 
|  | if (!eb) | 
|  | return NULL; | 
|  |  | 
|  | if (!refcount_inc_not_zero(&eb->refs)) { | 
|  | xas_reset(xas); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (unlikely(eb != xas_reload(xas))) { | 
|  | free_extent_buffer(eb); | 
|  | xas_reset(xas); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info, | 
|  | unsigned long *start, | 
|  | unsigned long end, xa_mark_t tag, | 
|  | struct eb_batch *batch) | 
|  | { | 
|  | XA_STATE(xas, &fs_info->buffer_tree, *start); | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | while ((eb = find_get_eb(&xas, end, tag)) != NULL) { | 
|  | if (!eb_batch_add(batch, eb)) { | 
|  | *start = ((eb->start + eb->len) >> fs_info->nodesize_bits); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (end == ULONG_MAX) | 
|  | *start = ULONG_MAX; | 
|  | else | 
|  | *start = end + 1; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return batch->nr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The endio specific version which won't touch any unsafe spinlock in endio | 
|  | * context. | 
|  | */ | 
|  | static struct extent_buffer *find_extent_buffer_nolock( | 
|  | struct btrfs_fs_info *fs_info, u64 start) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | unsigned long index = (start >> fs_info->nodesize_bits); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | eb = xa_load(&fs_info->buffer_tree, index); | 
|  | if (eb && !refcount_inc_not_zero(&eb->refs)) | 
|  | eb = NULL; | 
|  | rcu_read_unlock(); | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | static void end_bbio_meta_write(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct extent_buffer *eb = bbio->private; | 
|  | struct folio_iter fi; | 
|  |  | 
|  | if (bbio->bio.bi_status != BLK_STS_OK) | 
|  | set_btree_ioerr(eb); | 
|  |  | 
|  | bio_for_each_folio_all(fi, &bbio->bio) { | 
|  | btrfs_meta_folio_clear_writeback(fi.folio, eb); | 
|  | } | 
|  |  | 
|  | buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK); | 
|  | clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); | 
|  | bio_put(&bbio->bio); | 
|  | } | 
|  |  | 
|  | static void prepare_eb_write(struct extent_buffer *eb) | 
|  | { | 
|  | u32 nritems; | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); | 
|  |  | 
|  | /* Set btree blocks beyond nritems with 0 to avoid stale content */ | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | if (btrfs_header_level(eb) > 0) { | 
|  | end = btrfs_node_key_ptr_offset(eb, nritems); | 
|  | memzero_extent_buffer(eb, end, eb->len - end); | 
|  | } else { | 
|  | /* | 
|  | * Leaf: | 
|  | * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 | 
|  | */ | 
|  | start = btrfs_item_nr_offset(eb, nritems); | 
|  | end = btrfs_item_nr_offset(eb, 0); | 
|  | if (nritems == 0) | 
|  | end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); | 
|  | else | 
|  | end += btrfs_item_offset(eb, nritems - 1); | 
|  | memzero_extent_buffer(eb, start, end - start); | 
|  | } | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void write_one_eb(struct extent_buffer *eb, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct btrfs_bio *bbio; | 
|  |  | 
|  | prepare_eb_write(eb); | 
|  |  | 
|  | bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, | 
|  | REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), | 
|  | eb->fs_info, end_bbio_meta_write, eb); | 
|  | bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; | 
|  | bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); | 
|  | wbc_init_bio(wbc, &bbio->bio); | 
|  | bbio->inode = BTRFS_I(eb->fs_info->btree_inode); | 
|  | bbio->file_offset = eb->start; | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) { | 
|  | struct folio *folio = eb->folios[i]; | 
|  | u64 range_start = max_t(u64, eb->start, folio_pos(folio)); | 
|  | u32 range_len = min_t(u64, folio_end(folio), | 
|  | eb->start + eb->len) - range_start; | 
|  |  | 
|  | folio_lock(folio); | 
|  | btrfs_meta_folio_clear_dirty(folio, eb); | 
|  | btrfs_meta_folio_set_writeback(folio, eb); | 
|  | if (!folio_test_dirty(folio)) | 
|  | wbc->nr_to_write -= folio_nr_pages(folio); | 
|  | bio_add_folio_nofail(&bbio->bio, folio, range_len, | 
|  | offset_in_folio(folio, range_start)); | 
|  | wbc_account_cgroup_owner(wbc, folio, range_len); | 
|  | folio_unlock(folio); | 
|  | } | 
|  | btrfs_submit_bbio(bbio, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for all eb writeback in the given range to finish. | 
|  | * | 
|  | * @fs_info:	The fs_info for this file system. | 
|  | * @start:	The offset of the range to start waiting on writeback. | 
|  | * @end:	The end of the range, inclusive. This is meant to be used in | 
|  | *		conjunction with wait_marked_extents, so this will usually be | 
|  | *		the_next_eb->start - 1. | 
|  | */ | 
|  | void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start, | 
|  | u64 end) | 
|  | { | 
|  | struct eb_batch batch; | 
|  | unsigned long start_index = (start >> fs_info->nodesize_bits); | 
|  | unsigned long end_index = (end >> fs_info->nodesize_bits); | 
|  |  | 
|  | eb_batch_init(&batch); | 
|  | while (start_index <= end_index) { | 
|  | struct extent_buffer *eb; | 
|  | unsigned int nr_ebs; | 
|  |  | 
|  | nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index, | 
|  | PAGECACHE_TAG_WRITEBACK, &batch); | 
|  | if (!nr_ebs) | 
|  | break; | 
|  |  | 
|  | while ((eb = eb_batch_next(&batch)) != NULL) | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  | eb_batch_release(&batch); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btree_write_cache_pages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct btrfs_eb_write_context ctx = { .wbc = wbc }; | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); | 
|  | int ret = 0; | 
|  | int done = 0; | 
|  | int nr_to_write_done = 0; | 
|  | struct eb_batch batch; | 
|  | unsigned int nr_ebs; | 
|  | unsigned long index; | 
|  | unsigned long end; | 
|  | int scanned = 0; | 
|  | xa_mark_t tag; | 
|  |  | 
|  | eb_batch_init(&batch); | 
|  | if (wbc->range_cyclic) { | 
|  | index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits); | 
|  | end = -1; | 
|  |  | 
|  | /* | 
|  | * Start from the beginning does not need to cycle over the | 
|  | * range, mark it as scanned. | 
|  | */ | 
|  | scanned = (index == 0); | 
|  | } else { | 
|  | index = (wbc->range_start >> fs_info->nodesize_bits); | 
|  | end = (wbc->range_end >> fs_info->nodesize_bits); | 
|  |  | 
|  | scanned = 1; | 
|  | } | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  | btrfs_zoned_meta_io_lock(fs_info); | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | buffer_tree_tag_for_writeback(fs_info, index, end); | 
|  | while (!done && !nr_to_write_done && (index <= end) && | 
|  | (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | while ((eb = eb_batch_next(&batch)) != NULL) { | 
|  | ctx.eb = eb; | 
|  |  | 
|  | ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx); | 
|  | if (ret) { | 
|  | if (ret == -EBUSY) | 
|  | ret = 0; | 
|  |  | 
|  | if (ret) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!lock_extent_buffer_for_io(eb, wbc)) | 
|  | continue; | 
|  |  | 
|  | /* Implies write in zoned mode. */ | 
|  | if (ctx.zoned_bg) { | 
|  | /* Mark the last eb in the block group. */ | 
|  | btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb); | 
|  | ctx.zoned_bg->meta_write_pointer += eb->len; | 
|  | } | 
|  | write_one_eb(eb, wbc); | 
|  | } | 
|  | nr_to_write_done = (wbc->nr_to_write <= 0); | 
|  | eb_batch_release(&batch); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!scanned && !done) { | 
|  | /* | 
|  | * We hit the last page and there is more work to be done: wrap | 
|  | * back to the start of the file | 
|  | */ | 
|  | scanned = 1; | 
|  | index = 0; | 
|  | goto retry; | 
|  | } | 
|  | /* | 
|  | * If something went wrong, don't allow any metadata write bio to be | 
|  | * submitted. | 
|  | * | 
|  | * This would prevent use-after-free if we had dirty pages not | 
|  | * cleaned up, which can still happen by fuzzed images. | 
|  | * | 
|  | * - Bad extent tree | 
|  | *   Allowing existing tree block to be allocated for other trees. | 
|  | * | 
|  | * - Log tree operations | 
|  | *   Exiting tree blocks get allocated to log tree, bumps its | 
|  | *   generation, then get cleaned in tree re-balance. | 
|  | *   Such tree block will not be written back, since it's clean, | 
|  | *   thus no WRITTEN flag set. | 
|  | *   And after log writes back, this tree block is not traced by | 
|  | *   any dirty extent_io_tree. | 
|  | * | 
|  | * - Offending tree block gets re-dirtied from its original owner | 
|  | *   Since it has bumped generation, no WRITTEN flag, it can be | 
|  | *   reused without COWing. This tree block will not be traced | 
|  | *   by btrfs_transaction::dirty_pages. | 
|  | * | 
|  | *   Now such dirty tree block will not be cleaned by any dirty | 
|  | *   extent io tree. Thus we don't want to submit such wild eb | 
|  | *   if the fs already has error. | 
|  | * | 
|  | * We can get ret > 0 from submit_extent_folio() indicating how many ebs | 
|  | * were submitted. Reset it to 0 to avoid false alerts for the caller. | 
|  | */ | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | if (!ret && BTRFS_FS_ERROR(fs_info)) | 
|  | ret = -EROFS; | 
|  |  | 
|  | if (ctx.zoned_bg) | 
|  | btrfs_put_block_group(ctx.zoned_bg); | 
|  | btrfs_zoned_meta_io_unlock(fs_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the list of dirty pages of the given address space and write all of them. | 
|  | * | 
|  | * @mapping:   address space structure to write | 
|  | * @wbc:       subtract the number of written pages from *@wbc->nr_to_write | 
|  | * @bio_ctrl:  holds context for the write, namely the bio | 
|  | * | 
|  | * If a page is already under I/O, write_cache_pages() skips it, even | 
|  | * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
|  | * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
|  | * and msync() need to guarantee that all the data which was dirty at the time | 
|  | * the call was made get new I/O started against them.  If wbc->sync_mode is | 
|  | * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
|  | * existing IO to complete. | 
|  | */ | 
|  | static int extent_write_cache_pages(struct address_space *mapping, | 
|  | struct btrfs_bio_ctrl *bio_ctrl) | 
|  | { | 
|  | struct writeback_control *wbc = bio_ctrl->wbc; | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0; | 
|  | int done = 0; | 
|  | int nr_to_write_done = 0; | 
|  | struct folio_batch fbatch; | 
|  | unsigned int nr_folios; | 
|  | pgoff_t index; | 
|  | pgoff_t end;		/* Inclusive */ | 
|  | pgoff_t done_index; | 
|  | int range_whole = 0; | 
|  | int scanned = 0; | 
|  | xa_mark_t tag; | 
|  |  | 
|  | /* | 
|  | * We have to hold onto the inode so that ordered extents can do their | 
|  | * work when the IO finishes.  The alternative to this is failing to add | 
|  | * an ordered extent if the igrab() fails there and that is a huge pain | 
|  | * to deal with, so instead just hold onto the inode throughout the | 
|  | * writepages operation.  If it fails here we are freeing up the inode | 
|  | * anyway and we'd rather not waste our time writing out stuff that is | 
|  | * going to be truncated anyway. | 
|  | */ | 
|  | if (!igrab(inode)) | 
|  | return 0; | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | if (wbc->range_cyclic) { | 
|  | index = mapping->writeback_index; /* Start from prev offset */ | 
|  | end = -1; | 
|  | /* | 
|  | * Start from the beginning does not need to cycle over the | 
|  | * range, mark it as scanned. | 
|  | */ | 
|  | scanned = (index == 0); | 
|  | } else { | 
|  | index = wbc->range_start >> PAGE_SHIFT; | 
|  | end = wbc->range_end >> PAGE_SHIFT; | 
|  | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
|  | range_whole = 1; | 
|  | scanned = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do the tagged writepage as long as the snapshot flush bit is set | 
|  | * and we are the first one who do the filemap_flush() on this inode. | 
|  | * | 
|  | * The nr_to_write == LONG_MAX is needed to make sure other flushers do | 
|  | * not race in and drop the bit. | 
|  | */ | 
|  | if (range_whole && wbc->nr_to_write == LONG_MAX && | 
|  | test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | wbc->tagged_writepages = 1; | 
|  |  | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag_pages_for_writeback(mapping, index, end); | 
|  | done_index = index; | 
|  | while (!done && !nr_to_write_done && (index <= end) && | 
|  | (nr_folios = filemap_get_folios_tag(mapping, &index, | 
|  | end, tag, &fbatch))) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < nr_folios; i++) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  |  | 
|  | done_index = folio_next_index(folio); | 
|  | /* | 
|  | * At this point we hold neither the i_pages lock nor | 
|  | * the folio lock: the folio may be truncated or | 
|  | * invalidated (changing folio->mapping to NULL). | 
|  | */ | 
|  | if (!folio_trylock(folio)) { | 
|  | submit_write_bio(bio_ctrl, 0); | 
|  | folio_lock(folio); | 
|  | } | 
|  |  | 
|  | if (unlikely(folio->mapping != mapping)) { | 
|  | folio_unlock(folio); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!folio_test_dirty(folio)) { | 
|  | /* Someone wrote it for us. */ | 
|  | folio_unlock(folio); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For subpage case, compression can lead to mixed | 
|  | * writeback and dirty flags, e.g: | 
|  | * 0     32K    64K    96K    128K | 
|  | * |     |//////||/////|   |//| | 
|  | * | 
|  | * In above case, [32K, 96K) is asynchronously submitted | 
|  | * for compression, and [124K, 128K) needs to be written back. | 
|  | * | 
|  | * If we didn't wait writeback for page 64K, [128K, 128K) | 
|  | * won't be submitted as the page still has writeback flag | 
|  | * and will be skipped in the next check. | 
|  | * | 
|  | * This mixed writeback and dirty case is only possible for | 
|  | * subpage case. | 
|  | * | 
|  | * TODO: Remove this check after migrating compression to | 
|  | * regular submission. | 
|  | */ | 
|  | if (wbc->sync_mode != WB_SYNC_NONE || | 
|  | btrfs_is_subpage(inode_to_fs_info(inode), folio)) { | 
|  | if (folio_test_writeback(folio)) | 
|  | submit_write_bio(bio_ctrl, 0); | 
|  | folio_wait_writeback(folio); | 
|  | } | 
|  |  | 
|  | if (folio_test_writeback(folio) || | 
|  | !folio_clear_dirty_for_io(folio)) { | 
|  | folio_unlock(folio); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = extent_writepage(folio, bio_ctrl); | 
|  | if (ret < 0) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The filesystem may choose to bump up nr_to_write. | 
|  | * We have to make sure to honor the new nr_to_write | 
|  | * at any time. | 
|  | */ | 
|  | nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && | 
|  | wbc->nr_to_write <= 0); | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!scanned && !done) { | 
|  | /* | 
|  | * We hit the last page and there is more work to be done: wrap | 
|  | * back to the start of the file | 
|  | */ | 
|  | scanned = 1; | 
|  | index = 0; | 
|  |  | 
|  | /* | 
|  | * If we're looping we could run into a page that is locked by a | 
|  | * writer and that writer could be waiting on writeback for a | 
|  | * page in our current bio, and thus deadlock, so flush the | 
|  | * write bio here. | 
|  | */ | 
|  | submit_write_bio(bio_ctrl, 0); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) | 
|  | mapping->writeback_index = done_index; | 
|  |  | 
|  | btrfs_add_delayed_iput(BTRFS_I(inode)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit the pages in the range to bio for call sites which delalloc range has | 
|  | * already been ran (aka, ordered extent inserted) and all pages are still | 
|  | * locked. | 
|  | */ | 
|  | void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, | 
|  | u64 start, u64 end, struct writeback_control *wbc, | 
|  | bool pages_dirty) | 
|  | { | 
|  | bool found_error = false; | 
|  | int ret = 0; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | loff_t i_size = i_size_read(inode); | 
|  | u64 cur = start; | 
|  | struct btrfs_bio_ctrl bio_ctrl = { | 
|  | .wbc = wbc, | 
|  | .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), | 
|  | }; | 
|  |  | 
|  | if (wbc->no_cgroup_owner) | 
|  | bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); | 
|  |  | 
|  | while (cur <= end) { | 
|  | u64 cur_end; | 
|  | u32 cur_len; | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * This shouldn't happen, the pages are pinned and locked, this | 
|  | * code is just in case, but shouldn't actually be run. | 
|  | */ | 
|  | if (IS_ERR(folio)) { | 
|  | cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); | 
|  | cur_len = cur_end + 1 - cur; | 
|  | btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, | 
|  | cur, cur_len, false); | 
|  | mapping_set_error(mapping, PTR_ERR(folio)); | 
|  | cur = cur_end; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | cur_end = min_t(u64, folio_end(folio) - 1, end); | 
|  | cur_len = cur_end + 1 - cur; | 
|  |  | 
|  | ASSERT(folio_test_locked(folio)); | 
|  | if (pages_dirty && folio != locked_folio) | 
|  | ASSERT(folio_test_dirty(folio)); | 
|  |  | 
|  | /* | 
|  | * Set the submission bitmap to submit all sectors. | 
|  | * extent_writepage_io() will do the truncation correctly. | 
|  | */ | 
|  | bio_ctrl.submit_bitmap = (unsigned long)-1; | 
|  | ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, | 
|  | &bio_ctrl, i_size); | 
|  | if (ret == 1) | 
|  | goto next_page; | 
|  |  | 
|  | if (ret) | 
|  | mapping_set_error(mapping, ret); | 
|  | btrfs_folio_end_lock(fs_info, folio, cur, cur_len); | 
|  | if (ret < 0) | 
|  | found_error = true; | 
|  | next_page: | 
|  | folio_put(folio); | 
|  | cur = cur_end + 1; | 
|  | } | 
|  |  | 
|  | submit_write_bio(&bio_ctrl, found_error ? ret : 0); | 
|  | } | 
|  |  | 
|  | int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0; | 
|  | struct btrfs_bio_ctrl bio_ctrl = { | 
|  | .wbc = wbc, | 
|  | .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allow only a single thread to do the reloc work in zoned mode to | 
|  | * protect the write pointer updates. | 
|  | */ | 
|  | btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); | 
|  | ret = extent_write_cache_pages(mapping, &bio_ctrl); | 
|  | submit_write_bio(&bio_ctrl, ret); | 
|  | btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_readahead(struct readahead_control *rac) | 
|  | { | 
|  | struct btrfs_bio_ctrl bio_ctrl = { | 
|  | .opf = REQ_OP_READ | REQ_RAHEAD, | 
|  | .ractl = rac, | 
|  | .last_em_start = U64_MAX, | 
|  | }; | 
|  | struct folio *folio; | 
|  | struct btrfs_inode *inode = BTRFS_I(rac->mapping->host); | 
|  | const u64 start = readahead_pos(rac); | 
|  | const u64 end = start + readahead_length(rac) - 1; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_map *em_cached = NULL; | 
|  |  | 
|  | lock_extents_for_read(inode, start, end, &cached_state); | 
|  |  | 
|  | while ((folio = readahead_folio(rac)) != NULL) | 
|  | btrfs_do_readpage(folio, &em_cached, &bio_ctrl); | 
|  |  | 
|  | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); | 
|  |  | 
|  | if (em_cached) | 
|  | btrfs_free_extent_map(em_cached); | 
|  | submit_one_bio(&bio_ctrl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * basic invalidate_folio code, this waits on any locked or writeback | 
|  | * ranges corresponding to the folio, and then deletes any extent state | 
|  | * records from the tree | 
|  | */ | 
|  | int extent_invalidate_folio(struct extent_io_tree *tree, | 
|  | struct folio *folio, size_t offset) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start = folio_pos(folio); | 
|  | u64 end = start + folio_size(folio) - 1; | 
|  | size_t blocksize = folio_to_fs_info(folio)->sectorsize; | 
|  |  | 
|  | /* This function is only called for the btree inode */ | 
|  | ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); | 
|  |  | 
|  | start += ALIGN(offset, blocksize); | 
|  | if (start > end) | 
|  | return 0; | 
|  |  | 
|  | btrfs_lock_extent(tree, start, end, &cached_state); | 
|  | folio_wait_writeback(folio); | 
|  |  | 
|  | /* | 
|  | * Currently for btree io tree, only EXTENT_LOCKED is utilized, | 
|  | * so here we only need to unlock the extent range to free any | 
|  | * existing extent state. | 
|  | */ | 
|  | btrfs_unlock_extent(tree, start, end, &cached_state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A helper for struct address_space_operations::release_folio, this tests for | 
|  | * areas of the folio that are locked or under IO and drops the related state | 
|  | * bits if it is safe to drop the folio. | 
|  | */ | 
|  | static bool try_release_extent_state(struct extent_io_tree *tree, | 
|  | struct folio *folio) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 start = folio_pos(folio); | 
|  | u64 end = start + folio_size(folio) - 1; | 
|  | u32 range_bits; | 
|  | u32 clear_bits; | 
|  | bool ret = false; | 
|  | int ret2; | 
|  |  | 
|  | btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state); | 
|  |  | 
|  | /* | 
|  | * We can release the folio if it's locked only for ordered extent | 
|  | * completion, since that doesn't require using the folio. | 
|  | */ | 
|  | if ((range_bits & EXTENT_LOCKED) && | 
|  | !(range_bits & EXTENT_FINISHING_ORDERED)) | 
|  | goto out; | 
|  |  | 
|  | clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW | | 
|  | EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED | | 
|  | EXTENT_FINISHING_ORDERED); | 
|  | /* | 
|  | * At this point we can safely clear everything except the locked, | 
|  | * nodatasum, delalloc new and finishing ordered bits. The delalloc new | 
|  | * bit will be cleared by ordered extent completion. | 
|  | */ | 
|  | ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state); | 
|  | /* | 
|  | * If clear_extent_bit failed for enomem reasons, we can't allow the | 
|  | * release to continue. | 
|  | */ | 
|  | if (ret2 == 0) | 
|  | ret = true; | 
|  | out: | 
|  | btrfs_free_extent_state(cached_state); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper for release_folio.  As long as there are no locked extents | 
|  | * in the range corresponding to the page, both state records and extent | 
|  | * map records are removed | 
|  | */ | 
|  | bool try_release_extent_mapping(struct folio *folio, gfp_t mask) | 
|  | { | 
|  | u64 start = folio_pos(folio); | 
|  | u64 end = start + folio_size(folio) - 1; | 
|  | struct btrfs_inode *inode = folio_to_inode(folio); | 
|  | struct extent_io_tree *io_tree = &inode->io_tree; | 
|  |  | 
|  | while (start <= end) { | 
|  | const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); | 
|  | const u64 len = end - start + 1; | 
|  | struct extent_map_tree *extent_tree = &inode->extent_tree; | 
|  | struct extent_map *em; | 
|  |  | 
|  | write_lock(&extent_tree->lock); | 
|  | em = btrfs_lookup_extent_mapping(extent_tree, start, len); | 
|  | if (!em) { | 
|  | write_unlock(&extent_tree->lock); | 
|  | break; | 
|  | } | 
|  | if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { | 
|  | write_unlock(&extent_tree->lock); | 
|  | btrfs_free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | if (btrfs_test_range_bit_exists(io_tree, em->start, | 
|  | btrfs_extent_map_end(em) - 1, | 
|  | EXTENT_LOCKED)) | 
|  | goto next; | 
|  | /* | 
|  | * If it's not in the list of modified extents, used by a fast | 
|  | * fsync, we can remove it. If it's being logged we can safely | 
|  | * remove it since fsync took an extra reference on the em. | 
|  | */ | 
|  | if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) | 
|  | goto remove_em; | 
|  | /* | 
|  | * If it's in the list of modified extents, remove it only if | 
|  | * its generation is older then the current one, in which case | 
|  | * we don't need it for a fast fsync. Otherwise don't remove it, | 
|  | * we could be racing with an ongoing fast fsync that could miss | 
|  | * the new extent. | 
|  | */ | 
|  | if (em->generation >= cur_gen) | 
|  | goto next; | 
|  | remove_em: | 
|  | /* | 
|  | * We only remove extent maps that are not in the list of | 
|  | * modified extents or that are in the list but with a | 
|  | * generation lower then the current generation, so there is no | 
|  | * need to set the full fsync flag on the inode (it hurts the | 
|  | * fsync performance for workloads with a data size that exceeds | 
|  | * or is close to the system's memory). | 
|  | */ | 
|  | btrfs_remove_extent_mapping(inode, em); | 
|  | /* Once for the inode's extent map tree. */ | 
|  | btrfs_free_extent_map(em); | 
|  | next: | 
|  | start = btrfs_extent_map_end(em); | 
|  | write_unlock(&extent_tree->lock); | 
|  |  | 
|  | /* Once for us, for the lookup_extent_mapping() reference. */ | 
|  | btrfs_free_extent_map(em); | 
|  |  | 
|  | if (need_resched()) { | 
|  | /* | 
|  | * If we need to resched but we can't block just exit | 
|  | * and leave any remaining extent maps. | 
|  | */ | 
|  | if (!gfpflags_allow_blocking(mask)) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | return try_release_extent_state(io_tree, folio); | 
|  | } | 
|  |  | 
|  | static int extent_buffer_under_io(const struct extent_buffer *eb) | 
|  | { | 
|  | return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || | 
|  | test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | } | 
|  |  | 
|  | static bool folio_range_has_eb(struct folio *folio) | 
|  | { | 
|  | struct btrfs_folio_state *bfs; | 
|  |  | 
|  | lockdep_assert_held(&folio->mapping->i_private_lock); | 
|  |  | 
|  | if (folio_test_private(folio)) { | 
|  | bfs = folio_get_private(folio); | 
|  | if (atomic_read(&bfs->eb_refs)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct address_space *mapping = folio->mapping; | 
|  | const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
|  |  | 
|  | /* | 
|  | * For mapped eb, we're going to change the folio private, which should | 
|  | * be done under the i_private_lock. | 
|  | */ | 
|  | if (mapped) | 
|  | spin_lock(&mapping->i_private_lock); | 
|  |  | 
|  | if (!folio_test_private(folio)) { | 
|  | if (mapped) | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!btrfs_meta_is_subpage(fs_info)) { | 
|  | /* | 
|  | * We do this since we'll remove the pages after we've removed | 
|  | * the eb from the xarray, so we could race and have this page | 
|  | * now attached to the new eb.  So only clear folio if it's | 
|  | * still connected to this eb. | 
|  | */ | 
|  | if (folio_test_private(folio) && folio_get_private(folio) == eb) { | 
|  | BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | BUG_ON(folio_test_dirty(folio)); | 
|  | BUG_ON(folio_test_writeback(folio)); | 
|  | /* We need to make sure we haven't be attached to a new eb. */ | 
|  | folio_detach_private(folio); | 
|  | } | 
|  | if (mapped) | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For subpage, we can have dummy eb with folio private attached.  In | 
|  | * this case, we can directly detach the private as such folio is only | 
|  | * attached to one dummy eb, no sharing. | 
|  | */ | 
|  | if (!mapped) { | 
|  | btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); | 
|  | return; | 
|  | } | 
|  |  | 
|  | btrfs_folio_dec_eb_refs(fs_info, folio); | 
|  |  | 
|  | /* | 
|  | * We can only detach the folio private if there are no other ebs in the | 
|  | * page range and no unfinished IO. | 
|  | */ | 
|  | if (!folio_range_has_eb(folio)) | 
|  | btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA); | 
|  |  | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | } | 
|  |  | 
|  | /* Release all folios attached to the extent buffer */ | 
|  | static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) | 
|  | { | 
|  | ASSERT(!extent_buffer_under_io(eb)); | 
|  |  | 
|  | for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { | 
|  | struct folio *folio = eb->folios[i]; | 
|  |  | 
|  | if (!folio) | 
|  | continue; | 
|  |  | 
|  | detach_extent_buffer_folio(eb, folio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for releasing the extent buffer. | 
|  | */ | 
|  | static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | btrfs_release_extent_buffer_folios(eb); | 
|  | btrfs_leak_debug_del_eb(eb); | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | } | 
|  |  | 
|  | static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | struct extent_buffer *eb = NULL; | 
|  |  | 
|  | eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); | 
|  | eb->start = start; | 
|  | eb->len = fs_info->nodesize; | 
|  | eb->fs_info = fs_info; | 
|  | init_rwsem(&eb->lock); | 
|  |  | 
|  | btrfs_leak_debug_add_eb(eb); | 
|  |  | 
|  | spin_lock_init(&eb->refs_lock); | 
|  | refcount_set(&eb->refs, 1); | 
|  |  | 
|  | ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE); | 
|  |  | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer() | 
|  | * does not call folio_put(), and we need to set the folios to NULL so that | 
|  | * btrfs_release_extent_buffer() will not detach them a second time. | 
|  | */ | 
|  | static void cleanup_extent_buffer_folios(struct extent_buffer *eb) | 
|  | { | 
|  | const int num_folios = num_extent_folios(eb); | 
|  |  | 
|  | /* We cannot use num_extent_folios() as loop bound as eb->folios changes. */ | 
|  | for (int i = 0; i < num_folios; i++) { | 
|  | ASSERT(eb->folios[i]); | 
|  | detach_extent_buffer_folio(eb, eb->folios[i]); | 
|  | folio_put(eb->folios[i]); | 
|  | eb->folios[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) | 
|  | { | 
|  | struct extent_buffer *new; | 
|  | int num_folios; | 
|  | int ret; | 
|  |  | 
|  | new = __alloc_extent_buffer(src->fs_info, src->start); | 
|  | if (new == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Set UNMAPPED before calling btrfs_release_extent_buffer(), as | 
|  | * btrfs_release_extent_buffer() have different behavior for | 
|  | * UNMAPPED subpage extent buffer. | 
|  | */ | 
|  | set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); | 
|  |  | 
|  | ret = alloc_eb_folio_array(new, false); | 
|  | if (ret) | 
|  | goto release_eb; | 
|  |  | 
|  | ASSERT(num_extent_folios(src) == num_extent_folios(new), | 
|  | "%d != %d", num_extent_folios(src), num_extent_folios(new)); | 
|  | /* Explicitly use the cached num_extent value from now on. */ | 
|  | num_folios = num_extent_folios(src); | 
|  | for (int i = 0; i < num_folios; i++) { | 
|  | struct folio *folio = new->folios[i]; | 
|  |  | 
|  | ret = attach_extent_buffer_folio(new, folio, NULL); | 
|  | if (ret < 0) | 
|  | goto cleanup_folios; | 
|  | WARN_ON(folio_test_dirty(folio)); | 
|  | } | 
|  | for (int i = 0; i < num_folios; i++) | 
|  | folio_put(new->folios[i]); | 
|  |  | 
|  | copy_extent_buffer_full(new, src); | 
|  | set_extent_buffer_uptodate(new); | 
|  |  | 
|  | return new; | 
|  |  | 
|  | cleanup_folios: | 
|  | cleanup_extent_buffer_folios(new); | 
|  | release_eb: | 
|  | btrfs_release_extent_buffer(new); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  |  | 
|  | eb = __alloc_extent_buffer(fs_info, start); | 
|  | if (!eb) | 
|  | return NULL; | 
|  |  | 
|  | ret = alloc_eb_folio_array(eb, false); | 
|  | if (ret) | 
|  | goto release_eb; | 
|  |  | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) { | 
|  | ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); | 
|  | if (ret < 0) | 
|  | goto cleanup_folios; | 
|  | } | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) | 
|  | folio_put(eb->folios[i]); | 
|  |  | 
|  | set_extent_buffer_uptodate(eb); | 
|  | btrfs_set_header_nritems(eb, 0); | 
|  | set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
|  |  | 
|  | return eb; | 
|  |  | 
|  | cleanup_folios: | 
|  | cleanup_extent_buffer_folios(eb); | 
|  | release_eb: | 
|  | btrfs_release_extent_buffer(eb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void check_buffer_tree_ref(struct extent_buffer *eb) | 
|  | { | 
|  | int refs; | 
|  | /* | 
|  | * The TREE_REF bit is first set when the extent_buffer is added to the | 
|  | * xarray. It is also reset, if unset, when a new reference is created | 
|  | * by find_extent_buffer. | 
|  | * | 
|  | * It is only cleared in two cases: freeing the last non-tree | 
|  | * reference to the extent_buffer when its STALE bit is set or | 
|  | * calling release_folio when the tree reference is the only reference. | 
|  | * | 
|  | * In both cases, care is taken to ensure that the extent_buffer's | 
|  | * pages are not under io. However, release_folio can be concurrently | 
|  | * called with creating new references, which is prone to race | 
|  | * conditions between the calls to check_buffer_tree_ref in those | 
|  | * codepaths and clearing TREE_REF in try_release_extent_buffer. | 
|  | * | 
|  | * The actual lifetime of the extent_buffer in the xarray is adequately | 
|  | * protected by the refcount, but the TREE_REF bit and its corresponding | 
|  | * reference are not. To protect against this class of races, we call | 
|  | * check_buffer_tree_ref() from the code paths which trigger io. Note that | 
|  | * once io is initiated, TREE_REF can no longer be cleared, so that is | 
|  | * the moment at which any such race is best fixed. | 
|  | */ | 
|  | refs = refcount_read(&eb->refs); | 
|  | if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | refcount_inc(&eb->refs); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  |  | 
|  | static void mark_extent_buffer_accessed(struct extent_buffer *eb) | 
|  | { | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) | 
|  | folio_mark_accessed(eb->folios[i]); | 
|  | } | 
|  |  | 
|  | struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = find_extent_buffer_nolock(fs_info, start); | 
|  | if (!eb) | 
|  | return NULL; | 
|  | /* | 
|  | * Lock our eb's refs_lock to avoid races with free_extent_buffer(). | 
|  | * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and | 
|  | * another task running free_extent_buffer() might have seen that flag | 
|  | * set, eb->refs == 2, that the buffer isn't under IO (dirty and | 
|  | * writeback flags not set) and it's still in the tree (flag | 
|  | * EXTENT_BUFFER_TREE_REF set), therefore being in the process of | 
|  | * decrementing the extent buffer's reference count twice.  So here we | 
|  | * could race and increment the eb's reference count, clear its stale | 
|  | * flag, mark it as dirty and drop our reference before the other task | 
|  | * finishes executing free_extent_buffer, which would later result in | 
|  | * an attempt to free an extent buffer that is dirty. | 
|  | */ | 
|  | if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { | 
|  | spin_lock(&eb->refs_lock); | 
|  | spin_unlock(&eb->refs_lock); | 
|  | } | 
|  | mark_extent_buffer_accessed(eb); | 
|  | return eb; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start) | 
|  | { | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | struct extent_buffer *eb, *exists = NULL; | 
|  | int ret; | 
|  |  | 
|  | eb = find_extent_buffer(fs_info, start); | 
|  | if (eb) | 
|  | return eb; | 
|  | eb = alloc_dummy_extent_buffer(fs_info, start); | 
|  | if (!eb) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | eb->fs_info = fs_info; | 
|  | again: | 
|  | xa_lock_irq(&fs_info->buffer_tree); | 
|  | exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits, | 
|  | NULL, eb, GFP_NOFS); | 
|  | if (xa_is_err(exists)) { | 
|  | ret = xa_err(exists); | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  | btrfs_release_extent_buffer(eb); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | if (exists) { | 
|  | if (!refcount_inc_not_zero(&exists->refs)) { | 
|  | /* The extent buffer is being freed, retry. */ | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  | goto again; | 
|  | } | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  | btrfs_release_extent_buffer(eb); | 
|  | return exists; | 
|  | } | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | return eb; | 
|  | #else | 
|  | /* Stub to avoid linker error when compiled with optimizations turned off. */ | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | struct folio *folio) | 
|  | { | 
|  | struct extent_buffer *exists; | 
|  |  | 
|  | lockdep_assert_held(&folio->mapping->i_private_lock); | 
|  |  | 
|  | /* | 
|  | * For subpage case, we completely rely on xarray to ensure we don't try | 
|  | * to insert two ebs for the same bytenr.  So here we always return NULL | 
|  | * and just continue. | 
|  | */ | 
|  | if (btrfs_meta_is_subpage(fs_info)) | 
|  | return NULL; | 
|  |  | 
|  | /* Page not yet attached to an extent buffer */ | 
|  | if (!folio_test_private(folio)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We could have already allocated an eb for this folio and attached one | 
|  | * so lets see if we can get a ref on the existing eb, and if we can we | 
|  | * know it's good and we can just return that one, else we know we can | 
|  | * just overwrite folio private. | 
|  | */ | 
|  | exists = folio_get_private(folio); | 
|  | if (refcount_inc_not_zero(&exists->refs)) | 
|  | return exists; | 
|  |  | 
|  | WARN_ON(folio_test_dirty(folio)); | 
|  | folio_detach_private(folio); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate alignment constraints of eb at logical address @start. | 
|  | */ | 
|  | static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) | 
|  | { | 
|  | const u32 nodesize = fs_info->nodesize; | 
|  |  | 
|  | if (unlikely(!IS_ALIGNED(start, fs_info->sectorsize))) { | 
|  | btrfs_err(fs_info, "bad tree block start %llu", start); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (unlikely(nodesize < PAGE_SIZE && !IS_ALIGNED(start, nodesize))) { | 
|  | btrfs_err(fs_info, | 
|  | "tree block is not nodesize aligned, start %llu nodesize %u", | 
|  | start, nodesize); | 
|  | return true; | 
|  | } | 
|  | if (unlikely(nodesize >= PAGE_SIZE && !PAGE_ALIGNED(start))) { | 
|  | btrfs_err(fs_info, | 
|  | "tree block is not page aligned, start %llu nodesize %u", | 
|  | start, nodesize); | 
|  | return true; | 
|  | } | 
|  | if (unlikely(!IS_ALIGNED(start, nodesize) && | 
|  | !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags))) { | 
|  | btrfs_warn(fs_info, | 
|  | "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", | 
|  | start, nodesize); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 0 if eb->folios[i] is attached to btree inode successfully. | 
|  | * Return >0 if there is already another extent buffer for the range, | 
|  | * and @found_eb_ret would be updated. | 
|  | * Return -EAGAIN if the filemap has an existing folio but with different size | 
|  | * than @eb. | 
|  | * The caller needs to free the existing folios and retry using the same order. | 
|  | */ | 
|  | static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, | 
|  | struct btrfs_folio_state *prealloc, | 
|  | struct extent_buffer **found_eb_ret) | 
|  | { | 
|  |  | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct address_space *mapping = fs_info->btree_inode->i_mapping; | 
|  | const pgoff_t index = eb->start >> PAGE_SHIFT; | 
|  | struct folio *existing_folio; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(found_eb_ret); | 
|  |  | 
|  | /* Caller should ensure the folio exists. */ | 
|  | ASSERT(eb->folios[i]); | 
|  |  | 
|  | retry: | 
|  | existing_folio = NULL; | 
|  | ret = filemap_add_folio(mapping, eb->folios[i], index + i, | 
|  | GFP_NOFS | __GFP_NOFAIL); | 
|  | if (!ret) | 
|  | goto finish; | 
|  |  | 
|  | existing_folio = filemap_lock_folio(mapping, index + i); | 
|  | /* The page cache only exists for a very short time, just retry. */ | 
|  | if (IS_ERR(existing_folio)) | 
|  | goto retry; | 
|  |  | 
|  | /* For now, we should only have single-page folios for btree inode. */ | 
|  | ASSERT(folio_nr_pages(existing_folio) == 1); | 
|  |  | 
|  | if (folio_size(existing_folio) != eb->folio_size) { | 
|  | folio_unlock(existing_folio); | 
|  | folio_put(existing_folio); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | finish: | 
|  | spin_lock(&mapping->i_private_lock); | 
|  | if (existing_folio && btrfs_meta_is_subpage(fs_info)) { | 
|  | /* We're going to reuse the existing page, can drop our folio now. */ | 
|  | __free_page(folio_page(eb->folios[i], 0)); | 
|  | eb->folios[i] = existing_folio; | 
|  | } else if (existing_folio) { | 
|  | struct extent_buffer *existing_eb; | 
|  |  | 
|  | existing_eb = grab_extent_buffer(fs_info, existing_folio); | 
|  | if (existing_eb) { | 
|  | /* The extent buffer still exists, we can use it directly. */ | 
|  | *found_eb_ret = existing_eb; | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | folio_unlock(existing_folio); | 
|  | folio_put(existing_folio); | 
|  | return 1; | 
|  | } | 
|  | /* The extent buffer no longer exists, we can reuse the folio. */ | 
|  | __free_page(folio_page(eb->folios[i], 0)); | 
|  | eb->folios[i] = existing_folio; | 
|  | } | 
|  | eb->folio_size = folio_size(eb->folios[i]); | 
|  | eb->folio_shift = folio_shift(eb->folios[i]); | 
|  | /* Should not fail, as we have preallocated the memory. */ | 
|  | ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); | 
|  | ASSERT(!ret); | 
|  | /* | 
|  | * To inform we have an extra eb under allocation, so that | 
|  | * detach_extent_buffer_page() won't release the folio private when the | 
|  | * eb hasn't been inserted into the xarray yet. | 
|  | * | 
|  | * The ref will be decreased when the eb releases the page, in | 
|  | * detach_extent_buffer_page().  Thus needs no special handling in the | 
|  | * error path. | 
|  | */ | 
|  | btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); | 
|  | spin_unlock(&mapping->i_private_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 owner_root, int level) | 
|  | { | 
|  | int attached = 0; | 
|  | struct extent_buffer *eb; | 
|  | struct extent_buffer *existing_eb = NULL; | 
|  | struct btrfs_folio_state *prealloc = NULL; | 
|  | u64 lockdep_owner = owner_root; | 
|  | bool page_contig = true; | 
|  | int uptodate = 1; | 
|  | int ret; | 
|  |  | 
|  | if (check_eb_alignment(fs_info, start)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | if (start >= MAX_LFS_FILESIZE) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "extent buffer %llu is beyond 32bit page cache limit", start); | 
|  | btrfs_err_32bit_limit(fs_info); | 
|  | return ERR_PTR(-EOVERFLOW); | 
|  | } | 
|  | if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) | 
|  | btrfs_warn_32bit_limit(fs_info); | 
|  | #endif | 
|  |  | 
|  | eb = find_extent_buffer(fs_info, start); | 
|  | if (eb) | 
|  | return eb; | 
|  |  | 
|  | eb = __alloc_extent_buffer(fs_info, start); | 
|  | if (!eb) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * The reloc trees are just snapshots, so we need them to appear to be | 
|  | * just like any other fs tree WRT lockdep. | 
|  | */ | 
|  | if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) | 
|  | lockdep_owner = BTRFS_FS_TREE_OBJECTID; | 
|  |  | 
|  | btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); | 
|  |  | 
|  | /* | 
|  | * Preallocate folio private for subpage case, so that we won't | 
|  | * allocate memory with i_private_lock nor page lock hold. | 
|  | * | 
|  | * The memory will be freed by attach_extent_buffer_page() or freed | 
|  | * manually if we exit earlier. | 
|  | */ | 
|  | if (btrfs_meta_is_subpage(fs_info)) { | 
|  | prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA); | 
|  | if (IS_ERR(prealloc)) { | 
|  | ret = PTR_ERR(prealloc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | reallocate: | 
|  | /* Allocate all pages first. */ | 
|  | ret = alloc_eb_folio_array(eb, true); | 
|  | if (ret < 0) { | 
|  | btrfs_free_folio_state(prealloc); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Attach all pages to the filemap. */ | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) { | 
|  | struct folio *folio; | 
|  |  | 
|  | ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); | 
|  | if (ret > 0) { | 
|  | ASSERT(existing_eb); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: Special handling for a corner case where the order of | 
|  | * folios mismatch between the new eb and filemap. | 
|  | * | 
|  | * This happens when: | 
|  | * | 
|  | * - the new eb is using higher order folio | 
|  | * | 
|  | * - the filemap is still using 0-order folios for the range | 
|  | *   This can happen at the previous eb allocation, and we don't | 
|  | *   have higher order folio for the call. | 
|  | * | 
|  | * - the existing eb has already been freed | 
|  | * | 
|  | * In this case, we have to free the existing folios first, and | 
|  | * re-allocate using the same order. | 
|  | * Thankfully this is not going to happen yet, as we're still | 
|  | * using 0-order folios. | 
|  | */ | 
|  | if (unlikely(ret == -EAGAIN)) { | 
|  | DEBUG_WARN("folio order mismatch between new eb and filemap"); | 
|  | goto reallocate; | 
|  | } | 
|  | attached++; | 
|  |  | 
|  | /* | 
|  | * Only after attach_eb_folio_to_filemap(), eb->folios[] is | 
|  | * reliable, as we may choose to reuse the existing page cache | 
|  | * and free the allocated page. | 
|  | */ | 
|  | folio = eb->folios[i]; | 
|  | WARN_ON(btrfs_meta_folio_test_dirty(folio, eb)); | 
|  |  | 
|  | /* | 
|  | * Check if the current page is physically contiguous with previous eb | 
|  | * page. | 
|  | * At this stage, either we allocated a large folio, thus @i | 
|  | * would only be 0, or we fall back to per-page allocation. | 
|  | */ | 
|  | if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) | 
|  | page_contig = false; | 
|  |  | 
|  | if (!btrfs_meta_folio_test_uptodate(folio, eb)) | 
|  | uptodate = 0; | 
|  |  | 
|  | /* | 
|  | * We can't unlock the pages just yet since the extent buffer | 
|  | * hasn't been properly inserted into the xarray, this opens a | 
|  | * race with btree_release_folio() which can free a page while we | 
|  | * are still filling in all pages for the buffer and we could crash. | 
|  | */ | 
|  | } | 
|  | if (uptodate) | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | /* All pages are physically contiguous, can skip cross page handling. */ | 
|  | if (page_contig) | 
|  | eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); | 
|  | again: | 
|  | xa_lock_irq(&fs_info->buffer_tree); | 
|  | existing_eb = __xa_cmpxchg(&fs_info->buffer_tree, | 
|  | start >> fs_info->nodesize_bits, NULL, eb, | 
|  | GFP_NOFS); | 
|  | if (xa_is_err(existing_eb)) { | 
|  | ret = xa_err(existing_eb); | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  | goto out; | 
|  | } | 
|  | if (existing_eb) { | 
|  | if (!refcount_inc_not_zero(&existing_eb->refs)) { | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  | goto again; | 
|  | } | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  | goto out; | 
|  | } | 
|  | xa_unlock_irq(&fs_info->buffer_tree); | 
|  |  | 
|  | /* add one reference for the tree */ | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | /* | 
|  | * Now it's safe to unlock the pages because any calls to | 
|  | * btree_release_folio will correctly detect that a page belongs to a | 
|  | * live buffer and won't free them prematurely. | 
|  | */ | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) { | 
|  | folio_unlock(eb->folios[i]); | 
|  | /* | 
|  | * A folio that has been added to an address_space mapping | 
|  | * should not continue holding the refcount from its original | 
|  | * allocation indefinitely. | 
|  | */ | 
|  | folio_put(eb->folios[i]); | 
|  | } | 
|  | return eb; | 
|  |  | 
|  | out: | 
|  | WARN_ON(!refcount_dec_and_test(&eb->refs)); | 
|  |  | 
|  | /* | 
|  | * Any attached folios need to be detached before we unlock them.  This | 
|  | * is because when we're inserting our new folios into the mapping, and | 
|  | * then attaching our eb to that folio.  If we fail to insert our folio | 
|  | * we'll lookup the folio for that index, and grab that EB.  We do not | 
|  | * want that to grab this eb, as we're getting ready to free it.  So we | 
|  | * have to detach it first and then unlock it. | 
|  | * | 
|  | * Note: the bounds is num_extent_pages() as we need to go through all slots. | 
|  | */ | 
|  | for (int i = 0; i < num_extent_pages(eb); i++) { | 
|  | struct folio *folio = eb->folios[i]; | 
|  |  | 
|  | if (i < attached) { | 
|  | ASSERT(folio); | 
|  | detach_extent_buffer_folio(eb, folio); | 
|  | folio_unlock(folio); | 
|  | } else if (!folio) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | folio_put(folio); | 
|  | eb->folios[i] = NULL; | 
|  | } | 
|  | btrfs_release_extent_buffer(eb); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  | ASSERT(existing_eb); | 
|  | return existing_eb; | 
|  | } | 
|  |  | 
|  | static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct extent_buffer *eb = | 
|  | container_of(head, struct extent_buffer, rcu_head); | 
|  |  | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | } | 
|  |  | 
|  | static int release_extent_buffer(struct extent_buffer *eb) | 
|  | __releases(&eb->refs_lock) | 
|  | { | 
|  | lockdep_assert_held(&eb->refs_lock); | 
|  |  | 
|  | if (refcount_dec_and_test(&eb->refs)) { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  |  | 
|  | spin_unlock(&eb->refs_lock); | 
|  |  | 
|  | /* | 
|  | * We're erasing, theoretically there will be no allocations, so | 
|  | * just use GFP_ATOMIC. | 
|  | * | 
|  | * We use cmpxchg instead of erase because we do not know if | 
|  | * this eb is actually in the tree or not, we could be cleaning | 
|  | * up an eb that we allocated but never inserted into the tree. | 
|  | * Thus use cmpxchg to remove it from the tree if it is there, | 
|  | * or leave the other entry if this isn't in the tree. | 
|  | * | 
|  | * The documentation says that putting a NULL value is the same | 
|  | * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't | 
|  | * in this case. | 
|  | */ | 
|  | xa_cmpxchg_irq(&fs_info->buffer_tree, | 
|  | eb->start >> fs_info->nodesize_bits, eb, NULL, | 
|  | GFP_ATOMIC); | 
|  |  | 
|  | btrfs_leak_debug_del_eb(eb); | 
|  | /* Should be safe to release folios at this point. */ | 
|  | btrfs_release_extent_buffer_folios(eb); | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { | 
|  | kmem_cache_free(extent_buffer_cache, eb); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); | 
|  | return 1; | 
|  | } | 
|  | spin_unlock(&eb->refs_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void free_extent_buffer(struct extent_buffer *eb) | 
|  | { | 
|  | int refs; | 
|  | if (!eb) | 
|  | return; | 
|  |  | 
|  | refs = refcount_read(&eb->refs); | 
|  | while (1) { | 
|  | if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) { | 
|  | if (refs == 1) | 
|  | break; | 
|  | } else if (refs <= 3) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Optimization to avoid locking eb->refs_lock. */ | 
|  | if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (refcount_read(&eb->refs) == 2 && | 
|  | test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && | 
|  | !extent_buffer_under_io(eb) && | 
|  | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | refcount_dec(&eb->refs); | 
|  |  | 
|  | /* | 
|  | * I know this is terrible, but it's temporary until we stop tracking | 
|  | * the uptodate bits and such for the extent buffers. | 
|  | */ | 
|  | release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | void free_extent_buffer_stale(struct extent_buffer *eb) | 
|  | { | 
|  | if (!eb) | 
|  | return; | 
|  |  | 
|  | spin_lock(&eb->refs_lock); | 
|  | set_bit(EXTENT_BUFFER_STALE, &eb->bflags); | 
|  |  | 
|  | if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && | 
|  | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) | 
|  | refcount_dec(&eb->refs); | 
|  | release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | static void btree_clear_folio_dirty_tag(struct folio *folio) | 
|  | { | 
|  | ASSERT(!folio_test_dirty(folio)); | 
|  | ASSERT(folio_test_locked(folio)); | 
|  | xa_lock_irq(&folio->mapping->i_pages); | 
|  | if (!folio_test_dirty(folio)) | 
|  | __xa_clear_mark(&folio->mapping->i_pages, folio->index, | 
|  | PAGECACHE_TAG_DIRTY); | 
|  | xa_unlock_irq(&folio->mapping->i_pages); | 
|  | } | 
|  |  | 
|  | void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, | 
|  | struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  |  | 
|  | btrfs_assert_tree_write_locked(eb); | 
|  |  | 
|  | if (trans && btrfs_header_generation(eb) != trans->transid) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Instead of clearing the dirty flag off of the buffer, mark it as | 
|  | * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve | 
|  | * write-ordering in zoned mode, without the need to later re-dirty | 
|  | * the extent_buffer. | 
|  | * | 
|  | * The actual zeroout of the buffer will happen later in | 
|  | * btree_csum_one_bio. | 
|  | */ | 
|  | if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
|  | set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) | 
|  | return; | 
|  |  | 
|  | buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY); | 
|  | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, | 
|  | fs_info->dirty_metadata_batch); | 
|  |  | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) { | 
|  | struct folio *folio = eb->folios[i]; | 
|  | bool last; | 
|  |  | 
|  | if (!folio_test_dirty(folio)) | 
|  | continue; | 
|  | folio_lock(folio); | 
|  | last = btrfs_meta_folio_clear_and_test_dirty(folio, eb); | 
|  | if (last) | 
|  | btree_clear_folio_dirty_tag(folio); | 
|  | folio_unlock(folio); | 
|  | } | 
|  | WARN_ON(refcount_read(&eb->refs) == 0); | 
|  | } | 
|  |  | 
|  | void set_extent_buffer_dirty(struct extent_buffer *eb) | 
|  | { | 
|  | bool was_dirty; | 
|  |  | 
|  | check_buffer_tree_ref(eb); | 
|  |  | 
|  | was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
|  |  | 
|  | WARN_ON(refcount_read(&eb->refs) == 0); | 
|  | WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); | 
|  | WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); | 
|  |  | 
|  | if (!was_dirty) { | 
|  | bool subpage = btrfs_meta_is_subpage(eb->fs_info); | 
|  |  | 
|  | /* | 
|  | * For subpage case, we can have other extent buffers in the | 
|  | * same page, and in clear_extent_buffer_dirty() we | 
|  | * have to clear page dirty without subpage lock held. | 
|  | * This can cause race where our page gets dirty cleared after | 
|  | * we just set it. | 
|  | * | 
|  | * Thankfully, clear_extent_buffer_dirty() has locked | 
|  | * its page for other reasons, we can use page lock to prevent | 
|  | * the above race. | 
|  | */ | 
|  | if (subpage) | 
|  | folio_lock(eb->folios[0]); | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) | 
|  | btrfs_meta_folio_set_dirty(eb->folios[i], eb); | 
|  | buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY); | 
|  | if (subpage) | 
|  | folio_unlock(eb->folios[0]); | 
|  | percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, | 
|  | eb->len, | 
|  | eb->fs_info->dirty_metadata_batch); | 
|  | } | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) | 
|  | ASSERT(folio_test_dirty(eb->folios[i])); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void clear_extent_buffer_uptodate(struct extent_buffer *eb) | 
|  | { | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) { | 
|  | struct folio *folio = eb->folios[i]; | 
|  |  | 
|  | if (!folio) | 
|  | continue; | 
|  |  | 
|  | btrfs_meta_folio_clear_uptodate(folio, eb); | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_extent_buffer_uptodate(struct extent_buffer *eb) | 
|  | { | 
|  |  | 
|  | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) | 
|  | btrfs_meta_folio_set_uptodate(eb->folios[i], eb); | 
|  | } | 
|  |  | 
|  | static void clear_extent_buffer_reading(struct extent_buffer *eb) | 
|  | { | 
|  | clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags); | 
|  | } | 
|  |  | 
|  | static void end_bbio_meta_read(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct extent_buffer *eb = bbio->private; | 
|  | bool uptodate = !bbio->bio.bi_status; | 
|  |  | 
|  | /* | 
|  | * If the extent buffer is marked UPTODATE before the read operation | 
|  | * completes, other calls to read_extent_buffer_pages() will return | 
|  | * early without waiting for the read to finish, causing data races. | 
|  | */ | 
|  | WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); | 
|  |  | 
|  | eb->read_mirror = bbio->mirror_num; | 
|  |  | 
|  | if (uptodate && | 
|  | btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) | 
|  | uptodate = false; | 
|  |  | 
|  | if (uptodate) | 
|  | set_extent_buffer_uptodate(eb); | 
|  | else | 
|  | clear_extent_buffer_uptodate(eb); | 
|  |  | 
|  | clear_extent_buffer_reading(eb); | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | bio_put(&bbio->bio); | 
|  | } | 
|  |  | 
|  | int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, | 
|  | const struct btrfs_tree_parent_check *check) | 
|  | { | 
|  | struct btrfs_bio *bbio; | 
|  |  | 
|  | if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We could have had EXTENT_BUFFER_UPTODATE cleared by the write | 
|  | * operation, which could potentially still be in flight.  In this case | 
|  | * we simply want to return an error. | 
|  | */ | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) | 
|  | return -EIO; | 
|  |  | 
|  | /* Someone else is already reading the buffer, just wait for it. */ | 
|  | if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above | 
|  | * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have | 
|  | * started and finished reading the same eb.  In this case, UPTODATE | 
|  | * will now be set, and we shouldn't read it in again. | 
|  | */ | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { | 
|  | clear_extent_buffer_reading(eb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | eb->read_mirror = 0; | 
|  | check_buffer_tree_ref(eb); | 
|  | refcount_inc(&eb->refs); | 
|  |  | 
|  | bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, | 
|  | REQ_OP_READ | REQ_META, eb->fs_info, | 
|  | end_bbio_meta_read, eb); | 
|  | bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; | 
|  | bbio->inode = BTRFS_I(eb->fs_info->btree_inode); | 
|  | bbio->file_offset = eb->start; | 
|  | memcpy(&bbio->parent_check, check, sizeof(*check)); | 
|  | for (int i = 0; i < num_extent_folios(eb); i++) { | 
|  | struct folio *folio = eb->folios[i]; | 
|  | u64 range_start = max_t(u64, eb->start, folio_pos(folio)); | 
|  | u32 range_len = min_t(u64, folio_end(folio), | 
|  | eb->start + eb->len) - range_start; | 
|  |  | 
|  | bio_add_folio_nofail(&bbio->bio, folio, range_len, | 
|  | offset_in_folio(folio, range_start)); | 
|  | } | 
|  | btrfs_submit_bbio(bbio, mirror_num); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, | 
|  | const struct btrfs_tree_parent_check *check) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); | 
|  | if (unlikely(!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | btrfs_warn(eb->fs_info, | 
|  | "access to eb bytenr %llu len %u out of range start %lu len %lu", | 
|  | eb->start, eb->len, start, len); | 
|  | DEBUG_WARN(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the [start, start + len) range is valid before reading/writing | 
|  | * the eb. | 
|  | * NOTE: @start and @len are offset inside the eb, not logical address. | 
|  | * | 
|  | * Caller should not touch the dst/src memory if this function returns error. | 
|  | */ | 
|  | static inline int check_eb_range(const struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | unsigned long offset; | 
|  |  | 
|  | /* start, start + len should not go beyond eb->len nor overflow */ | 
|  | if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) | 
|  | return report_eb_range(eb, start, len); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void read_extent_buffer(const struct extent_buffer *eb, void *dstv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | const int unit_size = eb->folio_size; | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | char *dst = (char *)dstv; | 
|  | unsigned long i = get_eb_folio_index(eb, start); | 
|  |  | 
|  | if (check_eb_range(eb, start, len)) { | 
|  | /* | 
|  | * Invalid range hit, reset the memory, so callers won't get | 
|  | * some random garbage for their uninitialized memory. | 
|  | */ | 
|  | memset(dstv, 0, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (eb->addr) { | 
|  | memcpy(dstv, eb->addr + start, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | offset = get_eb_offset_in_folio(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | char *kaddr; | 
|  |  | 
|  | cur = min(len, unit_size - offset); | 
|  | kaddr = folio_address(eb->folios[i]); | 
|  | memcpy(dst, kaddr + offset, cur); | 
|  |  | 
|  | dst += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, | 
|  | void __user *dstv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | const int unit_size = eb->folio_size; | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | char __user *dst = (char __user *)dstv; | 
|  | unsigned long i = get_eb_folio_index(eb, start); | 
|  | int ret = 0; | 
|  |  | 
|  | WARN_ON(start > eb->len); | 
|  | WARN_ON(start + len > eb->start + eb->len); | 
|  |  | 
|  | if (eb->addr) { | 
|  | if (copy_to_user_nofault(dstv, eb->addr + start, len)) | 
|  | ret = -EFAULT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | offset = get_eb_offset_in_folio(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | char *kaddr; | 
|  |  | 
|  | cur = min(len, unit_size - offset); | 
|  | kaddr = folio_address(eb->folios[i]); | 
|  | if (copy_to_user_nofault(dst, kaddr + offset, cur)) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dst += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | const int unit_size = eb->folio_size; | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | char *kaddr; | 
|  | char *ptr = (char *)ptrv; | 
|  | unsigned long i = get_eb_folio_index(eb, start); | 
|  | int ret = 0; | 
|  |  | 
|  | if (check_eb_range(eb, start, len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (eb->addr) | 
|  | return memcmp(ptrv, eb->addr + start, len); | 
|  |  | 
|  | offset = get_eb_offset_in_folio(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | cur = min(len, unit_size - offset); | 
|  | kaddr = folio_address(eb->folios[i]); | 
|  | ret = memcmp(ptr, kaddr + offset, cur); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ptr += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the extent buffer is uptodate. | 
|  | * | 
|  | * For regular sector size == PAGE_SIZE case, check if @page is uptodate. | 
|  | * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. | 
|  | */ | 
|  | static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct folio *folio = eb->folios[i]; | 
|  |  | 
|  | ASSERT(folio); | 
|  |  | 
|  | /* | 
|  | * If we are using the commit root we could potentially clear a page | 
|  | * Uptodate while we're using the extent buffer that we've previously | 
|  | * looked up.  We don't want to complain in this case, as the page was | 
|  | * valid before, we just didn't write it out.  Instead we want to catch | 
|  | * the case where we didn't actually read the block properly, which | 
|  | * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. | 
|  | */ | 
|  | if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) | 
|  | return; | 
|  |  | 
|  | if (btrfs_meta_is_subpage(fs_info)) { | 
|  | folio = eb->folios[0]; | 
|  | ASSERT(i == 0); | 
|  | if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, | 
|  | eb->start, eb->len))) | 
|  | btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); | 
|  | } else { | 
|  | WARN_ON(!folio_test_uptodate(folio)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __write_extent_buffer(const struct extent_buffer *eb, | 
|  | const void *srcv, unsigned long start, | 
|  | unsigned long len, bool use_memmove) | 
|  | { | 
|  | const int unit_size = eb->folio_size; | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | char *kaddr; | 
|  | const char *src = (const char *)srcv; | 
|  | unsigned long i = get_eb_folio_index(eb, start); | 
|  | /* For unmapped (dummy) ebs, no need to check their uptodate status. */ | 
|  | const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); | 
|  |  | 
|  | if (check_eb_range(eb, start, len)) | 
|  | return; | 
|  |  | 
|  | if (eb->addr) { | 
|  | if (use_memmove) | 
|  | memmove(eb->addr + start, srcv, len); | 
|  | else | 
|  | memcpy(eb->addr + start, srcv, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | offset = get_eb_offset_in_folio(eb, start); | 
|  |  | 
|  | while (len > 0) { | 
|  | if (check_uptodate) | 
|  | assert_eb_folio_uptodate(eb, i); | 
|  |  | 
|  | cur = min(len, unit_size - offset); | 
|  | kaddr = folio_address(eb->folios[i]); | 
|  | if (use_memmove) | 
|  | memmove(kaddr + offset, src, cur); | 
|  | else | 
|  | memcpy(kaddr + offset, src, cur); | 
|  |  | 
|  | src += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | return __write_extent_buffer(eb, srcv, start, len, false); | 
|  | } | 
|  |  | 
|  | static void memset_extent_buffer(const struct extent_buffer *eb, int c, | 
|  | unsigned long start, unsigned long len) | 
|  | { | 
|  | const int unit_size = eb->folio_size; | 
|  | unsigned long cur = start; | 
|  |  | 
|  | if (eb->addr) { | 
|  | memset(eb->addr + start, c, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (cur < start + len) { | 
|  | unsigned long index = get_eb_folio_index(eb, cur); | 
|  | unsigned int offset = get_eb_offset_in_folio(eb, cur); | 
|  | unsigned int cur_len = min(start + len - cur, unit_size - offset); | 
|  |  | 
|  | assert_eb_folio_uptodate(eb, index); | 
|  | memset(folio_address(eb->folios[index]) + offset, c, cur_len); | 
|  |  | 
|  | cur += cur_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | if (check_eb_range(eb, start, len)) | 
|  | return; | 
|  | return memset_extent_buffer(eb, 0, start, len); | 
|  | } | 
|  |  | 
|  | void copy_extent_buffer_full(const struct extent_buffer *dst, | 
|  | const struct extent_buffer *src) | 
|  | { | 
|  | const int unit_size = src->folio_size; | 
|  | unsigned long cur = 0; | 
|  |  | 
|  | ASSERT(dst->len == src->len); | 
|  |  | 
|  | while (cur < src->len) { | 
|  | unsigned long index = get_eb_folio_index(src, cur); | 
|  | unsigned long offset = get_eb_offset_in_folio(src, cur); | 
|  | unsigned long cur_len = min(src->len, unit_size - offset); | 
|  | void *addr = folio_address(src->folios[index]) + offset; | 
|  |  | 
|  | write_extent_buffer(dst, addr, cur, cur_len); | 
|  |  | 
|  | cur += cur_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | void copy_extent_buffer(const struct extent_buffer *dst, | 
|  | const struct extent_buffer *src, | 
|  | unsigned long dst_offset, unsigned long src_offset, | 
|  | unsigned long len) | 
|  | { | 
|  | const int unit_size = dst->folio_size; | 
|  | u64 dst_len = dst->len; | 
|  | size_t cur; | 
|  | size_t offset; | 
|  | char *kaddr; | 
|  | unsigned long i = get_eb_folio_index(dst, dst_offset); | 
|  |  | 
|  | if (check_eb_range(dst, dst_offset, len) || | 
|  | check_eb_range(src, src_offset, len)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(src->len != dst_len); | 
|  |  | 
|  | offset = get_eb_offset_in_folio(dst, dst_offset); | 
|  |  | 
|  | while (len > 0) { | 
|  | assert_eb_folio_uptodate(dst, i); | 
|  |  | 
|  | cur = min(len, (unsigned long)(unit_size - offset)); | 
|  |  | 
|  | kaddr = folio_address(dst->folios[i]); | 
|  | read_extent_buffer(src, kaddr + offset, src_offset, cur); | 
|  |  | 
|  | src_offset += cur; | 
|  | len -= cur; | 
|  | offset = 0; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the folio and offset of the byte containing the given bit number. | 
|  | * | 
|  | * @eb:           the extent buffer | 
|  | * @start:        offset of the bitmap item in the extent buffer | 
|  | * @nr:           bit number | 
|  | * @folio_index:  return index of the folio in the extent buffer that contains | 
|  | *                the given bit number | 
|  | * @folio_offset: return offset into the folio given by folio_index | 
|  | * | 
|  | * This helper hides the ugliness of finding the byte in an extent buffer which | 
|  | * contains a given bit. | 
|  | */ | 
|  | static inline void eb_bitmap_offset(const struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long nr, | 
|  | unsigned long *folio_index, | 
|  | size_t *folio_offset) | 
|  | { | 
|  | size_t byte_offset = BIT_BYTE(nr); | 
|  | size_t offset; | 
|  |  | 
|  | /* | 
|  | * The byte we want is the offset of the extent buffer + the offset of | 
|  | * the bitmap item in the extent buffer + the offset of the byte in the | 
|  | * bitmap item. | 
|  | */ | 
|  | offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; | 
|  |  | 
|  | *folio_index = offset >> eb->folio_shift; | 
|  | *folio_offset = offset_in_eb_folio(eb, offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine whether a bit in a bitmap item is set. | 
|  | * | 
|  | * @eb:     the extent buffer | 
|  | * @start:  offset of the bitmap item in the extent buffer | 
|  | * @nr:     bit number to test | 
|  | */ | 
|  | bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long nr) | 
|  | { | 
|  | unsigned long i; | 
|  | size_t offset; | 
|  | u8 *kaddr; | 
|  |  | 
|  | eb_bitmap_offset(eb, start, nr, &i, &offset); | 
|  | assert_eb_folio_uptodate(eb, i); | 
|  | kaddr = folio_address(eb->folios[i]); | 
|  | return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); | 
|  | } | 
|  |  | 
|  | static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) | 
|  | { | 
|  | unsigned long index = get_eb_folio_index(eb, bytenr); | 
|  |  | 
|  | if (check_eb_range(eb, bytenr, 1)) | 
|  | return NULL; | 
|  | return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set an area of a bitmap to 1. | 
|  | * | 
|  | * @eb:     the extent buffer | 
|  | * @start:  offset of the bitmap item in the extent buffer | 
|  | * @pos:    bit number of the first bit | 
|  | * @len:    number of bits to set | 
|  | */ | 
|  | void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, | 
|  | unsigned long pos, unsigned long len) | 
|  | { | 
|  | unsigned int first_byte = start + BIT_BYTE(pos); | 
|  | unsigned int last_byte = start + BIT_BYTE(pos + len - 1); | 
|  | const bool same_byte = (first_byte == last_byte); | 
|  | u8 mask = BITMAP_FIRST_BYTE_MASK(pos); | 
|  | u8 *kaddr; | 
|  |  | 
|  | if (same_byte) | 
|  | mask &= BITMAP_LAST_BYTE_MASK(pos + len); | 
|  |  | 
|  | /* Handle the first byte. */ | 
|  | kaddr = extent_buffer_get_byte(eb, first_byte); | 
|  | *kaddr |= mask; | 
|  | if (same_byte) | 
|  | return; | 
|  |  | 
|  | /* Handle the byte aligned part. */ | 
|  | ASSERT(first_byte + 1 <= last_byte); | 
|  | memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); | 
|  |  | 
|  | /* Handle the last byte. */ | 
|  | kaddr = extent_buffer_get_byte(eb, last_byte); | 
|  | *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Clear an area of a bitmap. | 
|  | * | 
|  | * @eb:     the extent buffer | 
|  | * @start:  offset of the bitmap item in the extent buffer | 
|  | * @pos:    bit number of the first bit | 
|  | * @len:    number of bits to clear | 
|  | */ | 
|  | void extent_buffer_bitmap_clear(const struct extent_buffer *eb, | 
|  | unsigned long start, unsigned long pos, | 
|  | unsigned long len) | 
|  | { | 
|  | unsigned int first_byte = start + BIT_BYTE(pos); | 
|  | unsigned int last_byte = start + BIT_BYTE(pos + len - 1); | 
|  | const bool same_byte = (first_byte == last_byte); | 
|  | u8 mask = BITMAP_FIRST_BYTE_MASK(pos); | 
|  | u8 *kaddr; | 
|  |  | 
|  | if (same_byte) | 
|  | mask &= BITMAP_LAST_BYTE_MASK(pos + len); | 
|  |  | 
|  | /* Handle the first byte. */ | 
|  | kaddr = extent_buffer_get_byte(eb, first_byte); | 
|  | *kaddr &= ~mask; | 
|  | if (same_byte) | 
|  | return; | 
|  |  | 
|  | /* Handle the byte aligned part. */ | 
|  | ASSERT(first_byte + 1 <= last_byte); | 
|  | memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); | 
|  |  | 
|  | /* Handle the last byte. */ | 
|  | kaddr = extent_buffer_get_byte(eb, last_byte); | 
|  | *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); | 
|  | } | 
|  |  | 
|  | static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) | 
|  | { | 
|  | unsigned long distance = (src > dst) ? src - dst : dst - src; | 
|  | return distance < len; | 
|  | } | 
|  |  | 
|  | void memcpy_extent_buffer(const struct extent_buffer *dst, | 
|  | unsigned long dst_offset, unsigned long src_offset, | 
|  | unsigned long len) | 
|  | { | 
|  | const int unit_size = dst->folio_size; | 
|  | unsigned long cur_off = 0; | 
|  |  | 
|  | if (check_eb_range(dst, dst_offset, len) || | 
|  | check_eb_range(dst, src_offset, len)) | 
|  | return; | 
|  |  | 
|  | if (dst->addr) { | 
|  | const bool use_memmove = areas_overlap(src_offset, dst_offset, len); | 
|  |  | 
|  | if (use_memmove) | 
|  | memmove(dst->addr + dst_offset, dst->addr + src_offset, len); | 
|  | else | 
|  | memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (cur_off < len) { | 
|  | unsigned long cur_src = cur_off + src_offset; | 
|  | unsigned long folio_index = get_eb_folio_index(dst, cur_src); | 
|  | unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); | 
|  | unsigned long cur_len = min(src_offset + len - cur_src, | 
|  | unit_size - folio_off); | 
|  | void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; | 
|  | const bool use_memmove = areas_overlap(src_offset + cur_off, | 
|  | dst_offset + cur_off, cur_len); | 
|  |  | 
|  | __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, | 
|  | use_memmove); | 
|  | cur_off += cur_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | void memmove_extent_buffer(const struct extent_buffer *dst, | 
|  | unsigned long dst_offset, unsigned long src_offset, | 
|  | unsigned long len) | 
|  | { | 
|  | unsigned long dst_end = dst_offset + len - 1; | 
|  | unsigned long src_end = src_offset + len - 1; | 
|  |  | 
|  | if (check_eb_range(dst, dst_offset, len) || | 
|  | check_eb_range(dst, src_offset, len)) | 
|  | return; | 
|  |  | 
|  | if (dst_offset < src_offset) { | 
|  | memcpy_extent_buffer(dst, dst_offset, src_offset, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (dst->addr) { | 
|  | memmove(dst->addr + dst_offset, dst->addr + src_offset, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (len > 0) { | 
|  | unsigned long src_i; | 
|  | size_t cur; | 
|  | size_t dst_off_in_folio; | 
|  | size_t src_off_in_folio; | 
|  | void *src_addr; | 
|  | bool use_memmove; | 
|  |  | 
|  | src_i = get_eb_folio_index(dst, src_end); | 
|  |  | 
|  | dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); | 
|  | src_off_in_folio = get_eb_offset_in_folio(dst, src_end); | 
|  |  | 
|  | cur = min_t(unsigned long, len, src_off_in_folio + 1); | 
|  | cur = min(cur, dst_off_in_folio + 1); | 
|  |  | 
|  | src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - | 
|  | cur + 1; | 
|  | use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, | 
|  | cur); | 
|  |  | 
|  | __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, | 
|  | use_memmove); | 
|  |  | 
|  | dst_end -= cur; | 
|  | src_end -= cur; | 
|  | len -= cur; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int try_release_subpage_extent_buffer(struct folio *folio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); | 
|  | struct extent_buffer *eb; | 
|  | unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits); | 
|  | unsigned long index = start; | 
|  | unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1; | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) { | 
|  | /* | 
|  | * The same as try_release_extent_buffer(), to ensure the eb | 
|  | * won't disappear out from under us. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | rcu_read_lock(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If tree ref isn't set then we know the ref on this eb is a | 
|  | * real ref, so just return, this eb will likely be freed soon | 
|  | * anyway. | 
|  | */ | 
|  | if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we don't care about the return value, we will always | 
|  | * check the folio private at the end.  And | 
|  | * release_extent_buffer() will release the refs_lock. | 
|  | */ | 
|  | release_extent_buffer(eb); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Finally to check if we have cleared folio private, as if we have | 
|  | * released all ebs in the page, the folio private should be cleared now. | 
|  | */ | 
|  | spin_lock(&folio->mapping->i_private_lock); | 
|  | if (!folio_test_private(folio)) | 
|  | ret = 1; | 
|  | else | 
|  | ret = 0; | 
|  | spin_unlock(&folio->mapping->i_private_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int try_release_extent_buffer(struct folio *folio) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | if (btrfs_meta_is_subpage(folio_to_fs_info(folio))) | 
|  | return try_release_subpage_extent_buffer(folio); | 
|  |  | 
|  | /* | 
|  | * We need to make sure nobody is changing folio private, as we rely on | 
|  | * folio private as the pointer to extent buffer. | 
|  | */ | 
|  | spin_lock(&folio->mapping->i_private_lock); | 
|  | if (!folio_test_private(folio)) { | 
|  | spin_unlock(&folio->mapping->i_private_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | eb = folio_get_private(folio); | 
|  | BUG_ON(!eb); | 
|  |  | 
|  | /* | 
|  | * This is a little awful but should be ok, we need to make sure that | 
|  | * the eb doesn't disappear out from under us while we're looking at | 
|  | * this page. | 
|  | */ | 
|  | spin_lock(&eb->refs_lock); | 
|  | if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | spin_unlock(&folio->mapping->i_private_lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&folio->mapping->i_private_lock); | 
|  |  | 
|  | /* | 
|  | * If tree ref isn't set then we know the ref on this eb is a real ref, | 
|  | * so just return, this page will likely be freed soon anyway. | 
|  | */ | 
|  | if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { | 
|  | spin_unlock(&eb->refs_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return release_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to readahead a child block. | 
|  | * | 
|  | * @fs_info:	the fs_info | 
|  | * @bytenr:	bytenr to read | 
|  | * @owner_root: objectid of the root that owns this eb | 
|  | * @gen:	generation for the uptodate check, can be 0 | 
|  | * @level:	level for the eb | 
|  | * | 
|  | * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a | 
|  | * normal uptodate check of the eb, without checking the generation.  If we have | 
|  | * to read the block we will not block on anything. | 
|  | */ | 
|  | void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, | 
|  | u64 bytenr, u64 owner_root, u64 gen, int level) | 
|  | { | 
|  | struct btrfs_tree_parent_check check = { | 
|  | .level = level, | 
|  | .transid = gen | 
|  | }; | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  |  | 
|  | eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); | 
|  | if (IS_ERR(eb)) | 
|  | return; | 
|  |  | 
|  | if (btrfs_buffer_uptodate(eb, gen, true)) { | 
|  | free_extent_buffer(eb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = read_extent_buffer_pages_nowait(eb, 0, &check); | 
|  | if (ret < 0) | 
|  | free_extent_buffer_stale(eb); | 
|  | else | 
|  | free_extent_buffer(eb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Readahead a node's child block. | 
|  | * | 
|  | * @node:	parent node we're reading from | 
|  | * @slot:	slot in the parent node for the child we want to read | 
|  | * | 
|  | * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at | 
|  | * the slot in the node provided. | 
|  | */ | 
|  | void btrfs_readahead_node_child(struct extent_buffer *node, int slot) | 
|  | { | 
|  | btrfs_readahead_tree_block(node->fs_info, | 
|  | btrfs_node_blockptr(node, slot), | 
|  | btrfs_header_owner(node), | 
|  | btrfs_node_ptr_generation(node, slot), | 
|  | btrfs_header_level(node) - 1); | 
|  | } |