| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2020 Hannes Reinecke, SUSE Linux |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/crc32.h> |
| #include <linux/base64.h> |
| #include <linux/prandom.h> |
| #include <linux/scatterlist.h> |
| #include <linux/unaligned.h> |
| #include <crypto/hash.h> |
| #include <crypto/dh.h> |
| #include <crypto/hkdf.h> |
| #include <linux/nvme.h> |
| #include <linux/nvme-auth.h> |
| |
| #define HKDF_MAX_HASHLEN 64 |
| |
| static u32 nvme_dhchap_seqnum; |
| static DEFINE_MUTEX(nvme_dhchap_mutex); |
| |
| u32 nvme_auth_get_seqnum(void) |
| { |
| u32 seqnum; |
| |
| mutex_lock(&nvme_dhchap_mutex); |
| if (!nvme_dhchap_seqnum) |
| nvme_dhchap_seqnum = get_random_u32(); |
| else { |
| nvme_dhchap_seqnum++; |
| if (!nvme_dhchap_seqnum) |
| nvme_dhchap_seqnum++; |
| } |
| seqnum = nvme_dhchap_seqnum; |
| mutex_unlock(&nvme_dhchap_mutex); |
| return seqnum; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_get_seqnum); |
| |
| static struct nvme_auth_dhgroup_map { |
| const char name[16]; |
| const char kpp[16]; |
| } dhgroup_map[] = { |
| [NVME_AUTH_DHGROUP_NULL] = { |
| .name = "null", .kpp = "null" }, |
| [NVME_AUTH_DHGROUP_2048] = { |
| .name = "ffdhe2048", .kpp = "ffdhe2048(dh)" }, |
| [NVME_AUTH_DHGROUP_3072] = { |
| .name = "ffdhe3072", .kpp = "ffdhe3072(dh)" }, |
| [NVME_AUTH_DHGROUP_4096] = { |
| .name = "ffdhe4096", .kpp = "ffdhe4096(dh)" }, |
| [NVME_AUTH_DHGROUP_6144] = { |
| .name = "ffdhe6144", .kpp = "ffdhe6144(dh)" }, |
| [NVME_AUTH_DHGROUP_8192] = { |
| .name = "ffdhe8192", .kpp = "ffdhe8192(dh)" }, |
| }; |
| |
| const char *nvme_auth_dhgroup_name(u8 dhgroup_id) |
| { |
| if (dhgroup_id >= ARRAY_SIZE(dhgroup_map)) |
| return NULL; |
| return dhgroup_map[dhgroup_id].name; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_name); |
| |
| const char *nvme_auth_dhgroup_kpp(u8 dhgroup_id) |
| { |
| if (dhgroup_id >= ARRAY_SIZE(dhgroup_map)) |
| return NULL; |
| return dhgroup_map[dhgroup_id].kpp; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_kpp); |
| |
| u8 nvme_auth_dhgroup_id(const char *dhgroup_name) |
| { |
| int i; |
| |
| if (!dhgroup_name || !strlen(dhgroup_name)) |
| return NVME_AUTH_DHGROUP_INVALID; |
| for (i = 0; i < ARRAY_SIZE(dhgroup_map); i++) { |
| if (!strlen(dhgroup_map[i].name)) |
| continue; |
| if (!strncmp(dhgroup_map[i].name, dhgroup_name, |
| strlen(dhgroup_map[i].name))) |
| return i; |
| } |
| return NVME_AUTH_DHGROUP_INVALID; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_id); |
| |
| static struct nvme_dhchap_hash_map { |
| int len; |
| const char hmac[15]; |
| const char digest[8]; |
| } hash_map[] = { |
| [NVME_AUTH_HASH_SHA256] = { |
| .len = 32, |
| .hmac = "hmac(sha256)", |
| .digest = "sha256", |
| }, |
| [NVME_AUTH_HASH_SHA384] = { |
| .len = 48, |
| .hmac = "hmac(sha384)", |
| .digest = "sha384", |
| }, |
| [NVME_AUTH_HASH_SHA512] = { |
| .len = 64, |
| .hmac = "hmac(sha512)", |
| .digest = "sha512", |
| }, |
| }; |
| |
| const char *nvme_auth_hmac_name(u8 hmac_id) |
| { |
| if (hmac_id >= ARRAY_SIZE(hash_map)) |
| return NULL; |
| return hash_map[hmac_id].hmac; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_hmac_name); |
| |
| const char *nvme_auth_digest_name(u8 hmac_id) |
| { |
| if (hmac_id >= ARRAY_SIZE(hash_map)) |
| return NULL; |
| return hash_map[hmac_id].digest; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_digest_name); |
| |
| u8 nvme_auth_hmac_id(const char *hmac_name) |
| { |
| int i; |
| |
| if (!hmac_name || !strlen(hmac_name)) |
| return NVME_AUTH_HASH_INVALID; |
| |
| for (i = 0; i < ARRAY_SIZE(hash_map); i++) { |
| if (!strlen(hash_map[i].hmac)) |
| continue; |
| if (!strncmp(hash_map[i].hmac, hmac_name, |
| strlen(hash_map[i].hmac))) |
| return i; |
| } |
| return NVME_AUTH_HASH_INVALID; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_hmac_id); |
| |
| size_t nvme_auth_hmac_hash_len(u8 hmac_id) |
| { |
| if (hmac_id >= ARRAY_SIZE(hash_map)) |
| return 0; |
| return hash_map[hmac_id].len; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_hmac_hash_len); |
| |
| u32 nvme_auth_key_struct_size(u32 key_len) |
| { |
| struct nvme_dhchap_key key; |
| |
| return struct_size(&key, key, key_len); |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_key_struct_size); |
| |
| struct nvme_dhchap_key *nvme_auth_extract_key(unsigned char *secret, |
| u8 key_hash) |
| { |
| struct nvme_dhchap_key *key; |
| unsigned char *p; |
| u32 crc; |
| int ret, key_len; |
| size_t allocated_len = strlen(secret); |
| |
| /* Secret might be affixed with a ':' */ |
| p = strrchr(secret, ':'); |
| if (p) |
| allocated_len = p - secret; |
| key = nvme_auth_alloc_key(allocated_len, 0); |
| if (!key) |
| return ERR_PTR(-ENOMEM); |
| |
| key_len = base64_decode(secret, allocated_len, key->key); |
| if (key_len < 0) { |
| pr_debug("base64 key decoding error %d\n", |
| key_len); |
| ret = key_len; |
| goto out_free_secret; |
| } |
| |
| if (key_len != 36 && key_len != 52 && |
| key_len != 68) { |
| pr_err("Invalid key len %d\n", key_len); |
| ret = -EINVAL; |
| goto out_free_secret; |
| } |
| |
| /* The last four bytes is the CRC in little-endian format */ |
| key_len -= 4; |
| /* |
| * The linux implementation doesn't do pre- and post-increments, |
| * so we have to do it manually. |
| */ |
| crc = ~crc32(~0, key->key, key_len); |
| |
| if (get_unaligned_le32(key->key + key_len) != crc) { |
| pr_err("key crc mismatch (key %08x, crc %08x)\n", |
| get_unaligned_le32(key->key + key_len), crc); |
| ret = -EKEYREJECTED; |
| goto out_free_secret; |
| } |
| key->len = key_len; |
| key->hash = key_hash; |
| return key; |
| out_free_secret: |
| nvme_auth_free_key(key); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_extract_key); |
| |
| struct nvme_dhchap_key *nvme_auth_alloc_key(u32 len, u8 hash) |
| { |
| u32 num_bytes = nvme_auth_key_struct_size(len); |
| struct nvme_dhchap_key *key = kzalloc(num_bytes, GFP_KERNEL); |
| |
| if (key) { |
| key->len = len; |
| key->hash = hash; |
| } |
| return key; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_alloc_key); |
| |
| void nvme_auth_free_key(struct nvme_dhchap_key *key) |
| { |
| if (!key) |
| return; |
| kfree_sensitive(key); |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_free_key); |
| |
| struct nvme_dhchap_key *nvme_auth_transform_key( |
| struct nvme_dhchap_key *key, char *nqn) |
| { |
| const char *hmac_name; |
| struct crypto_shash *key_tfm; |
| SHASH_DESC_ON_STACK(shash, key_tfm); |
| struct nvme_dhchap_key *transformed_key; |
| int ret, key_len; |
| |
| if (!key) { |
| pr_warn("No key specified\n"); |
| return ERR_PTR(-ENOKEY); |
| } |
| if (key->hash == 0) { |
| key_len = nvme_auth_key_struct_size(key->len); |
| transformed_key = kmemdup(key, key_len, GFP_KERNEL); |
| if (!transformed_key) |
| return ERR_PTR(-ENOMEM); |
| return transformed_key; |
| } |
| hmac_name = nvme_auth_hmac_name(key->hash); |
| if (!hmac_name) { |
| pr_warn("Invalid key hash id %d\n", key->hash); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| key_tfm = crypto_alloc_shash(hmac_name, 0, 0); |
| if (IS_ERR(key_tfm)) |
| return ERR_CAST(key_tfm); |
| |
| key_len = crypto_shash_digestsize(key_tfm); |
| transformed_key = nvme_auth_alloc_key(key_len, key->hash); |
| if (!transformed_key) { |
| ret = -ENOMEM; |
| goto out_free_key; |
| } |
| |
| shash->tfm = key_tfm; |
| ret = crypto_shash_setkey(key_tfm, key->key, key->len); |
| if (ret < 0) |
| goto out_free_transformed_key; |
| ret = crypto_shash_init(shash); |
| if (ret < 0) |
| goto out_free_transformed_key; |
| ret = crypto_shash_update(shash, nqn, strlen(nqn)); |
| if (ret < 0) |
| goto out_free_transformed_key; |
| ret = crypto_shash_update(shash, "NVMe-over-Fabrics", 17); |
| if (ret < 0) |
| goto out_free_transformed_key; |
| ret = crypto_shash_final(shash, transformed_key->key); |
| if (ret < 0) |
| goto out_free_transformed_key; |
| |
| crypto_free_shash(key_tfm); |
| |
| return transformed_key; |
| |
| out_free_transformed_key: |
| nvme_auth_free_key(transformed_key); |
| out_free_key: |
| crypto_free_shash(key_tfm); |
| |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_transform_key); |
| |
| static int nvme_auth_hash_skey(int hmac_id, u8 *skey, size_t skey_len, u8 *hkey) |
| { |
| const char *digest_name; |
| struct crypto_shash *tfm; |
| int ret; |
| |
| digest_name = nvme_auth_digest_name(hmac_id); |
| if (!digest_name) { |
| pr_debug("%s: failed to get digest for %d\n", __func__, |
| hmac_id); |
| return -EINVAL; |
| } |
| tfm = crypto_alloc_shash(digest_name, 0, 0); |
| if (IS_ERR(tfm)) |
| return -ENOMEM; |
| |
| ret = crypto_shash_tfm_digest(tfm, skey, skey_len, hkey); |
| if (ret < 0) |
| pr_debug("%s: Failed to hash digest len %zu\n", __func__, |
| skey_len); |
| |
| crypto_free_shash(tfm); |
| return ret; |
| } |
| |
| int nvme_auth_augmented_challenge(u8 hmac_id, u8 *skey, size_t skey_len, |
| u8 *challenge, u8 *aug, size_t hlen) |
| { |
| struct crypto_shash *tfm; |
| u8 *hashed_key; |
| const char *hmac_name; |
| int ret; |
| |
| hashed_key = kmalloc(hlen, GFP_KERNEL); |
| if (!hashed_key) |
| return -ENOMEM; |
| |
| ret = nvme_auth_hash_skey(hmac_id, skey, |
| skey_len, hashed_key); |
| if (ret < 0) |
| goto out_free_key; |
| |
| hmac_name = nvme_auth_hmac_name(hmac_id); |
| if (!hmac_name) { |
| pr_warn("%s: invalid hash algorithm %d\n", |
| __func__, hmac_id); |
| ret = -EINVAL; |
| goto out_free_key; |
| } |
| |
| tfm = crypto_alloc_shash(hmac_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| ret = PTR_ERR(tfm); |
| goto out_free_key; |
| } |
| |
| ret = crypto_shash_setkey(tfm, hashed_key, hlen); |
| if (ret) |
| goto out_free_hash; |
| |
| ret = crypto_shash_tfm_digest(tfm, challenge, hlen, aug); |
| out_free_hash: |
| crypto_free_shash(tfm); |
| out_free_key: |
| kfree_sensitive(hashed_key); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_augmented_challenge); |
| |
| int nvme_auth_gen_privkey(struct crypto_kpp *dh_tfm, u8 dh_gid) |
| { |
| int ret; |
| |
| ret = crypto_kpp_set_secret(dh_tfm, NULL, 0); |
| if (ret) |
| pr_debug("failed to set private key, error %d\n", ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_gen_privkey); |
| |
| int nvme_auth_gen_pubkey(struct crypto_kpp *dh_tfm, |
| u8 *host_key, size_t host_key_len) |
| { |
| struct kpp_request *req; |
| struct crypto_wait wait; |
| struct scatterlist dst; |
| int ret; |
| |
| req = kpp_request_alloc(dh_tfm, GFP_KERNEL); |
| if (!req) |
| return -ENOMEM; |
| |
| crypto_init_wait(&wait); |
| kpp_request_set_input(req, NULL, 0); |
| sg_init_one(&dst, host_key, host_key_len); |
| kpp_request_set_output(req, &dst, host_key_len); |
| kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &wait); |
| |
| ret = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); |
| kpp_request_free(req); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_gen_pubkey); |
| |
| int nvme_auth_gen_shared_secret(struct crypto_kpp *dh_tfm, |
| u8 *ctrl_key, size_t ctrl_key_len, |
| u8 *sess_key, size_t sess_key_len) |
| { |
| struct kpp_request *req; |
| struct crypto_wait wait; |
| struct scatterlist src, dst; |
| int ret; |
| |
| req = kpp_request_alloc(dh_tfm, GFP_KERNEL); |
| if (!req) |
| return -ENOMEM; |
| |
| crypto_init_wait(&wait); |
| sg_init_one(&src, ctrl_key, ctrl_key_len); |
| kpp_request_set_input(req, &src, ctrl_key_len); |
| sg_init_one(&dst, sess_key, sess_key_len); |
| kpp_request_set_output(req, &dst, sess_key_len); |
| kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &wait); |
| |
| ret = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); |
| |
| kpp_request_free(req); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_gen_shared_secret); |
| |
| int nvme_auth_generate_key(u8 *secret, struct nvme_dhchap_key **ret_key) |
| { |
| struct nvme_dhchap_key *key; |
| u8 key_hash; |
| |
| if (!secret) { |
| *ret_key = NULL; |
| return 0; |
| } |
| |
| if (sscanf(secret, "DHHC-1:%hhd:%*s:", &key_hash) != 1) |
| return -EINVAL; |
| |
| /* Pass in the secret without the 'DHHC-1:XX:' prefix */ |
| key = nvme_auth_extract_key(secret + 10, key_hash); |
| if (IS_ERR(key)) { |
| *ret_key = NULL; |
| return PTR_ERR(key); |
| } |
| |
| *ret_key = key; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_generate_key); |
| |
| /** |
| * nvme_auth_generate_psk - Generate a PSK for TLS |
| * @hmac_id: Hash function identifier |
| * @skey: Session key |
| * @skey_len: Length of @skey |
| * @c1: Value of challenge C1 |
| * @c2: Value of challenge C2 |
| * @hash_len: Hash length of the hash algorithm |
| * @ret_psk: Pointer to the resulting generated PSK |
| * @ret_len: length of @ret_psk |
| * |
| * Generate a PSK for TLS as specified in NVMe base specification, section |
| * 8.13.5.9: Generated PSK for TLS |
| * |
| * The generated PSK for TLS shall be computed applying the HMAC function |
| * using the hash function H( ) selected by the HashID parameter in the |
| * DH-HMAC-CHAP_Challenge message with the session key KS as key to the |
| * concatenation of the two challenges C1 and C2 (i.e., generated |
| * PSK = HMAC(KS, C1 || C2)). |
| * |
| * Returns 0 on success with a valid generated PSK pointer in @ret_psk and |
| * the length of @ret_psk in @ret_len, or a negative error number otherwise. |
| */ |
| int nvme_auth_generate_psk(u8 hmac_id, u8 *skey, size_t skey_len, |
| u8 *c1, u8 *c2, size_t hash_len, u8 **ret_psk, size_t *ret_len) |
| { |
| struct crypto_shash *tfm; |
| SHASH_DESC_ON_STACK(shash, tfm); |
| u8 *psk; |
| const char *hmac_name; |
| int ret, psk_len; |
| |
| if (!c1 || !c2) |
| return -EINVAL; |
| |
| hmac_name = nvme_auth_hmac_name(hmac_id); |
| if (!hmac_name) { |
| pr_warn("%s: invalid hash algorithm %d\n", |
| __func__, hmac_id); |
| return -EINVAL; |
| } |
| |
| tfm = crypto_alloc_shash(hmac_name, 0, 0); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| psk_len = crypto_shash_digestsize(tfm); |
| psk = kzalloc(psk_len, GFP_KERNEL); |
| if (!psk) { |
| ret = -ENOMEM; |
| goto out_free_tfm; |
| } |
| |
| shash->tfm = tfm; |
| ret = crypto_shash_setkey(tfm, skey, skey_len); |
| if (ret) |
| goto out_free_psk; |
| |
| ret = crypto_shash_init(shash); |
| if (ret) |
| goto out_free_psk; |
| |
| ret = crypto_shash_update(shash, c1, hash_len); |
| if (ret) |
| goto out_free_psk; |
| |
| ret = crypto_shash_update(shash, c2, hash_len); |
| if (ret) |
| goto out_free_psk; |
| |
| ret = crypto_shash_final(shash, psk); |
| if (!ret) { |
| *ret_psk = psk; |
| *ret_len = psk_len; |
| } |
| |
| out_free_psk: |
| if (ret) |
| kfree_sensitive(psk); |
| out_free_tfm: |
| crypto_free_shash(tfm); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_generate_psk); |
| |
| /** |
| * nvme_auth_generate_digest - Generate TLS PSK digest |
| * @hmac_id: Hash function identifier |
| * @psk: Generated input PSK |
| * @psk_len: Length of @psk |
| * @subsysnqn: NQN of the subsystem |
| * @hostnqn: NQN of the host |
| * @ret_digest: Pointer to the returned digest |
| * |
| * Generate a TLS PSK digest as specified in TP8018 Section 3.6.1.3: |
| * TLS PSK and PSK identity Derivation |
| * |
| * The PSK digest shall be computed by encoding in Base64 (refer to RFC |
| * 4648) the result of the application of the HMAC function using the hash |
| * function specified in item 4 above (ie the hash function of the cipher |
| * suite associated with the PSK identity) with the PSK as HMAC key to the |
| * concatenation of: |
| * - the NQN of the host (i.e., NQNh) not including the null terminator; |
| * - a space character; |
| * - the NQN of the NVM subsystem (i.e., NQNc) not including the null |
| * terminator; |
| * - a space character; and |
| * - the seventeen ASCII characters "NVMe-over-Fabrics" |
| * (i.e., <PSK digest> = Base64(HMAC(PSK, NQNh || " " || NQNc || " " || |
| * "NVMe-over-Fabrics"))). |
| * The length of the PSK digest depends on the hash function used to compute |
| * it as follows: |
| * - If the SHA-256 hash function is used, the resulting PSK digest is 44 |
| * characters long; or |
| * - If the SHA-384 hash function is used, the resulting PSK digest is 64 |
| * characters long. |
| * |
| * Returns 0 on success with a valid digest pointer in @ret_digest, or a |
| * negative error number on failure. |
| */ |
| int nvme_auth_generate_digest(u8 hmac_id, u8 *psk, size_t psk_len, |
| char *subsysnqn, char *hostnqn, u8 **ret_digest) |
| { |
| struct crypto_shash *tfm; |
| SHASH_DESC_ON_STACK(shash, tfm); |
| u8 *digest, *enc; |
| const char *hmac_name; |
| size_t digest_len, hmac_len; |
| int ret; |
| |
| if (WARN_ON(!subsysnqn || !hostnqn)) |
| return -EINVAL; |
| |
| hmac_name = nvme_auth_hmac_name(hmac_id); |
| if (!hmac_name) { |
| pr_warn("%s: invalid hash algorithm %d\n", |
| __func__, hmac_id); |
| return -EINVAL; |
| } |
| |
| switch (nvme_auth_hmac_hash_len(hmac_id)) { |
| case 32: |
| hmac_len = 44; |
| break; |
| case 48: |
| hmac_len = 64; |
| break; |
| default: |
| pr_warn("%s: invalid hash algorithm '%s'\n", |
| __func__, hmac_name); |
| return -EINVAL; |
| } |
| |
| enc = kzalloc(hmac_len + 1, GFP_KERNEL); |
| if (!enc) |
| return -ENOMEM; |
| |
| tfm = crypto_alloc_shash(hmac_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| ret = PTR_ERR(tfm); |
| goto out_free_enc; |
| } |
| |
| digest_len = crypto_shash_digestsize(tfm); |
| digest = kzalloc(digest_len, GFP_KERNEL); |
| if (!digest) { |
| ret = -ENOMEM; |
| goto out_free_tfm; |
| } |
| |
| shash->tfm = tfm; |
| ret = crypto_shash_setkey(tfm, psk, psk_len); |
| if (ret) |
| goto out_free_digest; |
| |
| ret = crypto_shash_init(shash); |
| if (ret) |
| goto out_free_digest; |
| |
| ret = crypto_shash_update(shash, hostnqn, strlen(hostnqn)); |
| if (ret) |
| goto out_free_digest; |
| |
| ret = crypto_shash_update(shash, " ", 1); |
| if (ret) |
| goto out_free_digest; |
| |
| ret = crypto_shash_update(shash, subsysnqn, strlen(subsysnqn)); |
| if (ret) |
| goto out_free_digest; |
| |
| ret = crypto_shash_update(shash, " NVMe-over-Fabrics", 18); |
| if (ret) |
| goto out_free_digest; |
| |
| ret = crypto_shash_final(shash, digest); |
| if (ret) |
| goto out_free_digest; |
| |
| ret = base64_encode(digest, digest_len, enc); |
| if (ret < hmac_len) { |
| ret = -ENOKEY; |
| goto out_free_digest; |
| } |
| *ret_digest = enc; |
| ret = 0; |
| |
| out_free_digest: |
| kfree_sensitive(digest); |
| out_free_tfm: |
| crypto_free_shash(tfm); |
| out_free_enc: |
| if (ret) |
| kfree_sensitive(enc); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_generate_digest); |
| |
| /** |
| * nvme_auth_derive_tls_psk - Derive TLS PSK |
| * @hmac_id: Hash function identifier |
| * @psk: generated input PSK |
| * @psk_len: size of @psk |
| * @psk_digest: TLS PSK digest |
| * @ret_psk: Pointer to the resulting TLS PSK |
| * |
| * Derive a TLS PSK as specified in TP8018 Section 3.6.1.3: |
| * TLS PSK and PSK identity Derivation |
| * |
| * The TLS PSK shall be derived as follows from an input PSK |
| * (i.e., either a retained PSK or a generated PSK) and a PSK |
| * identity using the HKDF-Extract and HKDF-Expand-Label operations |
| * (refer to RFC 5869 and RFC 8446) where the hash function is the |
| * one specified by the hash specifier of the PSK identity: |
| * 1. PRK = HKDF-Extract(0, Input PSK); and |
| * 2. TLS PSK = HKDF-Expand-Label(PRK, "nvme-tls-psk", PskIdentityContext, L), |
| * where PskIdentityContext is the hash identifier indicated in |
| * the PSK identity concatenated to a space character and to the |
| * Base64 PSK digest (i.e., "<hash> <PSK digest>") and L is the |
| * output size in bytes of the hash function (i.e., 32 for SHA-256 |
| * and 48 for SHA-384). |
| * |
| * Returns 0 on success with a valid psk pointer in @ret_psk or a negative |
| * error number otherwise. |
| */ |
| int nvme_auth_derive_tls_psk(int hmac_id, u8 *psk, size_t psk_len, |
| u8 *psk_digest, u8 **ret_psk) |
| { |
| struct crypto_shash *hmac_tfm; |
| const char *hmac_name; |
| const char *psk_prefix = "tls13 nvme-tls-psk"; |
| static const char default_salt[HKDF_MAX_HASHLEN]; |
| size_t info_len, prk_len; |
| char *info; |
| unsigned char *prk, *tls_key; |
| int ret; |
| |
| hmac_name = nvme_auth_hmac_name(hmac_id); |
| if (!hmac_name) { |
| pr_warn("%s: invalid hash algorithm %d\n", |
| __func__, hmac_id); |
| return -EINVAL; |
| } |
| if (hmac_id == NVME_AUTH_HASH_SHA512) { |
| pr_warn("%s: unsupported hash algorithm %s\n", |
| __func__, hmac_name); |
| return -EINVAL; |
| } |
| |
| hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0); |
| if (IS_ERR(hmac_tfm)) |
| return PTR_ERR(hmac_tfm); |
| |
| prk_len = crypto_shash_digestsize(hmac_tfm); |
| prk = kzalloc(prk_len, GFP_KERNEL); |
| if (!prk) { |
| ret = -ENOMEM; |
| goto out_free_shash; |
| } |
| |
| if (WARN_ON(prk_len > HKDF_MAX_HASHLEN)) { |
| ret = -EINVAL; |
| goto out_free_prk; |
| } |
| ret = hkdf_extract(hmac_tfm, psk, psk_len, |
| default_salt, prk_len, prk); |
| if (ret) |
| goto out_free_prk; |
| |
| ret = crypto_shash_setkey(hmac_tfm, prk, prk_len); |
| if (ret) |
| goto out_free_prk; |
| |
| /* |
| * 2 additional bytes for the length field from HDKF-Expand-Label, |
| * 2 additional bytes for the HMAC ID, and one byte for the space |
| * separator. |
| */ |
| info_len = strlen(psk_digest) + strlen(psk_prefix) + 5; |
| info = kzalloc(info_len + 1, GFP_KERNEL); |
| if (!info) { |
| ret = -ENOMEM; |
| goto out_free_prk; |
| } |
| |
| put_unaligned_be16(psk_len, info); |
| memcpy(info + 2, psk_prefix, strlen(psk_prefix)); |
| sprintf(info + 2 + strlen(psk_prefix), "%02d %s", hmac_id, psk_digest); |
| |
| tls_key = kzalloc(psk_len, GFP_KERNEL); |
| if (!tls_key) { |
| ret = -ENOMEM; |
| goto out_free_info; |
| } |
| ret = hkdf_expand(hmac_tfm, info, info_len, tls_key, psk_len); |
| if (ret) { |
| kfree(tls_key); |
| goto out_free_info; |
| } |
| *ret_psk = tls_key; |
| |
| out_free_info: |
| kfree(info); |
| out_free_prk: |
| kfree(prk); |
| out_free_shash: |
| crypto_free_shash(hmac_tfm); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(nvme_auth_derive_tls_psk); |
| |
| MODULE_DESCRIPTION("NVMe Authentication framework"); |
| MODULE_LICENSE("GPL v2"); |