|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * fs/dcache.c | 
|  | * | 
|  | * Complete reimplementation | 
|  | * (C) 1997 Thomas Schoebel-Theuer, | 
|  | * with heavy changes by Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Notes on the allocation strategy: | 
|  | * | 
|  | * The dcache is a master of the icache - whenever a dcache entry | 
|  | * exists, the inode will always exist. "iput()" is done either when | 
|  | * the dcache entry is deleted or garbage collected. | 
|  | */ | 
|  |  | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/fscrypt.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/rculist_bl.h> | 
|  | #include <linux/list_lru.h> | 
|  | #include "internal.h" | 
|  | #include "mount.h" | 
|  |  | 
|  | #include <asm/runtime-const.h> | 
|  |  | 
|  | /* | 
|  | * Usage: | 
|  | * dcache->d_inode->i_lock protects: | 
|  | *   - i_dentry, d_u.d_alias, d_inode of aliases | 
|  | * dcache_hash_bucket lock protects: | 
|  | *   - the dcache hash table | 
|  | * s_roots bl list spinlock protects: | 
|  | *   - the s_roots list (see __d_drop) | 
|  | * dentry->d_sb->s_dentry_lru_lock protects: | 
|  | *   - the dcache lru lists and counters | 
|  | * d_lock protects: | 
|  | *   - d_flags | 
|  | *   - d_name | 
|  | *   - d_lru | 
|  | *   - d_count | 
|  | *   - d_unhashed() | 
|  | *   - d_parent and d_chilren | 
|  | *   - childrens' d_sib and d_parent | 
|  | *   - d_u.d_alias, d_inode | 
|  | * | 
|  | * Ordering: | 
|  | * dentry->d_inode->i_lock | 
|  | *   dentry->d_lock | 
|  | *     dentry->d_sb->s_dentry_lru_lock | 
|  | *     dcache_hash_bucket lock | 
|  | *     s_roots lock | 
|  | * | 
|  | * If there is an ancestor relationship: | 
|  | * dentry->d_parent->...->d_parent->d_lock | 
|  | *   ... | 
|  | *     dentry->d_parent->d_lock | 
|  | *       dentry->d_lock | 
|  | * | 
|  | * If no ancestor relationship: | 
|  | * arbitrary, since it's serialized on rename_lock | 
|  | */ | 
|  | static int sysctl_vfs_cache_pressure __read_mostly = 100; | 
|  | static int sysctl_vfs_cache_pressure_denom __read_mostly = 100; | 
|  |  | 
|  | unsigned long vfs_pressure_ratio(unsigned long val) | 
|  | { | 
|  | return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vfs_pressure_ratio); | 
|  |  | 
|  | __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); | 
|  |  | 
|  | EXPORT_SYMBOL(rename_lock); | 
|  |  | 
|  | static struct kmem_cache *dentry_cache __ro_after_init; | 
|  |  | 
|  | const struct qstr empty_name = QSTR_INIT("", 0); | 
|  | EXPORT_SYMBOL(empty_name); | 
|  | const struct qstr slash_name = QSTR_INIT("/", 1); | 
|  | EXPORT_SYMBOL(slash_name); | 
|  | const struct qstr dotdot_name = QSTR_INIT("..", 2); | 
|  | EXPORT_SYMBOL(dotdot_name); | 
|  |  | 
|  | /* | 
|  | * This is the single most critical data structure when it comes | 
|  | * to the dcache: the hashtable for lookups. Somebody should try | 
|  | * to make this good - I've just made it work. | 
|  | * | 
|  | * This hash-function tries to avoid losing too many bits of hash | 
|  | * information, yet avoid using a prime hash-size or similar. | 
|  | * | 
|  | * Marking the variables "used" ensures that the compiler doesn't | 
|  | * optimize them away completely on architectures with runtime | 
|  | * constant infrastructure, this allows debuggers to see their | 
|  | * values. But updating these values has no effect on those arches. | 
|  | */ | 
|  |  | 
|  | static unsigned int d_hash_shift __ro_after_init __used; | 
|  |  | 
|  | static struct hlist_bl_head *dentry_hashtable __ro_after_init __used; | 
|  |  | 
|  | static inline struct hlist_bl_head *d_hash(unsigned long hashlen) | 
|  | { | 
|  | return runtime_const_ptr(dentry_hashtable) + | 
|  | runtime_const_shift_right_32(hashlen, d_hash_shift); | 
|  | } | 
|  |  | 
|  | #define IN_LOOKUP_SHIFT 10 | 
|  | static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; | 
|  |  | 
|  | static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, | 
|  | unsigned int hash) | 
|  | { | 
|  | hash += (unsigned long) parent / L1_CACHE_BYTES; | 
|  | return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); | 
|  | } | 
|  |  | 
|  | struct dentry_stat_t { | 
|  | long nr_dentry; | 
|  | long nr_unused; | 
|  | long age_limit;		/* age in seconds */ | 
|  | long want_pages;	/* pages requested by system */ | 
|  | long nr_negative;	/* # of unused negative dentries */ | 
|  | long dummy;		/* Reserved for future use */ | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(long, nr_dentry); | 
|  | static DEFINE_PER_CPU(long, nr_dentry_unused); | 
|  | static DEFINE_PER_CPU(long, nr_dentry_negative); | 
|  | static int dentry_negative_policy; | 
|  |  | 
|  | #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) | 
|  | /* Statistics gathering. */ | 
|  | static struct dentry_stat_t dentry_stat = { | 
|  | .age_limit = 45, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Here we resort to our own counters instead of using generic per-cpu counters | 
|  | * for consistency with what the vfs inode code does. We are expected to harvest | 
|  | * better code and performance by having our own specialized counters. | 
|  | * | 
|  | * Please note that the loop is done over all possible CPUs, not over all online | 
|  | * CPUs. The reason for this is that we don't want to play games with CPUs going | 
|  | * on and off. If one of them goes off, we will just keep their counters. | 
|  | * | 
|  | * glommer: See cffbc8a for details, and if you ever intend to change this, | 
|  | * please update all vfs counters to match. | 
|  | */ | 
|  | static long get_nr_dentry(void) | 
|  | { | 
|  | int i; | 
|  | long sum = 0; | 
|  | for_each_possible_cpu(i) | 
|  | sum += per_cpu(nr_dentry, i); | 
|  | return sum < 0 ? 0 : sum; | 
|  | } | 
|  |  | 
|  | static long get_nr_dentry_unused(void) | 
|  | { | 
|  | int i; | 
|  | long sum = 0; | 
|  | for_each_possible_cpu(i) | 
|  | sum += per_cpu(nr_dentry_unused, i); | 
|  | return sum < 0 ? 0 : sum; | 
|  | } | 
|  |  | 
|  | static long get_nr_dentry_negative(void) | 
|  | { | 
|  | int i; | 
|  | long sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += per_cpu(nr_dentry_negative, i); | 
|  | return sum < 0 ? 0 : sum; | 
|  | } | 
|  |  | 
|  | static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer, | 
|  | size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | dentry_stat.nr_dentry = get_nr_dentry(); | 
|  | dentry_stat.nr_unused = get_nr_dentry_unused(); | 
|  | dentry_stat.nr_negative = get_nr_dentry_negative(); | 
|  | return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
|  | } | 
|  |  | 
|  | static const struct ctl_table fs_dcache_sysctls[] = { | 
|  | { | 
|  | .procname	= "dentry-state", | 
|  | .data		= &dentry_stat, | 
|  | .maxlen		= 6*sizeof(long), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_nr_dentry, | 
|  | }, | 
|  | { | 
|  | .procname	= "dentry-negative", | 
|  | .data		= &dentry_negative_policy, | 
|  | .maxlen		= sizeof(dentry_negative_policy), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_ONE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct ctl_table vm_dcache_sysctls[] = { | 
|  | { | 
|  | .procname	= "vfs_cache_pressure", | 
|  | .data		= &sysctl_vfs_cache_pressure, | 
|  | .maxlen		= sizeof(sysctl_vfs_cache_pressure), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | }, | 
|  | { | 
|  | .procname	= "vfs_cache_pressure_denom", | 
|  | .data		= &sysctl_vfs_cache_pressure_denom, | 
|  | .maxlen		= sizeof(sysctl_vfs_cache_pressure_denom), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ONE_HUNDRED, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init init_fs_dcache_sysctls(void) | 
|  | { | 
|  | register_sysctl_init("vm", vm_dcache_sysctls); | 
|  | register_sysctl_init("fs", fs_dcache_sysctls); | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(init_fs_dcache_sysctls); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Compare 2 name strings, return 0 if they match, otherwise non-zero. | 
|  | * The strings are both count bytes long, and count is non-zero. | 
|  | */ | 
|  | #ifdef CONFIG_DCACHE_WORD_ACCESS | 
|  |  | 
|  | #include <asm/word-at-a-time.h> | 
|  | /* | 
|  | * NOTE! 'cs' and 'scount' come from a dentry, so it has a | 
|  | * aligned allocation for this particular component. We don't | 
|  | * strictly need the load_unaligned_zeropad() safety, but it | 
|  | * doesn't hurt either. | 
|  | * | 
|  | * In contrast, 'ct' and 'tcount' can be from a pathname, and do | 
|  | * need the careful unaligned handling. | 
|  | */ | 
|  | static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) | 
|  | { | 
|  | unsigned long a,b,mask; | 
|  |  | 
|  | for (;;) { | 
|  | a = read_word_at_a_time(cs); | 
|  | b = load_unaligned_zeropad(ct); | 
|  | if (tcount < sizeof(unsigned long)) | 
|  | break; | 
|  | if (unlikely(a != b)) | 
|  | return 1; | 
|  | cs += sizeof(unsigned long); | 
|  | ct += sizeof(unsigned long); | 
|  | tcount -= sizeof(unsigned long); | 
|  | if (!tcount) | 
|  | return 0; | 
|  | } | 
|  | mask = bytemask_from_count(tcount); | 
|  | return unlikely(!!((a ^ b) & mask)); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) | 
|  | { | 
|  | do { | 
|  | if (*cs != *ct) | 
|  | return 1; | 
|  | cs++; | 
|  | ct++; | 
|  | tcount--; | 
|  | } while (tcount); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) | 
|  | { | 
|  | /* | 
|  | * Be careful about RCU walk racing with rename: | 
|  | * use 'READ_ONCE' to fetch the name pointer. | 
|  | * | 
|  | * NOTE! Even if a rename will mean that the length | 
|  | * was not loaded atomically, we don't care. The | 
|  | * RCU walk will check the sequence count eventually, | 
|  | * and catch it. And we won't overrun the buffer, | 
|  | * because we're reading the name pointer atomically, | 
|  | * and a dentry name is guaranteed to be properly | 
|  | * terminated with a NUL byte. | 
|  | * | 
|  | * End result: even if 'len' is wrong, we'll exit | 
|  | * early because the data cannot match (there can | 
|  | * be no NUL in the ct/tcount data) | 
|  | */ | 
|  | const unsigned char *cs = READ_ONCE(dentry->d_name.name); | 
|  |  | 
|  | return dentry_string_cmp(cs, ct, tcount); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * long names are allocated separately from dentry and never modified. | 
|  | * Refcounted, freeing is RCU-delayed.  See take_dentry_name_snapshot() | 
|  | * for the reason why ->count and ->head can't be combined into a union. | 
|  | * dentry_string_cmp() relies upon ->name[] being word-aligned. | 
|  | */ | 
|  | struct external_name { | 
|  | atomic_t count; | 
|  | struct rcu_head head; | 
|  | unsigned char name[] __aligned(sizeof(unsigned long)); | 
|  | }; | 
|  |  | 
|  | static inline struct external_name *external_name(struct dentry *dentry) | 
|  | { | 
|  | return container_of(dentry->d_name.name, struct external_name, name[0]); | 
|  | } | 
|  |  | 
|  | static void __d_free(struct rcu_head *head) | 
|  | { | 
|  | struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); | 
|  |  | 
|  | kmem_cache_free(dentry_cache, dentry); | 
|  | } | 
|  |  | 
|  | static void __d_free_external(struct rcu_head *head) | 
|  | { | 
|  | struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); | 
|  | kfree(external_name(dentry)); | 
|  | kmem_cache_free(dentry_cache, dentry); | 
|  | } | 
|  |  | 
|  | static inline int dname_external(const struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_name.name != dentry->d_shortname.string; | 
|  | } | 
|  |  | 
|  | void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) | 
|  | { | 
|  | unsigned seq; | 
|  | const unsigned char *s; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | seq = read_seqcount_begin(&dentry->d_seq); | 
|  | s = READ_ONCE(dentry->d_name.name); | 
|  | name->name.hash_len = dentry->d_name.hash_len; | 
|  | name->name.name = name->inline_name.string; | 
|  | if (likely(s == dentry->d_shortname.string)) { | 
|  | name->inline_name = dentry->d_shortname; | 
|  | } else { | 
|  | struct external_name *p; | 
|  | p = container_of(s, struct external_name, name[0]); | 
|  | // get a valid reference | 
|  | if (unlikely(!atomic_inc_not_zero(&p->count))) | 
|  | goto retry; | 
|  | name->name.name = s; | 
|  | } | 
|  | if (read_seqcount_retry(&dentry->d_seq, seq)) { | 
|  | release_dentry_name_snapshot(name); | 
|  | goto retry; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(take_dentry_name_snapshot); | 
|  |  | 
|  | void release_dentry_name_snapshot(struct name_snapshot *name) | 
|  | { | 
|  | if (unlikely(name->name.name != name->inline_name.string)) { | 
|  | struct external_name *p; | 
|  | p = container_of(name->name.name, struct external_name, name[0]); | 
|  | if (unlikely(atomic_dec_and_test(&p->count))) | 
|  | kfree_rcu(p, head); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(release_dentry_name_snapshot); | 
|  |  | 
|  | static inline void __d_set_inode_and_type(struct dentry *dentry, | 
|  | struct inode *inode, | 
|  | unsigned type_flags) | 
|  | { | 
|  | unsigned flags; | 
|  |  | 
|  | dentry->d_inode = inode; | 
|  | flags = READ_ONCE(dentry->d_flags); | 
|  | flags &= ~DCACHE_ENTRY_TYPE; | 
|  | flags |= type_flags; | 
|  | smp_store_release(&dentry->d_flags, flags); | 
|  | } | 
|  |  | 
|  | static inline void __d_clear_type_and_inode(struct dentry *dentry) | 
|  | { | 
|  | unsigned flags = READ_ONCE(dentry->d_flags); | 
|  |  | 
|  | flags &= ~DCACHE_ENTRY_TYPE; | 
|  | WRITE_ONCE(dentry->d_flags, flags); | 
|  | dentry->d_inode = NULL; | 
|  | /* | 
|  | * The negative counter only tracks dentries on the LRU. Don't inc if | 
|  | * d_lru is on another list. | 
|  | */ | 
|  | if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) | 
|  | this_cpu_inc(nr_dentry_negative); | 
|  | } | 
|  |  | 
|  | static void dentry_free(struct dentry *dentry) | 
|  | { | 
|  | WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); | 
|  | if (unlikely(dname_external(dentry))) { | 
|  | struct external_name *p = external_name(dentry); | 
|  | if (likely(atomic_dec_and_test(&p->count))) { | 
|  | call_rcu(&dentry->d_u.d_rcu, __d_free_external); | 
|  | return; | 
|  | } | 
|  | } | 
|  | /* if dentry was never visible to RCU, immediate free is OK */ | 
|  | if (dentry->d_flags & DCACHE_NORCU) | 
|  | __d_free(&dentry->d_u.d_rcu); | 
|  | else | 
|  | call_rcu(&dentry->d_u.d_rcu, __d_free); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the dentry's inode, using the filesystem | 
|  | * d_iput() operation if defined. | 
|  | */ | 
|  | static void dentry_unlink_inode(struct dentry * dentry) | 
|  | __releases(dentry->d_lock) | 
|  | __releases(dentry->d_inode->i_lock) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  |  | 
|  | raw_write_seqcount_begin(&dentry->d_seq); | 
|  | __d_clear_type_and_inode(dentry); | 
|  | hlist_del_init(&dentry->d_u.d_alias); | 
|  | raw_write_seqcount_end(&dentry->d_seq); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&inode->i_lock); | 
|  | if (!inode->i_nlink) | 
|  | fsnotify_inoderemove(inode); | 
|  | if (dentry->d_op && dentry->d_op->d_iput) | 
|  | dentry->d_op->d_iput(dentry, inode); | 
|  | else | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry | 
|  | * is in use - which includes both the "real" per-superblock | 
|  | * LRU list _and_ the DCACHE_SHRINK_LIST use. | 
|  | * | 
|  | * The DCACHE_SHRINK_LIST bit is set whenever the dentry is | 
|  | * on the shrink list (ie not on the superblock LRU list). | 
|  | * | 
|  | * The per-cpu "nr_dentry_unused" counters are updated with | 
|  | * the DCACHE_LRU_LIST bit. | 
|  | * | 
|  | * The per-cpu "nr_dentry_negative" counters are only updated | 
|  | * when deleted from or added to the per-superblock LRU list, not | 
|  | * from/to the shrink list. That is to avoid an unneeded dec/inc | 
|  | * pair when moving from LRU to shrink list in select_collect(). | 
|  | * | 
|  | * These helper functions make sure we always follow the | 
|  | * rules. d_lock must be held by the caller. | 
|  | */ | 
|  | #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) | 
|  | static void d_lru_add(struct dentry *dentry) | 
|  | { | 
|  | D_FLAG_VERIFY(dentry, 0); | 
|  | dentry->d_flags |= DCACHE_LRU_LIST; | 
|  | this_cpu_inc(nr_dentry_unused); | 
|  | if (d_is_negative(dentry)) | 
|  | this_cpu_inc(nr_dentry_negative); | 
|  | WARN_ON_ONCE(!list_lru_add_obj( | 
|  | &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); | 
|  | } | 
|  |  | 
|  | static void d_lru_del(struct dentry *dentry) | 
|  | { | 
|  | D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); | 
|  | dentry->d_flags &= ~DCACHE_LRU_LIST; | 
|  | this_cpu_dec(nr_dentry_unused); | 
|  | if (d_is_negative(dentry)) | 
|  | this_cpu_dec(nr_dentry_negative); | 
|  | WARN_ON_ONCE(!list_lru_del_obj( | 
|  | &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); | 
|  | } | 
|  |  | 
|  | static void d_shrink_del(struct dentry *dentry) | 
|  | { | 
|  | D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); | 
|  | list_del_init(&dentry->d_lru); | 
|  | dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); | 
|  | this_cpu_dec(nr_dentry_unused); | 
|  | } | 
|  |  | 
|  | static void d_shrink_add(struct dentry *dentry, struct list_head *list) | 
|  | { | 
|  | D_FLAG_VERIFY(dentry, 0); | 
|  | list_add(&dentry->d_lru, list); | 
|  | dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; | 
|  | this_cpu_inc(nr_dentry_unused); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These can only be called under the global LRU lock, ie during the | 
|  | * callback for freeing the LRU list. "isolate" removes it from the | 
|  | * LRU lists entirely, while shrink_move moves it to the indicated | 
|  | * private list. | 
|  | */ | 
|  | static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) | 
|  | { | 
|  | D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); | 
|  | dentry->d_flags &= ~DCACHE_LRU_LIST; | 
|  | this_cpu_dec(nr_dentry_unused); | 
|  | if (d_is_negative(dentry)) | 
|  | this_cpu_dec(nr_dentry_negative); | 
|  | list_lru_isolate(lru, &dentry->d_lru); | 
|  | } | 
|  |  | 
|  | static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, | 
|  | struct list_head *list) | 
|  | { | 
|  | D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); | 
|  | dentry->d_flags |= DCACHE_SHRINK_LIST; | 
|  | if (d_is_negative(dentry)) | 
|  | this_cpu_dec(nr_dentry_negative); | 
|  | list_lru_isolate_move(lru, &dentry->d_lru, list); | 
|  | } | 
|  |  | 
|  | static void ___d_drop(struct dentry *dentry) | 
|  | { | 
|  | struct hlist_bl_head *b; | 
|  | /* | 
|  | * Hashed dentries are normally on the dentry hashtable, | 
|  | * with the exception of those newly allocated by | 
|  | * d_obtain_root, which are always IS_ROOT: | 
|  | */ | 
|  | if (unlikely(IS_ROOT(dentry))) | 
|  | b = &dentry->d_sb->s_roots; | 
|  | else | 
|  | b = d_hash(dentry->d_name.hash); | 
|  |  | 
|  | hlist_bl_lock(b); | 
|  | __hlist_bl_del(&dentry->d_hash); | 
|  | hlist_bl_unlock(b); | 
|  | } | 
|  |  | 
|  | void __d_drop(struct dentry *dentry) | 
|  | { | 
|  | if (!d_unhashed(dentry)) { | 
|  | ___d_drop(dentry); | 
|  | dentry->d_hash.pprev = NULL; | 
|  | write_seqcount_invalidate(&dentry->d_seq); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__d_drop); | 
|  |  | 
|  | /** | 
|  | * d_drop - drop a dentry | 
|  | * @dentry: dentry to drop | 
|  | * | 
|  | * d_drop() unhashes the entry from the parent dentry hashes, so that it won't | 
|  | * be found through a VFS lookup any more. Note that this is different from | 
|  | * deleting the dentry - d_delete will try to mark the dentry negative if | 
|  | * possible, giving a successful _negative_ lookup, while d_drop will | 
|  | * just make the cache lookup fail. | 
|  | * | 
|  | * d_drop() is used mainly for stuff that wants to invalidate a dentry for some | 
|  | * reason (NFS timeouts or autofs deletes). | 
|  | * | 
|  | * __d_drop requires dentry->d_lock | 
|  | * | 
|  | * ___d_drop doesn't mark dentry as "unhashed" | 
|  | * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). | 
|  | */ | 
|  | void d_drop(struct dentry *dentry) | 
|  | { | 
|  | spin_lock(&dentry->d_lock); | 
|  | __d_drop(dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(d_drop); | 
|  |  | 
|  | static inline void dentry_unlist(struct dentry *dentry) | 
|  | { | 
|  | struct dentry *next; | 
|  | /* | 
|  | * Inform d_walk() and shrink_dentry_list() that we are no longer | 
|  | * attached to the dentry tree | 
|  | */ | 
|  | dentry->d_flags |= DCACHE_DENTRY_KILLED; | 
|  | if (unlikely(hlist_unhashed(&dentry->d_sib))) | 
|  | return; | 
|  | __hlist_del(&dentry->d_sib); | 
|  | /* | 
|  | * Cursors can move around the list of children.  While we'd been | 
|  | * a normal list member, it didn't matter - ->d_sib.next would've | 
|  | * been updated.  However, from now on it won't be and for the | 
|  | * things like d_walk() it might end up with a nasty surprise. | 
|  | * Normally d_walk() doesn't care about cursors moving around - | 
|  | * ->d_lock on parent prevents that and since a cursor has no children | 
|  | * of its own, we get through it without ever unlocking the parent. | 
|  | * There is one exception, though - if we ascend from a child that | 
|  | * gets killed as soon as we unlock it, the next sibling is found | 
|  | * using the value left in its ->d_sib.next.  And if _that_ | 
|  | * pointed to a cursor, and cursor got moved (e.g. by lseek()) | 
|  | * before d_walk() regains parent->d_lock, we'll end up skipping | 
|  | * everything the cursor had been moved past. | 
|  | * | 
|  | * Solution: make sure that the pointer left behind in ->d_sib.next | 
|  | * points to something that won't be moving around.  I.e. skip the | 
|  | * cursors. | 
|  | */ | 
|  | while (dentry->d_sib.next) { | 
|  | next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib); | 
|  | if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) | 
|  | break; | 
|  | dentry->d_sib.next = next->d_sib.next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct dentry *__dentry_kill(struct dentry *dentry) | 
|  | { | 
|  | struct dentry *parent = NULL; | 
|  | bool can_free = true; | 
|  |  | 
|  | /* | 
|  | * The dentry is now unrecoverably dead to the world. | 
|  | */ | 
|  | lockref_mark_dead(&dentry->d_lockref); | 
|  |  | 
|  | /* | 
|  | * inform the fs via d_prune that this dentry is about to be | 
|  | * unhashed and destroyed. | 
|  | */ | 
|  | if (dentry->d_flags & DCACHE_OP_PRUNE) | 
|  | dentry->d_op->d_prune(dentry); | 
|  |  | 
|  | if (dentry->d_flags & DCACHE_LRU_LIST) { | 
|  | if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) | 
|  | d_lru_del(dentry); | 
|  | } | 
|  | /* if it was on the hash then remove it */ | 
|  | __d_drop(dentry); | 
|  | if (dentry->d_inode) | 
|  | dentry_unlink_inode(dentry); | 
|  | else | 
|  | spin_unlock(&dentry->d_lock); | 
|  | this_cpu_dec(nr_dentry); | 
|  | if (dentry->d_op && dentry->d_op->d_release) | 
|  | dentry->d_op->d_release(dentry); | 
|  |  | 
|  | cond_resched(); | 
|  | /* now that it's negative, ->d_parent is stable */ | 
|  | if (!IS_ROOT(dentry)) { | 
|  | parent = dentry->d_parent; | 
|  | spin_lock(&parent->d_lock); | 
|  | } | 
|  | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | dentry_unlist(dentry); | 
|  | if (dentry->d_flags & DCACHE_SHRINK_LIST) | 
|  | can_free = false; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | if (likely(can_free)) | 
|  | dentry_free(dentry); | 
|  | if (parent && --parent->d_lockref.count) { | 
|  | spin_unlock(&parent->d_lock); | 
|  | return NULL; | 
|  | } | 
|  | return parent; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock a dentry for feeding it to __dentry_kill(). | 
|  | * Called under rcu_read_lock() and dentry->d_lock; the former | 
|  | * guarantees that nothing we access will be freed under us. | 
|  | * Note that dentry is *not* protected from concurrent dentry_kill(), | 
|  | * d_delete(), etc. | 
|  | * | 
|  | * Return false if dentry is busy.  Otherwise, return true and have | 
|  | * that dentry's inode locked. | 
|  | */ | 
|  |  | 
|  | static bool lock_for_kill(struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  |  | 
|  | if (unlikely(dentry->d_lockref.count)) | 
|  | return false; | 
|  |  | 
|  | if (!inode || likely(spin_trylock(&inode->i_lock))) | 
|  | return true; | 
|  |  | 
|  | do { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_lock(&inode->i_lock); | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (likely(inode == dentry->d_inode)) | 
|  | break; | 
|  | spin_unlock(&inode->i_lock); | 
|  | inode = dentry->d_inode; | 
|  | } while (inode); | 
|  | if (likely(!dentry->d_lockref.count)) | 
|  | return true; | 
|  | if (inode) | 
|  | spin_unlock(&inode->i_lock); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decide if dentry is worth retaining.  Usually this is called with dentry | 
|  | * locked; if not locked, we are more limited and might not be able to tell | 
|  | * without a lock.  False in this case means "punt to locked path and recheck". | 
|  | * | 
|  | * In case we aren't locked, these predicates are not "stable". However, it is | 
|  | * sufficient that at some point after we dropped the reference the dentry was | 
|  | * hashed and the flags had the proper value. Other dentry users may have | 
|  | * re-gotten a reference to the dentry and change that, but our work is done - | 
|  | * we can leave the dentry around with a zero refcount. | 
|  | */ | 
|  | static inline bool retain_dentry(struct dentry *dentry, bool locked) | 
|  | { | 
|  | unsigned int d_flags; | 
|  |  | 
|  | smp_rmb(); | 
|  | d_flags = READ_ONCE(dentry->d_flags); | 
|  |  | 
|  | // Unreachable? Nobody would be able to look it up, no point retaining | 
|  | if (unlikely(d_unhashed(dentry))) | 
|  | return false; | 
|  |  | 
|  | // Same if it's disconnected | 
|  | if (unlikely(d_flags & DCACHE_DISCONNECTED)) | 
|  | return false; | 
|  |  | 
|  | // ->d_delete() might tell us not to bother, but that requires | 
|  | // ->d_lock; can't decide without it | 
|  | if (unlikely(d_flags & DCACHE_OP_DELETE)) { | 
|  | if (!locked || dentry->d_op->d_delete(dentry)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Explicitly told not to bother | 
|  | if (unlikely(d_flags & DCACHE_DONTCACHE)) | 
|  | return false; | 
|  |  | 
|  | // At this point it looks like we ought to keep it.  We also might | 
|  | // need to do something - put it on LRU if it wasn't there already | 
|  | // and mark it referenced if it was on LRU, but not marked yet. | 
|  | // Unfortunately, both actions require ->d_lock, so in lockless | 
|  | // case we'd have to punt rather than doing those. | 
|  | if (unlikely(!(d_flags & DCACHE_LRU_LIST))) { | 
|  | if (!locked) | 
|  | return false; | 
|  | d_lru_add(dentry); | 
|  | } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) { | 
|  | if (!locked) | 
|  | return false; | 
|  | dentry->d_flags |= DCACHE_REFERENCED; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void d_mark_dontcache(struct inode *inode) | 
|  | { | 
|  | struct dentry *de; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { | 
|  | spin_lock(&de->d_lock); | 
|  | de->d_flags |= DCACHE_DONTCACHE; | 
|  | spin_unlock(&de->d_lock); | 
|  | } | 
|  | inode->i_state |= I_DONTCACHE; | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(d_mark_dontcache); | 
|  |  | 
|  | /* | 
|  | * Try to do a lockless dput(), and return whether that was successful. | 
|  | * | 
|  | * If unsuccessful, we return false, having already taken the dentry lock. | 
|  | * In that case refcount is guaranteed to be zero and we have already | 
|  | * decided that it's not worth keeping around. | 
|  | * | 
|  | * The caller needs to hold the RCU read lock, so that the dentry is | 
|  | * guaranteed to stay around even if the refcount goes down to zero! | 
|  | */ | 
|  | static inline bool fast_dput(struct dentry *dentry) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * try to decrement the lockref optimistically. | 
|  | */ | 
|  | ret = lockref_put_return(&dentry->d_lockref); | 
|  |  | 
|  | /* | 
|  | * If the lockref_put_return() failed due to the lock being held | 
|  | * by somebody else, the fast path has failed. We will need to | 
|  | * get the lock, and then check the count again. | 
|  | */ | 
|  | if (unlikely(ret < 0)) { | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | return true; | 
|  | } | 
|  | dentry->d_lockref.count--; | 
|  | goto locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we weren't the last ref, we're done. | 
|  | */ | 
|  | if (ret) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Can we decide that decrement of refcount is all we needed without | 
|  | * taking the lock?  There's a very common case when it's all we need - | 
|  | * dentry looks like it ought to be retained and there's nothing else | 
|  | * to do. | 
|  | */ | 
|  | if (retain_dentry(dentry, false)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Either not worth retaining or we can't tell without the lock. | 
|  | * Get the lock, then.  We've already decremented the refcount to 0, | 
|  | * but we'll need to re-check the situation after getting the lock. | 
|  | */ | 
|  | spin_lock(&dentry->d_lock); | 
|  |  | 
|  | /* | 
|  | * Did somebody else grab a reference to it in the meantime, and | 
|  | * we're no longer the last user after all? Alternatively, somebody | 
|  | * else could have killed it and marked it dead. Either way, we | 
|  | * don't need to do anything else. | 
|  | */ | 
|  | locked: | 
|  | if (dentry->d_lockref.count || retain_dentry(dentry, true)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is dput | 
|  | * | 
|  | * This is complicated by the fact that we do not want to put | 
|  | * dentries that are no longer on any hash chain on the unused | 
|  | * list: we'd much rather just get rid of them immediately. | 
|  | * | 
|  | * However, that implies that we have to traverse the dentry | 
|  | * tree upwards to the parents which might _also_ now be | 
|  | * scheduled for deletion (it may have been only waiting for | 
|  | * its last child to go away). | 
|  | * | 
|  | * This tail recursion is done by hand as we don't want to depend | 
|  | * on the compiler to always get this right (gcc generally doesn't). | 
|  | * Real recursion would eat up our stack space. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * dput - release a dentry | 
|  | * @dentry: dentry to release | 
|  | * | 
|  | * Release a dentry. This will drop the usage count and if appropriate | 
|  | * call the dentry unlink method as well as removing it from the queues and | 
|  | * releasing its resources. If the parent dentries were scheduled for release | 
|  | * they too may now get deleted. | 
|  | */ | 
|  | void dput(struct dentry *dentry) | 
|  | { | 
|  | if (!dentry) | 
|  | return; | 
|  | might_sleep(); | 
|  | rcu_read_lock(); | 
|  | if (likely(fast_dput(dentry))) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  | while (lock_for_kill(dentry)) { | 
|  | rcu_read_unlock(); | 
|  | dentry = __dentry_kill(dentry); | 
|  | if (!dentry) | 
|  | return; | 
|  | if (retain_dentry(dentry, true)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | return; | 
|  | } | 
|  | rcu_read_lock(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(dput); | 
|  |  | 
|  | static void to_shrink_list(struct dentry *dentry, struct list_head *list) | 
|  | __must_hold(&dentry->d_lock) | 
|  | { | 
|  | if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { | 
|  | if (dentry->d_flags & DCACHE_LRU_LIST) | 
|  | d_lru_del(dentry); | 
|  | d_shrink_add(dentry, list); | 
|  | } | 
|  | } | 
|  |  | 
|  | void dput_to_list(struct dentry *dentry, struct list_head *list) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | if (likely(fast_dput(dentry))) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | to_shrink_list(dentry, list); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  |  | 
|  | struct dentry *dget_parent(struct dentry *dentry) | 
|  | { | 
|  | int gotref; | 
|  | struct dentry *ret; | 
|  | unsigned seq; | 
|  |  | 
|  | /* | 
|  | * Do optimistic parent lookup without any | 
|  | * locking. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | seq = raw_seqcount_begin(&dentry->d_seq); | 
|  | ret = READ_ONCE(dentry->d_parent); | 
|  | gotref = lockref_get_not_zero(&ret->d_lockref); | 
|  | rcu_read_unlock(); | 
|  | if (likely(gotref)) { | 
|  | if (!read_seqcount_retry(&dentry->d_seq, seq)) | 
|  | return ret; | 
|  | dput(ret); | 
|  | } | 
|  |  | 
|  | repeat: | 
|  | /* | 
|  | * Don't need rcu_dereference because we re-check it was correct under | 
|  | * the lock. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | ret = dentry->d_parent; | 
|  | spin_lock(&ret->d_lock); | 
|  | if (unlikely(ret != dentry->d_parent)) { | 
|  | spin_unlock(&ret->d_lock); | 
|  | rcu_read_unlock(); | 
|  | goto repeat; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | BUG_ON(!ret->d_lockref.count); | 
|  | ret->d_lockref.count++; | 
|  | spin_unlock(&ret->d_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(dget_parent); | 
|  |  | 
|  | static struct dentry * __d_find_any_alias(struct inode *inode) | 
|  | { | 
|  | struct dentry *alias; | 
|  |  | 
|  | if (hlist_empty(&inode->i_dentry)) | 
|  | return NULL; | 
|  | alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); | 
|  | lockref_get(&alias->d_lockref); | 
|  | return alias; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_find_any_alias - find any alias for a given inode | 
|  | * @inode: inode to find an alias for | 
|  | * | 
|  | * If any aliases exist for the given inode, take and return a | 
|  | * reference for one of them.  If no aliases exist, return %NULL. | 
|  | */ | 
|  | struct dentry *d_find_any_alias(struct inode *inode) | 
|  | { | 
|  | struct dentry *de; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | de = __d_find_any_alias(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | return de; | 
|  | } | 
|  | EXPORT_SYMBOL(d_find_any_alias); | 
|  |  | 
|  | static struct dentry *__d_find_alias(struct inode *inode) | 
|  | { | 
|  | struct dentry *alias; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode)) | 
|  | return __d_find_any_alias(inode); | 
|  |  | 
|  | hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { | 
|  | spin_lock(&alias->d_lock); | 
|  | if (!d_unhashed(alias)) { | 
|  | dget_dlock(alias); | 
|  | spin_unlock(&alias->d_lock); | 
|  | return alias; | 
|  | } | 
|  | spin_unlock(&alias->d_lock); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_find_alias - grab a hashed alias of inode | 
|  | * @inode: inode in question | 
|  | * | 
|  | * If inode has a hashed alias, or is a directory and has any alias, | 
|  | * acquire the reference to alias and return it. Otherwise return NULL. | 
|  | * Notice that if inode is a directory there can be only one alias and | 
|  | * it can be unhashed only if it has no children, or if it is the root | 
|  | * of a filesystem, or if the directory was renamed and d_revalidate | 
|  | * was the first vfs operation to notice. | 
|  | * | 
|  | * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer | 
|  | * any other hashed alias over that one. | 
|  | */ | 
|  | struct dentry *d_find_alias(struct inode *inode) | 
|  | { | 
|  | struct dentry *de = NULL; | 
|  |  | 
|  | if (!hlist_empty(&inode->i_dentry)) { | 
|  | spin_lock(&inode->i_lock); | 
|  | de = __d_find_alias(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  | return de; | 
|  | } | 
|  | EXPORT_SYMBOL(d_find_alias); | 
|  |  | 
|  | /* | 
|  | *  Caller MUST be holding rcu_read_lock() and be guaranteed | 
|  | *  that inode won't get freed until rcu_read_unlock(). | 
|  | */ | 
|  | struct dentry *d_find_alias_rcu(struct inode *inode) | 
|  | { | 
|  | struct hlist_head *l = &inode->i_dentry; | 
|  | struct dentry *de = NULL; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | // ->i_dentry and ->i_rcu are colocated, but the latter won't be | 
|  | // used without having I_FREEING set, which means no aliases left | 
|  | if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | de = hlist_entry(l->first, struct dentry, d_u.d_alias); | 
|  | } else { | 
|  | hlist_for_each_entry(de, l, d_u.d_alias) | 
|  | if (!d_unhashed(de)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&inode->i_lock); | 
|  | return de; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Try to kill dentries associated with this inode. | 
|  | * WARNING: you must own a reference to inode. | 
|  | */ | 
|  | void d_prune_aliases(struct inode *inode) | 
|  | { | 
|  | LIST_HEAD(dispose); | 
|  | struct dentry *dentry; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (!dentry->d_lockref.count) | 
|  | to_shrink_list(dentry, &dispose); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | spin_unlock(&inode->i_lock); | 
|  | shrink_dentry_list(&dispose); | 
|  | } | 
|  | EXPORT_SYMBOL(d_prune_aliases); | 
|  |  | 
|  | static inline void shrink_kill(struct dentry *victim) | 
|  | { | 
|  | do { | 
|  | rcu_read_unlock(); | 
|  | victim = __dentry_kill(victim); | 
|  | rcu_read_lock(); | 
|  | } while (victim && lock_for_kill(victim)); | 
|  | rcu_read_unlock(); | 
|  | if (victim) | 
|  | spin_unlock(&victim->d_lock); | 
|  | } | 
|  |  | 
|  | void shrink_dentry_list(struct list_head *list) | 
|  | { | 
|  | while (!list_empty(list)) { | 
|  | struct dentry *dentry; | 
|  |  | 
|  | dentry = list_entry(list->prev, struct dentry, d_lru); | 
|  | spin_lock(&dentry->d_lock); | 
|  | rcu_read_lock(); | 
|  | if (!lock_for_kill(dentry)) { | 
|  | bool can_free; | 
|  | rcu_read_unlock(); | 
|  | d_shrink_del(dentry); | 
|  | can_free = dentry->d_flags & DCACHE_DENTRY_KILLED; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | if (can_free) | 
|  | dentry_free(dentry); | 
|  | continue; | 
|  | } | 
|  | d_shrink_del(dentry); | 
|  | shrink_kill(dentry); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum lru_status dentry_lru_isolate(struct list_head *item, | 
|  | struct list_lru_one *lru, void *arg) | 
|  | { | 
|  | struct list_head *freeable = arg; | 
|  | struct dentry	*dentry = container_of(item, struct dentry, d_lru); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * we are inverting the lru lock/dentry->d_lock here, | 
|  | * so use a trylock. If we fail to get the lock, just skip | 
|  | * it | 
|  | */ | 
|  | if (!spin_trylock(&dentry->d_lock)) | 
|  | return LRU_SKIP; | 
|  |  | 
|  | /* | 
|  | * Referenced dentries are still in use. If they have active | 
|  | * counts, just remove them from the LRU. Otherwise give them | 
|  | * another pass through the LRU. | 
|  | */ | 
|  | if (dentry->d_lockref.count) { | 
|  | d_lru_isolate(lru, dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | if (dentry->d_flags & DCACHE_REFERENCED) { | 
|  | dentry->d_flags &= ~DCACHE_REFERENCED; | 
|  | spin_unlock(&dentry->d_lock); | 
|  |  | 
|  | /* | 
|  | * The list move itself will be made by the common LRU code. At | 
|  | * this point, we've dropped the dentry->d_lock but keep the | 
|  | * lru lock. This is safe to do, since every list movement is | 
|  | * protected by the lru lock even if both locks are held. | 
|  | * | 
|  | * This is guaranteed by the fact that all LRU management | 
|  | * functions are intermediated by the LRU API calls like | 
|  | * list_lru_add_obj and list_lru_del_obj. List movement in this file | 
|  | * only ever occur through this functions or through callbacks | 
|  | * like this one, that are called from the LRU API. | 
|  | * | 
|  | * The only exceptions to this are functions like | 
|  | * shrink_dentry_list, and code that first checks for the | 
|  | * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be | 
|  | * operating only with stack provided lists after they are | 
|  | * properly isolated from the main list.  It is thus, always a | 
|  | * local access. | 
|  | */ | 
|  | return LRU_ROTATE; | 
|  | } | 
|  |  | 
|  | d_lru_shrink_move(lru, dentry, freeable); | 
|  | spin_unlock(&dentry->d_lock); | 
|  |  | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * prune_dcache_sb - shrink the dcache | 
|  | * @sb: superblock | 
|  | * @sc: shrink control, passed to list_lru_shrink_walk() | 
|  | * | 
|  | * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This | 
|  | * is done when we need more memory and called from the superblock shrinker | 
|  | * function. | 
|  | * | 
|  | * This function may fail to free any resources if all the dentries are in | 
|  | * use. | 
|  | */ | 
|  | long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) | 
|  | { | 
|  | LIST_HEAD(dispose); | 
|  | long freed; | 
|  |  | 
|  | freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, | 
|  | dentry_lru_isolate, &dispose); | 
|  | shrink_dentry_list(&dispose); | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, | 
|  | struct list_lru_one *lru, void *arg) | 
|  | { | 
|  | struct list_head *freeable = arg; | 
|  | struct dentry	*dentry = container_of(item, struct dentry, d_lru); | 
|  |  | 
|  | /* | 
|  | * we are inverting the lru lock/dentry->d_lock here, | 
|  | * so use a trylock. If we fail to get the lock, just skip | 
|  | * it | 
|  | */ | 
|  | if (!spin_trylock(&dentry->d_lock)) | 
|  | return LRU_SKIP; | 
|  |  | 
|  | d_lru_shrink_move(lru, dentry, freeable); | 
|  | spin_unlock(&dentry->d_lock); | 
|  |  | 
|  | return LRU_REMOVED; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * shrink_dcache_sb - shrink dcache for a superblock | 
|  | * @sb: superblock | 
|  | * | 
|  | * Shrink the dcache for the specified super block. This is used to free | 
|  | * the dcache before unmounting a file system. | 
|  | */ | 
|  | void shrink_dcache_sb(struct super_block *sb) | 
|  | { | 
|  | do { | 
|  | LIST_HEAD(dispose); | 
|  |  | 
|  | list_lru_walk(&sb->s_dentry_lru, | 
|  | dentry_lru_isolate_shrink, &dispose, 1024); | 
|  | shrink_dentry_list(&dispose); | 
|  | } while (list_lru_count(&sb->s_dentry_lru) > 0); | 
|  | } | 
|  | EXPORT_SYMBOL(shrink_dcache_sb); | 
|  |  | 
|  | /** | 
|  | * enum d_walk_ret - action to talke during tree walk | 
|  | * @D_WALK_CONTINUE:	contrinue walk | 
|  | * @D_WALK_QUIT:	quit walk | 
|  | * @D_WALK_NORETRY:	quit when retry is needed | 
|  | * @D_WALK_SKIP:	skip this dentry and its children | 
|  | */ | 
|  | enum d_walk_ret { | 
|  | D_WALK_CONTINUE, | 
|  | D_WALK_QUIT, | 
|  | D_WALK_NORETRY, | 
|  | D_WALK_SKIP, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * d_walk - walk the dentry tree | 
|  | * @parent:	start of walk | 
|  | * @data:	data passed to @enter() and @finish() | 
|  | * @enter:	callback when first entering the dentry | 
|  | * | 
|  | * The @enter() callbacks are called with d_lock held. | 
|  | */ | 
|  | static void d_walk(struct dentry *parent, void *data, | 
|  | enum d_walk_ret (*enter)(void *, struct dentry *)) | 
|  | { | 
|  | struct dentry *this_parent, *dentry; | 
|  | unsigned seq = 0; | 
|  | enum d_walk_ret ret; | 
|  | bool retry = true; | 
|  |  | 
|  | again: | 
|  | read_seqbegin_or_lock(&rename_lock, &seq); | 
|  | this_parent = parent; | 
|  | spin_lock(&this_parent->d_lock); | 
|  |  | 
|  | ret = enter(data, this_parent); | 
|  | switch (ret) { | 
|  | case D_WALK_CONTINUE: | 
|  | break; | 
|  | case D_WALK_QUIT: | 
|  | case D_WALK_SKIP: | 
|  | goto out_unlock; | 
|  | case D_WALK_NORETRY: | 
|  | retry = false; | 
|  | break; | 
|  | } | 
|  | repeat: | 
|  | dentry = d_first_child(this_parent); | 
|  | resume: | 
|  | hlist_for_each_entry_from(dentry, d_sib) { | 
|  | if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | 
|  |  | 
|  | ret = enter(data, dentry); | 
|  | switch (ret) { | 
|  | case D_WALK_CONTINUE: | 
|  | break; | 
|  | case D_WALK_QUIT: | 
|  | spin_unlock(&dentry->d_lock); | 
|  | goto out_unlock; | 
|  | case D_WALK_NORETRY: | 
|  | retry = false; | 
|  | break; | 
|  | case D_WALK_SKIP: | 
|  | spin_unlock(&dentry->d_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!hlist_empty(&dentry->d_children)) { | 
|  | spin_unlock(&this_parent->d_lock); | 
|  | spin_release(&dentry->d_lock.dep_map, _RET_IP_); | 
|  | this_parent = dentry; | 
|  | spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); | 
|  | goto repeat; | 
|  | } | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | /* | 
|  | * All done at this level ... ascend and resume the search. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | ascend: | 
|  | if (this_parent != parent) { | 
|  | dentry = this_parent; | 
|  | this_parent = dentry->d_parent; | 
|  |  | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_lock(&this_parent->d_lock); | 
|  |  | 
|  | /* might go back up the wrong parent if we have had a rename. */ | 
|  | if (need_seqretry(&rename_lock, seq)) | 
|  | goto rename_retry; | 
|  | /* go into the first sibling still alive */ | 
|  | hlist_for_each_entry_continue(dentry, d_sib) { | 
|  | if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) { | 
|  | rcu_read_unlock(); | 
|  | goto resume; | 
|  | } | 
|  | } | 
|  | goto ascend; | 
|  | } | 
|  | if (need_seqretry(&rename_lock, seq)) | 
|  | goto rename_retry; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&this_parent->d_lock); | 
|  | done_seqretry(&rename_lock, seq); | 
|  | return; | 
|  |  | 
|  | rename_retry: | 
|  | spin_unlock(&this_parent->d_lock); | 
|  | rcu_read_unlock(); | 
|  | BUG_ON(seq & 1); | 
|  | if (!retry) | 
|  | return; | 
|  | seq = 1; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | struct check_mount { | 
|  | struct vfsmount *mnt; | 
|  | unsigned int mounted; | 
|  | }; | 
|  |  | 
|  | /* locks: mount_locked_reader && dentry->d_lock */ | 
|  | static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) | 
|  | { | 
|  | struct check_mount *info = data; | 
|  | struct path path = { .mnt = info->mnt, .dentry = dentry }; | 
|  |  | 
|  | if (likely(!d_mountpoint(dentry))) | 
|  | return D_WALK_CONTINUE; | 
|  | if (__path_is_mountpoint(&path)) { | 
|  | info->mounted = 1; | 
|  | return D_WALK_QUIT; | 
|  | } | 
|  | return D_WALK_CONTINUE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * path_has_submounts - check for mounts over a dentry in the | 
|  | *                      current namespace. | 
|  | * @parent: path to check. | 
|  | * | 
|  | * Return true if the parent or its subdirectories contain | 
|  | * a mount point in the current namespace. | 
|  | */ | 
|  | int path_has_submounts(const struct path *parent) | 
|  | { | 
|  | struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; | 
|  |  | 
|  | guard(mount_locked_reader)(); | 
|  | d_walk(parent->dentry, &data, path_check_mount); | 
|  |  | 
|  | return data.mounted; | 
|  | } | 
|  | EXPORT_SYMBOL(path_has_submounts); | 
|  |  | 
|  | /* | 
|  | * Called by mount code to set a mountpoint and check if the mountpoint is | 
|  | * reachable (e.g. NFS can unhash a directory dentry and then the complete | 
|  | * subtree can become unreachable). | 
|  | * | 
|  | * Only one of d_invalidate() and d_set_mounted() must succeed.  For | 
|  | * this reason take rename_lock and d_lock on dentry and ancestors. | 
|  | */ | 
|  | int d_set_mounted(struct dentry *dentry) | 
|  | { | 
|  | struct dentry *p; | 
|  | int ret = -ENOENT; | 
|  | read_seqlock_excl(&rename_lock); | 
|  | for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { | 
|  | /* Need exclusion wrt. d_invalidate() */ | 
|  | spin_lock(&p->d_lock); | 
|  | if (unlikely(d_unhashed(p))) { | 
|  | spin_unlock(&p->d_lock); | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&p->d_lock); | 
|  | } | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (!d_unlinked(dentry)) { | 
|  | ret = -EBUSY; | 
|  | if (!d_mountpoint(dentry)) { | 
|  | dentry->d_flags |= DCACHE_MOUNTED; | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  | spin_unlock(&dentry->d_lock); | 
|  | out: | 
|  | read_sequnlock_excl(&rename_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search the dentry child list of the specified parent, | 
|  | * and move any unused dentries to the end of the unused | 
|  | * list for prune_dcache(). We descend to the next level | 
|  | * whenever the d_children list is non-empty and continue | 
|  | * searching. | 
|  | * | 
|  | * It returns zero iff there are no unused children, | 
|  | * otherwise  it returns the number of children moved to | 
|  | * the end of the unused list. This may not be the total | 
|  | * number of unused children, because select_parent can | 
|  | * drop the lock and return early due to latency | 
|  | * constraints. | 
|  | */ | 
|  |  | 
|  | struct select_data { | 
|  | struct dentry *start; | 
|  | union { | 
|  | long found; | 
|  | struct dentry *victim; | 
|  | }; | 
|  | struct list_head dispose; | 
|  | }; | 
|  |  | 
|  | static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) | 
|  | { | 
|  | struct select_data *data = _data; | 
|  | enum d_walk_ret ret = D_WALK_CONTINUE; | 
|  |  | 
|  | if (data->start == dentry) | 
|  | goto out; | 
|  |  | 
|  | if (dentry->d_flags & DCACHE_SHRINK_LIST) { | 
|  | data->found++; | 
|  | } else if (!dentry->d_lockref.count) { | 
|  | to_shrink_list(dentry, &data->dispose); | 
|  | data->found++; | 
|  | } else if (dentry->d_lockref.count < 0) { | 
|  | data->found++; | 
|  | } | 
|  | /* | 
|  | * We can return to the caller if we have found some (this | 
|  | * ensures forward progress). We'll be coming back to find | 
|  | * the rest. | 
|  | */ | 
|  | if (!list_empty(&data->dispose)) | 
|  | ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) | 
|  | { | 
|  | struct select_data *data = _data; | 
|  | enum d_walk_ret ret = D_WALK_CONTINUE; | 
|  |  | 
|  | if (data->start == dentry) | 
|  | goto out; | 
|  |  | 
|  | if (!dentry->d_lockref.count) { | 
|  | if (dentry->d_flags & DCACHE_SHRINK_LIST) { | 
|  | rcu_read_lock(); | 
|  | data->victim = dentry; | 
|  | return D_WALK_QUIT; | 
|  | } | 
|  | to_shrink_list(dentry, &data->dispose); | 
|  | } | 
|  | /* | 
|  | * We can return to the caller if we have found some (this | 
|  | * ensures forward progress). We'll be coming back to find | 
|  | * the rest. | 
|  | */ | 
|  | if (!list_empty(&data->dispose)) | 
|  | ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shrink_dcache_parent - prune dcache | 
|  | * @parent: parent of entries to prune | 
|  | * | 
|  | * Prune the dcache to remove unused children of the parent dentry. | 
|  | */ | 
|  | void shrink_dcache_parent(struct dentry *parent) | 
|  | { | 
|  | for (;;) { | 
|  | struct select_data data = {.start = parent}; | 
|  |  | 
|  | INIT_LIST_HEAD(&data.dispose); | 
|  | d_walk(parent, &data, select_collect); | 
|  |  | 
|  | if (!list_empty(&data.dispose)) { | 
|  | shrink_dentry_list(&data.dispose); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | if (!data.found) | 
|  | break; | 
|  | data.victim = NULL; | 
|  | d_walk(parent, &data, select_collect2); | 
|  | if (data.victim) { | 
|  | spin_lock(&data.victim->d_lock); | 
|  | if (!lock_for_kill(data.victim)) { | 
|  | spin_unlock(&data.victim->d_lock); | 
|  | rcu_read_unlock(); | 
|  | } else { | 
|  | shrink_kill(data.victim); | 
|  | } | 
|  | } | 
|  | if (!list_empty(&data.dispose)) | 
|  | shrink_dentry_list(&data.dispose); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(shrink_dcache_parent); | 
|  |  | 
|  | static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) | 
|  | { | 
|  | /* it has busy descendents; complain about those instead */ | 
|  | if (!hlist_empty(&dentry->d_children)) | 
|  | return D_WALK_CONTINUE; | 
|  |  | 
|  | /* root with refcount 1 is fine */ | 
|  | if (dentry == _data && dentry->d_lockref.count == 1) | 
|  | return D_WALK_CONTINUE; | 
|  |  | 
|  | WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " | 
|  | " still in use (%d) [unmount of %s %s]\n", | 
|  | dentry, | 
|  | dentry->d_inode ? | 
|  | dentry->d_inode->i_ino : 0UL, | 
|  | dentry, | 
|  | dentry->d_lockref.count, | 
|  | dentry->d_sb->s_type->name, | 
|  | dentry->d_sb->s_id); | 
|  | return D_WALK_CONTINUE; | 
|  | } | 
|  |  | 
|  | static void do_one_tree(struct dentry *dentry) | 
|  | { | 
|  | shrink_dcache_parent(dentry); | 
|  | d_walk(dentry, dentry, umount_check); | 
|  | d_drop(dentry); | 
|  | dput(dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * destroy the dentries attached to a superblock on unmounting | 
|  | */ | 
|  | void shrink_dcache_for_umount(struct super_block *sb) | 
|  | { | 
|  | struct dentry *dentry; | 
|  |  | 
|  | rwsem_assert_held_write(&sb->s_umount); | 
|  |  | 
|  | dentry = sb->s_root; | 
|  | sb->s_root = NULL; | 
|  | do_one_tree(dentry); | 
|  |  | 
|  | while (!hlist_bl_empty(&sb->s_roots)) { | 
|  | dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); | 
|  | do_one_tree(dentry); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) | 
|  | { | 
|  | struct dentry **victim = _data; | 
|  | if (d_mountpoint(dentry)) { | 
|  | *victim = dget_dlock(dentry); | 
|  | return D_WALK_QUIT; | 
|  | } | 
|  | return D_WALK_CONTINUE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_invalidate - detach submounts, prune dcache, and drop | 
|  | * @dentry: dentry to invalidate (aka detach, prune and drop) | 
|  | */ | 
|  | void d_invalidate(struct dentry *dentry) | 
|  | { | 
|  | bool had_submounts = false; | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (d_unhashed(dentry)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | return; | 
|  | } | 
|  | __d_drop(dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  |  | 
|  | /* Negative dentries can be dropped without further checks */ | 
|  | if (!dentry->d_inode) | 
|  | return; | 
|  |  | 
|  | shrink_dcache_parent(dentry); | 
|  | for (;;) { | 
|  | struct dentry *victim = NULL; | 
|  | d_walk(dentry, &victim, find_submount); | 
|  | if (!victim) { | 
|  | if (had_submounts) | 
|  | shrink_dcache_parent(dentry); | 
|  | return; | 
|  | } | 
|  | had_submounts = true; | 
|  | detach_mounts(victim); | 
|  | dput(victim); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(d_invalidate); | 
|  |  | 
|  | /** | 
|  | * __d_alloc	-	allocate a dcache entry | 
|  | * @sb: filesystem it will belong to | 
|  | * @name: qstr of the name | 
|  | * | 
|  | * Allocates a dentry. It returns %NULL if there is insufficient memory | 
|  | * available. On a success the dentry is returned. The name passed in is | 
|  | * copied and the copy passed in may be reused after this call. | 
|  | */ | 
|  |  | 
|  | static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) | 
|  | { | 
|  | struct dentry *dentry; | 
|  | char *dname; | 
|  | int err; | 
|  |  | 
|  | dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, | 
|  | GFP_KERNEL); | 
|  | if (!dentry) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We guarantee that the inline name is always NUL-terminated. | 
|  | * This way the memcpy() done by the name switching in rename | 
|  | * will still always have a NUL at the end, even if we might | 
|  | * be overwriting an internal NUL character | 
|  | */ | 
|  | dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0; | 
|  | if (unlikely(!name)) { | 
|  | name = &slash_name; | 
|  | dname = dentry->d_shortname.string; | 
|  | } else if (name->len > DNAME_INLINE_LEN-1) { | 
|  | size_t size = offsetof(struct external_name, name[1]); | 
|  | struct external_name *p = kmalloc(size + name->len, | 
|  | GFP_KERNEL_ACCOUNT | | 
|  | __GFP_RECLAIMABLE); | 
|  | if (!p) { | 
|  | kmem_cache_free(dentry_cache, dentry); | 
|  | return NULL; | 
|  | } | 
|  | atomic_set(&p->count, 1); | 
|  | dname = p->name; | 
|  | } else  { | 
|  | dname = dentry->d_shortname.string; | 
|  | } | 
|  |  | 
|  | dentry->__d_name.len = name->len; | 
|  | dentry->__d_name.hash = name->hash; | 
|  | memcpy(dname, name->name, name->len); | 
|  | dname[name->len] = 0; | 
|  |  | 
|  | /* Make sure we always see the terminating NUL character */ | 
|  | smp_store_release(&dentry->__d_name.name, dname); /* ^^^ */ | 
|  |  | 
|  | dentry->d_flags = 0; | 
|  | lockref_init(&dentry->d_lockref); | 
|  | seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); | 
|  | dentry->d_inode = NULL; | 
|  | dentry->d_parent = dentry; | 
|  | dentry->d_sb = sb; | 
|  | dentry->d_op = sb->__s_d_op; | 
|  | dentry->d_flags = sb->s_d_flags; | 
|  | dentry->d_fsdata = NULL; | 
|  | INIT_HLIST_BL_NODE(&dentry->d_hash); | 
|  | INIT_LIST_HEAD(&dentry->d_lru); | 
|  | INIT_HLIST_HEAD(&dentry->d_children); | 
|  | INIT_HLIST_NODE(&dentry->d_u.d_alias); | 
|  | INIT_HLIST_NODE(&dentry->d_sib); | 
|  |  | 
|  | if (dentry->d_op && dentry->d_op->d_init) { | 
|  | err = dentry->d_op->d_init(dentry); | 
|  | if (err) { | 
|  | if (dname_external(dentry)) | 
|  | kfree(external_name(dentry)); | 
|  | kmem_cache_free(dentry_cache, dentry); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | this_cpu_inc(nr_dentry); | 
|  |  | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_alloc	-	allocate a dcache entry | 
|  | * @parent: parent of entry to allocate | 
|  | * @name: qstr of the name | 
|  | * | 
|  | * Allocates a dentry. It returns %NULL if there is insufficient memory | 
|  | * available. On a success the dentry is returned. The name passed in is | 
|  | * copied and the copy passed in may be reused after this call. | 
|  | */ | 
|  | struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) | 
|  | { | 
|  | struct dentry *dentry = __d_alloc(parent->d_sb, name); | 
|  | if (!dentry) | 
|  | return NULL; | 
|  | spin_lock(&parent->d_lock); | 
|  | /* | 
|  | * don't need child lock because it is not subject | 
|  | * to concurrency here | 
|  | */ | 
|  | dentry->d_parent = dget_dlock(parent); | 
|  | hlist_add_head(&dentry->d_sib, &parent->d_children); | 
|  | spin_unlock(&parent->d_lock); | 
|  |  | 
|  | return dentry; | 
|  | } | 
|  | EXPORT_SYMBOL(d_alloc); | 
|  |  | 
|  | struct dentry *d_alloc_anon(struct super_block *sb) | 
|  | { | 
|  | return __d_alloc(sb, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(d_alloc_anon); | 
|  |  | 
|  | struct dentry *d_alloc_cursor(struct dentry * parent) | 
|  | { | 
|  | struct dentry *dentry = d_alloc_anon(parent->d_sb); | 
|  | if (dentry) { | 
|  | dentry->d_flags |= DCACHE_DENTRY_CURSOR; | 
|  | dentry->d_parent = dget(parent); | 
|  | } | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) | 
|  | * @sb: the superblock | 
|  | * @name: qstr of the name | 
|  | * | 
|  | * For a filesystem that just pins its dentries in memory and never | 
|  | * performs lookups at all, return an unhashed IS_ROOT dentry. | 
|  | * This is used for pipes, sockets et.al. - the stuff that should | 
|  | * never be anyone's children or parents.  Unlike all other | 
|  | * dentries, these will not have RCU delay between dropping the | 
|  | * last reference and freeing them. | 
|  | * | 
|  | * The only user is alloc_file_pseudo() and that's what should | 
|  | * be considered a public interface.  Don't use directly. | 
|  | */ | 
|  | struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) | 
|  | { | 
|  | static const struct dentry_operations anon_ops = { | 
|  | .d_dname = simple_dname | 
|  | }; | 
|  | struct dentry *dentry = __d_alloc(sb, name); | 
|  | if (likely(dentry)) { | 
|  | dentry->d_flags |= DCACHE_NORCU; | 
|  | /* d_op_flags(&anon_ops) is 0 */ | 
|  | if (!dentry->d_op) | 
|  | dentry->d_op = &anon_ops; | 
|  | } | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | struct dentry *d_alloc_name(struct dentry *parent, const char *name) | 
|  | { | 
|  | struct qstr q; | 
|  |  | 
|  | q.name = name; | 
|  | q.hash_len = hashlen_string(parent, name); | 
|  | return d_alloc(parent, &q); | 
|  | } | 
|  | EXPORT_SYMBOL(d_alloc_name); | 
|  |  | 
|  | #define DCACHE_OP_FLAGS \ | 
|  | (DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \ | 
|  | DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \ | 
|  | DCACHE_OP_REAL) | 
|  |  | 
|  | static unsigned int d_op_flags(const struct dentry_operations *op) | 
|  | { | 
|  | unsigned int flags = 0; | 
|  | if (op) { | 
|  | if (op->d_hash) | 
|  | flags |= DCACHE_OP_HASH; | 
|  | if (op->d_compare) | 
|  | flags |= DCACHE_OP_COMPARE; | 
|  | if (op->d_revalidate) | 
|  | flags |= DCACHE_OP_REVALIDATE; | 
|  | if (op->d_weak_revalidate) | 
|  | flags |= DCACHE_OP_WEAK_REVALIDATE; | 
|  | if (op->d_delete) | 
|  | flags |= DCACHE_OP_DELETE; | 
|  | if (op->d_prune) | 
|  | flags |= DCACHE_OP_PRUNE; | 
|  | if (op->d_real) | 
|  | flags |= DCACHE_OP_REAL; | 
|  | } | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) | 
|  | { | 
|  | unsigned int flags = d_op_flags(op); | 
|  | WARN_ON_ONCE(dentry->d_op); | 
|  | WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS); | 
|  | dentry->d_op = op; | 
|  | if (flags) | 
|  | dentry->d_flags |= flags; | 
|  | } | 
|  |  | 
|  | void set_default_d_op(struct super_block *s, const struct dentry_operations *ops) | 
|  | { | 
|  | unsigned int flags = d_op_flags(ops); | 
|  | s->__s_d_op = ops; | 
|  | s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags; | 
|  | } | 
|  | EXPORT_SYMBOL(set_default_d_op); | 
|  |  | 
|  | static unsigned d_flags_for_inode(struct inode *inode) | 
|  | { | 
|  | unsigned add_flags = DCACHE_REGULAR_TYPE; | 
|  |  | 
|  | if (!inode) | 
|  | return DCACHE_MISS_TYPE; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | add_flags = DCACHE_DIRECTORY_TYPE; | 
|  | if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { | 
|  | if (unlikely(!inode->i_op->lookup)) | 
|  | add_flags = DCACHE_AUTODIR_TYPE; | 
|  | else | 
|  | inode->i_opflags |= IOP_LOOKUP; | 
|  | } | 
|  | goto type_determined; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { | 
|  | if (unlikely(inode->i_op->get_link)) { | 
|  | add_flags = DCACHE_SYMLINK_TYPE; | 
|  | goto type_determined; | 
|  | } | 
|  | inode->i_opflags |= IOP_NOFOLLOW; | 
|  | } | 
|  |  | 
|  | if (unlikely(!S_ISREG(inode->i_mode))) | 
|  | add_flags = DCACHE_SPECIAL_TYPE; | 
|  |  | 
|  | type_determined: | 
|  | if (unlikely(IS_AUTOMOUNT(inode))) | 
|  | add_flags |= DCACHE_NEED_AUTOMOUNT; | 
|  | return add_flags; | 
|  | } | 
|  |  | 
|  | static void __d_instantiate(struct dentry *dentry, struct inode *inode) | 
|  | { | 
|  | unsigned add_flags = d_flags_for_inode(inode); | 
|  | WARN_ON(d_in_lookup(dentry)); | 
|  |  | 
|  | spin_lock(&dentry->d_lock); | 
|  | /* | 
|  | * The negative counter only tracks dentries on the LRU. Don't dec if | 
|  | * d_lru is on another list. | 
|  | */ | 
|  | if ((dentry->d_flags & | 
|  | (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) | 
|  | this_cpu_dec(nr_dentry_negative); | 
|  | hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); | 
|  | raw_write_seqcount_begin(&dentry->d_seq); | 
|  | __d_set_inode_and_type(dentry, inode, add_flags); | 
|  | raw_write_seqcount_end(&dentry->d_seq); | 
|  | fsnotify_update_flags(dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_instantiate - fill in inode information for a dentry | 
|  | * @entry: dentry to complete | 
|  | * @inode: inode to attach to this dentry | 
|  | * | 
|  | * Fill in inode information in the entry. | 
|  | * | 
|  | * This turns negative dentries into productive full members | 
|  | * of society. | 
|  | * | 
|  | * NOTE! This assumes that the inode count has been incremented | 
|  | * (or otherwise set) by the caller to indicate that it is now | 
|  | * in use by the dcache. | 
|  | */ | 
|  |  | 
|  | void d_instantiate(struct dentry *entry, struct inode * inode) | 
|  | { | 
|  | BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); | 
|  | if (inode) { | 
|  | security_d_instantiate(entry, inode); | 
|  | spin_lock(&inode->i_lock); | 
|  | __d_instantiate(entry, inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(d_instantiate); | 
|  |  | 
|  | /* | 
|  | * This should be equivalent to d_instantiate() + unlock_new_inode(), | 
|  | * with lockdep-related part of unlock_new_inode() done before | 
|  | * anything else.  Use that instead of open-coding d_instantiate()/ | 
|  | * unlock_new_inode() combinations. | 
|  | */ | 
|  | void d_instantiate_new(struct dentry *entry, struct inode *inode) | 
|  | { | 
|  | BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); | 
|  | BUG_ON(!inode); | 
|  | lockdep_annotate_inode_mutex_key(inode); | 
|  | security_d_instantiate(entry, inode); | 
|  | spin_lock(&inode->i_lock); | 
|  | __d_instantiate(entry, inode); | 
|  | WARN_ON(!(inode->i_state & I_NEW)); | 
|  | inode->i_state &= ~I_NEW & ~I_CREATING; | 
|  | /* | 
|  | * Pairs with the barrier in prepare_to_wait_event() to make sure | 
|  | * ___wait_var_event() either sees the bit cleared or | 
|  | * waitqueue_active() check in wake_up_var() sees the waiter. | 
|  | */ | 
|  | smp_mb(); | 
|  | inode_wake_up_bit(inode, __I_NEW); | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(d_instantiate_new); | 
|  |  | 
|  | struct dentry *d_make_root(struct inode *root_inode) | 
|  | { | 
|  | struct dentry *res = NULL; | 
|  |  | 
|  | if (root_inode) { | 
|  | res = d_alloc_anon(root_inode->i_sb); | 
|  | if (res) | 
|  | d_instantiate(res, root_inode); | 
|  | else | 
|  | iput(root_inode); | 
|  | } | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(d_make_root); | 
|  |  | 
|  | static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) | 
|  | { | 
|  | struct super_block *sb; | 
|  | struct dentry *new, *res; | 
|  |  | 
|  | if (!inode) | 
|  | return ERR_PTR(-ESTALE); | 
|  | if (IS_ERR(inode)) | 
|  | return ERR_CAST(inode); | 
|  |  | 
|  | sb = inode->i_sb; | 
|  |  | 
|  | res = d_find_any_alias(inode); /* existing alias? */ | 
|  | if (res) | 
|  | goto out; | 
|  |  | 
|  | new = d_alloc_anon(sb); | 
|  | if (!new) { | 
|  | res = ERR_PTR(-ENOMEM); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | security_d_instantiate(new, inode); | 
|  | spin_lock(&inode->i_lock); | 
|  | res = __d_find_any_alias(inode); /* recheck under lock */ | 
|  | if (likely(!res)) { /* still no alias, attach a disconnected dentry */ | 
|  | unsigned add_flags = d_flags_for_inode(inode); | 
|  |  | 
|  | if (disconnected) | 
|  | add_flags |= DCACHE_DISCONNECTED; | 
|  |  | 
|  | spin_lock(&new->d_lock); | 
|  | __d_set_inode_and_type(new, inode, add_flags); | 
|  | hlist_add_head(&new->d_u.d_alias, &inode->i_dentry); | 
|  | if (!disconnected) { | 
|  | hlist_bl_lock(&sb->s_roots); | 
|  | hlist_bl_add_head(&new->d_hash, &sb->s_roots); | 
|  | hlist_bl_unlock(&sb->s_roots); | 
|  | } | 
|  | spin_unlock(&new->d_lock); | 
|  | spin_unlock(&inode->i_lock); | 
|  | inode = NULL; /* consumed by new->d_inode */ | 
|  | res = new; | 
|  | } else { | 
|  | spin_unlock(&inode->i_lock); | 
|  | dput(new); | 
|  | } | 
|  |  | 
|  | out: | 
|  | iput(inode); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode | 
|  | * @inode: inode to allocate the dentry for | 
|  | * | 
|  | * Obtain a dentry for an inode resulting from NFS filehandle conversion or | 
|  | * similar open by handle operations.  The returned dentry may be anonymous, | 
|  | * or may have a full name (if the inode was already in the cache). | 
|  | * | 
|  | * When called on a directory inode, we must ensure that the inode only ever | 
|  | * has one dentry.  If a dentry is found, that is returned instead of | 
|  | * allocating a new one. | 
|  | * | 
|  | * On successful return, the reference to the inode has been transferred | 
|  | * to the dentry.  In case of an error the reference on the inode is released. | 
|  | * To make it easier to use in export operations a %NULL or IS_ERR inode may | 
|  | * be passed in and the error will be propagated to the return value, | 
|  | * with a %NULL @inode replaced by ERR_PTR(-ESTALE). | 
|  | */ | 
|  | struct dentry *d_obtain_alias(struct inode *inode) | 
|  | { | 
|  | return __d_obtain_alias(inode, true); | 
|  | } | 
|  | EXPORT_SYMBOL(d_obtain_alias); | 
|  |  | 
|  | /** | 
|  | * d_obtain_root - find or allocate a dentry for a given inode | 
|  | * @inode: inode to allocate the dentry for | 
|  | * | 
|  | * Obtain an IS_ROOT dentry for the root of a filesystem. | 
|  | * | 
|  | * We must ensure that directory inodes only ever have one dentry.  If a | 
|  | * dentry is found, that is returned instead of allocating a new one. | 
|  | * | 
|  | * On successful return, the reference to the inode has been transferred | 
|  | * to the dentry.  In case of an error the reference on the inode is | 
|  | * released.  A %NULL or IS_ERR inode may be passed in and will be the | 
|  | * error will be propagate to the return value, with a %NULL @inode | 
|  | * replaced by ERR_PTR(-ESTALE). | 
|  | */ | 
|  | struct dentry *d_obtain_root(struct inode *inode) | 
|  | { | 
|  | return __d_obtain_alias(inode, false); | 
|  | } | 
|  | EXPORT_SYMBOL(d_obtain_root); | 
|  |  | 
|  | /** | 
|  | * d_add_ci - lookup or allocate new dentry with case-exact name | 
|  | * @dentry: the negative dentry that was passed to the parent's lookup func | 
|  | * @inode:  the inode case-insensitive lookup has found | 
|  | * @name:   the case-exact name to be associated with the returned dentry | 
|  | * | 
|  | * This is to avoid filling the dcache with case-insensitive names to the | 
|  | * same inode, only the actual correct case is stored in the dcache for | 
|  | * case-insensitive filesystems. | 
|  | * | 
|  | * For a case-insensitive lookup match and if the case-exact dentry | 
|  | * already exists in the dcache, use it and return it. | 
|  | * | 
|  | * If no entry exists with the exact case name, allocate new dentry with | 
|  | * the exact case, and return the spliced entry. | 
|  | */ | 
|  | struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, | 
|  | struct qstr *name) | 
|  | { | 
|  | struct dentry *found, *res; | 
|  |  | 
|  | /* | 
|  | * First check if a dentry matching the name already exists, | 
|  | * if not go ahead and create it now. | 
|  | */ | 
|  | found = d_hash_and_lookup(dentry->d_parent, name); | 
|  | if (found) { | 
|  | iput(inode); | 
|  | return found; | 
|  | } | 
|  | if (d_in_lookup(dentry)) { | 
|  | found = d_alloc_parallel(dentry->d_parent, name, | 
|  | dentry->d_wait); | 
|  | if (IS_ERR(found) || !d_in_lookup(found)) { | 
|  | iput(inode); | 
|  | return found; | 
|  | } | 
|  | } else { | 
|  | found = d_alloc(dentry->d_parent, name); | 
|  | if (!found) { | 
|  | iput(inode); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | } | 
|  | res = d_splice_alias(inode, found); | 
|  | if (res) { | 
|  | d_lookup_done(found); | 
|  | dput(found); | 
|  | return res; | 
|  | } | 
|  | return found; | 
|  | } | 
|  | EXPORT_SYMBOL(d_add_ci); | 
|  |  | 
|  | /** | 
|  | * d_same_name - compare dentry name with case-exact name | 
|  | * @dentry: the negative dentry that was passed to the parent's lookup func | 
|  | * @parent: parent dentry | 
|  | * @name:   the case-exact name to be associated with the returned dentry | 
|  | * | 
|  | * Return: true if names are same, or false | 
|  | */ | 
|  | bool d_same_name(const struct dentry *dentry, const struct dentry *parent, | 
|  | const struct qstr *name) | 
|  | { | 
|  | if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { | 
|  | if (dentry->d_name.len != name->len) | 
|  | return false; | 
|  | return dentry_cmp(dentry, name->name, name->len) == 0; | 
|  | } | 
|  | return parent->d_op->d_compare(dentry, | 
|  | dentry->d_name.len, dentry->d_name.name, | 
|  | name) == 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(d_same_name); | 
|  |  | 
|  | /* | 
|  | * This is __d_lookup_rcu() when the parent dentry has | 
|  | * DCACHE_OP_COMPARE, which makes things much nastier. | 
|  | */ | 
|  | static noinline struct dentry *__d_lookup_rcu_op_compare( | 
|  | const struct dentry *parent, | 
|  | const struct qstr *name, | 
|  | unsigned *seqp) | 
|  | { | 
|  | u64 hashlen = name->hash_len; | 
|  | struct hlist_bl_head *b = d_hash(hashlen); | 
|  | struct hlist_bl_node *node; | 
|  | struct dentry *dentry; | 
|  |  | 
|  | hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { | 
|  | int tlen; | 
|  | const char *tname; | 
|  | unsigned seq; | 
|  |  | 
|  | seqretry: | 
|  | seq = raw_seqcount_begin(&dentry->d_seq); | 
|  | if (dentry->d_parent != parent) | 
|  | continue; | 
|  | if (d_unhashed(dentry)) | 
|  | continue; | 
|  | if (dentry->d_name.hash != hashlen_hash(hashlen)) | 
|  | continue; | 
|  | tlen = dentry->d_name.len; | 
|  | tname = dentry->d_name.name; | 
|  | /* we want a consistent (name,len) pair */ | 
|  | if (read_seqcount_retry(&dentry->d_seq, seq)) { | 
|  | cpu_relax(); | 
|  | goto seqretry; | 
|  | } | 
|  | if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) | 
|  | continue; | 
|  | *seqp = seq; | 
|  | return dentry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __d_lookup_rcu - search for a dentry (racy, store-free) | 
|  | * @parent: parent dentry | 
|  | * @name: qstr of name we wish to find | 
|  | * @seqp: returns d_seq value at the point where the dentry was found | 
|  | * Returns: dentry, or NULL | 
|  | * | 
|  | * __d_lookup_rcu is the dcache lookup function for rcu-walk name | 
|  | * resolution (store-free path walking) design described in | 
|  | * Documentation/filesystems/path-lookup.txt. | 
|  | * | 
|  | * This is not to be used outside core vfs. | 
|  | * | 
|  | * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock | 
|  | * held, and rcu_read_lock held. The returned dentry must not be stored into | 
|  | * without taking d_lock and checking d_seq sequence count against @seq | 
|  | * returned here. | 
|  | * | 
|  | * Alternatively, __d_lookup_rcu may be called again to look up the child of | 
|  | * the returned dentry, so long as its parent's seqlock is checked after the | 
|  | * child is looked up. Thus, an interlocking stepping of sequence lock checks | 
|  | * is formed, giving integrity down the path walk. | 
|  | * | 
|  | * NOTE! The caller *has* to check the resulting dentry against the sequence | 
|  | * number we've returned before using any of the resulting dentry state! | 
|  | */ | 
|  | struct dentry *__d_lookup_rcu(const struct dentry *parent, | 
|  | const struct qstr *name, | 
|  | unsigned *seqp) | 
|  | { | 
|  | u64 hashlen = name->hash_len; | 
|  | const unsigned char *str = name->name; | 
|  | struct hlist_bl_head *b = d_hash(hashlen); | 
|  | struct hlist_bl_node *node; | 
|  | struct dentry *dentry; | 
|  |  | 
|  | /* | 
|  | * Note: There is significant duplication with __d_lookup_rcu which is | 
|  | * required to prevent single threaded performance regressions | 
|  | * especially on architectures where smp_rmb (in seqcounts) are costly. | 
|  | * Keep the two functions in sync. | 
|  | */ | 
|  |  | 
|  | if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) | 
|  | return __d_lookup_rcu_op_compare(parent, name, seqp); | 
|  |  | 
|  | /* | 
|  | * The hash list is protected using RCU. | 
|  | * | 
|  | * Carefully use d_seq when comparing a candidate dentry, to avoid | 
|  | * races with d_move(). | 
|  | * | 
|  | * It is possible that concurrent renames can mess up our list | 
|  | * walk here and result in missing our dentry, resulting in the | 
|  | * false-negative result. d_lookup() protects against concurrent | 
|  | * renames using rename_lock seqlock. | 
|  | * | 
|  | * See Documentation/filesystems/path-lookup.txt for more details. | 
|  | */ | 
|  | hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { | 
|  | unsigned seq; | 
|  |  | 
|  | /* | 
|  | * The dentry sequence count protects us from concurrent | 
|  | * renames, and thus protects parent and name fields. | 
|  | * | 
|  | * The caller must perform a seqcount check in order | 
|  | * to do anything useful with the returned dentry. | 
|  | * | 
|  | * NOTE! We do a "raw" seqcount_begin here. That means that | 
|  | * we don't wait for the sequence count to stabilize if it | 
|  | * is in the middle of a sequence change. If we do the slow | 
|  | * dentry compare, we will do seqretries until it is stable, | 
|  | * and if we end up with a successful lookup, we actually | 
|  | * want to exit RCU lookup anyway. | 
|  | * | 
|  | * Note that raw_seqcount_begin still *does* smp_rmb(), so | 
|  | * we are still guaranteed NUL-termination of ->d_name.name. | 
|  | */ | 
|  | seq = raw_seqcount_begin(&dentry->d_seq); | 
|  | if (dentry->d_parent != parent) | 
|  | continue; | 
|  | if (d_unhashed(dentry)) | 
|  | continue; | 
|  | if (dentry->d_name.hash_len != hashlen) | 
|  | continue; | 
|  | if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) | 
|  | continue; | 
|  | *seqp = seq; | 
|  | return dentry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_lookup - search for a dentry | 
|  | * @parent: parent dentry | 
|  | * @name: qstr of name we wish to find | 
|  | * Returns: dentry, or NULL | 
|  | * | 
|  | * d_lookup searches the children of the parent dentry for the name in | 
|  | * question. If the dentry is found its reference count is incremented and the | 
|  | * dentry is returned. The caller must use dput to free the entry when it has | 
|  | * finished using it. %NULL is returned if the dentry does not exist. | 
|  | */ | 
|  | struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) | 
|  | { | 
|  | struct dentry *dentry; | 
|  | unsigned seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&rename_lock); | 
|  | dentry = __d_lookup(parent, name); | 
|  | if (dentry) | 
|  | break; | 
|  | } while (read_seqretry(&rename_lock, seq)); | 
|  | return dentry; | 
|  | } | 
|  | EXPORT_SYMBOL(d_lookup); | 
|  |  | 
|  | /** | 
|  | * __d_lookup - search for a dentry (racy) | 
|  | * @parent: parent dentry | 
|  | * @name: qstr of name we wish to find | 
|  | * Returns: dentry, or NULL | 
|  | * | 
|  | * __d_lookup is like d_lookup, however it may (rarely) return a | 
|  | * false-negative result due to unrelated rename activity. | 
|  | * | 
|  | * __d_lookup is slightly faster by avoiding rename_lock read seqlock, | 
|  | * however it must be used carefully, eg. with a following d_lookup in | 
|  | * the case of failure. | 
|  | * | 
|  | * __d_lookup callers must be commented. | 
|  | */ | 
|  | struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) | 
|  | { | 
|  | unsigned int hash = name->hash; | 
|  | struct hlist_bl_head *b = d_hash(hash); | 
|  | struct hlist_bl_node *node; | 
|  | struct dentry *found = NULL; | 
|  | struct dentry *dentry; | 
|  |  | 
|  | /* | 
|  | * Note: There is significant duplication with __d_lookup_rcu which is | 
|  | * required to prevent single threaded performance regressions | 
|  | * especially on architectures where smp_rmb (in seqcounts) are costly. | 
|  | * Keep the two functions in sync. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The hash list is protected using RCU. | 
|  | * | 
|  | * Take d_lock when comparing a candidate dentry, to avoid races | 
|  | * with d_move(). | 
|  | * | 
|  | * It is possible that concurrent renames can mess up our list | 
|  | * walk here and result in missing our dentry, resulting in the | 
|  | * false-negative result. d_lookup() protects against concurrent | 
|  | * renames using rename_lock seqlock. | 
|  | * | 
|  | * See Documentation/filesystems/path-lookup.txt for more details. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { | 
|  |  | 
|  | if (dentry->d_name.hash != hash) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (dentry->d_parent != parent) | 
|  | goto next; | 
|  | if (d_unhashed(dentry)) | 
|  | goto next; | 
|  |  | 
|  | if (!d_same_name(dentry, parent, name)) | 
|  | goto next; | 
|  |  | 
|  | dentry->d_lockref.count++; | 
|  | found = dentry; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | break; | 
|  | next: | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_hash_and_lookup - hash the qstr then search for a dentry | 
|  | * @dir: Directory to search in | 
|  | * @name: qstr of name we wish to find | 
|  | * | 
|  | * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) | 
|  | */ | 
|  | struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) | 
|  | { | 
|  | /* | 
|  | * Check for a fs-specific hash function. Note that we must | 
|  | * calculate the standard hash first, as the d_op->d_hash() | 
|  | * routine may choose to leave the hash value unchanged. | 
|  | */ | 
|  | name->hash = full_name_hash(dir, name->name, name->len); | 
|  | if (dir->d_flags & DCACHE_OP_HASH) { | 
|  | int err = dir->d_op->d_hash(dir, name); | 
|  | if (unlikely(err < 0)) | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | return d_lookup(dir, name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a file is deleted, we have two options: | 
|  | * - turn this dentry into a negative dentry | 
|  | * - unhash this dentry and free it. | 
|  | * | 
|  | * Usually, we want to just turn this into | 
|  | * a negative dentry, but if anybody else is | 
|  | * currently using the dentry or the inode | 
|  | * we can't do that and we fall back on removing | 
|  | * it from the hash queues and waiting for | 
|  | * it to be deleted later when it has no users | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * d_delete - delete a dentry | 
|  | * @dentry: The dentry to delete | 
|  | * | 
|  | * Turn the dentry into a negative dentry if possible, otherwise | 
|  | * remove it from the hash queues so it can be deleted later | 
|  | */ | 
|  |  | 
|  | void d_delete(struct dentry * dentry) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | spin_lock(&dentry->d_lock); | 
|  | /* | 
|  | * Are we the only user? | 
|  | */ | 
|  | if (dentry->d_lockref.count == 1) { | 
|  | if (dentry_negative_policy) | 
|  | __d_drop(dentry); | 
|  | dentry->d_flags &= ~DCACHE_CANT_MOUNT; | 
|  | dentry_unlink_inode(dentry); | 
|  | } else { | 
|  | __d_drop(dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(d_delete); | 
|  |  | 
|  | static void __d_rehash(struct dentry *entry) | 
|  | { | 
|  | struct hlist_bl_head *b = d_hash(entry->d_name.hash); | 
|  |  | 
|  | hlist_bl_lock(b); | 
|  | hlist_bl_add_head_rcu(&entry->d_hash, b); | 
|  | hlist_bl_unlock(b); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_rehash	- add an entry back to the hash | 
|  | * @entry: dentry to add to the hash | 
|  | * | 
|  | * Adds a dentry to the hash according to its name. | 
|  | */ | 
|  |  | 
|  | void d_rehash(struct dentry * entry) | 
|  | { | 
|  | spin_lock(&entry->d_lock); | 
|  | __d_rehash(entry); | 
|  | spin_unlock(&entry->d_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(d_rehash); | 
|  |  | 
|  | static inline unsigned start_dir_add(struct inode *dir) | 
|  | { | 
|  | preempt_disable_nested(); | 
|  | for (;;) { | 
|  | unsigned n = READ_ONCE(dir->i_dir_seq); | 
|  | if (!(n & 1) && try_cmpxchg(&dir->i_dir_seq, &n, n + 1)) | 
|  | return n; | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void end_dir_add(struct inode *dir, unsigned int n, | 
|  | wait_queue_head_t *d_wait) | 
|  | { | 
|  | smp_store_release(&dir->i_dir_seq, n + 2); | 
|  | preempt_enable_nested(); | 
|  | if (wq_has_sleeper(d_wait)) | 
|  | wake_up_all(d_wait); | 
|  | } | 
|  |  | 
|  | static void d_wait_lookup(struct dentry *dentry) | 
|  | { | 
|  | if (d_in_lookup(dentry)) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | add_wait_queue(dentry->d_wait, &wait); | 
|  | do { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | schedule(); | 
|  | spin_lock(&dentry->d_lock); | 
|  | } while (d_in_lookup(dentry)); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct dentry *d_alloc_parallel(struct dentry *parent, | 
|  | const struct qstr *name, | 
|  | wait_queue_head_t *wq) | 
|  | { | 
|  | unsigned int hash = name->hash; | 
|  | struct hlist_bl_head *b = in_lookup_hash(parent, hash); | 
|  | struct hlist_bl_node *node; | 
|  | struct dentry *new = __d_alloc(parent->d_sb, name); | 
|  | struct dentry *dentry; | 
|  | unsigned seq, r_seq, d_seq; | 
|  |  | 
|  | if (unlikely(!new)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | new->d_flags |= DCACHE_PAR_LOOKUP; | 
|  | spin_lock(&parent->d_lock); | 
|  | new->d_parent = dget_dlock(parent); | 
|  | hlist_add_head(&new->d_sib, &parent->d_children); | 
|  | if (parent->d_flags & DCACHE_DISCONNECTED) | 
|  | new->d_flags |= DCACHE_DISCONNECTED; | 
|  | spin_unlock(&parent->d_lock); | 
|  |  | 
|  | retry: | 
|  | rcu_read_lock(); | 
|  | seq = smp_load_acquire(&parent->d_inode->i_dir_seq); | 
|  | r_seq = read_seqbegin(&rename_lock); | 
|  | dentry = __d_lookup_rcu(parent, name, &d_seq); | 
|  | if (unlikely(dentry)) { | 
|  | if (!lockref_get_not_dead(&dentry->d_lockref)) { | 
|  | rcu_read_unlock(); | 
|  | goto retry; | 
|  | } | 
|  | if (read_seqcount_retry(&dentry->d_seq, d_seq)) { | 
|  | rcu_read_unlock(); | 
|  | dput(dentry); | 
|  | goto retry; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | dput(new); | 
|  | return dentry; | 
|  | } | 
|  | if (unlikely(read_seqretry(&rename_lock, r_seq))) { | 
|  | rcu_read_unlock(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (unlikely(seq & 1)) { | 
|  | rcu_read_unlock(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | hlist_bl_lock(b); | 
|  | if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { | 
|  | hlist_bl_unlock(b); | 
|  | rcu_read_unlock(); | 
|  | goto retry; | 
|  | } | 
|  | /* | 
|  | * No changes for the parent since the beginning of d_lookup(). | 
|  | * Since all removals from the chain happen with hlist_bl_lock(), | 
|  | * any potential in-lookup matches are going to stay here until | 
|  | * we unlock the chain.  All fields are stable in everything | 
|  | * we encounter. | 
|  | */ | 
|  | hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { | 
|  | if (dentry->d_name.hash != hash) | 
|  | continue; | 
|  | if (dentry->d_parent != parent) | 
|  | continue; | 
|  | if (!d_same_name(dentry, parent, name)) | 
|  | continue; | 
|  | hlist_bl_unlock(b); | 
|  | /* now we can try to grab a reference */ | 
|  | if (!lockref_get_not_dead(&dentry->d_lockref)) { | 
|  | rcu_read_unlock(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | /* | 
|  | * somebody is likely to be still doing lookup for it; | 
|  | * wait for them to finish | 
|  | */ | 
|  | spin_lock(&dentry->d_lock); | 
|  | d_wait_lookup(dentry); | 
|  | /* | 
|  | * it's not in-lookup anymore; in principle we should repeat | 
|  | * everything from dcache lookup, but it's likely to be what | 
|  | * d_lookup() would've found anyway.  If it is, just return it; | 
|  | * otherwise we really have to repeat the whole thing. | 
|  | */ | 
|  | if (unlikely(dentry->d_name.hash != hash)) | 
|  | goto mismatch; | 
|  | if (unlikely(dentry->d_parent != parent)) | 
|  | goto mismatch; | 
|  | if (unlikely(d_unhashed(dentry))) | 
|  | goto mismatch; | 
|  | if (unlikely(!d_same_name(dentry, parent, name))) | 
|  | goto mismatch; | 
|  | /* OK, it *is* a hashed match; return it */ | 
|  | spin_unlock(&dentry->d_lock); | 
|  | dput(new); | 
|  | return dentry; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | new->d_wait = wq; | 
|  | hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b); | 
|  | hlist_bl_unlock(b); | 
|  | return new; | 
|  | mismatch: | 
|  | spin_unlock(&dentry->d_lock); | 
|  | dput(dentry); | 
|  | goto retry; | 
|  | } | 
|  | EXPORT_SYMBOL(d_alloc_parallel); | 
|  |  | 
|  | /* | 
|  | * - Unhash the dentry | 
|  | * - Retrieve and clear the waitqueue head in dentry | 
|  | * - Return the waitqueue head | 
|  | */ | 
|  | static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) | 
|  | { | 
|  | wait_queue_head_t *d_wait; | 
|  | struct hlist_bl_head *b; | 
|  |  | 
|  | lockdep_assert_held(&dentry->d_lock); | 
|  |  | 
|  | b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); | 
|  | hlist_bl_lock(b); | 
|  | dentry->d_flags &= ~DCACHE_PAR_LOOKUP; | 
|  | __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); | 
|  | d_wait = dentry->d_wait; | 
|  | dentry->d_wait = NULL; | 
|  | hlist_bl_unlock(b); | 
|  | INIT_HLIST_NODE(&dentry->d_u.d_alias); | 
|  | INIT_LIST_HEAD(&dentry->d_lru); | 
|  | return d_wait; | 
|  | } | 
|  |  | 
|  | void __d_lookup_unhash_wake(struct dentry *dentry) | 
|  | { | 
|  | spin_lock(&dentry->d_lock); | 
|  | wake_up_all(__d_lookup_unhash(dentry)); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(__d_lookup_unhash_wake); | 
|  |  | 
|  | /* inode->i_lock held if inode is non-NULL */ | 
|  |  | 
|  | static inline void __d_add(struct dentry *dentry, struct inode *inode, | 
|  | const struct dentry_operations *ops) | 
|  | { | 
|  | wait_queue_head_t *d_wait; | 
|  | struct inode *dir = NULL; | 
|  | unsigned n; | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (unlikely(d_in_lookup(dentry))) { | 
|  | dir = dentry->d_parent->d_inode; | 
|  | n = start_dir_add(dir); | 
|  | d_wait = __d_lookup_unhash(dentry); | 
|  | } | 
|  | if (unlikely(ops)) | 
|  | d_set_d_op(dentry, ops); | 
|  | if (inode) { | 
|  | unsigned add_flags = d_flags_for_inode(inode); | 
|  | hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); | 
|  | raw_write_seqcount_begin(&dentry->d_seq); | 
|  | __d_set_inode_and_type(dentry, inode, add_flags); | 
|  | raw_write_seqcount_end(&dentry->d_seq); | 
|  | fsnotify_update_flags(dentry); | 
|  | } | 
|  | __d_rehash(dentry); | 
|  | if (dir) | 
|  | end_dir_add(dir, n, d_wait); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | if (inode) | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_add - add dentry to hash queues | 
|  | * @entry: dentry to add | 
|  | * @inode: The inode to attach to this dentry | 
|  | * | 
|  | * This adds the entry to the hash queues and initializes @inode. | 
|  | * The entry was actually filled in earlier during d_alloc(). | 
|  | */ | 
|  |  | 
|  | void d_add(struct dentry *entry, struct inode *inode) | 
|  | { | 
|  | if (inode) { | 
|  | security_d_instantiate(entry, inode); | 
|  | spin_lock(&inode->i_lock); | 
|  | } | 
|  | __d_add(entry, inode, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(d_add); | 
|  |  | 
|  | static void swap_names(struct dentry *dentry, struct dentry *target) | 
|  | { | 
|  | if (unlikely(dname_external(target))) { | 
|  | if (unlikely(dname_external(dentry))) { | 
|  | /* | 
|  | * Both external: swap the pointers | 
|  | */ | 
|  | swap(target->__d_name.name, dentry->__d_name.name); | 
|  | } else { | 
|  | /* | 
|  | * dentry:internal, target:external.  Steal target's | 
|  | * storage and make target internal. | 
|  | */ | 
|  | dentry->__d_name.name = target->__d_name.name; | 
|  | target->d_shortname = dentry->d_shortname; | 
|  | target->__d_name.name = target->d_shortname.string; | 
|  | } | 
|  | } else { | 
|  | if (unlikely(dname_external(dentry))) { | 
|  | /* | 
|  | * dentry:external, target:internal.  Give dentry's | 
|  | * storage to target and make dentry internal | 
|  | */ | 
|  | target->__d_name.name = dentry->__d_name.name; | 
|  | dentry->d_shortname = target->d_shortname; | 
|  | dentry->__d_name.name = dentry->d_shortname.string; | 
|  | } else { | 
|  | /* | 
|  | * Both are internal. | 
|  | */ | 
|  | for (int i = 0; i < DNAME_INLINE_WORDS; i++) | 
|  | swap(dentry->d_shortname.words[i], | 
|  | target->d_shortname.words[i]); | 
|  | } | 
|  | } | 
|  | swap(dentry->__d_name.hash_len, target->__d_name.hash_len); | 
|  | } | 
|  |  | 
|  | static void copy_name(struct dentry *dentry, struct dentry *target) | 
|  | { | 
|  | struct external_name *old_name = NULL; | 
|  | if (unlikely(dname_external(dentry))) | 
|  | old_name = external_name(dentry); | 
|  | if (unlikely(dname_external(target))) { | 
|  | atomic_inc(&external_name(target)->count); | 
|  | dentry->__d_name = target->__d_name; | 
|  | } else { | 
|  | dentry->d_shortname = target->d_shortname; | 
|  | dentry->__d_name.name = dentry->d_shortname.string; | 
|  | dentry->__d_name.hash_len = target->__d_name.hash_len; | 
|  | } | 
|  | if (old_name && likely(atomic_dec_and_test(&old_name->count))) | 
|  | kfree_rcu(old_name, head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __d_move - move a dentry | 
|  | * @dentry: entry to move | 
|  | * @target: new dentry | 
|  | * @exchange: exchange the two dentries | 
|  | * | 
|  | * Update the dcache to reflect the move of a file name. Negative dcache | 
|  | * entries should not be moved in this way. Caller must hold rename_lock, the | 
|  | * i_rwsem of the source and target directories (exclusively), and the sb-> | 
|  | * s_vfs_rename_mutex if they differ. See lock_rename(). | 
|  | */ | 
|  | static void __d_move(struct dentry *dentry, struct dentry *target, | 
|  | bool exchange) | 
|  | { | 
|  | struct dentry *old_parent, *p; | 
|  | wait_queue_head_t *d_wait; | 
|  | struct inode *dir = NULL; | 
|  | unsigned n; | 
|  |  | 
|  | WARN_ON(!dentry->d_inode); | 
|  | if (WARN_ON(dentry == target)) | 
|  | return; | 
|  |  | 
|  | BUG_ON(d_ancestor(target, dentry)); | 
|  | old_parent = dentry->d_parent; | 
|  | p = d_ancestor(old_parent, target); | 
|  | if (IS_ROOT(dentry)) { | 
|  | BUG_ON(p); | 
|  | spin_lock(&target->d_parent->d_lock); | 
|  | } else if (!p) { | 
|  | /* target is not a descendent of dentry->d_parent */ | 
|  | spin_lock(&target->d_parent->d_lock); | 
|  | spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | } else { | 
|  | BUG_ON(p == dentry); | 
|  | spin_lock(&old_parent->d_lock); | 
|  | if (p != target) | 
|  | spin_lock_nested(&target->d_parent->d_lock, | 
|  | DENTRY_D_LOCK_NESTED); | 
|  | } | 
|  | spin_lock_nested(&dentry->d_lock, 2); | 
|  | spin_lock_nested(&target->d_lock, 3); | 
|  |  | 
|  | if (unlikely(d_in_lookup(target))) { | 
|  | dir = target->d_parent->d_inode; | 
|  | n = start_dir_add(dir); | 
|  | d_wait = __d_lookup_unhash(target); | 
|  | } | 
|  |  | 
|  | write_seqcount_begin(&dentry->d_seq); | 
|  | write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); | 
|  |  | 
|  | /* unhash both */ | 
|  | if (!d_unhashed(dentry)) | 
|  | ___d_drop(dentry); | 
|  | if (!d_unhashed(target)) | 
|  | ___d_drop(target); | 
|  |  | 
|  | /* ... and switch them in the tree */ | 
|  | dentry->d_parent = target->d_parent; | 
|  | if (!exchange) { | 
|  | copy_name(dentry, target); | 
|  | target->d_hash.pprev = NULL; | 
|  | dentry->d_parent->d_lockref.count++; | 
|  | if (dentry != old_parent) /* wasn't IS_ROOT */ | 
|  | WARN_ON(!--old_parent->d_lockref.count); | 
|  | } else { | 
|  | target->d_parent = old_parent; | 
|  | swap_names(dentry, target); | 
|  | if (!hlist_unhashed(&target->d_sib)) | 
|  | __hlist_del(&target->d_sib); | 
|  | hlist_add_head(&target->d_sib, &target->d_parent->d_children); | 
|  | __d_rehash(target); | 
|  | fsnotify_update_flags(target); | 
|  | } | 
|  | if (!hlist_unhashed(&dentry->d_sib)) | 
|  | __hlist_del(&dentry->d_sib); | 
|  | hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children); | 
|  | __d_rehash(dentry); | 
|  | fsnotify_update_flags(dentry); | 
|  | fscrypt_handle_d_move(dentry); | 
|  |  | 
|  | write_seqcount_end(&target->d_seq); | 
|  | write_seqcount_end(&dentry->d_seq); | 
|  |  | 
|  | if (dir) | 
|  | end_dir_add(dir, n, d_wait); | 
|  |  | 
|  | if (dentry->d_parent != old_parent) | 
|  | spin_unlock(&dentry->d_parent->d_lock); | 
|  | if (dentry != old_parent) | 
|  | spin_unlock(&old_parent->d_lock); | 
|  | spin_unlock(&target->d_lock); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * d_move - move a dentry | 
|  | * @dentry: entry to move | 
|  | * @target: new dentry | 
|  | * | 
|  | * Update the dcache to reflect the move of a file name. Negative | 
|  | * dcache entries should not be moved in this way. See the locking | 
|  | * requirements for __d_move. | 
|  | */ | 
|  | void d_move(struct dentry *dentry, struct dentry *target) | 
|  | { | 
|  | write_seqlock(&rename_lock); | 
|  | __d_move(dentry, target, false); | 
|  | write_sequnlock(&rename_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(d_move); | 
|  |  | 
|  | /* | 
|  | * d_exchange - exchange two dentries | 
|  | * @dentry1: first dentry | 
|  | * @dentry2: second dentry | 
|  | */ | 
|  | void d_exchange(struct dentry *dentry1, struct dentry *dentry2) | 
|  | { | 
|  | write_seqlock(&rename_lock); | 
|  |  | 
|  | WARN_ON(!dentry1->d_inode); | 
|  | WARN_ON(!dentry2->d_inode); | 
|  | WARN_ON(IS_ROOT(dentry1)); | 
|  | WARN_ON(IS_ROOT(dentry2)); | 
|  |  | 
|  | __d_move(dentry1, dentry2, true); | 
|  |  | 
|  | write_sequnlock(&rename_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(d_exchange); | 
|  |  | 
|  | /** | 
|  | * d_ancestor - search for an ancestor | 
|  | * @p1: ancestor dentry | 
|  | * @p2: child dentry | 
|  | * | 
|  | * Returns the ancestor dentry of p2 which is a child of p1, if p1 is | 
|  | * an ancestor of p2, else NULL. | 
|  | */ | 
|  | struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) | 
|  | { | 
|  | struct dentry *p; | 
|  |  | 
|  | for (p = p2; !IS_ROOT(p); p = p->d_parent) { | 
|  | if (p->d_parent == p1) | 
|  | return p; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This helper attempts to cope with remotely renamed directories | 
|  | * | 
|  | * It assumes that the caller is already holding | 
|  | * dentry->d_parent->d_inode->i_rwsem, and rename_lock | 
|  | * | 
|  | * Note: If ever the locking in lock_rename() changes, then please | 
|  | * remember to update this too... | 
|  | */ | 
|  | static int __d_unalias(struct dentry *dentry, struct dentry *alias) | 
|  | { | 
|  | struct mutex *m1 = NULL; | 
|  | struct rw_semaphore *m2 = NULL; | 
|  | int ret = -ESTALE; | 
|  |  | 
|  | /* If alias and dentry share a parent, then no extra locks required */ | 
|  | if (alias->d_parent == dentry->d_parent) | 
|  | goto out_unalias; | 
|  |  | 
|  | /* See lock_rename() */ | 
|  | if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) | 
|  | goto out_err; | 
|  | m1 = &dentry->d_sb->s_vfs_rename_mutex; | 
|  | if (!inode_trylock_shared(alias->d_parent->d_inode)) | 
|  | goto out_err; | 
|  | m2 = &alias->d_parent->d_inode->i_rwsem; | 
|  | out_unalias: | 
|  | if (alias->d_op && alias->d_op->d_unalias_trylock && | 
|  | !alias->d_op->d_unalias_trylock(alias)) | 
|  | goto out_err; | 
|  | __d_move(alias, dentry, false); | 
|  | if (alias->d_op && alias->d_op->d_unalias_unlock) | 
|  | alias->d_op->d_unalias_unlock(alias); | 
|  | ret = 0; | 
|  | out_err: | 
|  | if (m2) | 
|  | up_read(m2); | 
|  | if (m1) | 
|  | mutex_unlock(m1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry, | 
|  | const struct dentry_operations *ops) | 
|  | { | 
|  | if (IS_ERR(inode)) | 
|  | return ERR_CAST(inode); | 
|  |  | 
|  | BUG_ON(!d_unhashed(dentry)); | 
|  |  | 
|  | if (!inode) | 
|  | goto out; | 
|  |  | 
|  | security_d_instantiate(dentry, inode); | 
|  | spin_lock(&inode->i_lock); | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | struct dentry *new = __d_find_any_alias(inode); | 
|  | if (unlikely(new)) { | 
|  | /* The reference to new ensures it remains an alias */ | 
|  | spin_unlock(&inode->i_lock); | 
|  | write_seqlock(&rename_lock); | 
|  | if (unlikely(d_ancestor(new, dentry))) { | 
|  | write_sequnlock(&rename_lock); | 
|  | dput(new); | 
|  | new = ERR_PTR(-ELOOP); | 
|  | pr_warn_ratelimited( | 
|  | "VFS: Lookup of '%s' in %s %s" | 
|  | " would have caused loop\n", | 
|  | dentry->d_name.name, | 
|  | inode->i_sb->s_type->name, | 
|  | inode->i_sb->s_id); | 
|  | } else if (!IS_ROOT(new)) { | 
|  | struct dentry *old_parent = dget(new->d_parent); | 
|  | int err = __d_unalias(dentry, new); | 
|  | write_sequnlock(&rename_lock); | 
|  | if (err) { | 
|  | dput(new); | 
|  | new = ERR_PTR(err); | 
|  | } | 
|  | dput(old_parent); | 
|  | } else { | 
|  | __d_move(new, dentry, false); | 
|  | write_sequnlock(&rename_lock); | 
|  | } | 
|  | iput(inode); | 
|  | return new; | 
|  | } | 
|  | } | 
|  | out: | 
|  | __d_add(dentry, inode, ops); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_splice_alias - splice a disconnected dentry into the tree if one exists | 
|  | * @inode:  the inode which may have a disconnected dentry | 
|  | * @dentry: a negative dentry which we want to point to the inode. | 
|  | * | 
|  | * If inode is a directory and has an IS_ROOT alias, then d_move that in | 
|  | * place of the given dentry and return it, else simply d_add the inode | 
|  | * to the dentry and return NULL. | 
|  | * | 
|  | * If a non-IS_ROOT directory is found, the filesystem is corrupt, and | 
|  | * we should error out: directories can't have multiple aliases. | 
|  | * | 
|  | * This is needed in the lookup routine of any filesystem that is exportable | 
|  | * (via knfsd) so that we can build dcache paths to directories effectively. | 
|  | * | 
|  | * If a dentry was found and moved, then it is returned.  Otherwise NULL | 
|  | * is returned.  This matches the expected return value of ->lookup. | 
|  | * | 
|  | * Cluster filesystems may call this function with a negative, hashed dentry. | 
|  | * In that case, we know that the inode will be a regular file, and also this | 
|  | * will only occur during atomic_open. So we need to check for the dentry | 
|  | * being already hashed only in the final case. | 
|  | */ | 
|  | struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) | 
|  | { | 
|  | return d_splice_alias_ops(inode, dentry, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(d_splice_alias); | 
|  |  | 
|  | /* | 
|  | * Test whether new_dentry is a subdirectory of old_dentry. | 
|  | * | 
|  | * Trivially implemented using the dcache structure | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * is_subdir - is new dentry a subdirectory of old_dentry | 
|  | * @new_dentry: new dentry | 
|  | * @old_dentry: old dentry | 
|  | * | 
|  | * Returns true if new_dentry is a subdirectory of the parent (at any depth). | 
|  | * Returns false otherwise. | 
|  | * Caller must ensure that "new_dentry" is pinned before calling is_subdir() | 
|  | */ | 
|  |  | 
|  | bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) | 
|  | { | 
|  | bool subdir; | 
|  | unsigned seq; | 
|  |  | 
|  | if (new_dentry == old_dentry) | 
|  | return true; | 
|  |  | 
|  | /* Access d_parent under rcu as d_move() may change it. */ | 
|  | rcu_read_lock(); | 
|  | seq = read_seqbegin(&rename_lock); | 
|  | subdir = d_ancestor(old_dentry, new_dentry); | 
|  | /* Try lockless once... */ | 
|  | if (read_seqretry(&rename_lock, seq)) { | 
|  | /* ...else acquire lock for progress even on deep chains. */ | 
|  | read_seqlock_excl(&rename_lock); | 
|  | subdir = d_ancestor(old_dentry, new_dentry); | 
|  | read_sequnlock_excl(&rename_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return subdir; | 
|  | } | 
|  | EXPORT_SYMBOL(is_subdir); | 
|  |  | 
|  | static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) | 
|  | { | 
|  | struct dentry *root = data; | 
|  | if (dentry != root) { | 
|  | if (d_unhashed(dentry) || !dentry->d_inode) | 
|  | return D_WALK_SKIP; | 
|  |  | 
|  | if (!(dentry->d_flags & DCACHE_GENOCIDE)) { | 
|  | dentry->d_flags |= DCACHE_GENOCIDE; | 
|  | dentry->d_lockref.count--; | 
|  | } | 
|  | } | 
|  | return D_WALK_CONTINUE; | 
|  | } | 
|  |  | 
|  | void d_genocide(struct dentry *parent) | 
|  | { | 
|  | d_walk(parent, parent, d_genocide_kill); | 
|  | } | 
|  |  | 
|  | void d_mark_tmpfile(struct file *file, struct inode *inode) | 
|  | { | 
|  | struct dentry *dentry = file->f_path.dentry; | 
|  |  | 
|  | BUG_ON(dname_external(dentry) || | 
|  | !hlist_unhashed(&dentry->d_u.d_alias) || | 
|  | !d_unlinked(dentry)); | 
|  | spin_lock(&dentry->d_parent->d_lock); | 
|  | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | dentry->__d_name.len = sprintf(dentry->d_shortname.string, "#%llu", | 
|  | (unsigned long long)inode->i_ino); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dentry->d_parent->d_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(d_mark_tmpfile); | 
|  |  | 
|  | void d_tmpfile(struct file *file, struct inode *inode) | 
|  | { | 
|  | struct dentry *dentry = file->f_path.dentry; | 
|  |  | 
|  | inode_dec_link_count(inode); | 
|  | d_mark_tmpfile(file, inode); | 
|  | d_instantiate(dentry, inode); | 
|  | } | 
|  | EXPORT_SYMBOL(d_tmpfile); | 
|  |  | 
|  | /* | 
|  | * Obtain inode number of the parent dentry. | 
|  | */ | 
|  | ino_t d_parent_ino(struct dentry *dentry) | 
|  | { | 
|  | struct dentry *parent; | 
|  | struct inode *iparent; | 
|  | unsigned seq; | 
|  | ino_t ret; | 
|  |  | 
|  | scoped_guard(rcu) { | 
|  | seq = raw_seqcount_begin(&dentry->d_seq); | 
|  | parent = READ_ONCE(dentry->d_parent); | 
|  | iparent = d_inode_rcu(parent); | 
|  | if (likely(iparent)) { | 
|  | ret = iparent->i_ino; | 
|  | if (!read_seqcount_retry(&dentry->d_seq, seq)) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&dentry->d_lock); | 
|  | ret = dentry->d_parent->d_inode->i_ino; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(d_parent_ino); | 
|  |  | 
|  | static __initdata unsigned long dhash_entries; | 
|  | static int __init set_dhash_entries(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | dhash_entries = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("dhash_entries=", set_dhash_entries); | 
|  |  | 
|  | static void __init dcache_init_early(void) | 
|  | { | 
|  | /* If hashes are distributed across NUMA nodes, defer | 
|  | * hash allocation until vmalloc space is available. | 
|  | */ | 
|  | if (hashdist) | 
|  | return; | 
|  |  | 
|  | dentry_hashtable = | 
|  | alloc_large_system_hash("Dentry cache", | 
|  | sizeof(struct hlist_bl_head), | 
|  | dhash_entries, | 
|  | 13, | 
|  | HASH_EARLY | HASH_ZERO, | 
|  | &d_hash_shift, | 
|  | NULL, | 
|  | 0, | 
|  | 0); | 
|  | d_hash_shift = 32 - d_hash_shift; | 
|  |  | 
|  | runtime_const_init(shift, d_hash_shift); | 
|  | runtime_const_init(ptr, dentry_hashtable); | 
|  | } | 
|  |  | 
|  | static void __init dcache_init(void) | 
|  | { | 
|  | /* | 
|  | * A constructor could be added for stable state like the lists, | 
|  | * but it is probably not worth it because of the cache nature | 
|  | * of the dcache. | 
|  | */ | 
|  | dentry_cache = KMEM_CACHE_USERCOPY(dentry, | 
|  | SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT, | 
|  | d_shortname.string); | 
|  |  | 
|  | /* Hash may have been set up in dcache_init_early */ | 
|  | if (!hashdist) | 
|  | return; | 
|  |  | 
|  | dentry_hashtable = | 
|  | alloc_large_system_hash("Dentry cache", | 
|  | sizeof(struct hlist_bl_head), | 
|  | dhash_entries, | 
|  | 13, | 
|  | HASH_ZERO, | 
|  | &d_hash_shift, | 
|  | NULL, | 
|  | 0, | 
|  | 0); | 
|  | d_hash_shift = 32 - d_hash_shift; | 
|  |  | 
|  | runtime_const_init(shift, d_hash_shift); | 
|  | runtime_const_init(ptr, dentry_hashtable); | 
|  | } | 
|  |  | 
|  | /* SLAB cache for __getname() consumers */ | 
|  | struct kmem_cache *names_cachep __ro_after_init; | 
|  | EXPORT_SYMBOL(names_cachep); | 
|  |  | 
|  | void __init vfs_caches_init_early(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) | 
|  | INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); | 
|  |  | 
|  | dcache_init_early(); | 
|  | inode_init_early(); | 
|  | } | 
|  |  | 
|  | void __init vfs_caches_init(void) | 
|  | { | 
|  | names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); | 
|  |  | 
|  | dcache_init(); | 
|  | inode_init(); | 
|  | files_init(); | 
|  | files_maxfiles_init(); | 
|  | mnt_init(); | 
|  | bdev_cache_init(); | 
|  | chrdev_init(); | 
|  | } |