| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * This file is part of UBIFS. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Nokia Corporation. | 
 |  * | 
 |  * Authors: Artem Bityutskiy (Битюцкий Артём) | 
 |  *          Adrian Hunter | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file implements UBIFS superblock. The superblock is stored at the first | 
 |  * LEB of the volume and is never changed by UBIFS. Only user-space tools may | 
 |  * change it. The superblock node mostly contains geometry information. | 
 |  */ | 
 |  | 
 | #include "ubifs.h" | 
 | #include <linux/slab.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/uuid.h> | 
 |  | 
 | /* | 
 |  * Default journal size in logical eraseblocks as a percent of total | 
 |  * flash size. | 
 |  */ | 
 | #define DEFAULT_JNL_PERCENT 5 | 
 |  | 
 | /* Default maximum journal size in bytes */ | 
 | #define DEFAULT_MAX_JNL (32*1024*1024) | 
 |  | 
 | /* Default indexing tree fanout */ | 
 | #define DEFAULT_FANOUT 8 | 
 |  | 
 | /* Default number of data journal heads */ | 
 | #define DEFAULT_JHEADS_CNT 1 | 
 |  | 
 | /* Default positions of different LEBs in the main area */ | 
 | #define DEFAULT_IDX_LEB  0 | 
 | #define DEFAULT_DATA_LEB 1 | 
 | #define DEFAULT_GC_LEB   2 | 
 |  | 
 | /* Default number of LEB numbers in LPT's save table */ | 
 | #define DEFAULT_LSAVE_CNT 256 | 
 |  | 
 | /* Default reserved pool size as a percent of maximum free space */ | 
 | #define DEFAULT_RP_PERCENT 5 | 
 |  | 
 | /* The default maximum size of reserved pool in bytes */ | 
 | #define DEFAULT_MAX_RP_SIZE (5*1024*1024) | 
 |  | 
 | /* Default time granularity in nanoseconds */ | 
 | #define DEFAULT_TIME_GRAN 1000000000 | 
 |  | 
 | static int get_default_compressor(struct ubifs_info *c) | 
 | { | 
 | 	if (ubifs_compr_present(c, UBIFS_COMPR_ZSTD)) | 
 | 		return UBIFS_COMPR_ZSTD; | 
 |  | 
 | 	if (ubifs_compr_present(c, UBIFS_COMPR_LZO)) | 
 | 		return UBIFS_COMPR_LZO; | 
 |  | 
 | 	if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB)) | 
 | 		return UBIFS_COMPR_ZLIB; | 
 |  | 
 | 	return UBIFS_COMPR_NONE; | 
 | } | 
 |  | 
 | /** | 
 |  * create_default_filesystem - format empty UBI volume. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function creates default empty file-system. Returns zero in case of | 
 |  * success and a negative error code in case of failure. | 
 |  */ | 
 | static int create_default_filesystem(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_sb_node *sup; | 
 | 	struct ubifs_mst_node *mst; | 
 | 	struct ubifs_idx_node *idx; | 
 | 	struct ubifs_branch *br; | 
 | 	struct ubifs_ino_node *ino; | 
 | 	struct ubifs_cs_node *cs; | 
 | 	union ubifs_key key; | 
 | 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first; | 
 | 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0; | 
 | 	int min_leb_cnt = UBIFS_MIN_LEB_CNT; | 
 | 	int idx_node_size; | 
 | 	long long tmp64, main_bytes; | 
 | 	__le64 tmp_le64; | 
 | 	struct timespec64 ts; | 
 | 	u8 hash[UBIFS_HASH_ARR_SZ]; | 
 | 	u8 hash_lpt[UBIFS_HASH_ARR_SZ]; | 
 |  | 
 | 	/* Some functions called from here depend on the @c->key_len filed */ | 
 | 	c->key_len = UBIFS_SK_LEN; | 
 |  | 
 | 	/* | 
 | 	 * First of all, we have to calculate default file-system geometry - | 
 | 	 * log size, journal size, etc. | 
 | 	 */ | 
 | 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT) | 
 | 		/* We can first multiply then divide and have no overflow */ | 
 | 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100; | 
 | 	else | 
 | 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT; | 
 |  | 
 | 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS) | 
 | 		jnl_lebs = UBIFS_MIN_JNL_LEBS; | 
 | 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL) | 
 | 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size; | 
 |  | 
 | 	/* | 
 | 	 * The log should be large enough to fit reference nodes for all bud | 
 | 	 * LEBs. Because buds do not have to start from the beginning of LEBs | 
 | 	 * (half of the LEB may contain committed data), the log should | 
 | 	 * generally be larger, make it twice as large. | 
 | 	 */ | 
 | 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1; | 
 | 	log_lebs = tmp / c->leb_size; | 
 | 	/* Plus one LEB reserved for commit */ | 
 | 	log_lebs += 1; | 
 | 	if (c->leb_cnt - min_leb_cnt > 8) { | 
 | 		/* And some extra space to allow writes while committing */ | 
 | 		log_lebs += 1; | 
 | 		min_leb_cnt += 1; | 
 | 	} | 
 |  | 
 | 	max_buds = jnl_lebs - log_lebs; | 
 | 	if (max_buds < UBIFS_MIN_BUD_LEBS) | 
 | 		max_buds = UBIFS_MIN_BUD_LEBS; | 
 |  | 
 | 	/* | 
 | 	 * Orphan nodes are stored in a separate area. One node can store a lot | 
 | 	 * of orphan inode numbers, but when new orphan comes we just add a new | 
 | 	 * orphan node. At some point the nodes are consolidated into one | 
 | 	 * orphan node. | 
 | 	 */ | 
 | 	orph_lebs = UBIFS_MIN_ORPH_LEBS; | 
 | 	if (c->leb_cnt - min_leb_cnt > 1) | 
 | 		/* | 
 | 		 * For debugging purposes it is better to have at least 2 | 
 | 		 * orphan LEBs, because the orphan subsystem would need to do | 
 | 		 * consolidations and would be stressed more. | 
 | 		 */ | 
 | 		orph_lebs += 1; | 
 |  | 
 | 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs; | 
 | 	main_lebs -= orph_lebs; | 
 |  | 
 | 	lpt_first = UBIFS_LOG_LNUM + log_lebs; | 
 | 	c->lsave_cnt = DEFAULT_LSAVE_CNT; | 
 | 	c->max_leb_cnt = c->leb_cnt; | 
 | 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs, | 
 | 				    &big_lpt, hash_lpt); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first, | 
 | 		lpt_first + lpt_lebs - 1); | 
 |  | 
 | 	main_first = c->leb_cnt - main_lebs; | 
 |  | 
 | 	sup = kzalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_KERNEL); | 
 | 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL); | 
 | 	idx_node_size = ubifs_idx_node_sz(c, 1); | 
 | 	idx = kzalloc(ALIGN(idx_node_size, c->min_io_size), GFP_KERNEL); | 
 | 	ino = kzalloc(ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size), GFP_KERNEL); | 
 | 	cs = kzalloc(ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size), GFP_KERNEL); | 
 |  | 
 | 	if (!sup || !mst || !idx || !ino || !cs) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Create default superblock */ | 
 |  | 
 | 	tmp64 = (long long)max_buds * c->leb_size; | 
 | 	if (big_lpt) | 
 | 		sup_flags |= UBIFS_FLG_BIGLPT; | 
 | 	if (ubifs_default_version > 4) | 
 | 		sup_flags |= UBIFS_FLG_DOUBLE_HASH; | 
 |  | 
 | 	if (ubifs_authenticated(c)) { | 
 | 		sup_flags |= UBIFS_FLG_AUTHENTICATION; | 
 | 		sup->hash_algo = cpu_to_le16(c->auth_hash_algo); | 
 | 		err = ubifs_hmac_wkm(c, sup->hmac_wkm); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} else { | 
 | 		sup->hash_algo = cpu_to_le16(0xffff); | 
 | 	} | 
 |  | 
 | 	sup->ch.node_type  = UBIFS_SB_NODE; | 
 | 	sup->key_hash      = UBIFS_KEY_HASH_R5; | 
 | 	sup->flags         = cpu_to_le32(sup_flags); | 
 | 	sup->min_io_size   = cpu_to_le32(c->min_io_size); | 
 | 	sup->leb_size      = cpu_to_le32(c->leb_size); | 
 | 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt); | 
 | 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt); | 
 | 	sup->max_bud_bytes = cpu_to_le64(tmp64); | 
 | 	sup->log_lebs      = cpu_to_le32(log_lebs); | 
 | 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs); | 
 | 	sup->orph_lebs     = cpu_to_le32(orph_lebs); | 
 | 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT); | 
 | 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT); | 
 | 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt); | 
 | 	sup->fmt_version   = cpu_to_le32(ubifs_default_version); | 
 | 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN); | 
 | 	if (c->mount_opts.override_compr) | 
 | 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type); | 
 | 	else | 
 | 		sup->default_compr = cpu_to_le16(get_default_compressor(c)); | 
 |  | 
 | 	generate_random_uuid(sup->uuid); | 
 |  | 
 | 	main_bytes = (long long)main_lebs * c->leb_size; | 
 | 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100); | 
 | 	if (tmp64 > DEFAULT_MAX_RP_SIZE) | 
 | 		tmp64 = DEFAULT_MAX_RP_SIZE; | 
 | 	sup->rp_size = cpu_to_le64(tmp64); | 
 | 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION); | 
 |  | 
 | 	dbg_gen("default superblock created at LEB 0:0"); | 
 |  | 
 | 	/* Create default master node */ | 
 |  | 
 | 	mst->ch.node_type = UBIFS_MST_NODE; | 
 | 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM); | 
 | 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO); | 
 | 	mst->cmt_no       = 0; | 
 | 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB); | 
 | 	mst->root_offs    = 0; | 
 | 	tmp = ubifs_idx_node_sz(c, 1); | 
 | 	mst->root_len     = cpu_to_le32(tmp); | 
 | 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB); | 
 | 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB); | 
 | 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size)); | 
 | 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8)); | 
 | 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum); | 
 | 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs); | 
 | 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum); | 
 | 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs); | 
 | 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum); | 
 | 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs); | 
 | 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum); | 
 | 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs); | 
 | 	mst->lscan_lnum   = cpu_to_le32(main_first); | 
 | 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2); | 
 | 	mst->idx_lebs     = cpu_to_le32(1); | 
 | 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt); | 
 | 	ubifs_copy_hash(c, hash_lpt, mst->hash_lpt); | 
 |  | 
 | 	/* Calculate lprops statistics */ | 
 | 	tmp64 = main_bytes; | 
 | 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); | 
 | 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); | 
 | 	mst->total_free = cpu_to_le64(tmp64); | 
 |  | 
 | 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); | 
 | 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) - | 
 | 			  UBIFS_INO_NODE_SZ; | 
 | 	tmp64 += ino_waste; | 
 | 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8); | 
 | 	mst->total_dirty = cpu_to_le64(tmp64); | 
 |  | 
 | 	/*  The indexing LEB does not contribute to dark space */ | 
 | 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm); | 
 | 	mst->total_dark = cpu_to_le64(tmp64); | 
 |  | 
 | 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ); | 
 |  | 
 | 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM); | 
 |  | 
 | 	/* Create the root indexing node */ | 
 |  | 
 | 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT; | 
 | 	c->key_hash = key_r5_hash; | 
 |  | 
 | 	idx->ch.node_type = UBIFS_IDX_NODE; | 
 | 	idx->child_cnt = cpu_to_le16(1); | 
 | 	ino_key_init(c, &key, UBIFS_ROOT_INO); | 
 | 	br = ubifs_idx_branch(c, idx, 0); | 
 | 	key_write_idx(c, &key, &br->key); | 
 | 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB); | 
 | 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ); | 
 |  | 
 | 	dbg_gen("default root indexing node created LEB %d:0", | 
 | 		main_first + DEFAULT_IDX_LEB); | 
 |  | 
 | 	/* Create default root inode */ | 
 |  | 
 | 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO); | 
 | 	ino->ch.node_type = UBIFS_INO_NODE; | 
 | 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum); | 
 | 	ino->nlink = cpu_to_le32(2); | 
 |  | 
 | 	ktime_get_coarse_real_ts64(&ts); | 
 | 	tmp_le64 = cpu_to_le64(ts.tv_sec); | 
 | 	ino->atime_sec   = tmp_le64; | 
 | 	ino->ctime_sec   = tmp_le64; | 
 | 	ino->mtime_sec   = tmp_le64; | 
 | 	ino->atime_nsec  = 0; | 
 | 	ino->ctime_nsec  = 0; | 
 | 	ino->mtime_nsec  = 0; | 
 | 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO); | 
 | 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ); | 
 |  | 
 | 	/* Set compression enabled by default */ | 
 | 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL); | 
 |  | 
 | 	dbg_gen("root inode created at LEB %d:0", | 
 | 		main_first + DEFAULT_DATA_LEB); | 
 |  | 
 | 	/* | 
 | 	 * The first node in the log has to be the commit start node. This is | 
 | 	 * always the case during normal file-system operation. Write a fake | 
 | 	 * commit start node to the log. | 
 | 	 */ | 
 |  | 
 | 	cs->ch.node_type = UBIFS_CS_NODE; | 
 |  | 
 | 	err = ubifs_write_node_hmac(c, sup, UBIFS_SB_NODE_SZ, 0, 0, | 
 | 				    offsetof(struct ubifs_sb_node, hmac)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ, | 
 | 			       main_first + DEFAULT_DATA_LEB, 0); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	ubifs_node_calc_hash(c, ino, hash); | 
 | 	ubifs_copy_hash(c, hash, ubifs_branch_hash(c, br)); | 
 |  | 
 | 	err = ubifs_write_node(c, idx, idx_node_size, main_first + DEFAULT_IDX_LEB, 0); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	ubifs_node_calc_hash(c, idx, hash); | 
 | 	ubifs_copy_hash(c, hash, mst->hash_root_idx); | 
 |  | 
 | 	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0, | 
 | 		offsetof(struct ubifs_mst_node, hmac)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, | 
 | 			       0, offsetof(struct ubifs_mst_node, hmac)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	ubifs_msg(c, "default file-system created"); | 
 |  | 
 | 	err = 0; | 
 | out: | 
 | 	kfree(sup); | 
 | 	kfree(mst); | 
 | 	kfree(idx); | 
 | 	kfree(ino); | 
 | 	kfree(cs); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * validate_sb - validate superblock node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @sup: superblock node | 
 |  * | 
 |  * This function validates superblock node @sup. Since most of data was read | 
 |  * from the superblock and stored in @c, the function validates fields in @c | 
 |  * instead. Returns zero in case of success and %-EINVAL in case of validation | 
 |  * failure. | 
 |  */ | 
 | static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) | 
 | { | 
 | 	long long max_bytes; | 
 | 	int err = 1, min_leb_cnt; | 
 |  | 
 | 	if (!c->key_hash) { | 
 | 		err = 2; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) { | 
 | 		err = 3; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) { | 
 | 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real", | 
 | 			  le32_to_cpu(sup->min_io_size), c->min_io_size); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (le32_to_cpu(sup->leb_size) != c->leb_size) { | 
 | 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real", | 
 | 			  le32_to_cpu(sup->leb_size), c->leb_size); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS || | 
 | 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS || | 
 | 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS || | 
 | 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) { | 
 | 		err = 4; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate minimum allowed amount of main area LEBs. This is very | 
 | 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we | 
 | 	 * have just read from the superblock. | 
 | 	 */ | 
 | 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs; | 
 | 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6; | 
 |  | 
 | 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) { | 
 | 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required", | 
 | 			  c->leb_cnt, c->vi.size, min_leb_cnt); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->max_leb_cnt < c->leb_cnt) { | 
 | 		ubifs_err(c, "max. LEB count %d less than LEB count %d", | 
 | 			  c->max_leb_cnt, c->leb_cnt); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) { | 
 | 		ubifs_err(c, "too few main LEBs count %d, must be at least %d", | 
 | 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS; | 
 | 	if (c->max_bud_bytes < max_bytes) { | 
 | 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes", | 
 | 			  c->max_bud_bytes, max_bytes); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	max_bytes = (long long)c->leb_size * c->main_lebs; | 
 | 	if (c->max_bud_bytes > max_bytes) { | 
 | 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area", | 
 | 			  c->max_bud_bytes, max_bytes); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 || | 
 | 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) { | 
 | 		err = 9; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->fanout < UBIFS_MIN_FANOUT || | 
 | 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) { | 
 | 		err = 10; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT && | 
 | 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - | 
 | 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) { | 
 | 		err = 11; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs + | 
 | 	    c->orph_lebs + c->main_lebs != c->leb_cnt) { | 
 | 		err = 12; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) { | 
 | 		err = 13; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->rp_size < 0 || max_bytes < c->rp_size) { | 
 | 		err = 14; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (le32_to_cpu(sup->time_gran) > 1000000000 || | 
 | 	    le32_to_cpu(sup->time_gran) < 1) { | 
 | 		err = 15; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (!c->double_hash && c->fmt_version >= 5) { | 
 | 		err = 16; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	if (c->encrypted && c->fmt_version < 5) { | 
 | 		err = 17; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | failed: | 
 | 	ubifs_err(c, "bad superblock, error %d", err); | 
 | 	ubifs_dump_node(c, sup, ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size)); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_read_sb_node - read superblock node. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function returns a pointer to the superblock node or a negative error | 
 |  * code. Note, the user of this function is responsible of kfree()'ing the | 
 |  * returned superblock buffer. | 
 |  */ | 
 | static struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_sb_node *sup; | 
 | 	int err; | 
 |  | 
 | 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS); | 
 | 	if (!sup) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ, | 
 | 			      UBIFS_SB_LNUM, 0); | 
 | 	if (err) { | 
 | 		kfree(sup); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	return sup; | 
 | } | 
 |  | 
 | static int authenticate_sb_node(struct ubifs_info *c, | 
 | 				const struct ubifs_sb_node *sup) | 
 | { | 
 | 	unsigned int sup_flags = le32_to_cpu(sup->flags); | 
 | 	u8 hmac_wkm[UBIFS_HMAC_ARR_SZ]; | 
 | 	int authenticated = !!(sup_flags & UBIFS_FLG_AUTHENTICATION); | 
 | 	int hash_algo; | 
 | 	int err; | 
 |  | 
 | 	if (c->authenticated && !authenticated) { | 
 | 		ubifs_err(c, "authenticated FS forced, but found FS without authentication"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!c->authenticated && authenticated) { | 
 | 		ubifs_err(c, "authenticated FS found, but no key given"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ubifs_msg(c, "Mounting in %sauthenticated mode", | 
 | 		  c->authenticated ? "" : "un"); | 
 |  | 
 | 	if (!c->authenticated) | 
 | 		return 0; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	hash_algo = le16_to_cpu(sup->hash_algo); | 
 | 	if (hash_algo >= HASH_ALGO__LAST) { | 
 | 		ubifs_err(c, "superblock uses unknown hash algo %d", | 
 | 			  hash_algo); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (strcmp(hash_algo_name[hash_algo], c->auth_hash_name)) { | 
 | 		ubifs_err(c, "This filesystem uses %s for hashing," | 
 | 			     " but %s is specified", hash_algo_name[hash_algo], | 
 | 			     c->auth_hash_name); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The super block node can either be authenticated by a HMAC or | 
 | 	 * by a signature in a ubifs_sig_node directly following the | 
 | 	 * super block node to support offline image creation. | 
 | 	 */ | 
 | 	if (ubifs_hmac_zero(c, sup->hmac)) { | 
 | 		err = ubifs_sb_verify_signature(c, sup); | 
 | 	} else { | 
 | 		err = ubifs_hmac_wkm(c, hmac_wkm); | 
 | 		if (err) | 
 | 			return err; | 
 | 		if (ubifs_check_hmac(c, hmac_wkm, sup->hmac_wkm)) { | 
 | 			ubifs_err(c, "provided key does not fit"); | 
 | 			return -ENOKEY; | 
 | 		} | 
 | 		err = ubifs_node_verify_hmac(c, sup, sizeof(*sup), | 
 | 					     offsetof(struct ubifs_sb_node, | 
 | 						      hmac)); | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		ubifs_err(c, "Failed to authenticate superblock: %d", err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_write_sb_node - write superblock node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @sup: superblock node read with 'ubifs_read_sb_node()' | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup) | 
 | { | 
 | 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); | 
 | 	int err; | 
 |  | 
 | 	err = ubifs_prepare_node_hmac(c, sup, UBIFS_SB_NODE_SZ, | 
 | 				      offsetof(struct ubifs_sb_node, hmac), 1); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_read_superblock - read superblock. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function finds, reads and checks the superblock. If an empty UBI volume | 
 |  * is being mounted, this function creates default superblock. Returns zero in | 
 |  * case of success, and a negative error code in case of failure. | 
 |  */ | 
 | int ubifs_read_superblock(struct ubifs_info *c) | 
 | { | 
 | 	int err, sup_flags; | 
 | 	struct ubifs_sb_node *sup; | 
 |  | 
 | 	if (c->empty) { | 
 | 		err = create_default_filesystem(c); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	sup = ubifs_read_sb_node(c); | 
 | 	if (IS_ERR(sup)) | 
 | 		return PTR_ERR(sup); | 
 |  | 
 | 	c->sup_node = sup; | 
 |  | 
 | 	c->fmt_version = le32_to_cpu(sup->fmt_version); | 
 | 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version); | 
 |  | 
 | 	/* | 
 | 	 * The software supports all previous versions but not future versions, | 
 | 	 * due to the unavailability of time-travelling equipment. | 
 | 	 */ | 
 | 	if (c->fmt_version > UBIFS_FORMAT_VERSION) { | 
 | 		ubifs_assert(c, !c->ro_media || c->ro_mount); | 
 | 		if (!c->ro_mount || | 
 | 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) { | 
 | 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", | 
 | 				  c->fmt_version, c->ro_compat_version, | 
 | 				  UBIFS_FORMAT_VERSION, | 
 | 				  UBIFS_RO_COMPAT_VERSION); | 
 | 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) { | 
 | 				ubifs_msg(c, "only R/O mounting is possible"); | 
 | 				err = -EROFS; | 
 | 			} else | 
 | 				err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The FS is mounted R/O, and the media format is | 
 | 		 * R/O-compatible with the UBIFS implementation, so we can | 
 | 		 * mount. | 
 | 		 */ | 
 | 		c->rw_incompat = 1; | 
 | 	} | 
 |  | 
 | 	if (c->fmt_version < 3) { | 
 | 		ubifs_err(c, "on-flash format version %d is not supported", | 
 | 			  c->fmt_version); | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	switch (sup->key_hash) { | 
 | 	case UBIFS_KEY_HASH_R5: | 
 | 		c->key_hash = key_r5_hash; | 
 | 		c->key_hash_type = UBIFS_KEY_HASH_R5; | 
 | 		break; | 
 |  | 
 | 	case UBIFS_KEY_HASH_TEST: | 
 | 		c->key_hash = key_test_hash; | 
 | 		c->key_hash_type = UBIFS_KEY_HASH_TEST; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	c->key_fmt = sup->key_fmt; | 
 |  | 
 | 	switch (c->key_fmt) { | 
 | 	case UBIFS_SIMPLE_KEY_FMT: | 
 | 		c->key_len = UBIFS_SK_LEN; | 
 | 		break; | 
 | 	default: | 
 | 		ubifs_err(c, "unsupported key format"); | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt); | 
 | 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt); | 
 | 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes); | 
 | 	c->log_lebs      = le32_to_cpu(sup->log_lebs); | 
 | 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs); | 
 | 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs); | 
 | 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT; | 
 | 	c->fanout        = le32_to_cpu(sup->fanout); | 
 | 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt); | 
 | 	c->rp_size       = le64_to_cpu(sup->rp_size); | 
 | 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid)); | 
 | 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid)); | 
 | 	sup_flags        = le32_to_cpu(sup->flags); | 
 | 	if (!c->mount_opts.override_compr) | 
 | 		c->default_compr = le16_to_cpu(sup->default_compr); | 
 |  | 
 | 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran); | 
 | 	memcpy(&c->uuid, &sup->uuid, 16); | 
 | 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT); | 
 | 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP); | 
 | 	c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH); | 
 | 	c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION); | 
 |  | 
 | 	err = authenticate_sb_node(c, sup); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if ((sup_flags & ~UBIFS_FLG_MASK) != 0) { | 
 | 		ubifs_err(c, "Unknown feature flags found: %#x", | 
 | 			  sup_flags & ~UBIFS_FLG_MASK); | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION) && c->encrypted) { | 
 | 		ubifs_err(c, "file system contains encrypted files but UBIFS" | 
 | 			     " was built without crypto support."); | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Automatically increase file system size to the maximum size */ | 
 | 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) { | 
 | 		int old_leb_cnt = c->leb_cnt; | 
 |  | 
 | 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size); | 
 | 		sup->leb_cnt = cpu_to_le32(c->leb_cnt); | 
 |  | 
 | 		c->superblock_need_write = 1; | 
 |  | 
 | 		dbg_mnt("Auto resizing from %d LEBs to %d LEBs", | 
 | 			old_leb_cnt, c->leb_cnt); | 
 | 	} | 
 |  | 
 | 	c->log_bytes = (long long)c->log_lebs * c->leb_size; | 
 | 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1; | 
 | 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs; | 
 | 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1; | 
 | 	c->orph_first = c->lpt_last + 1; | 
 | 	c->orph_last = c->orph_first + c->orph_lebs - 1; | 
 | 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS; | 
 | 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs; | 
 | 	c->main_first = c->leb_cnt - c->main_lebs; | 
 |  | 
 | 	err = validate_sb(c, sup); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * fixup_leb - fixup/unmap an LEB containing free space. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: the LEB number to fix up | 
 |  * @len: number of used bytes in LEB (starting at offset 0) | 
 |  * | 
 |  * This function reads the contents of the given LEB number @lnum, then fixes | 
 |  * it up, so that empty min. I/O units in the end of LEB are actually erased on | 
 |  * flash (rather than being just all-0xff real data). If the LEB is completely | 
 |  * empty, it is simply unmapped. | 
 |  */ | 
 | static int fixup_leb(struct ubifs_info *c, int lnum, int len) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(c, len >= 0); | 
 | 	ubifs_assert(c, len % c->min_io_size == 0); | 
 | 	ubifs_assert(c, len < c->leb_size); | 
 |  | 
 | 	if (len == 0) { | 
 | 		dbg_mnt("unmap empty LEB %d", lnum); | 
 | 		return ubifs_leb_unmap(c, lnum); | 
 | 	} | 
 |  | 
 | 	dbg_mnt("fixup LEB %d, data len %d", lnum, len); | 
 | 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return ubifs_leb_change(c, lnum, c->sbuf, len); | 
 | } | 
 |  | 
 | /** | 
 |  * fixup_free_space - find & remap all LEBs containing free space. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function walks through all LEBs in the filesystem and fiexes up those | 
 |  * containing free/empty space. | 
 |  */ | 
 | static int fixup_free_space(struct ubifs_info *c) | 
 | { | 
 | 	int lnum, err = 0; | 
 | 	struct ubifs_lprops *lprops; | 
 |  | 
 | 	ubifs_get_lprops(c); | 
 |  | 
 | 	/* Fixup LEBs in the master area */ | 
 | 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) { | 
 | 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* Unmap unused log LEBs */ | 
 | 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum); | 
 | 	while (lnum != c->ltail_lnum) { | 
 | 		err = fixup_leb(c, lnum, 0); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		lnum = ubifs_next_log_lnum(c, lnum); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Fixup the log head which contains the only a CS node at the | 
 | 	 * beginning. | 
 | 	 */ | 
 | 	err = fixup_leb(c, c->lhead_lnum, | 
 | 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Fixup LEBs in the LPT area */ | 
 | 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { | 
 | 		int free = c->ltab[lnum - c->lpt_first].free; | 
 |  | 
 | 		if (free > 0) { | 
 | 			err = fixup_leb(c, lnum, c->leb_size - free); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Unmap LEBs in the orphans area */ | 
 | 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { | 
 | 		err = fixup_leb(c, lnum, 0); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* Fixup LEBs in the main area */ | 
 | 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { | 
 | 		lprops = ubifs_lpt_lookup(c, lnum); | 
 | 		if (IS_ERR(lprops)) { | 
 | 			err = PTR_ERR(lprops); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (lprops->free > 0) { | 
 | 			err = fixup_leb(c, lnum, c->leb_size - lprops->free); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	ubifs_release_lprops(c); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_fixup_free_space - find & fix all LEBs with free space. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function fixes up LEBs containing free space on first mount, if the | 
 |  * appropriate flag was set when the FS was created. Each LEB with one or more | 
 |  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure | 
 |  * the free space is actually erased. E.g., this is necessary for some NAND | 
 |  * chips, since the free space may have been programmed like real "0xff" data | 
 |  * (generating a non-0xff ECC), causing future writes to the not-really-erased | 
 |  * NAND pages to behave badly. After the space is fixed up, the superblock flag | 
 |  * is cleared, so that this is skipped for all future mounts. | 
 |  */ | 
 | int ubifs_fixup_free_space(struct ubifs_info *c) | 
 | { | 
 | 	int err; | 
 | 	struct ubifs_sb_node *sup = c->sup_node; | 
 |  | 
 | 	ubifs_assert(c, c->space_fixup); | 
 | 	ubifs_assert(c, !c->ro_mount); | 
 |  | 
 | 	ubifs_msg(c, "start fixing up free space"); | 
 |  | 
 | 	err = fixup_free_space(c); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Free-space fixup is no longer required */ | 
 | 	c->space_fixup = 0; | 
 | 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP); | 
 |  | 
 | 	c->superblock_need_write = 1; | 
 |  | 
 | 	ubifs_msg(c, "free space fixup complete"); | 
 | 	return err; | 
 | } | 
 |  | 
 | int ubifs_enable_encryption(struct ubifs_info *c) | 
 | { | 
 | 	int err; | 
 | 	struct ubifs_sb_node *sup = c->sup_node; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (c->encrypted) | 
 | 		return 0; | 
 |  | 
 | 	if (c->ro_mount || c->ro_media) | 
 | 		return -EROFS; | 
 |  | 
 | 	if (c->fmt_version < 5) { | 
 | 		ubifs_err(c, "on-flash format version 5 is needed for encryption"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION); | 
 |  | 
 | 	err = ubifs_write_sb_node(c, sup); | 
 | 	if (!err) | 
 | 		c->encrypted = 1; | 
 |  | 
 | 	return err; | 
 | } |