|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | Red Black Trees | 
|  | (C) 1999  Andrea Arcangeli <andrea@suse.de> | 
|  | (C) 2002  David Woodhouse <dwmw2@infradead.org> | 
|  | (C) 2012  Michel Lespinasse <walken@google.com> | 
|  |  | 
|  |  | 
|  | linux/lib/rbtree.c | 
|  | */ | 
|  |  | 
|  | #include <linux/rbtree_augmented.h> | 
|  | #include <linux/export.h> | 
|  |  | 
|  | /* | 
|  | * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree | 
|  | * | 
|  | *  1) A node is either red or black | 
|  | *  2) The root is black | 
|  | *  3) All leaves (NULL) are black | 
|  | *  4) Both children of every red node are black | 
|  | *  5) Every simple path from root to leaves contains the same number | 
|  | *     of black nodes. | 
|  | * | 
|  | *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two | 
|  | *  consecutive red nodes in a path and every red node is therefore followed by | 
|  | *  a black. So if B is the number of black nodes on every simple path (as per | 
|  | *  5), then the longest possible path due to 4 is 2B. | 
|  | * | 
|  | *  We shall indicate color with case, where black nodes are uppercase and red | 
|  | *  nodes will be lowercase. Unknown color nodes shall be drawn as red within | 
|  | *  parentheses and have some accompanying text comment. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Notes on lockless lookups: | 
|  | * | 
|  | * All stores to the tree structure (rb_left and rb_right) must be done using | 
|  | * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the | 
|  | * tree structure as seen in program order. | 
|  | * | 
|  | * These two requirements will allow lockless iteration of the tree -- not | 
|  | * correct iteration mind you, tree rotations are not atomic so a lookup might | 
|  | * miss entire subtrees. | 
|  | * | 
|  | * But they do guarantee that any such traversal will only see valid elements | 
|  | * and that it will indeed complete -- does not get stuck in a loop. | 
|  | * | 
|  | * It also guarantees that if the lookup returns an element it is the 'correct' | 
|  | * one. But not returning an element does _NOT_ mean it's not present. | 
|  | * | 
|  | * NOTE: | 
|  | * | 
|  | * Stores to __rb_parent_color are not important for simple lookups so those | 
|  | * are left undone as of now. Nor did I check for loops involving parent | 
|  | * pointers. | 
|  | */ | 
|  |  | 
|  | static inline void rb_set_black(struct rb_node *rb) | 
|  | { | 
|  | rb->__rb_parent_color += RB_BLACK; | 
|  | } | 
|  |  | 
|  | static inline struct rb_node *rb_red_parent(struct rb_node *red) | 
|  | { | 
|  | return (struct rb_node *)red->__rb_parent_color; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for rotations: | 
|  | * - old's parent and color get assigned to new | 
|  | * - old gets assigned new as a parent and 'color' as a color. | 
|  | */ | 
|  | static inline void | 
|  | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, | 
|  | struct rb_root *root, int color) | 
|  | { | 
|  | struct rb_node *parent = rb_parent(old); | 
|  | new->__rb_parent_color = old->__rb_parent_color; | 
|  | rb_set_parent_color(old, new, color); | 
|  | __rb_change_child(old, new, parent, root); | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | __rb_insert(struct rb_node *node, struct rb_root *root, | 
|  | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | 
|  | { | 
|  | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; | 
|  |  | 
|  | while (true) { | 
|  | /* | 
|  | * Loop invariant: node is red. | 
|  | */ | 
|  | if (unlikely(!parent)) { | 
|  | /* | 
|  | * The inserted node is root. Either this is the | 
|  | * first node, or we recursed at Case 1 below and | 
|  | * are no longer violating 4). | 
|  | */ | 
|  | rb_set_parent_color(node, NULL, RB_BLACK); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is a black parent, we are done. | 
|  | * Otherwise, take some corrective action as, | 
|  | * per 4), we don't want a red root or two | 
|  | * consecutive red nodes. | 
|  | */ | 
|  | if(rb_is_black(parent)) | 
|  | break; | 
|  |  | 
|  | gparent = rb_red_parent(parent); | 
|  |  | 
|  | tmp = gparent->rb_right; | 
|  | if (parent != tmp) {	/* parent == gparent->rb_left */ | 
|  | if (tmp && rb_is_red(tmp)) { | 
|  | /* | 
|  | * Case 1 - node's uncle is red (color flips). | 
|  | * | 
|  | *       G            g | 
|  | *      / \          / \ | 
|  | *     p   u  -->   P   U | 
|  | *    /            / | 
|  | *   n            n | 
|  | * | 
|  | * However, since g's parent might be red, and | 
|  | * 4) does not allow this, we need to recurse | 
|  | * at g. | 
|  | */ | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | rb_set_parent_color(parent, gparent, RB_BLACK); | 
|  | node = gparent; | 
|  | parent = rb_parent(node); | 
|  | rb_set_parent_color(node, parent, RB_RED); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | tmp = parent->rb_right; | 
|  | if (node == tmp) { | 
|  | /* | 
|  | * Case 2 - node's uncle is black and node is | 
|  | * the parent's right child (left rotate at parent). | 
|  | * | 
|  | *      G             G | 
|  | *     / \           / \ | 
|  | *    p   U  -->    n   U | 
|  | *     \           / | 
|  | *      n         p | 
|  | * | 
|  | * This still leaves us in violation of 4), the | 
|  | * continuation into Case 3 will fix that. | 
|  | */ | 
|  | tmp = node->rb_left; | 
|  | WRITE_ONCE(parent->rb_right, tmp); | 
|  | WRITE_ONCE(node->rb_left, parent); | 
|  | if (tmp) | 
|  | rb_set_parent_color(tmp, parent, | 
|  | RB_BLACK); | 
|  | rb_set_parent_color(parent, node, RB_RED); | 
|  | augment_rotate(parent, node); | 
|  | parent = node; | 
|  | tmp = node->rb_right; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Case 3 - node's uncle is black and node is | 
|  | * the parent's left child (right rotate at gparent). | 
|  | * | 
|  | *        G           P | 
|  | *       / \         / \ | 
|  | *      p   U  -->  n   g | 
|  | *     /                 \ | 
|  | *    n                   U | 
|  | */ | 
|  | WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */ | 
|  | WRITE_ONCE(parent->rb_right, gparent); | 
|  | if (tmp) | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | 
|  | augment_rotate(gparent, parent); | 
|  | break; | 
|  | } else { | 
|  | tmp = gparent->rb_left; | 
|  | if (tmp && rb_is_red(tmp)) { | 
|  | /* Case 1 - color flips */ | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | rb_set_parent_color(parent, gparent, RB_BLACK); | 
|  | node = gparent; | 
|  | parent = rb_parent(node); | 
|  | rb_set_parent_color(node, parent, RB_RED); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | tmp = parent->rb_left; | 
|  | if (node == tmp) { | 
|  | /* Case 2 - right rotate at parent */ | 
|  | tmp = node->rb_right; | 
|  | WRITE_ONCE(parent->rb_left, tmp); | 
|  | WRITE_ONCE(node->rb_right, parent); | 
|  | if (tmp) | 
|  | rb_set_parent_color(tmp, parent, | 
|  | RB_BLACK); | 
|  | rb_set_parent_color(parent, node, RB_RED); | 
|  | augment_rotate(parent, node); | 
|  | parent = node; | 
|  | tmp = node->rb_left; | 
|  | } | 
|  |  | 
|  | /* Case 3 - left rotate at gparent */ | 
|  | WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */ | 
|  | WRITE_ONCE(parent->rb_left, gparent); | 
|  | if (tmp) | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | 
|  | augment_rotate(gparent, parent); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inline version for rb_erase() use - we want to be able to inline | 
|  | * and eliminate the dummy_rotate callback there | 
|  | */ | 
|  | static __always_inline void | 
|  | ____rb_erase_color(struct rb_node *parent, struct rb_root *root, | 
|  | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | 
|  | { | 
|  | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; | 
|  |  | 
|  | while (true) { | 
|  | /* | 
|  | * Loop invariants: | 
|  | * - node is black (or NULL on first iteration) | 
|  | * - node is not the root (parent is not NULL) | 
|  | * - All leaf paths going through parent and node have a | 
|  | *   black node count that is 1 lower than other leaf paths. | 
|  | */ | 
|  | sibling = parent->rb_right; | 
|  | if (node != sibling) {	/* node == parent->rb_left */ | 
|  | if (rb_is_red(sibling)) { | 
|  | /* | 
|  | * Case 1 - left rotate at parent | 
|  | * | 
|  | *     P               S | 
|  | *    / \             / \ | 
|  | *   N   s    -->    p   Sr | 
|  | *      / \         / \ | 
|  | *     Sl  Sr      N   Sl | 
|  | */ | 
|  | tmp1 = sibling->rb_left; | 
|  | WRITE_ONCE(parent->rb_right, tmp1); | 
|  | WRITE_ONCE(sibling->rb_left, parent); | 
|  | rb_set_parent_color(tmp1, parent, RB_BLACK); | 
|  | __rb_rotate_set_parents(parent, sibling, root, | 
|  | RB_RED); | 
|  | augment_rotate(parent, sibling); | 
|  | sibling = tmp1; | 
|  | } | 
|  | tmp1 = sibling->rb_right; | 
|  | if (!tmp1 || rb_is_black(tmp1)) { | 
|  | tmp2 = sibling->rb_left; | 
|  | if (!tmp2 || rb_is_black(tmp2)) { | 
|  | /* | 
|  | * Case 2 - sibling color flip | 
|  | * (p could be either color here) | 
|  | * | 
|  | *    (p)           (p) | 
|  | *    / \           / \ | 
|  | *   N   S    -->  N   s | 
|  | *      / \           / \ | 
|  | *     Sl  Sr        Sl  Sr | 
|  | * | 
|  | * This leaves us violating 5) which | 
|  | * can be fixed by flipping p to black | 
|  | * if it was red, or by recursing at p. | 
|  | * p is red when coming from Case 1. | 
|  | */ | 
|  | rb_set_parent_color(sibling, parent, | 
|  | RB_RED); | 
|  | if (rb_is_red(parent)) | 
|  | rb_set_black(parent); | 
|  | else { | 
|  | node = parent; | 
|  | parent = rb_parent(node); | 
|  | if (parent) | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Case 3 - right rotate at sibling | 
|  | * (p could be either color here) | 
|  | * | 
|  | *   (p)           (p) | 
|  | *   / \           / \ | 
|  | *  N   S    -->  N   sl | 
|  | *     / \             \ | 
|  | *    sl  Sr            S | 
|  | *                       \ | 
|  | *                        Sr | 
|  | * | 
|  | * Note: p might be red, and then both | 
|  | * p and sl are red after rotation(which | 
|  | * breaks property 4). This is fixed in | 
|  | * Case 4 (in __rb_rotate_set_parents() | 
|  | *         which set sl the color of p | 
|  | *         and set p RB_BLACK) | 
|  | * | 
|  | *   (p)            (sl) | 
|  | *   / \            /  \ | 
|  | *  N   sl   -->   P    S | 
|  | *       \        /      \ | 
|  | *        S      N        Sr | 
|  | *         \ | 
|  | *          Sr | 
|  | */ | 
|  | tmp1 = tmp2->rb_right; | 
|  | WRITE_ONCE(sibling->rb_left, tmp1); | 
|  | WRITE_ONCE(tmp2->rb_right, sibling); | 
|  | WRITE_ONCE(parent->rb_right, tmp2); | 
|  | if (tmp1) | 
|  | rb_set_parent_color(tmp1, sibling, | 
|  | RB_BLACK); | 
|  | augment_rotate(sibling, tmp2); | 
|  | tmp1 = sibling; | 
|  | sibling = tmp2; | 
|  | } | 
|  | /* | 
|  | * Case 4 - left rotate at parent + color flips | 
|  | * (p and sl could be either color here. | 
|  | *  After rotation, p becomes black, s acquires | 
|  | *  p's color, and sl keeps its color) | 
|  | * | 
|  | *      (p)             (s) | 
|  | *      / \             / \ | 
|  | *     N   S     -->   P   Sr | 
|  | *        / \         / \ | 
|  | *      (sl) sr      N  (sl) | 
|  | */ | 
|  | tmp2 = sibling->rb_left; | 
|  | WRITE_ONCE(parent->rb_right, tmp2); | 
|  | WRITE_ONCE(sibling->rb_left, parent); | 
|  | rb_set_parent_color(tmp1, sibling, RB_BLACK); | 
|  | if (tmp2) | 
|  | rb_set_parent(tmp2, parent); | 
|  | __rb_rotate_set_parents(parent, sibling, root, | 
|  | RB_BLACK); | 
|  | augment_rotate(parent, sibling); | 
|  | break; | 
|  | } else { | 
|  | sibling = parent->rb_left; | 
|  | if (rb_is_red(sibling)) { | 
|  | /* Case 1 - right rotate at parent */ | 
|  | tmp1 = sibling->rb_right; | 
|  | WRITE_ONCE(parent->rb_left, tmp1); | 
|  | WRITE_ONCE(sibling->rb_right, parent); | 
|  | rb_set_parent_color(tmp1, parent, RB_BLACK); | 
|  | __rb_rotate_set_parents(parent, sibling, root, | 
|  | RB_RED); | 
|  | augment_rotate(parent, sibling); | 
|  | sibling = tmp1; | 
|  | } | 
|  | tmp1 = sibling->rb_left; | 
|  | if (!tmp1 || rb_is_black(tmp1)) { | 
|  | tmp2 = sibling->rb_right; | 
|  | if (!tmp2 || rb_is_black(tmp2)) { | 
|  | /* Case 2 - sibling color flip */ | 
|  | rb_set_parent_color(sibling, parent, | 
|  | RB_RED); | 
|  | if (rb_is_red(parent)) | 
|  | rb_set_black(parent); | 
|  | else { | 
|  | node = parent; | 
|  | parent = rb_parent(node); | 
|  | if (parent) | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* Case 3 - left rotate at sibling */ | 
|  | tmp1 = tmp2->rb_left; | 
|  | WRITE_ONCE(sibling->rb_right, tmp1); | 
|  | WRITE_ONCE(tmp2->rb_left, sibling); | 
|  | WRITE_ONCE(parent->rb_left, tmp2); | 
|  | if (tmp1) | 
|  | rb_set_parent_color(tmp1, sibling, | 
|  | RB_BLACK); | 
|  | augment_rotate(sibling, tmp2); | 
|  | tmp1 = sibling; | 
|  | sibling = tmp2; | 
|  | } | 
|  | /* Case 4 - right rotate at parent + color flips */ | 
|  | tmp2 = sibling->rb_right; | 
|  | WRITE_ONCE(parent->rb_left, tmp2); | 
|  | WRITE_ONCE(sibling->rb_right, parent); | 
|  | rb_set_parent_color(tmp1, sibling, RB_BLACK); | 
|  | if (tmp2) | 
|  | rb_set_parent(tmp2, parent); | 
|  | __rb_rotate_set_parents(parent, sibling, root, | 
|  | RB_BLACK); | 
|  | augment_rotate(parent, sibling); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Non-inline version for rb_erase_augmented() use */ | 
|  | void __rb_erase_color(struct rb_node *parent, struct rb_root *root, | 
|  | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | 
|  | { | 
|  | ____rb_erase_color(parent, root, augment_rotate); | 
|  | } | 
|  | EXPORT_SYMBOL(__rb_erase_color); | 
|  |  | 
|  | /* | 
|  | * Non-augmented rbtree manipulation functions. | 
|  | * | 
|  | * We use dummy augmented callbacks here, and have the compiler optimize them | 
|  | * out of the rb_insert_color() and rb_erase() function definitions. | 
|  | */ | 
|  |  | 
|  | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} | 
|  | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} | 
|  | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} | 
|  |  | 
|  | static const struct rb_augment_callbacks dummy_callbacks = { | 
|  | .propagate = dummy_propagate, | 
|  | .copy = dummy_copy, | 
|  | .rotate = dummy_rotate | 
|  | }; | 
|  |  | 
|  | void rb_insert_color(struct rb_node *node, struct rb_root *root) | 
|  | { | 
|  | __rb_insert(node, root, dummy_rotate); | 
|  | } | 
|  | EXPORT_SYMBOL(rb_insert_color); | 
|  |  | 
|  | void rb_erase(struct rb_node *node, struct rb_root *root) | 
|  | { | 
|  | struct rb_node *rebalance; | 
|  | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); | 
|  | if (rebalance) | 
|  | ____rb_erase_color(rebalance, root, dummy_rotate); | 
|  | } | 
|  | EXPORT_SYMBOL(rb_erase); | 
|  |  | 
|  | /* | 
|  | * Augmented rbtree manipulation functions. | 
|  | * | 
|  | * This instantiates the same __always_inline functions as in the non-augmented | 
|  | * case, but this time with user-defined callbacks. | 
|  | */ | 
|  |  | 
|  | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, | 
|  | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | 
|  | { | 
|  | __rb_insert(node, root, augment_rotate); | 
|  | } | 
|  | EXPORT_SYMBOL(__rb_insert_augmented); | 
|  |  | 
|  | /* | 
|  | * This function returns the first node (in sort order) of the tree. | 
|  | */ | 
|  | struct rb_node *rb_first(const struct rb_root *root) | 
|  | { | 
|  | struct rb_node	*n; | 
|  |  | 
|  | n = root->rb_node; | 
|  | if (!n) | 
|  | return NULL; | 
|  | while (n->rb_left) | 
|  | n = n->rb_left; | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(rb_first); | 
|  |  | 
|  | struct rb_node *rb_last(const struct rb_root *root) | 
|  | { | 
|  | struct rb_node	*n; | 
|  |  | 
|  | n = root->rb_node; | 
|  | if (!n) | 
|  | return NULL; | 
|  | while (n->rb_right) | 
|  | n = n->rb_right; | 
|  | return n; | 
|  | } | 
|  | EXPORT_SYMBOL(rb_last); | 
|  |  | 
|  | struct rb_node *rb_next(const struct rb_node *node) | 
|  | { | 
|  | struct rb_node *parent; | 
|  |  | 
|  | if (RB_EMPTY_NODE(node)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * If we have a right-hand child, go down and then left as far | 
|  | * as we can. | 
|  | */ | 
|  | if (node->rb_right) { | 
|  | node = node->rb_right; | 
|  | while (node->rb_left) | 
|  | node = node->rb_left; | 
|  | return (struct rb_node *)node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No right-hand children. Everything down and left is smaller than us, | 
|  | * so any 'next' node must be in the general direction of our parent. | 
|  | * Go up the tree; any time the ancestor is a right-hand child of its | 
|  | * parent, keep going up. First time it's a left-hand child of its | 
|  | * parent, said parent is our 'next' node. | 
|  | */ | 
|  | while ((parent = rb_parent(node)) && node == parent->rb_right) | 
|  | node = parent; | 
|  |  | 
|  | return parent; | 
|  | } | 
|  | EXPORT_SYMBOL(rb_next); | 
|  |  | 
|  | struct rb_node *rb_prev(const struct rb_node *node) | 
|  | { | 
|  | struct rb_node *parent; | 
|  |  | 
|  | if (RB_EMPTY_NODE(node)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * If we have a left-hand child, go down and then right as far | 
|  | * as we can. | 
|  | */ | 
|  | if (node->rb_left) { | 
|  | node = node->rb_left; | 
|  | while (node->rb_right) | 
|  | node = node->rb_right; | 
|  | return (struct rb_node *)node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No left-hand children. Go up till we find an ancestor which | 
|  | * is a right-hand child of its parent. | 
|  | */ | 
|  | while ((parent = rb_parent(node)) && node == parent->rb_left) | 
|  | node = parent; | 
|  |  | 
|  | return parent; | 
|  | } | 
|  | EXPORT_SYMBOL(rb_prev); | 
|  |  | 
|  | void rb_replace_node(struct rb_node *victim, struct rb_node *new, | 
|  | struct rb_root *root) | 
|  | { | 
|  | struct rb_node *parent = rb_parent(victim); | 
|  |  | 
|  | /* Copy the pointers/colour from the victim to the replacement */ | 
|  | *new = *victim; | 
|  |  | 
|  | /* Set the surrounding nodes to point to the replacement */ | 
|  | if (victim->rb_left) | 
|  | rb_set_parent(victim->rb_left, new); | 
|  | if (victim->rb_right) | 
|  | rb_set_parent(victim->rb_right, new); | 
|  | __rb_change_child(victim, new, parent, root); | 
|  | } | 
|  | EXPORT_SYMBOL(rb_replace_node); | 
|  |  | 
|  | void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, | 
|  | struct rb_root *root) | 
|  | { | 
|  | struct rb_node *parent = rb_parent(victim); | 
|  |  | 
|  | /* Copy the pointers/colour from the victim to the replacement */ | 
|  | *new = *victim; | 
|  |  | 
|  | /* Set the surrounding nodes to point to the replacement */ | 
|  | if (victim->rb_left) | 
|  | rb_set_parent(victim->rb_left, new); | 
|  | if (victim->rb_right) | 
|  | rb_set_parent(victim->rb_right, new); | 
|  |  | 
|  | /* Set the parent's pointer to the new node last after an RCU barrier | 
|  | * so that the pointers onwards are seen to be set correctly when doing | 
|  | * an RCU walk over the tree. | 
|  | */ | 
|  | __rb_change_child_rcu(victim, new, parent, root); | 
|  | } | 
|  | EXPORT_SYMBOL(rb_replace_node_rcu); | 
|  |  | 
|  | static struct rb_node *rb_left_deepest_node(const struct rb_node *node) | 
|  | { | 
|  | for (;;) { | 
|  | if (node->rb_left) | 
|  | node = node->rb_left; | 
|  | else if (node->rb_right) | 
|  | node = node->rb_right; | 
|  | else | 
|  | return (struct rb_node *)node; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct rb_node *rb_next_postorder(const struct rb_node *node) | 
|  | { | 
|  | const struct rb_node *parent; | 
|  | if (!node) | 
|  | return NULL; | 
|  | parent = rb_parent(node); | 
|  |  | 
|  | /* If we're sitting on node, we've already seen our children */ | 
|  | if (parent && node == parent->rb_left && parent->rb_right) { | 
|  | /* If we are the parent's left node, go to the parent's right | 
|  | * node then all the way down to the left */ | 
|  | return rb_left_deepest_node(parent->rb_right); | 
|  | } else | 
|  | /* Otherwise we are the parent's right node, and the parent | 
|  | * should be next */ | 
|  | return (struct rb_node *)parent; | 
|  | } | 
|  | EXPORT_SYMBOL(rb_next_postorder); | 
|  |  | 
|  | struct rb_node *rb_first_postorder(const struct rb_root *root) | 
|  | { | 
|  | if (!root->rb_node) | 
|  | return NULL; | 
|  |  | 
|  | return rb_left_deepest_node(root->rb_node); | 
|  | } | 
|  | EXPORT_SYMBOL(rb_first_postorder); |