|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Audio and Music Data Transmission Protocol (IEC 61883-6) streams | 
|  | * with Common Isochronous Packet (IEC 61883-1) headers | 
|  | * | 
|  | * Copyright (c) Clemens Ladisch <clemens@ladisch.de> | 
|  | */ | 
|  |  | 
|  | #include <linux/device.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/firewire.h> | 
|  | #include <linux/firewire-constants.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <sound/pcm.h> | 
|  | #include <sound/pcm_params.h> | 
|  | #include "amdtp-stream.h" | 
|  |  | 
|  | #define TICKS_PER_CYCLE		3072 | 
|  | #define CYCLES_PER_SECOND	8000 | 
|  | #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND) | 
|  |  | 
|  | #define OHCI_SECOND_MODULUS		8 | 
|  |  | 
|  | /* Always support Linux tracing subsystem. */ | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "amdtp-stream-trace.h" | 
|  |  | 
|  | #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */ | 
|  |  | 
|  | /* isochronous header parameters */ | 
|  | #define ISO_DATA_LENGTH_SHIFT	16 | 
|  | #define TAG_NO_CIP_HEADER	0 | 
|  | #define TAG_CIP			1 | 
|  |  | 
|  | // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. | 
|  | #define CIP_HEADER_QUADLETS	2 | 
|  | #define CIP_EOH_SHIFT		31 | 
|  | #define CIP_EOH			(1u << CIP_EOH_SHIFT) | 
|  | #define CIP_EOH_MASK		0x80000000 | 
|  | #define CIP_SID_SHIFT		24 | 
|  | #define CIP_SID_MASK		0x3f000000 | 
|  | #define CIP_DBS_MASK		0x00ff0000 | 
|  | #define CIP_DBS_SHIFT		16 | 
|  | #define CIP_SPH_MASK		0x00000400 | 
|  | #define CIP_SPH_SHIFT		10 | 
|  | #define CIP_DBC_MASK		0x000000ff | 
|  | #define CIP_FMT_SHIFT		24 | 
|  | #define CIP_FMT_MASK		0x3f000000 | 
|  | #define CIP_FDF_MASK		0x00ff0000 | 
|  | #define CIP_FDF_SHIFT		16 | 
|  | #define CIP_FDF_NO_DATA		0xff | 
|  | #define CIP_SYT_MASK		0x0000ffff | 
|  | #define CIP_SYT_NO_INFO		0xffff | 
|  | #define CIP_SYT_CYCLE_MODULUS	16 | 
|  | #define CIP_NO_DATA		((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) | 
|  |  | 
|  | #define CIP_HEADER_SIZE		(sizeof(__be32) * CIP_HEADER_QUADLETS) | 
|  |  | 
|  | /* Audio and Music transfer protocol specific parameters */ | 
|  | #define CIP_FMT_AM		0x10 | 
|  | #define AMDTP_FDF_NO_DATA	0xff | 
|  |  | 
|  | // For iso header and tstamp. | 
|  | #define IR_CTX_HEADER_DEFAULT_QUADLETS	2 | 
|  | // Add nothing. | 
|  | #define IR_CTX_HEADER_SIZE_NO_CIP	(sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) | 
|  | // Add two quadlets CIP header. | 
|  | #define IR_CTX_HEADER_SIZE_CIP		(IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) | 
|  | #define HEADER_TSTAMP_MASK	0x0000ffff | 
|  |  | 
|  | #define IT_PKT_HEADER_SIZE_CIP		CIP_HEADER_SIZE | 
|  | #define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing. | 
|  |  | 
|  | // The initial firmware of OXFW970 can postpone transmission of packet during finishing | 
|  | // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer | 
|  | // overrun. Actual device can skip more, then this module stops the packet streaming. | 
|  | #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES	5 | 
|  |  | 
|  | static void pcm_period_work(struct work_struct *work); | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_init - initialize an AMDTP stream structure | 
|  | * @s: the AMDTP stream to initialize | 
|  | * @unit: the target of the stream | 
|  | * @dir: the direction of stream | 
|  | * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. | 
|  | * @fmt: the value of fmt field in CIP header | 
|  | * @process_ctx_payloads: callback handler to process payloads of isoc context | 
|  | * @protocol_size: the size to allocate newly for protocol | 
|  | */ | 
|  | int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, | 
|  | enum amdtp_stream_direction dir, unsigned int flags, | 
|  | unsigned int fmt, | 
|  | amdtp_stream_process_ctx_payloads_t process_ctx_payloads, | 
|  | unsigned int protocol_size) | 
|  | { | 
|  | if (process_ctx_payloads == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | s->protocol = kzalloc(protocol_size, GFP_KERNEL); | 
|  | if (!s->protocol) | 
|  | return -ENOMEM; | 
|  |  | 
|  | s->unit = unit; | 
|  | s->direction = dir; | 
|  | s->flags = flags; | 
|  | s->context = ERR_PTR(-1); | 
|  | mutex_init(&s->mutex); | 
|  | INIT_WORK(&s->period_work, pcm_period_work); | 
|  | s->packet_index = 0; | 
|  |  | 
|  | init_waitqueue_head(&s->ready_wait); | 
|  |  | 
|  | s->fmt = fmt; | 
|  | s->process_ctx_payloads = process_ctx_payloads; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_init); | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_destroy - free stream resources | 
|  | * @s: the AMDTP stream to destroy | 
|  | */ | 
|  | void amdtp_stream_destroy(struct amdtp_stream *s) | 
|  | { | 
|  | /* Not initialized. */ | 
|  | if (s->protocol == NULL) | 
|  | return; | 
|  |  | 
|  | WARN_ON(amdtp_stream_running(s)); | 
|  | kfree(s->protocol); | 
|  | mutex_destroy(&s->mutex); | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_destroy); | 
|  |  | 
|  | const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { | 
|  | [CIP_SFC_32000]  =  8, | 
|  | [CIP_SFC_44100]  =  8, | 
|  | [CIP_SFC_48000]  =  8, | 
|  | [CIP_SFC_88200]  = 16, | 
|  | [CIP_SFC_96000]  = 16, | 
|  | [CIP_SFC_176400] = 32, | 
|  | [CIP_SFC_192000] = 32, | 
|  | }; | 
|  | EXPORT_SYMBOL(amdtp_syt_intervals); | 
|  |  | 
|  | const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { | 
|  | [CIP_SFC_32000]  =  32000, | 
|  | [CIP_SFC_44100]  =  44100, | 
|  | [CIP_SFC_48000]  =  48000, | 
|  | [CIP_SFC_88200]  =  88200, | 
|  | [CIP_SFC_96000]  =  96000, | 
|  | [CIP_SFC_176400] = 176400, | 
|  | [CIP_SFC_192000] = 192000, | 
|  | }; | 
|  | EXPORT_SYMBOL(amdtp_rate_table); | 
|  |  | 
|  | static int apply_constraint_to_size(struct snd_pcm_hw_params *params, | 
|  | struct snd_pcm_hw_rule *rule) | 
|  | { | 
|  | struct snd_interval *s = hw_param_interval(params, rule->var); | 
|  | const struct snd_interval *r = | 
|  | hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); | 
|  | struct snd_interval t = {0}; | 
|  | unsigned int step = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < CIP_SFC_COUNT; ++i) { | 
|  | if (snd_interval_test(r, amdtp_rate_table[i])) | 
|  | step = max(step, amdtp_syt_intervals[i]); | 
|  | } | 
|  |  | 
|  | if (step == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | t.min = roundup(s->min, step); | 
|  | t.max = rounddown(s->max, step); | 
|  | t.integer = 1; | 
|  |  | 
|  | return snd_interval_refine(s, &t); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream | 
|  | * @s:		the AMDTP stream, which must be initialized. | 
|  | * @runtime:	the PCM substream runtime | 
|  | */ | 
|  | int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, | 
|  | struct snd_pcm_runtime *runtime) | 
|  | { | 
|  | struct snd_pcm_hardware *hw = &runtime->hw; | 
|  | unsigned int ctx_header_size; | 
|  | unsigned int maximum_usec_per_period; | 
|  | int err; | 
|  |  | 
|  | hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
|  | SNDRV_PCM_INFO_INTERLEAVED | | 
|  | SNDRV_PCM_INFO_JOINT_DUPLEX | | 
|  | SNDRV_PCM_INFO_MMAP | | 
|  | SNDRV_PCM_INFO_MMAP_VALID | | 
|  | SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; | 
|  |  | 
|  | hw->periods_min = 2; | 
|  | hw->periods_max = UINT_MAX; | 
|  |  | 
|  | /* bytes for a frame */ | 
|  | hw->period_bytes_min = 4 * hw->channels_max; | 
|  |  | 
|  | /* Just to prevent from allocating much pages. */ | 
|  | hw->period_bytes_max = hw->period_bytes_min * 2048; | 
|  | hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; | 
|  |  | 
|  | // Linux driver for 1394 OHCI controller voluntarily flushes isoc | 
|  | // context when total size of accumulated context header reaches | 
|  | // PAGE_SIZE. This kicks work for the isoc context and brings | 
|  | // callback in the middle of scheduled interrupts. | 
|  | // Although AMDTP streams in the same domain use the same events per | 
|  | // IRQ, use the largest size of context header between IT/IR contexts. | 
|  | // Here, use the value of context header in IR context is for both | 
|  | // contexts. | 
|  | if (!(s->flags & CIP_NO_HEADER)) | 
|  | ctx_header_size = IR_CTX_HEADER_SIZE_CIP; | 
|  | else | 
|  | ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; | 
|  | maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / | 
|  | CYCLES_PER_SECOND / ctx_header_size; | 
|  |  | 
|  | // In IEC 61883-6, one isoc packet can transfer events up to the value | 
|  | // of syt interval. This comes from the interval of isoc cycle. As 1394 | 
|  | // OHCI controller can generate hardware IRQ per isoc packet, the | 
|  | // interval is 125 usec. | 
|  | // However, there are two ways of transmission in IEC 61883-6; blocking | 
|  | // and non-blocking modes. In blocking mode, the sequence of isoc packet | 
|  | // includes 'empty' or 'NODATA' packets which include no event. In | 
|  | // non-blocking mode, the number of events per packet is variable up to | 
|  | // the syt interval. | 
|  | // Due to the above protocol design, the minimum PCM frames per | 
|  | // interrupt should be double of the value of syt interval, thus it is | 
|  | // 250 usec. | 
|  | err = snd_pcm_hw_constraint_minmax(runtime, | 
|  | SNDRV_PCM_HW_PARAM_PERIOD_TIME, | 
|  | 250, maximum_usec_per_period); | 
|  | if (err < 0) | 
|  | goto end; | 
|  |  | 
|  | /* Non-Blocking stream has no more constraints */ | 
|  | if (!(s->flags & CIP_BLOCKING)) | 
|  | goto end; | 
|  |  | 
|  | /* | 
|  | * One AMDTP packet can include some frames. In blocking mode, the | 
|  | * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, | 
|  | * depending on its sampling rate. For accurate period interrupt, it's | 
|  | * preferrable to align period/buffer sizes to current SYT_INTERVAL. | 
|  | */ | 
|  | err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
|  | apply_constraint_to_size, NULL, | 
|  | SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
|  | SNDRV_PCM_HW_PARAM_RATE, -1); | 
|  | if (err < 0) | 
|  | goto end; | 
|  | err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
|  | apply_constraint_to_size, NULL, | 
|  | SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
|  | SNDRV_PCM_HW_PARAM_RATE, -1); | 
|  | if (err < 0) | 
|  | goto end; | 
|  | end: | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_set_parameters - set stream parameters | 
|  | * @s: the AMDTP stream to configure | 
|  | * @rate: the sample rate | 
|  | * @data_block_quadlets: the size of a data block in quadlet unit | 
|  | * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP | 
|  | *			  events. | 
|  | * | 
|  | * The parameters must be set before the stream is started, and must not be | 
|  | * changed while the stream is running. | 
|  | */ | 
|  | int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, | 
|  | unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) | 
|  | { | 
|  | unsigned int sfc; | 
|  |  | 
|  | for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { | 
|  | if (amdtp_rate_table[sfc] == rate) | 
|  | break; | 
|  | } | 
|  | if (sfc == ARRAY_SIZE(amdtp_rate_table)) | 
|  | return -EINVAL; | 
|  |  | 
|  | s->sfc = sfc; | 
|  | s->data_block_quadlets = data_block_quadlets; | 
|  | s->syt_interval = amdtp_syt_intervals[sfc]; | 
|  |  | 
|  | // default buffering in the device. | 
|  | s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; | 
|  |  | 
|  | // additional buffering needed to adjust for no-data packets. | 
|  | if (s->flags & CIP_BLOCKING) | 
|  | s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; | 
|  |  | 
|  | s->pcm_frame_multiplier = pcm_frame_multiplier; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_set_parameters); | 
|  |  | 
|  | // The CIP header is processed in context header apart from context payload. | 
|  | static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) | 
|  | { | 
|  | unsigned int multiplier; | 
|  |  | 
|  | if (s->flags & CIP_JUMBO_PAYLOAD) | 
|  | multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; | 
|  | else | 
|  | multiplier = 1; | 
|  |  | 
|  | return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_get_max_payload - get the stream's packet size | 
|  | * @s: the AMDTP stream | 
|  | * | 
|  | * This function must not be called before the stream has been configured | 
|  | * with amdtp_stream_set_parameters(). | 
|  | */ | 
|  | unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) | 
|  | { | 
|  | unsigned int cip_header_size; | 
|  |  | 
|  | if (!(s->flags & CIP_NO_HEADER)) | 
|  | cip_header_size = CIP_HEADER_SIZE; | 
|  | else | 
|  | cip_header_size = 0; | 
|  |  | 
|  | return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_get_max_payload); | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_pcm_prepare - prepare PCM device for running | 
|  | * @s: the AMDTP stream | 
|  | * | 
|  | * This function should be called from the PCM device's .prepare callback. | 
|  | */ | 
|  | void amdtp_stream_pcm_prepare(struct amdtp_stream *s) | 
|  | { | 
|  | cancel_work_sync(&s->period_work); | 
|  | s->pcm_buffer_pointer = 0; | 
|  | s->pcm_period_pointer = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_pcm_prepare); | 
|  |  | 
|  | #define prev_packet_desc(s, desc) \ | 
|  | list_prev_entry_circular(desc, &s->packet_descs_list, link) | 
|  |  | 
|  | static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, | 
|  | unsigned int size, unsigned int pos, unsigned int count) | 
|  | { | 
|  | const unsigned int syt_interval = s->syt_interval; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < count; ++i) { | 
|  | struct seq_desc *desc = descs + pos; | 
|  |  | 
|  | if (desc->syt_offset != CIP_SYT_NO_INFO) | 
|  | desc->data_blocks = syt_interval; | 
|  | else | 
|  | desc->data_blocks = 0; | 
|  |  | 
|  | pos = (pos + 1) % size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, | 
|  | unsigned int size, unsigned int pos, | 
|  | unsigned int count) | 
|  | { | 
|  | const enum cip_sfc sfc = s->sfc; | 
|  | unsigned int state = s->ctx_data.rx.data_block_state; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < count; ++i) { | 
|  | struct seq_desc *desc = descs + pos; | 
|  |  | 
|  | if (!cip_sfc_is_base_44100(sfc)) { | 
|  | // Sample_rate / 8000 is an integer, and precomputed. | 
|  | desc->data_blocks = state; | 
|  | } else { | 
|  | unsigned int phase = state; | 
|  |  | 
|  | /* | 
|  | * This calculates the number of data blocks per packet so that | 
|  | * 1) the overall rate is correct and exactly synchronized to | 
|  | *    the bus clock, and | 
|  | * 2) packets with a rounded-up number of blocks occur as early | 
|  | *    as possible in the sequence (to prevent underruns of the | 
|  | *    device's buffer). | 
|  | */ | 
|  | if (sfc == CIP_SFC_44100) | 
|  | /* 6 6 5 6 5 6 5 ... */ | 
|  | desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); | 
|  | else | 
|  | /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ | 
|  | desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); | 
|  | if (++phase >= (80 >> (sfc >> 1))) | 
|  | phase = 0; | 
|  | state = phase; | 
|  | } | 
|  |  | 
|  | pos = (pos + 1) % size; | 
|  | } | 
|  |  | 
|  | s->ctx_data.rx.data_block_state = state; | 
|  | } | 
|  |  | 
|  | static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, | 
|  | unsigned int *syt_offset_state, enum cip_sfc sfc) | 
|  | { | 
|  | unsigned int syt_offset; | 
|  |  | 
|  | if (*last_syt_offset < TICKS_PER_CYCLE) { | 
|  | if (!cip_sfc_is_base_44100(sfc)) | 
|  | syt_offset = *last_syt_offset + *syt_offset_state; | 
|  | else { | 
|  | /* | 
|  | * The time, in ticks, of the n'th SYT_INTERVAL sample is: | 
|  | *   n * SYT_INTERVAL * 24576000 / sample_rate | 
|  | * Modulo TICKS_PER_CYCLE, the difference between successive | 
|  | * elements is about 1386.23.  Rounding the results of this | 
|  | * formula to the SYT precision results in a sequence of | 
|  | * differences that begins with: | 
|  | *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... | 
|  | * This code generates _exactly_ the same sequence. | 
|  | */ | 
|  | unsigned int phase = *syt_offset_state; | 
|  | unsigned int index = phase % 13; | 
|  |  | 
|  | syt_offset = *last_syt_offset; | 
|  | syt_offset += 1386 + ((index && !(index & 3)) || | 
|  | phase == 146); | 
|  | if (++phase >= 147) | 
|  | phase = 0; | 
|  | *syt_offset_state = phase; | 
|  | } | 
|  | } else | 
|  | syt_offset = *last_syt_offset - TICKS_PER_CYCLE; | 
|  | *last_syt_offset = syt_offset; | 
|  |  | 
|  | if (syt_offset >= TICKS_PER_CYCLE) | 
|  | syt_offset = CIP_SYT_NO_INFO; | 
|  |  | 
|  | return syt_offset; | 
|  | } | 
|  |  | 
|  | static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, | 
|  | unsigned int size, unsigned int pos, unsigned int count) | 
|  | { | 
|  | const enum cip_sfc sfc = s->sfc; | 
|  | unsigned int last = s->ctx_data.rx.last_syt_offset; | 
|  | unsigned int state = s->ctx_data.rx.syt_offset_state; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < count; ++i) { | 
|  | struct seq_desc *desc = descs + pos; | 
|  |  | 
|  | desc->syt_offset = calculate_syt_offset(&last, &state, sfc); | 
|  |  | 
|  | pos = (pos + 1) % size; | 
|  | } | 
|  |  | 
|  | s->ctx_data.rx.last_syt_offset = last; | 
|  | s->ctx_data.rx.syt_offset_state = state; | 
|  | } | 
|  |  | 
|  | static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, | 
|  | unsigned int transfer_delay) | 
|  | { | 
|  | unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; | 
|  | unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; | 
|  | unsigned int syt_offset; | 
|  |  | 
|  | // Round up. | 
|  | if (syt_cycle_lo < cycle_lo) | 
|  | syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; | 
|  | syt_cycle_lo -= cycle_lo; | 
|  |  | 
|  | // Subtract transfer delay so that the synchronization offset is not so large | 
|  | // at transmission. | 
|  | syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); | 
|  | if (syt_offset < transfer_delay) | 
|  | syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; | 
|  |  | 
|  | return syt_offset - transfer_delay; | 
|  | } | 
|  |  | 
|  | // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. | 
|  | // Additionally, the sequence of tx packets is severely checked against any discontinuity | 
|  | // before filling entries in the queue. The calculation is safe even if it looks fragile by | 
|  | // overrun. | 
|  | static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) | 
|  | { | 
|  | const unsigned int cache_size = s->ctx_data.tx.cache.size; | 
|  | unsigned int cycles = s->ctx_data.tx.cache.pos; | 
|  |  | 
|  | if (cycles < head) | 
|  | cycles += cache_size; | 
|  | cycles -= head; | 
|  |  | 
|  | return cycles; | 
|  | } | 
|  |  | 
|  | static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) | 
|  | { | 
|  | const unsigned int transfer_delay = s->transfer_delay; | 
|  | const unsigned int cache_size = s->ctx_data.tx.cache.size; | 
|  | struct seq_desc *cache = s->ctx_data.tx.cache.descs; | 
|  | unsigned int cache_pos = s->ctx_data.tx.cache.pos; | 
|  | bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < desc_count; ++i) { | 
|  | struct seq_desc *dst = cache + cache_pos; | 
|  |  | 
|  | if (aware_syt && src->syt != CIP_SYT_NO_INFO) | 
|  | dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); | 
|  | else | 
|  | dst->syt_offset = CIP_SYT_NO_INFO; | 
|  | dst->data_blocks = src->data_blocks; | 
|  |  | 
|  | cache_pos = (cache_pos + 1) % cache_size; | 
|  | src = amdtp_stream_next_packet_desc(s, src); | 
|  | } | 
|  |  | 
|  | s->ctx_data.tx.cache.pos = cache_pos; | 
|  | } | 
|  |  | 
|  | static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, | 
|  | unsigned int pos, unsigned int count) | 
|  | { | 
|  | pool_ideal_syt_offsets(s, descs, size, pos, count); | 
|  |  | 
|  | if (s->flags & CIP_BLOCKING) | 
|  | pool_blocking_data_blocks(s, descs, size, pos, count); | 
|  | else | 
|  | pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); | 
|  | } | 
|  |  | 
|  | static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, | 
|  | unsigned int pos, unsigned int count) | 
|  | { | 
|  | struct amdtp_stream *target = s->ctx_data.rx.replay_target; | 
|  | const struct seq_desc *cache = target->ctx_data.tx.cache.descs; | 
|  | const unsigned int cache_size = target->ctx_data.tx.cache.size; | 
|  | unsigned int cache_pos = s->ctx_data.rx.cache_pos; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < count; ++i) { | 
|  | descs[pos] = cache[cache_pos]; | 
|  | cache_pos = (cache_pos + 1) % cache_size; | 
|  | pos = (pos + 1) % size; | 
|  | } | 
|  |  | 
|  | s->ctx_data.rx.cache_pos = cache_pos; | 
|  | } | 
|  |  | 
|  | static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, | 
|  | unsigned int pos, unsigned int count) | 
|  | { | 
|  | struct amdtp_domain *d = s->domain; | 
|  | void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, | 
|  | unsigned int pos, unsigned int count); | 
|  |  | 
|  | if (!d->replay.enable || !s->ctx_data.rx.replay_target) { | 
|  | pool_seq_descs = pool_ideal_seq_descs; | 
|  | } else { | 
|  | if (!d->replay.on_the_fly) { | 
|  | pool_seq_descs = pool_replayed_seq; | 
|  | } else { | 
|  | struct amdtp_stream *tx = s->ctx_data.rx.replay_target; | 
|  | const unsigned int cache_size = tx->ctx_data.tx.cache.size; | 
|  | const unsigned int cache_pos = s->ctx_data.rx.cache_pos; | 
|  | unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); | 
|  |  | 
|  | if (cached_cycles > count && cached_cycles > cache_size / 2) | 
|  | pool_seq_descs = pool_replayed_seq; | 
|  | else | 
|  | pool_seq_descs = pool_ideal_seq_descs; | 
|  | } | 
|  | } | 
|  |  | 
|  | pool_seq_descs(s, descs, size, pos, count); | 
|  | } | 
|  |  | 
|  | static void update_pcm_pointers(struct amdtp_stream *s, | 
|  | struct snd_pcm_substream *pcm, | 
|  | unsigned int frames) | 
|  | { | 
|  | unsigned int ptr; | 
|  |  | 
|  | ptr = s->pcm_buffer_pointer + frames; | 
|  | if (ptr >= pcm->runtime->buffer_size) | 
|  | ptr -= pcm->runtime->buffer_size; | 
|  | WRITE_ONCE(s->pcm_buffer_pointer, ptr); | 
|  |  | 
|  | s->pcm_period_pointer += frames; | 
|  | if (s->pcm_period_pointer >= pcm->runtime->period_size) { | 
|  | s->pcm_period_pointer -= pcm->runtime->period_size; | 
|  |  | 
|  | // The program in user process should periodically check the status of intermediate | 
|  | // buffer associated to PCM substream to process PCM frames in the buffer, instead | 
|  | // of receiving notification of period elapsed by poll wait. | 
|  | // | 
|  | // Use another work item for period elapsed event to prevent the following AB/BA | 
|  | // deadlock: | 
|  | // | 
|  | //             thread 1                            thread 2 | 
|  | // =================================   ================================= | 
|  | //       A.work item (process)                pcm ioctl (process) | 
|  | //                 v                                   v | 
|  | //       process_rx_packets()                  B.PCM stream lock | 
|  | //       process_tx_packets()                          v | 
|  | //                 v                        callbacks in snd_pcm_ops | 
|  | //       update_pcm_pointers()                         v | 
|  | //         snd_pcm_elapsed()           fw_iso_context_flush_completions() | 
|  | //  snd_pcm_stream_lock_irqsave()             disable_work_sync() | 
|  | //                 v                                   v | 
|  | //     wait until release of B                wait until A exits | 
|  | if (!pcm->runtime->no_period_wakeup) | 
|  | queue_work(system_highpri_wq, &s->period_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pcm_period_work(struct work_struct *work) | 
|  | { | 
|  | struct amdtp_stream *s = container_of(work, struct amdtp_stream, | 
|  | period_work); | 
|  | struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); | 
|  |  | 
|  | if (pcm) | 
|  | snd_pcm_period_elapsed(pcm); | 
|  | } | 
|  |  | 
|  | static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, | 
|  | bool sched_irq) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | params->interrupt = sched_irq; | 
|  | params->tag = s->tag; | 
|  | params->sy = 0; | 
|  |  | 
|  | err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, | 
|  | s->buffer.packets[s->packet_index].offset); | 
|  | if (err < 0) { | 
|  | dev_err(&s->unit->device, "queueing error: %d\n", err); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (++s->packet_index >= s->queue_size) | 
|  | s->packet_index = 0; | 
|  | end: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int queue_out_packet(struct amdtp_stream *s, | 
|  | struct fw_iso_packet *params, bool sched_irq) | 
|  | { | 
|  | params->skip = | 
|  | !!(params->header_length == 0 && params->payload_length == 0); | 
|  | return queue_packet(s, params, sched_irq); | 
|  | } | 
|  |  | 
|  | static inline int queue_in_packet(struct amdtp_stream *s, | 
|  | struct fw_iso_packet *params) | 
|  | { | 
|  | // Queue one packet for IR context. | 
|  | params->header_length = s->ctx_data.tx.ctx_header_size; | 
|  | params->payload_length = s->ctx_data.tx.max_ctx_payload_length; | 
|  | params->skip = false; | 
|  | return queue_packet(s, params, false); | 
|  | } | 
|  |  | 
|  | static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], | 
|  | unsigned int data_block_counter, unsigned int syt) | 
|  | { | 
|  | cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | | 
|  | (s->data_block_quadlets << CIP_DBS_SHIFT) | | 
|  | ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | | 
|  | data_block_counter); | 
|  | cip_header[1] = cpu_to_be32(CIP_EOH | | 
|  | ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | | 
|  | ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | | 
|  | (syt & CIP_SYT_MASK)); | 
|  | } | 
|  |  | 
|  | static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, | 
|  | struct fw_iso_packet *params, unsigned int header_length, | 
|  | unsigned int data_blocks, | 
|  | unsigned int data_block_counter, | 
|  | unsigned int syt, unsigned int index, u32 curr_cycle_time) | 
|  | { | 
|  | unsigned int payload_length; | 
|  | __be32 *cip_header; | 
|  |  | 
|  | payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; | 
|  | params->payload_length = payload_length; | 
|  |  | 
|  | if (header_length > 0) { | 
|  | cip_header = (__be32 *)params->header; | 
|  | generate_cip_header(s, cip_header, data_block_counter, syt); | 
|  | params->header_length = header_length; | 
|  | } else { | 
|  | cip_header = NULL; | 
|  | } | 
|  |  | 
|  | trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, | 
|  | data_block_counter, s->packet_index, index, curr_cycle_time); | 
|  | } | 
|  |  | 
|  | static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, | 
|  | unsigned int payload_length, | 
|  | unsigned int *data_blocks, | 
|  | unsigned int *data_block_counter, unsigned int *syt) | 
|  | { | 
|  | u32 cip_header[2]; | 
|  | unsigned int sph; | 
|  | unsigned int fmt; | 
|  | unsigned int fdf; | 
|  | unsigned int dbc; | 
|  | bool lost; | 
|  |  | 
|  | cip_header[0] = be32_to_cpu(buf[0]); | 
|  | cip_header[1] = be32_to_cpu(buf[1]); | 
|  |  | 
|  | /* | 
|  | * This module supports 'Two-quadlet CIP header with SYT field'. | 
|  | * For convenience, also check FMT field is AM824 or not. | 
|  | */ | 
|  | if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || | 
|  | ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && | 
|  | (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { | 
|  | dev_info_ratelimited(&s->unit->device, | 
|  | "Invalid CIP header for AMDTP: %08X:%08X\n", | 
|  | cip_header[0], cip_header[1]); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Check valid protocol or not. */ | 
|  | sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; | 
|  | fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; | 
|  | if (sph != s->sph || fmt != s->fmt) { | 
|  | dev_info_ratelimited(&s->unit->device, | 
|  | "Detect unexpected protocol: %08x %08x\n", | 
|  | cip_header[0], cip_header[1]); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Calculate data blocks */ | 
|  | fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; | 
|  | if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { | 
|  | *data_blocks = 0; | 
|  | } else { | 
|  | unsigned int data_block_quadlets = | 
|  | (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; | 
|  | /* avoid division by zero */ | 
|  | if (data_block_quadlets == 0) { | 
|  | dev_err(&s->unit->device, | 
|  | "Detect invalid value in dbs field: %08X\n", | 
|  | cip_header[0]); | 
|  | return -EPROTO; | 
|  | } | 
|  | if (s->flags & CIP_WRONG_DBS) | 
|  | data_block_quadlets = s->data_block_quadlets; | 
|  |  | 
|  | *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; | 
|  | } | 
|  |  | 
|  | /* Check data block counter continuity */ | 
|  | dbc = cip_header[0] & CIP_DBC_MASK; | 
|  | if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && | 
|  | *data_block_counter != UINT_MAX) | 
|  | dbc = *data_block_counter; | 
|  |  | 
|  | if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || | 
|  | *data_block_counter == UINT_MAX) { | 
|  | lost = false; | 
|  | } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { | 
|  | lost = dbc != *data_block_counter; | 
|  | } else { | 
|  | unsigned int dbc_interval; | 
|  |  | 
|  | if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) { | 
|  | if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) | 
|  | dbc_interval = s->ctx_data.tx.dbc_interval; | 
|  | else | 
|  | dbc_interval = *data_blocks; | 
|  | } else { | 
|  | dbc_interval = payload_length / sizeof(__be32); | 
|  | } | 
|  |  | 
|  | lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); | 
|  | } | 
|  |  | 
|  | if (lost) { | 
|  | dev_err(&s->unit->device, | 
|  | "Detect discontinuity of CIP: %02X %02X\n", | 
|  | *data_block_counter, dbc); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | *data_block_counter = dbc; | 
|  |  | 
|  | if (!(s->flags & CIP_UNAWARE_SYT)) | 
|  | *syt = cip_header[1] & CIP_SYT_MASK; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, | 
|  | const __be32 *ctx_header, | 
|  | unsigned int *data_blocks, | 
|  | unsigned int *data_block_counter, | 
|  | unsigned int *syt, unsigned int packet_index, unsigned int index, | 
|  | u32 curr_cycle_time) | 
|  | { | 
|  | unsigned int payload_length; | 
|  | const __be32 *cip_header; | 
|  | unsigned int cip_header_size; | 
|  |  | 
|  | payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; | 
|  |  | 
|  | if (!(s->flags & CIP_NO_HEADER)) | 
|  | cip_header_size = CIP_HEADER_SIZE; | 
|  | else | 
|  | cip_header_size = 0; | 
|  |  | 
|  | if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { | 
|  | dev_err(&s->unit->device, | 
|  | "Detect jumbo payload: %04x %04x\n", | 
|  | payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (cip_header_size > 0) { | 
|  | if (payload_length >= cip_header_size) { | 
|  | int err; | 
|  |  | 
|  | cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; | 
|  | err = check_cip_header(s, cip_header, payload_length - cip_header_size, | 
|  | data_blocks, data_block_counter, syt); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } else { | 
|  | // Handle the cycle so that empty packet arrives. | 
|  | cip_header = NULL; | 
|  | *data_blocks = 0; | 
|  | *syt = 0; | 
|  | } | 
|  | } else { | 
|  | cip_header = NULL; | 
|  | *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; | 
|  | *syt = 0; | 
|  |  | 
|  | if (*data_block_counter == UINT_MAX) | 
|  | *data_block_counter = 0; | 
|  | } | 
|  |  | 
|  | trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, | 
|  | *data_block_counter, packet_index, index, curr_cycle_time); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On | 
|  | // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent | 
|  | // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. | 
|  | static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) | 
|  | { | 
|  | return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); | 
|  | } | 
|  |  | 
|  | static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) | 
|  | { | 
|  | u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; | 
|  | return compute_ohci_iso_ctx_cycle_count(tstamp); | 
|  | } | 
|  |  | 
|  | static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) | 
|  | { | 
|  | cycle += addend; | 
|  | if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) | 
|  | cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; | 
|  | return cycle; | 
|  | } | 
|  |  | 
|  | static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) | 
|  | { | 
|  | if (minuend < subtrahend) | 
|  | minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; | 
|  |  | 
|  | return minuend - subtrahend; | 
|  | } | 
|  |  | 
|  | static int compare_ohci_cycle_count(u32 lval, u32 rval) | 
|  | { | 
|  | if (lval == rval) | 
|  | return 0; | 
|  | else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) | 
|  | return -1; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Align to actual cycle count for the packet which is going to be scheduled. | 
|  | // This module queued the same number of isochronous cycle as the size of queue | 
|  | // to kip isochronous cycle, therefore it's OK to just increment the cycle by | 
|  | // the size of queue for scheduled cycle. | 
|  | static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, | 
|  | unsigned int queue_size) | 
|  | { | 
|  | u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); | 
|  | return increment_ohci_cycle_count(cycle, queue_size); | 
|  | } | 
|  |  | 
|  | static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, | 
|  | const __be32 *ctx_header, unsigned int packet_count, | 
|  | unsigned int *desc_count) | 
|  | { | 
|  | unsigned int next_cycle = s->next_cycle; | 
|  | unsigned int dbc = s->data_block_counter; | 
|  | unsigned int packet_index = s->packet_index; | 
|  | unsigned int queue_size = s->queue_size; | 
|  | u32 curr_cycle_time = 0; | 
|  | int i; | 
|  | int err; | 
|  |  | 
|  | if (trace_amdtp_packet_enabled()) | 
|  | (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); | 
|  |  | 
|  | *desc_count = 0; | 
|  | for (i = 0; i < packet_count; ++i) { | 
|  | unsigned int cycle; | 
|  | bool lost; | 
|  | unsigned int data_blocks; | 
|  | unsigned int syt; | 
|  |  | 
|  | cycle = compute_ohci_cycle_count(ctx_header[1]); | 
|  | lost = (next_cycle != cycle); | 
|  | if (lost) { | 
|  | if (s->flags & CIP_NO_HEADER) { | 
|  | // Fireface skips transmission just for an isoc cycle corresponding | 
|  | // to empty packet. | 
|  | unsigned int prev_cycle = next_cycle; | 
|  |  | 
|  | next_cycle = increment_ohci_cycle_count(next_cycle, 1); | 
|  | lost = (next_cycle != cycle); | 
|  | if (!lost) { | 
|  | // Prepare a description for the skipped cycle for | 
|  | // sequence replay. | 
|  | desc->cycle = prev_cycle; | 
|  | desc->syt = 0; | 
|  | desc->data_blocks = 0; | 
|  | desc->data_block_counter = dbc; | 
|  | desc->ctx_payload = NULL; | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  | ++(*desc_count); | 
|  | } | 
|  | } else if (s->flags & CIP_JUMBO_PAYLOAD) { | 
|  | // OXFW970 skips transmission for several isoc cycles during | 
|  | // asynchronous transaction. The sequence replay is impossible due | 
|  | // to the reason. | 
|  | unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, | 
|  | IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); | 
|  | lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0); | 
|  | } | 
|  | if (lost) { | 
|  | dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", | 
|  | next_cycle, cycle); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, | 
|  | packet_index, i, curr_cycle_time); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | desc->cycle = cycle; | 
|  | desc->syt = syt; | 
|  | desc->data_blocks = data_blocks; | 
|  | desc->data_block_counter = dbc; | 
|  | desc->ctx_payload = s->buffer.packets[packet_index].buffer; | 
|  |  | 
|  | if (!(s->flags & CIP_DBC_IS_END_EVENT)) | 
|  | dbc = (dbc + desc->data_blocks) & 0xff; | 
|  |  | 
|  | next_cycle = increment_ohci_cycle_count(next_cycle, 1); | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  | ++(*desc_count); | 
|  | ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); | 
|  | packet_index = (packet_index + 1) % queue_size; | 
|  | } | 
|  |  | 
|  | s->next_cycle = next_cycle; | 
|  | s->data_block_counter = dbc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, | 
|  | unsigned int transfer_delay) | 
|  | { | 
|  | unsigned int syt; | 
|  |  | 
|  | syt_offset += transfer_delay; | 
|  | syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | | 
|  | (syt_offset % TICKS_PER_CYCLE); | 
|  | return syt & CIP_SYT_MASK; | 
|  | } | 
|  |  | 
|  | static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, | 
|  | const __be32 *ctx_header, unsigned int packet_count) | 
|  | { | 
|  | struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; | 
|  | unsigned int seq_size = s->ctx_data.rx.seq.size; | 
|  | unsigned int seq_pos = s->ctx_data.rx.seq.pos; | 
|  | unsigned int dbc = s->data_block_counter; | 
|  | bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); | 
|  | int i; | 
|  |  | 
|  | pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); | 
|  |  | 
|  | for (i = 0; i < packet_count; ++i) { | 
|  | unsigned int index = (s->packet_index + i) % s->queue_size; | 
|  | const struct seq_desc *seq = seq_descs + seq_pos; | 
|  |  | 
|  | desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); | 
|  |  | 
|  | if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) | 
|  | desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); | 
|  | else | 
|  | desc->syt = CIP_SYT_NO_INFO; | 
|  |  | 
|  | desc->data_blocks = seq->data_blocks; | 
|  |  | 
|  | if (s->flags & CIP_DBC_IS_END_EVENT) | 
|  | dbc = (dbc + desc->data_blocks) & 0xff; | 
|  |  | 
|  | desc->data_block_counter = dbc; | 
|  |  | 
|  | if (!(s->flags & CIP_DBC_IS_END_EVENT)) | 
|  | dbc = (dbc + desc->data_blocks) & 0xff; | 
|  |  | 
|  | desc->ctx_payload = s->buffer.packets[index].buffer; | 
|  |  | 
|  | seq_pos = (seq_pos + 1) % seq_size; | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  |  | 
|  | ++ctx_header; | 
|  | } | 
|  |  | 
|  | s->data_block_counter = dbc; | 
|  | s->ctx_data.rx.seq.pos = seq_pos; | 
|  | } | 
|  |  | 
|  | static inline void cancel_stream(struct amdtp_stream *s) | 
|  | { | 
|  | struct work_struct *work = current_work(); | 
|  |  | 
|  | s->packet_index = -1; | 
|  |  | 
|  | // Detect work items for any isochronous context. The work item for pcm_period_work() | 
|  | // should be avoided since the call of snd_pcm_period_elapsed() can reach via | 
|  | // snd_pcm_ops.pointer() under acquiring PCM stream(group) lock and causes dead lock at | 
|  | // snd_pcm_stop_xrun(). | 
|  | if (work && work != &s->period_work) | 
|  | amdtp_stream_pcm_abort(s); | 
|  | WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); | 
|  | } | 
|  |  | 
|  | static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, | 
|  | const struct pkt_desc *desc, unsigned int count) | 
|  | { | 
|  | unsigned int data_block_count = 0; | 
|  | u32 latest_cycle; | 
|  | u32 cycle_time; | 
|  | u32 curr_cycle; | 
|  | u32 cycle_gap; | 
|  | int i, err; | 
|  |  | 
|  | if (count == 0) | 
|  | goto end; | 
|  |  | 
|  | // Forward to the latest record. | 
|  | for (i = 0; i < count - 1; ++i) | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  | latest_cycle = desc->cycle; | 
|  |  | 
|  | err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); | 
|  | if (err < 0) | 
|  | goto end; | 
|  |  | 
|  | // Compute cycle count with lower 3 bits of second field and cycle field like timestamp | 
|  | // format of 1394 OHCI isochronous context. | 
|  | curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); | 
|  |  | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since | 
|  | // it corresponds to arrived isochronous packet. | 
|  | if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) | 
|  | goto end; | 
|  | cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); | 
|  |  | 
|  | // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated | 
|  | // value expectedly corresponds to a few packets (0-2) since the packet arrived at | 
|  | // the most recent isochronous cycle has been already processed. | 
|  | for (i = 0; i < cycle_gap; ++i) { | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  | data_block_count += desc->data_blocks; | 
|  | } | 
|  | } else { | 
|  | // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle | 
|  | // since it was already scheduled. | 
|  | if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) | 
|  | goto end; | 
|  | cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); | 
|  |  | 
|  | // NOTE: use history of scheduled packets. | 
|  | for (i = 0; i < cycle_gap; ++i) { | 
|  | data_block_count += desc->data_blocks; | 
|  | desc = prev_packet_desc(s, desc); | 
|  | } | 
|  | } | 
|  | end: | 
|  | return data_block_count * s->pcm_frame_multiplier; | 
|  | } | 
|  |  | 
|  | static void process_ctx_payloads(struct amdtp_stream *s, | 
|  | const struct pkt_desc *desc, | 
|  | unsigned int count) | 
|  | { | 
|  | struct snd_pcm_substream *pcm; | 
|  | int i; | 
|  |  | 
|  | pcm = READ_ONCE(s->pcm); | 
|  | s->process_ctx_payloads(s, desc, count, pcm); | 
|  |  | 
|  | if (pcm) { | 
|  | unsigned int data_block_count = 0; | 
|  |  | 
|  | pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); | 
|  |  | 
|  | for (i = 0; i < count; ++i) { | 
|  | data_block_count += desc->data_blocks; | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  | } | 
|  |  | 
|  | update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, | 
|  | void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | const struct amdtp_domain *d = s->domain; | 
|  | const __be32 *ctx_header = header; | 
|  | const unsigned int events_per_period = d->events_per_period; | 
|  | unsigned int event_count = s->ctx_data.rx.event_count; | 
|  | struct pkt_desc *desc = s->packet_descs_cursor; | 
|  | unsigned int pkt_header_length; | 
|  | unsigned int packets; | 
|  | u32 curr_cycle_time; | 
|  | bool need_hw_irq; | 
|  | int i; | 
|  |  | 
|  | if (s->packet_index < 0) | 
|  | return; | 
|  |  | 
|  | // Calculate the number of packets in buffer and check XRUN. | 
|  | packets = header_length / sizeof(*ctx_header); | 
|  |  | 
|  | generate_rx_packet_descs(s, desc, ctx_header, packets); | 
|  |  | 
|  | process_ctx_payloads(s, desc, packets); | 
|  |  | 
|  | if (!(s->flags & CIP_NO_HEADER)) | 
|  | pkt_header_length = IT_PKT_HEADER_SIZE_CIP; | 
|  | else | 
|  | pkt_header_length = 0; | 
|  |  | 
|  | if (s == d->irq_target) { | 
|  | // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by | 
|  | // the tasks of user process operating ALSA PCM character device by calling ioctl(2) | 
|  | // with some requests, instead of scheduled hardware IRQ of an IT context. | 
|  | struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); | 
|  | need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; | 
|  | } else { | 
|  | need_hw_irq = false; | 
|  | } | 
|  |  | 
|  | if (trace_amdtp_packet_enabled()) | 
|  | (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); | 
|  |  | 
|  | for (i = 0; i < packets; ++i) { | 
|  | DEFINE_RAW_FLEX(struct fw_iso_packet, template, header, CIP_HEADER_QUADLETS); | 
|  | bool sched_irq = false; | 
|  |  | 
|  | build_it_pkt_header(s, desc->cycle, template, pkt_header_length, | 
|  | desc->data_blocks, desc->data_block_counter, | 
|  | desc->syt, i, curr_cycle_time); | 
|  |  | 
|  | if (s == s->domain->irq_target) { | 
|  | event_count += desc->data_blocks; | 
|  | if (event_count >= events_per_period) { | 
|  | event_count -= events_per_period; | 
|  | sched_irq = need_hw_irq; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (queue_out_packet(s, template, sched_irq) < 0) { | 
|  | cancel_stream(s); | 
|  | return; | 
|  | } | 
|  |  | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  | } | 
|  |  | 
|  | s->ctx_data.rx.event_count = event_count; | 
|  | s->packet_descs_cursor = desc; | 
|  | } | 
|  |  | 
|  | static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, | 
|  | void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  | const __be32 *ctx_header = header; | 
|  | unsigned int packets; | 
|  | unsigned int cycle; | 
|  | int i; | 
|  |  | 
|  | if (s->packet_index < 0) | 
|  | return; | 
|  |  | 
|  | packets = header_length / sizeof(*ctx_header); | 
|  |  | 
|  | cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); | 
|  | s->next_cycle = increment_ohci_cycle_count(cycle, 1); | 
|  |  | 
|  | for (i = 0; i < packets; ++i) { | 
|  | struct fw_iso_packet params = { | 
|  | .header_length = 0, | 
|  | .payload_length = 0, | 
|  | }; | 
|  | bool sched_irq = (s == d->irq_target && i == packets - 1); | 
|  |  | 
|  | if (queue_out_packet(s, ¶ms, sched_irq) < 0) { | 
|  | cancel_stream(s); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, | 
|  | void *header, void *private_data); | 
|  |  | 
|  | static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, | 
|  | size_t header_length, void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  | __be32 *ctx_header = header; | 
|  | const unsigned int queue_size = s->queue_size; | 
|  | unsigned int packets; | 
|  | unsigned int offset; | 
|  |  | 
|  | if (s->packet_index < 0) | 
|  | return; | 
|  |  | 
|  | packets = header_length / sizeof(*ctx_header); | 
|  |  | 
|  | offset = 0; | 
|  | while (offset < packets) { | 
|  | unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); | 
|  |  | 
|  | if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) | 
|  | break; | 
|  |  | 
|  | ++offset; | 
|  | } | 
|  |  | 
|  | if (offset > 0) { | 
|  | unsigned int length = sizeof(*ctx_header) * offset; | 
|  |  | 
|  | skip_rx_packets(context, tstamp, length, ctx_header, private_data); | 
|  | if (amdtp_streaming_error(s)) | 
|  | return; | 
|  |  | 
|  | ctx_header += offset; | 
|  | header_length -= length; | 
|  | } | 
|  |  | 
|  | if (offset < packets) { | 
|  | s->ready_processing = true; | 
|  | wake_up(&s->ready_wait); | 
|  |  | 
|  | if (d->replay.enable) | 
|  | s->ctx_data.rx.cache_pos = 0; | 
|  |  | 
|  | process_rx_packets(context, tstamp, header_length, ctx_header, private_data); | 
|  | if (amdtp_streaming_error(s)) | 
|  | return; | 
|  |  | 
|  | if (s == d->irq_target) | 
|  | s->context->callback.sc = irq_target_callback; | 
|  | else | 
|  | s->context->callback.sc = process_rx_packets; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, | 
|  | void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | __be32 *ctx_header = header; | 
|  | struct pkt_desc *desc = s->packet_descs_cursor; | 
|  | unsigned int packet_count; | 
|  | unsigned int desc_count; | 
|  | int i; | 
|  | int err; | 
|  |  | 
|  | if (s->packet_index < 0) | 
|  | return; | 
|  |  | 
|  | // Calculate the number of packets in buffer and check XRUN. | 
|  | packet_count = header_length / s->ctx_data.tx.ctx_header_size; | 
|  |  | 
|  | desc_count = 0; | 
|  | err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); | 
|  | if (err < 0) { | 
|  | if (err != -EAGAIN) { | 
|  | cancel_stream(s); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | struct amdtp_domain *d = s->domain; | 
|  |  | 
|  | process_ctx_payloads(s, desc, desc_count); | 
|  |  | 
|  | if (d->replay.enable) | 
|  | cache_seq(s, desc, desc_count); | 
|  |  | 
|  | for (i = 0; i < desc_count; ++i) | 
|  | desc = amdtp_stream_next_packet_desc(s, desc); | 
|  | s->packet_descs_cursor = desc; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < packet_count; ++i) { | 
|  | struct fw_iso_packet params = {0}; | 
|  |  | 
|  | if (queue_in_packet(s, ¶ms) < 0) { | 
|  | cancel_stream(s); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, | 
|  | void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | const __be32 *ctx_header = header; | 
|  | unsigned int packets; | 
|  | unsigned int cycle; | 
|  | int i; | 
|  |  | 
|  | if (s->packet_index < 0) | 
|  | return; | 
|  |  | 
|  | packets = header_length / s->ctx_data.tx.ctx_header_size; | 
|  |  | 
|  | ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); | 
|  | cycle = compute_ohci_cycle_count(ctx_header[1]); | 
|  | s->next_cycle = increment_ohci_cycle_count(cycle, 1); | 
|  |  | 
|  | for (i = 0; i < packets; ++i) { | 
|  | struct fw_iso_packet params = {0}; | 
|  |  | 
|  | if (queue_in_packet(s, ¶ms) < 0) { | 
|  | cancel_stream(s); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, | 
|  | size_t header_length, void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  | __be32 *ctx_header; | 
|  | unsigned int packets; | 
|  | unsigned int offset; | 
|  |  | 
|  | if (s->packet_index < 0) | 
|  | return; | 
|  |  | 
|  | packets = header_length / s->ctx_data.tx.ctx_header_size; | 
|  |  | 
|  | offset = 0; | 
|  | ctx_header = header; | 
|  | while (offset < packets) { | 
|  | unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); | 
|  |  | 
|  | if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) | 
|  | break; | 
|  |  | 
|  | ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); | 
|  | ++offset; | 
|  | } | 
|  |  | 
|  | ctx_header = header; | 
|  |  | 
|  | if (offset > 0) { | 
|  | size_t length = s->ctx_data.tx.ctx_header_size * offset; | 
|  |  | 
|  | drop_tx_packets(context, tstamp, length, ctx_header, s); | 
|  | if (amdtp_streaming_error(s)) | 
|  | return; | 
|  |  | 
|  | ctx_header += length / sizeof(*ctx_header); | 
|  | header_length -= length; | 
|  | } | 
|  |  | 
|  | if (offset < packets) { | 
|  | s->ready_processing = true; | 
|  | wake_up(&s->ready_wait); | 
|  |  | 
|  | process_tx_packets(context, tstamp, header_length, ctx_header, s); | 
|  | if (amdtp_streaming_error(s)) | 
|  | return; | 
|  |  | 
|  | context->callback.sc = process_tx_packets; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, | 
|  | size_t header_length, void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  | __be32 *ctx_header; | 
|  | unsigned int count; | 
|  | unsigned int events; | 
|  | int i; | 
|  |  | 
|  | if (s->packet_index < 0) | 
|  | return; | 
|  |  | 
|  | count = header_length / s->ctx_data.tx.ctx_header_size; | 
|  |  | 
|  | // Attempt to detect any event in the batch of packets. | 
|  | events = 0; | 
|  | ctx_header = header; | 
|  | for (i = 0; i < count; ++i) { | 
|  | unsigned int payload_quads = | 
|  | (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); | 
|  | unsigned int data_blocks; | 
|  |  | 
|  | if (s->flags & CIP_NO_HEADER) { | 
|  | data_blocks = payload_quads / s->data_block_quadlets; | 
|  | } else { | 
|  | __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; | 
|  |  | 
|  | if (payload_quads < CIP_HEADER_QUADLETS) { | 
|  | data_blocks = 0; | 
|  | } else { | 
|  | payload_quads -= CIP_HEADER_QUADLETS; | 
|  |  | 
|  | if (s->flags & CIP_UNAWARE_SYT) { | 
|  | data_blocks = payload_quads / s->data_block_quadlets; | 
|  | } else { | 
|  | u32 cip1 = be32_to_cpu(cip_headers[1]); | 
|  |  | 
|  | // NODATA packet can includes any data blocks but they are | 
|  | // not available as event. | 
|  | if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) | 
|  | data_blocks = 0; | 
|  | else | 
|  | data_blocks = payload_quads / s->data_block_quadlets; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | events += data_blocks; | 
|  |  | 
|  | ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); | 
|  | } | 
|  |  | 
|  | drop_tx_packets(context, tstamp, header_length, header, s); | 
|  |  | 
|  | if (events > 0) | 
|  | s->ctx_data.tx.event_starts = true; | 
|  |  | 
|  | // Decide the cycle count to begin processing content of packet in IR contexts. | 
|  | { | 
|  | unsigned int stream_count = 0; | 
|  | unsigned int event_starts_count = 0; | 
|  | unsigned int cycle = UINT_MAX; | 
|  |  | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | ++stream_count; | 
|  | if (s->ctx_data.tx.event_starts) | 
|  | ++event_starts_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (stream_count == event_starts_count) { | 
|  | unsigned int next_cycle; | 
|  |  | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (s->direction != AMDTP_IN_STREAM) | 
|  | continue; | 
|  |  | 
|  | next_cycle = increment_ohci_cycle_count(s->next_cycle, | 
|  | d->processing_cycle.tx_init_skip); | 
|  | if (cycle == UINT_MAX || | 
|  | compare_ohci_cycle_count(next_cycle, cycle) > 0) | 
|  | cycle = next_cycle; | 
|  |  | 
|  | s->context->callback.sc = process_tx_packets_intermediately; | 
|  | } | 
|  |  | 
|  | d->processing_cycle.tx_start = cycle; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_ctxs_in_domain(struct amdtp_domain *d) | 
|  | { | 
|  | struct amdtp_stream *s; | 
|  |  | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (s != d->irq_target && amdtp_stream_running(s)) | 
|  | fw_iso_context_flush_completions(s->context); | 
|  |  | 
|  | if (amdtp_streaming_error(s)) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return; | 
|  | error: | 
|  | if (amdtp_stream_running(d->irq_target)) | 
|  | cancel_stream(d->irq_target); | 
|  |  | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (amdtp_stream_running(s)) | 
|  | cancel_stream(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, | 
|  | void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  |  | 
|  | process_rx_packets(context, tstamp, header_length, header, private_data); | 
|  | process_ctxs_in_domain(d); | 
|  | } | 
|  |  | 
|  | static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, | 
|  | size_t header_length, void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  |  | 
|  | process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); | 
|  | process_ctxs_in_domain(d); | 
|  | } | 
|  |  | 
|  | static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, | 
|  | size_t header_length, void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  | bool ready_to_start; | 
|  |  | 
|  | skip_rx_packets(context, tstamp, header_length, header, private_data); | 
|  | process_ctxs_in_domain(d); | 
|  |  | 
|  | if (d->replay.enable && !d->replay.on_the_fly) { | 
|  | unsigned int rx_count = 0; | 
|  | unsigned int rx_ready_count = 0; | 
|  | struct amdtp_stream *rx; | 
|  |  | 
|  | list_for_each_entry(rx, &d->streams, list) { | 
|  | struct amdtp_stream *tx; | 
|  | unsigned int cached_cycles; | 
|  |  | 
|  | if (rx->direction != AMDTP_OUT_STREAM) | 
|  | continue; | 
|  | ++rx_count; | 
|  |  | 
|  | tx = rx->ctx_data.rx.replay_target; | 
|  | cached_cycles = calculate_cached_cycle_count(tx, 0); | 
|  | if (cached_cycles > tx->ctx_data.tx.cache.size / 2) | 
|  | ++rx_ready_count; | 
|  | } | 
|  |  | 
|  | ready_to_start = (rx_count == rx_ready_count); | 
|  | } else { | 
|  | ready_to_start = true; | 
|  | } | 
|  |  | 
|  | // Decide the cycle count to begin processing content of packet in IT contexts. All of IT | 
|  | // contexts are expected to start and get callback when reaching here. | 
|  | if (ready_to_start) { | 
|  | unsigned int cycle = s->next_cycle; | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (s->direction != AMDTP_OUT_STREAM) | 
|  | continue; | 
|  |  | 
|  | if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) | 
|  | cycle = s->next_cycle; | 
|  |  | 
|  | if (s == d->irq_target) | 
|  | s->context->callback.sc = irq_target_callback_intermediately; | 
|  | else | 
|  | s->context->callback.sc = process_rx_packets_intermediately; | 
|  | } | 
|  |  | 
|  | d->processing_cycle.rx_start = cycle; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to | 
|  | // transmit first packet. | 
|  | static void amdtp_stream_first_callback(struct fw_iso_context *context, | 
|  | u32 tstamp, size_t header_length, | 
|  | void *header, void *private_data) | 
|  | { | 
|  | struct amdtp_stream *s = private_data; | 
|  | struct amdtp_domain *d = s->domain; | 
|  |  | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | context->callback.sc = drop_tx_packets_initially; | 
|  | } else { | 
|  | if (s == d->irq_target) | 
|  | context->callback.sc = irq_target_callback_skip; | 
|  | else | 
|  | context->callback.sc = skip_rx_packets; | 
|  | } | 
|  |  | 
|  | context->callback.sc(context, tstamp, header_length, header, s); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_start - start transferring packets | 
|  | * @s: the AMDTP stream to start | 
|  | * @channel: the isochronous channel on the bus | 
|  | * @speed: firewire speed code | 
|  | * @queue_size: The number of packets in the queue. | 
|  | * @idle_irq_interval: the interval to queue packet during initial state. | 
|  | * | 
|  | * The stream cannot be started until it has been configured with | 
|  | * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI | 
|  | * device can be started. | 
|  | */ | 
|  | static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, | 
|  | unsigned int queue_size, unsigned int idle_irq_interval) | 
|  | { | 
|  | bool is_irq_target = (s == s->domain->irq_target); | 
|  | unsigned int ctx_header_size; | 
|  | unsigned int max_ctx_payload_size; | 
|  | enum dma_data_direction dir; | 
|  | struct pkt_desc *descs; | 
|  | int i, type, tag, err; | 
|  |  | 
|  | guard(mutex)(&s->mutex); | 
|  |  | 
|  | if (WARN_ON(amdtp_stream_running(s) || | 
|  | (s->data_block_quadlets < 1))) | 
|  | return -EBADFD; | 
|  |  | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | // NOTE: IT context should be used for constant IRQ. | 
|  | if (is_irq_target) | 
|  | return -EINVAL; | 
|  |  | 
|  | s->data_block_counter = UINT_MAX; | 
|  | } else { | 
|  | s->data_block_counter = 0; | 
|  | } | 
|  |  | 
|  | // initialize packet buffer. | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | dir = DMA_FROM_DEVICE; | 
|  | type = FW_ISO_CONTEXT_RECEIVE; | 
|  | if (!(s->flags & CIP_NO_HEADER)) | 
|  | ctx_header_size = IR_CTX_HEADER_SIZE_CIP; | 
|  | else | 
|  | ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; | 
|  | } else { | 
|  | dir = DMA_TO_DEVICE; | 
|  | type = FW_ISO_CONTEXT_TRANSMIT; | 
|  | ctx_header_size = 0;	// No effect for IT context. | 
|  | } | 
|  | max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); | 
|  |  | 
|  | err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); | 
|  | if (err < 0) | 
|  | return err; | 
|  | s->queue_size = queue_size; | 
|  |  | 
|  | s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, | 
|  | type, channel, speed, ctx_header_size, | 
|  | amdtp_stream_first_callback, s); | 
|  | if (IS_ERR(s->context)) { | 
|  | err = PTR_ERR(s->context); | 
|  | if (err == -EBUSY) | 
|  | dev_err(&s->unit->device, | 
|  | "no free stream on this controller\n"); | 
|  | goto err_buffer; | 
|  | } | 
|  |  | 
|  | amdtp_stream_update(s); | 
|  |  | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; | 
|  | s->ctx_data.tx.ctx_header_size = ctx_header_size; | 
|  | s->ctx_data.tx.event_starts = false; | 
|  |  | 
|  | if (s->domain->replay.enable) { | 
|  | // struct fw_iso_context.drop_overflow_headers is false therefore it's | 
|  | // possible to cache much unexpectedly. | 
|  | s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, | 
|  | queue_size * 3 / 2); | 
|  | s->ctx_data.tx.cache.pos = 0; | 
|  | s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, | 
|  | sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); | 
|  | if (!s->ctx_data.tx.cache.descs) { | 
|  | err = -ENOMEM; | 
|  | goto err_context; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | static const struct { | 
|  | unsigned int data_block; | 
|  | unsigned int syt_offset; | 
|  | } *entry, initial_state[] = { | 
|  | [CIP_SFC_32000]  = {  4, 3072 }, | 
|  | [CIP_SFC_48000]  = {  6, 1024 }, | 
|  | [CIP_SFC_96000]  = { 12, 1024 }, | 
|  | [CIP_SFC_192000] = { 24, 1024 }, | 
|  | [CIP_SFC_44100]  = {  0,   67 }, | 
|  | [CIP_SFC_88200]  = {  0,   67 }, | 
|  | [CIP_SFC_176400] = {  0,   67 }, | 
|  | }; | 
|  |  | 
|  | s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); | 
|  | if (!s->ctx_data.rx.seq.descs) { | 
|  | err = -ENOMEM; | 
|  | goto err_context; | 
|  | } | 
|  | s->ctx_data.rx.seq.size = queue_size; | 
|  | s->ctx_data.rx.seq.pos = 0; | 
|  |  | 
|  | entry = &initial_state[s->sfc]; | 
|  | s->ctx_data.rx.data_block_state = entry->data_block; | 
|  | s->ctx_data.rx.syt_offset_state = entry->syt_offset; | 
|  | s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; | 
|  |  | 
|  | s->ctx_data.rx.event_count = 0; | 
|  | } | 
|  |  | 
|  | if (s->flags & CIP_NO_HEADER) | 
|  | s->tag = TAG_NO_CIP_HEADER; | 
|  | else | 
|  | s->tag = TAG_CIP; | 
|  |  | 
|  | // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request | 
|  | // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It | 
|  | // could take a round over queue of AMDTP packet descriptors and small loss of history. For | 
|  | // safe, keep more 8 elements for the queue, equivalent to 1 ms. | 
|  | descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); | 
|  | if (!descs) { | 
|  | err = -ENOMEM; | 
|  | goto err_context; | 
|  | } | 
|  | s->packet_descs = descs; | 
|  |  | 
|  | INIT_LIST_HEAD(&s->packet_descs_list); | 
|  | for (i = 0; i < s->queue_size; ++i) { | 
|  | INIT_LIST_HEAD(&descs->link); | 
|  | list_add_tail(&descs->link, &s->packet_descs_list); | 
|  | ++descs; | 
|  | } | 
|  | s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); | 
|  |  | 
|  | s->packet_index = 0; | 
|  | do { | 
|  | struct fw_iso_packet params; | 
|  |  | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | err = queue_in_packet(s, ¶ms); | 
|  | } else { | 
|  | bool sched_irq = false; | 
|  |  | 
|  | params.header_length = 0; | 
|  | params.payload_length = 0; | 
|  |  | 
|  | if (is_irq_target) { | 
|  | sched_irq = !((s->packet_index + 1) % | 
|  | idle_irq_interval); | 
|  | } | 
|  |  | 
|  | err = queue_out_packet(s, ¶ms, sched_irq); | 
|  | } | 
|  | if (err < 0) | 
|  | goto err_pkt_descs; | 
|  | } while (s->packet_index > 0); | 
|  |  | 
|  | /* NOTE: TAG1 matches CIP. This just affects in stream. */ | 
|  | tag = FW_ISO_CONTEXT_MATCH_TAG1; | 
|  | if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) | 
|  | tag |= FW_ISO_CONTEXT_MATCH_TAG0; | 
|  |  | 
|  | s->ready_processing = false; | 
|  | err = fw_iso_context_start(s->context, -1, 0, tag); | 
|  | if (err < 0) | 
|  | goto err_pkt_descs; | 
|  |  | 
|  | return 0; | 
|  | err_pkt_descs: | 
|  | kfree(s->packet_descs); | 
|  | s->packet_descs = NULL; | 
|  | err_context: | 
|  | if (s->direction == AMDTP_OUT_STREAM) { | 
|  | kfree(s->ctx_data.rx.seq.descs); | 
|  | } else { | 
|  | if (s->domain->replay.enable) | 
|  | kfree(s->ctx_data.tx.cache.descs); | 
|  | } | 
|  | fw_iso_context_destroy(s->context); | 
|  | s->context = ERR_PTR(-1); | 
|  | err_buffer: | 
|  | iso_packets_buffer_destroy(&s->buffer, s->unit); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * amdtp_domain_stream_pcm_pointer - get the PCM buffer position | 
|  | * @d: the AMDTP domain. | 
|  | * @s: the AMDTP stream that transports the PCM data | 
|  | * | 
|  | * Returns the current buffer position, in frames. | 
|  | */ | 
|  | unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, | 
|  | struct amdtp_stream *s) | 
|  | { | 
|  | struct amdtp_stream *irq_target = d->irq_target; | 
|  |  | 
|  | if (irq_target && amdtp_stream_running(irq_target)) { | 
|  | // The work item to call snd_pcm_period_elapsed() can reach here by the call of | 
|  | // snd_pcm_ops.pointer(), however less packets would be available then. Therefore | 
|  | // the following call is just for user process contexts. | 
|  | if (current_work() != &s->period_work) | 
|  | fw_iso_context_flush_completions(irq_target->context); | 
|  | } | 
|  |  | 
|  | return READ_ONCE(s->pcm_buffer_pointer); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); | 
|  |  | 
|  | /** | 
|  | * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames | 
|  | * @d: the AMDTP domain. | 
|  | * @s: the AMDTP stream that transfers the PCM frames | 
|  | * | 
|  | * Returns zero always. | 
|  | */ | 
|  | int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) | 
|  | { | 
|  | struct amdtp_stream *irq_target = d->irq_target; | 
|  |  | 
|  | // Process isochronous packets for recent isochronous cycle to handle | 
|  | // queued PCM frames. | 
|  | if (irq_target && amdtp_stream_running(irq_target)) | 
|  | fw_iso_context_flush_completions(irq_target->context); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_update - update the stream after a bus reset | 
|  | * @s: the AMDTP stream | 
|  | */ | 
|  | void amdtp_stream_update(struct amdtp_stream *s) | 
|  | { | 
|  | /* Precomputing. */ | 
|  | WRITE_ONCE(s->source_node_id_field, | 
|  | (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_update); | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_stop - stop sending packets | 
|  | * @s: the AMDTP stream to stop | 
|  | * | 
|  | * All PCM and MIDI devices of the stream must be stopped before the stream | 
|  | * itself can be stopped. | 
|  | */ | 
|  | static void amdtp_stream_stop(struct amdtp_stream *s) | 
|  | { | 
|  | guard(mutex)(&s->mutex); | 
|  |  | 
|  | if (!amdtp_stream_running(s)) | 
|  | return; | 
|  |  | 
|  | cancel_work_sync(&s->period_work); | 
|  | fw_iso_context_stop(s->context); | 
|  | fw_iso_context_destroy(s->context); | 
|  | s->context = ERR_PTR(-1); | 
|  | iso_packets_buffer_destroy(&s->buffer, s->unit); | 
|  | kfree(s->packet_descs); | 
|  | s->packet_descs = NULL; | 
|  |  | 
|  | if (s->direction == AMDTP_OUT_STREAM) { | 
|  | kfree(s->ctx_data.rx.seq.descs); | 
|  | } else { | 
|  | if (s->domain->replay.enable) | 
|  | kfree(s->ctx_data.tx.cache.descs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * amdtp_stream_pcm_abort - abort the running PCM device | 
|  | * @s: the AMDTP stream about to be stopped | 
|  | * | 
|  | * If the isochronous stream needs to be stopped asynchronously, call this | 
|  | * function first to stop the PCM device. | 
|  | */ | 
|  | void amdtp_stream_pcm_abort(struct amdtp_stream *s) | 
|  | { | 
|  | struct snd_pcm_substream *pcm; | 
|  |  | 
|  | pcm = READ_ONCE(s->pcm); | 
|  | if (pcm) | 
|  | snd_pcm_stop_xrun(pcm); | 
|  | } | 
|  | EXPORT_SYMBOL(amdtp_stream_pcm_abort); | 
|  |  | 
|  | /** | 
|  | * amdtp_domain_init - initialize an AMDTP domain structure | 
|  | * @d: the AMDTP domain to initialize. | 
|  | */ | 
|  | int amdtp_domain_init(struct amdtp_domain *d) | 
|  | { | 
|  | INIT_LIST_HEAD(&d->streams); | 
|  |  | 
|  | d->events_per_period = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amdtp_domain_init); | 
|  |  | 
|  | /** | 
|  | * amdtp_domain_destroy - destroy an AMDTP domain structure | 
|  | * @d: the AMDTP domain to destroy. | 
|  | */ | 
|  | void amdtp_domain_destroy(struct amdtp_domain *d) | 
|  | { | 
|  | // At present nothing to do. | 
|  | return; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amdtp_domain_destroy); | 
|  |  | 
|  | /** | 
|  | * amdtp_domain_add_stream - register isoc context into the domain. | 
|  | * @d: the AMDTP domain. | 
|  | * @s: the AMDTP stream. | 
|  | * @channel: the isochronous channel on the bus. | 
|  | * @speed: firewire speed code. | 
|  | */ | 
|  | int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, | 
|  | int channel, int speed) | 
|  | { | 
|  | struct amdtp_stream *tmp; | 
|  |  | 
|  | list_for_each_entry(tmp, &d->streams, list) { | 
|  | if (s == tmp) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | list_add(&s->list, &d->streams); | 
|  |  | 
|  | s->channel = channel; | 
|  | s->speed = speed; | 
|  | s->domain = d; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); | 
|  |  | 
|  | // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams | 
|  | // is less than the number of rx streams, the first tx stream is selected. | 
|  | static int make_association(struct amdtp_domain *d) | 
|  | { | 
|  | unsigned int dst_index = 0; | 
|  | struct amdtp_stream *rx; | 
|  |  | 
|  | // Make association to replay target. | 
|  | list_for_each_entry(rx, &d->streams, list) { | 
|  | if (rx->direction == AMDTP_OUT_STREAM) { | 
|  | unsigned int src_index = 0; | 
|  | struct amdtp_stream *tx = NULL; | 
|  | struct amdtp_stream *s; | 
|  |  | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | if (dst_index == src_index) { | 
|  | tx = s; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ++src_index; | 
|  | } | 
|  | } | 
|  | if (!tx) { | 
|  | // Select the first entry. | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (s->direction == AMDTP_IN_STREAM) { | 
|  | tx = s; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // No target is available to replay sequence. | 
|  | if (!tx) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rx->ctx_data.rx.replay_target = tx; | 
|  |  | 
|  | ++dst_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * amdtp_domain_start - start sending packets for isoc context in the domain. | 
|  | * @d: the AMDTP domain. | 
|  | * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR | 
|  | *			 contexts. | 
|  | * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in | 
|  | *		IT context. | 
|  | * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay | 
|  | *		       according to arrival of events in tx packets. | 
|  | */ | 
|  | int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, | 
|  | bool replay_on_the_fly) | 
|  | { | 
|  | unsigned int events_per_buffer = d->events_per_buffer; | 
|  | unsigned int events_per_period = d->events_per_period; | 
|  | unsigned int queue_size; | 
|  | struct amdtp_stream *s; | 
|  | bool found = false; | 
|  | int err; | 
|  |  | 
|  | if (replay_seq) { | 
|  | err = make_association(d); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | d->replay.enable = replay_seq; | 
|  | d->replay.on_the_fly = replay_on_the_fly; | 
|  |  | 
|  | // Select an IT context as IRQ target. | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | if (s->direction == AMDTP_OUT_STREAM) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) | 
|  | return -ENXIO; | 
|  | d->irq_target = s; | 
|  |  | 
|  | d->processing_cycle.tx_init_skip = tx_init_skip_cycles; | 
|  |  | 
|  | // This is a case that AMDTP streams in domain run just for MIDI | 
|  | // substream. Use the number of events equivalent to 10 msec as | 
|  | // interval of hardware IRQ. | 
|  | if (events_per_period == 0) | 
|  | events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; | 
|  | if (events_per_buffer == 0) | 
|  | events_per_buffer = events_per_period * 3; | 
|  |  | 
|  | queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, | 
|  | amdtp_rate_table[d->irq_target->sfc]); | 
|  |  | 
|  | list_for_each_entry(s, &d->streams, list) { | 
|  | unsigned int idle_irq_interval = 0; | 
|  |  | 
|  | if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { | 
|  | idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, | 
|  | amdtp_rate_table[d->irq_target->sfc]); | 
|  | } | 
|  |  | 
|  | // Starts immediately but actually DMA context starts several hundred cycles later. | 
|  | err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); | 
|  | if (err < 0) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | list_for_each_entry(s, &d->streams, list) | 
|  | amdtp_stream_stop(s); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amdtp_domain_start); | 
|  |  | 
|  | /** | 
|  | * amdtp_domain_stop - stop sending packets for isoc context in the same domain. | 
|  | * @d: the AMDTP domain to which the isoc contexts belong. | 
|  | */ | 
|  | void amdtp_domain_stop(struct amdtp_domain *d) | 
|  | { | 
|  | struct amdtp_stream *s, *next; | 
|  |  | 
|  | if (d->irq_target) | 
|  | amdtp_stream_stop(d->irq_target); | 
|  |  | 
|  | list_for_each_entry_safe(s, next, &d->streams, list) { | 
|  | list_del(&s->list); | 
|  |  | 
|  | if (s != d->irq_target) | 
|  | amdtp_stream_stop(s); | 
|  | } | 
|  |  | 
|  | d->events_per_period = 0; | 
|  | d->irq_target = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amdtp_domain_stop); |