blob: a02f7dc8053e02fb93ef3a3b45a30b339652d71e [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
//
// Template to generate [V]PCLMULQDQ-based CRC functions for x86
//
// Copyright 2025 Google LLC
//
// Author: Eric Biggers <ebiggers@google.com>
#include <linux/linkage.h>
#include <linux/objtool.h>
// Offsets within the generated constants table
.set OFFSETOF_BSWAP_MASK, -5*16 // msb-first CRCs only
.set OFFSETOF_FOLD_ACROSS_2048_BITS_CONSTS, -4*16 // must precede next
.set OFFSETOF_FOLD_ACROSS_1024_BITS_CONSTS, -3*16 // must precede next
.set OFFSETOF_FOLD_ACROSS_512_BITS_CONSTS, -2*16 // must precede next
.set OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS, -1*16 // must precede next
.set OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS, 0*16 // must be 0
.set OFFSETOF_SHUF_TABLE, 1*16
.set OFFSETOF_BARRETT_REDUCTION_CONSTS, 4*16
// Emit a VEX (or EVEX) coded instruction if allowed, or emulate it using the
// corresponding non-VEX instruction plus any needed moves. The supported
// instruction formats are:
//
// - Two-arg [src, dst], where the non-VEX format is the same.
// - Three-arg [src1, src2, dst] where the non-VEX format is
// [src1, src2_and_dst]. If src2 != dst, then src1 must != dst too.
//
// \insn gives the instruction without a "v" prefix and including any immediate
// argument if needed to make the instruction follow one of the above formats.
// If \unaligned_mem_tmp is given, then the emitted non-VEX code moves \arg1 to
// it first; this is needed when \arg1 is an unaligned mem operand.
.macro _cond_vex insn:req, arg1:req, arg2:req, arg3, unaligned_mem_tmp
.if AVX_LEVEL == 0
// VEX not allowed. Emulate it.
.ifnb \arg3 // Three-arg [src1, src2, dst]
.ifc "\arg2", "\arg3" // src2 == dst?
.ifnb \unaligned_mem_tmp
movdqu \arg1, \unaligned_mem_tmp
\insn \unaligned_mem_tmp, \arg3
.else
\insn \arg1, \arg3
.endif
.else // src2 != dst
.ifc "\arg1", "\arg3"
.error "Can't have src1 == dst when src2 != dst"
.endif
.ifnb \unaligned_mem_tmp
movdqu \arg1, \unaligned_mem_tmp
movdqa \arg2, \arg3
\insn \unaligned_mem_tmp, \arg3
.else
movdqa \arg2, \arg3
\insn \arg1, \arg3
.endif
.endif
.else // Two-arg [src, dst]
.ifnb \unaligned_mem_tmp
movdqu \arg1, \unaligned_mem_tmp
\insn \unaligned_mem_tmp, \arg2
.else
\insn \arg1, \arg2
.endif
.endif
.else
// VEX is allowed. Emit the desired instruction directly.
.ifnb \arg3
v\insn \arg1, \arg2, \arg3
.else
v\insn \arg1, \arg2
.endif
.endif
.endm
// Broadcast an aligned 128-bit mem operand to all 128-bit lanes of a vector
// register of length VL.
.macro _vbroadcast src, dst
.if VL == 16
_cond_vex movdqa, \src, \dst
.elseif VL == 32
vbroadcasti128 \src, \dst
.else
vbroadcasti32x4 \src, \dst
.endif
.endm
// Load \vl bytes from the unaligned mem operand \src into \dst, and if the CRC
// is msb-first use \bswap_mask to reflect the bytes within each 128-bit lane.
.macro _load_data vl, src, bswap_mask, dst
.if \vl < 64
_cond_vex movdqu, "\src", \dst
.else
vmovdqu8 \src, \dst
.endif
.if !LSB_CRC
_cond_vex pshufb, \bswap_mask, \dst, \dst
.endif
.endm
.macro _prepare_v0 vl, v0, v1, bswap_mask
.if LSB_CRC
.if \vl < 64
_cond_vex pxor, (BUF), \v0, \v0, unaligned_mem_tmp=\v1
.else
vpxorq (BUF), \v0, \v0
.endif
.else
_load_data \vl, (BUF), \bswap_mask, \v1
.if \vl < 64
_cond_vex pxor, \v1, \v0, \v0
.else
vpxorq \v1, \v0, \v0
.endif
.endif
.endm
// The x^0..x^63 terms, i.e. poly128 mod x^64, i.e. the physically low qword for
// msb-first order or the physically high qword for lsb-first order
#define LO64_TERMS 0
// The x^64..x^127 terms, i.e. floor(poly128 / x^64), i.e. the physically high
// qword for msb-first order or the physically low qword for lsb-first order
#define HI64_TERMS 1
// Multiply the given \src1_terms of each 128-bit lane of \src1 by the given
// \src2_terms of each 128-bit lane of \src2, and write the result(s) to \dst.
.macro _pclmulqdq src1, src1_terms, src2, src2_terms, dst
_cond_vex "pclmulqdq $((\src1_terms ^ LSB_CRC) << 4) ^ (\src2_terms ^ LSB_CRC),", \
\src1, \src2, \dst
.endm
// Fold \acc into \data and store the result back into \acc. \data can be an
// unaligned mem operand if using VEX is allowed and the CRC is lsb-first so no
// byte-reflection is needed; otherwise it must be a vector register. \consts
// is a vector register containing the needed fold constants, and \tmp is a
// temporary vector register. All arguments must be the same length.
.macro _fold_vec acc, data, consts, tmp
_pclmulqdq \consts, HI64_TERMS, \acc, HI64_TERMS, \tmp
_pclmulqdq \consts, LO64_TERMS, \acc, LO64_TERMS, \acc
.if AVX_LEVEL <= 2
_cond_vex pxor, \data, \tmp, \tmp
_cond_vex pxor, \tmp, \acc, \acc
.else
vpternlogq $0x96, \data, \tmp, \acc
.endif
.endm
// Fold \acc into \data and store the result back into \acc. \data is an
// unaligned mem operand, \consts is a vector register containing the needed
// fold constants, \bswap_mask is a vector register containing the
// byte-reflection table if the CRC is msb-first, and \tmp1 and \tmp2 are
// temporary vector registers. All arguments must have length \vl.
.macro _fold_vec_mem vl, acc, data, consts, bswap_mask, tmp1, tmp2
.if AVX_LEVEL == 0 || !LSB_CRC
_load_data \vl, \data, \bswap_mask, \tmp1
_fold_vec \acc, \tmp1, \consts, \tmp2
.else
_fold_vec \acc, \data, \consts, \tmp1
.endif
.endm
// Load the constants for folding across 2**i vectors of length VL at a time
// into all 128-bit lanes of the vector register CONSTS.
.macro _load_vec_folding_consts i
_vbroadcast OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS+(4-LOG2_VL-\i)*16(CONSTS_PTR), \
CONSTS
.endm
// Given vector registers \v0 and \v1 of length \vl, fold \v0 into \v1 and store
// the result back into \v0. If the remaining length mod \vl is nonzero, also
// fold \vl data bytes from BUF. For both operations the fold distance is \vl.
// \consts must be a register of length \vl containing the fold constants.
.macro _fold_vec_final vl, v0, v1, consts, bswap_mask, tmp1, tmp2
_fold_vec \v0, \v1, \consts, \tmp1
test $\vl, LEN8
jz .Lfold_vec_final_done\@
_fold_vec_mem \vl, \v0, (BUF), \consts, \bswap_mask, \tmp1, \tmp2
add $\vl, BUF
.Lfold_vec_final_done\@:
.endm
// This macro generates the body of a CRC function with the following prototype:
//
// crc_t crc_func(crc_t crc, const u8 *buf, size_t len, const void *consts);
//
// |crc| is the initial CRC, and crc_t is a data type wide enough to hold it.
// |buf| is the data to checksum. |len| is the data length in bytes, which must
// be at least 16. |consts| is a pointer to the fold_across_128_bits_consts
// field of the constants struct that was generated for the chosen CRC variant.
//
// Moving onto the macro parameters, \n is the number of bits in the CRC, e.g.
// 32 for a CRC-32. Currently the supported values are 8, 16, 32, and 64. If
// the file is compiled in i386 mode, then the maximum supported value is 32.
//
// \lsb_crc is 1 if the CRC processes the least significant bit of each byte
// first, i.e. maps bit0 to x^7, bit1 to x^6, ..., bit7 to x^0. \lsb_crc is 0
// if the CRC processes the most significant bit of each byte first, i.e. maps
// bit0 to x^0, bit1 to x^1, bit7 to x^7.
//
// \vl is the maximum length of vector register to use in bytes: 16, 32, or 64.
//
// \avx_level is the level of AVX support to use: 0 for SSE only, 2 for AVX2, or
// 512 for AVX512.
//
// If \vl == 16 && \avx_level == 0, the generated code requires:
// PCLMULQDQ && SSE4.1. (Note: all known CPUs with PCLMULQDQ also have SSE4.1.)
//
// If \vl == 32 && \avx_level == 2, the generated code requires:
// VPCLMULQDQ && AVX2.
//
// If \vl == 64 && \avx_level == 512, the generated code requires:
// VPCLMULQDQ && AVX512BW && AVX512VL.
//
// Other \vl and \avx_level combinations are either not supported or not useful.
.macro _crc_pclmul n, lsb_crc, vl, avx_level
.set LSB_CRC, \lsb_crc
.set VL, \vl
.set AVX_LEVEL, \avx_level
// Define aliases for the xmm, ymm, or zmm registers according to VL.
.irp i, 0,1,2,3,4,5,6,7
.if VL == 16
.set V\i, %xmm\i
.set LOG2_VL, 4
.elseif VL == 32
.set V\i, %ymm\i
.set LOG2_VL, 5
.elseif VL == 64
.set V\i, %zmm\i
.set LOG2_VL, 6
.else
.error "Unsupported vector length"
.endif
.endr
// Define aliases for the function parameters.
// Note: when crc_t is shorter than u32, zero-extension to 32 bits is
// guaranteed by the ABI. Zero-extension to 64 bits is *not* guaranteed
// when crc_t is shorter than u64.
#ifdef __x86_64__
.if \n <= 32
.set CRC, %edi
.else
.set CRC, %rdi
.endif
.set BUF, %rsi
.set LEN, %rdx
.set LEN32, %edx
.set LEN8, %dl
.set CONSTS_PTR, %rcx
#else
// 32-bit support, assuming -mregparm=3 and not including support for
// CRC-64 (which would use both eax and edx to pass the crc parameter).
.set CRC, %eax
.set BUF, %edx
.set LEN, %ecx
.set LEN32, %ecx
.set LEN8, %cl
.set CONSTS_PTR, %ebx // Passed on stack
#endif
// Define aliases for some local variables. V0-V5 are used without
// aliases (for accumulators, data, temporary values, etc). Staying
// within the first 8 vector registers keeps the code 32-bit SSE
// compatible and reduces the size of 64-bit SSE code slightly.
.set BSWAP_MASK, V6
.set BSWAP_MASK_YMM, %ymm6
.set BSWAP_MASK_XMM, %xmm6
.set CONSTS, V7
.set CONSTS_YMM, %ymm7
.set CONSTS_XMM, %xmm7
// Use ANNOTATE_NOENDBR to suppress an objtool warning, since the
// functions generated by this macro are called only by static_call.
ANNOTATE_NOENDBR
#ifdef __i386__
push CONSTS_PTR
mov 8(%esp), CONSTS_PTR
#endif
// Create a 128-bit vector that contains the initial CRC in the end
// representing the high-order polynomial coefficients, and the rest 0.
// If the CRC is msb-first, also load the byte-reflection table.
.if \n <= 32
_cond_vex movd, CRC, %xmm0
.else
_cond_vex movq, CRC, %xmm0
.endif
.if !LSB_CRC
_cond_vex pslldq, $(128-\n)/8, %xmm0, %xmm0
_vbroadcast OFFSETOF_BSWAP_MASK(CONSTS_PTR), BSWAP_MASK
.endif
// Load the first vector of data and XOR the initial CRC into the
// appropriate end of the first 128-bit lane of data. If LEN < VL, then
// use a short vector and jump ahead to the final reduction. (LEN >= 16
// is guaranteed here but not necessarily LEN >= VL.)
.if VL >= 32
cmp $VL, LEN
jae .Lat_least_1vec\@
.if VL == 64
cmp $32, LEN32
jb .Lless_than_32bytes\@
_prepare_v0 32, %ymm0, %ymm1, BSWAP_MASK_YMM
add $32, BUF
jmp .Lreduce_256bits_to_128bits\@
.Lless_than_32bytes\@:
.endif
_prepare_v0 16, %xmm0, %xmm1, BSWAP_MASK_XMM
add $16, BUF
vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM
jmp .Lcheck_for_partial_block\@
.Lat_least_1vec\@:
.endif
_prepare_v0 VL, V0, V1, BSWAP_MASK
// Handle VL <= LEN < 4*VL.
cmp $4*VL-1, LEN
ja .Lat_least_4vecs\@
add $VL, BUF
// If VL <= LEN < 2*VL, then jump ahead to the reduction from 1 vector.
// If VL==16 then load fold_across_128_bits_consts first, as the final
// reduction depends on it and it won't be loaded anywhere else.
cmp $2*VL-1, LEN32
.if VL == 16
_cond_vex movdqa, OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM
.endif
jbe .Lreduce_1vec_to_128bits\@
// Otherwise 2*VL <= LEN < 4*VL. Load one more vector and jump ahead to
// the reduction from 2 vectors.
_load_data VL, (BUF), BSWAP_MASK, V1
add $VL, BUF
jmp .Lreduce_2vecs_to_1\@
.Lat_least_4vecs\@:
// Load 3 more vectors of data.
_load_data VL, 1*VL(BUF), BSWAP_MASK, V1
_load_data VL, 2*VL(BUF), BSWAP_MASK, V2
_load_data VL, 3*VL(BUF), BSWAP_MASK, V3
sub $-4*VL, BUF // Shorter than 'add 4*VL' when VL=32
add $-4*VL, LEN // Shorter than 'sub 4*VL' when VL=32
// Main loop: while LEN >= 4*VL, fold the 4 vectors V0-V3 into the next
// 4 vectors of data and write the result back to V0-V3.
cmp $4*VL-1, LEN // Shorter than 'cmp 4*VL' when VL=32
jbe .Lreduce_4vecs_to_2\@
_load_vec_folding_consts 2
.Lfold_4vecs_loop\@:
_fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
_fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
_fold_vec_mem VL, V2, 2*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
_fold_vec_mem VL, V3, 3*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
sub $-4*VL, BUF
add $-4*VL, LEN
cmp $4*VL-1, LEN
ja .Lfold_4vecs_loop\@
// Fold V0,V1 into V2,V3 and write the result back to V0,V1. Then fold
// two more vectors of data from BUF, if at least that much remains.
.Lreduce_4vecs_to_2\@:
_load_vec_folding_consts 1
_fold_vec V0, V2, CONSTS, V4
_fold_vec V1, V3, CONSTS, V4
test $2*VL, LEN8
jz .Lreduce_2vecs_to_1\@
_fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
_fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
sub $-2*VL, BUF
// Fold V0 into V1 and write the result back to V0. Then fold one more
// vector of data from BUF, if at least that much remains.
.Lreduce_2vecs_to_1\@:
_load_vec_folding_consts 0
_fold_vec_final VL, V0, V1, CONSTS, BSWAP_MASK, V4, V5
.Lreduce_1vec_to_128bits\@:
.if VL == 64
// Reduce 512-bit %zmm0 to 256-bit %ymm0. Then fold 256 more bits of
// data from BUF, if at least that much remains.
vbroadcasti128 OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS(CONSTS_PTR), CONSTS_YMM
vextracti64x4 $1, %zmm0, %ymm1
_fold_vec_final 32, %ymm0, %ymm1, CONSTS_YMM, BSWAP_MASK_YMM, %ymm4, %ymm5
.Lreduce_256bits_to_128bits\@:
.endif
.if VL >= 32
// Reduce 256-bit %ymm0 to 128-bit %xmm0. Then fold 128 more bits of
// data from BUF, if at least that much remains.
vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM
vextracti128 $1, %ymm0, %xmm1
_fold_vec_final 16, %xmm0, %xmm1, CONSTS_XMM, BSWAP_MASK_XMM, %xmm4, %xmm5
.Lcheck_for_partial_block\@:
.endif
and $15, LEN32
jz .Lreduce_128bits_to_crc\@
// 1 <= LEN <= 15 data bytes remain in BUF. The polynomial is now
// A*(x^(8*LEN)) + B, where A is the 128-bit polynomial stored in %xmm0
// and B is the polynomial of the remaining LEN data bytes. To reduce
// this to 128 bits without needing fold constants for each possible
// LEN, rearrange this expression into C1*(x^128) + C2, where
// C1 = floor(A / x^(128 - 8*LEN)) and C2 = A*x^(8*LEN) + B mod x^128.
// Then fold C1 into C2, which is just another fold across 128 bits.
.if !LSB_CRC || AVX_LEVEL == 0
// Load the last 16 data bytes. Note that originally LEN was >= 16.
_load_data 16, "-16(BUF,LEN)", BSWAP_MASK_XMM, %xmm2
.endif // Else will use vpblendvb mem operand later.
.if !LSB_CRC
neg LEN // Needed for indexing shuf_table
.endif
// tmp = A*x^(8*LEN) mod x^128
// lsb: pshufb by [LEN, LEN+1, ..., 15, -1, -1, ..., -1]
// i.e. right-shift by LEN bytes.
// msb: pshufb by [-1, -1, ..., -1, 0, 1, ..., 15-LEN]
// i.e. left-shift by LEN bytes.
_cond_vex movdqu, "OFFSETOF_SHUF_TABLE+16(CONSTS_PTR,LEN)", %xmm3
_cond_vex pshufb, %xmm3, %xmm0, %xmm1
// C1 = floor(A / x^(128 - 8*LEN))
// lsb: pshufb by [-1, -1, ..., -1, 0, 1, ..., LEN-1]
// i.e. left-shift by 16-LEN bytes.
// msb: pshufb by [16-LEN, 16-LEN+1, ..., 15, -1, -1, ..., -1]
// i.e. right-shift by 16-LEN bytes.
_cond_vex pshufb, "OFFSETOF_SHUF_TABLE+32*!LSB_CRC(CONSTS_PTR,LEN)", \
%xmm0, %xmm0, unaligned_mem_tmp=%xmm4
// C2 = tmp + B. This is just a blend of tmp with the last 16 data
// bytes (reflected if msb-first). The blend mask is the shuffle table
// that was used to create tmp. 0 selects tmp, and 1 last16databytes.
.if AVX_LEVEL == 0
movdqa %xmm0, %xmm4
movdqa %xmm3, %xmm0
pblendvb %xmm2, %xmm1 // uses %xmm0 as implicit operand
movdqa %xmm4, %xmm0
.elseif LSB_CRC
vpblendvb %xmm3, -16(BUF,LEN), %xmm1, %xmm1
.else
vpblendvb %xmm3, %xmm2, %xmm1, %xmm1
.endif
// Fold C1 into C2 and store the 128-bit result in %xmm0.
_fold_vec %xmm0, %xmm1, CONSTS_XMM, %xmm4
.Lreduce_128bits_to_crc\@:
// Compute the CRC as %xmm0 * x^n mod G. Here %xmm0 means the 128-bit
// polynomial stored in %xmm0 (using either lsb-first or msb-first bit
// order according to LSB_CRC), and G is the CRC's generator polynomial.
// First, multiply %xmm0 by x^n and reduce the result to 64+n bits:
//
// t0 := (x^(64+n) mod G) * floor(%xmm0 / x^64) +
// x^n * (%xmm0 mod x^64)
//
// Store t0 * x^(64-n) in %xmm0. I.e., actually do:
//
// %xmm0 := ((x^(64+n) mod G) * x^(64-n)) * floor(%xmm0 / x^64) +
// x^64 * (%xmm0 mod x^64)
//
// The extra unreduced factor of x^(64-n) makes floor(t0 / x^n) aligned
// to the HI64_TERMS of %xmm0 so that the next pclmulqdq can easily
// select it. The 64-bit constant (x^(64+n) mod G) * x^(64-n) in the
// msb-first case, or (x^(63+n) mod G) * x^(64-n) in the lsb-first case
// (considering the extra factor of x that gets implicitly introduced by
// each pclmulqdq when using lsb-first order), is identical to the
// constant that was used earlier for folding the LO64_TERMS across 128
// bits. Thus it's already available in LO64_TERMS of CONSTS_XMM.
_pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm0, HI64_TERMS, %xmm1
.if LSB_CRC
_cond_vex psrldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64)
.else
_cond_vex pslldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64)
.endif
_cond_vex pxor, %xmm1, %xmm0, %xmm0
// The HI64_TERMS of %xmm0 now contain floor(t0 / x^n).
// The LO64_TERMS of %xmm0 now contain (t0 mod x^n) * x^(64-n).
// First step of Barrett reduction: Compute floor(t0 / G). This is the
// polynomial by which G needs to be multiplied to cancel out the x^n
// and higher terms of t0, i.e. to reduce t0 mod G. First do:
//
// t1 := floor(x^(63+n) / G) * x * floor(t0 / x^n)
//
// Then the desired value floor(t0 / G) is floor(t1 / x^64). The 63 in
// x^(63+n) is the maximum degree of floor(t0 / x^n) and thus the lowest
// value that makes enough precision be carried through the calculation.
//
// The '* x' makes it so the result is floor(t1 / x^64) rather than
// floor(t1 / x^63), making it qword-aligned in HI64_TERMS so that it
// can be extracted much more easily in the next step. In the lsb-first
// case the '* x' happens implicitly. In the msb-first case it must be
// done explicitly; floor(x^(63+n) / G) * x is a 65-bit constant, so the
// constant passed to pclmulqdq is (floor(x^(63+n) / G) * x) - x^64, and
// the multiplication by the x^64 term is handled using a pxor. The
// pxor causes the low 64 terms of t1 to be wrong, but they are unused.
_cond_vex movdqa, OFFSETOF_BARRETT_REDUCTION_CONSTS(CONSTS_PTR), CONSTS_XMM
_pclmulqdq CONSTS_XMM, HI64_TERMS, %xmm0, HI64_TERMS, %xmm1
.if !LSB_CRC
_cond_vex pxor, %xmm0, %xmm1, %xmm1 // += x^64 * floor(t0 / x^n)
.endif
// The HI64_TERMS of %xmm1 now contain floor(t1 / x^64) = floor(t0 / G).
// Second step of Barrett reduction: Cancel out the x^n and higher terms
// of t0 by subtracting the needed multiple of G. This gives the CRC:
//
// crc := t0 - (G * floor(t0 / G))
//
// But %xmm0 contains t0 * x^(64-n), so it's more convenient to do:
//
// crc := ((t0 * x^(64-n)) - ((G * x^(64-n)) * floor(t0 / G))) / x^(64-n)
//
// Furthermore, since the resulting CRC is n-bit, if mod x^n is
// explicitly applied to it then the x^n term of G makes no difference
// in the result and can be omitted. This helps keep the constant
// multiplier in 64 bits in most cases. This gives the following:
//
// %xmm0 := %xmm0 - (((G - x^n) * x^(64-n)) * floor(t0 / G))
// crc := (%xmm0 / x^(64-n)) mod x^n
//
// In the lsb-first case, each pclmulqdq implicitly introduces
// an extra factor of x, so in that case the constant that needs to be
// passed to pclmulqdq is actually '(G - x^n) * x^(63-n)' when n <= 63.
// For lsb-first CRCs where n=64, the extra factor of x cannot be as
// easily avoided. In that case, instead pass '(G - x^n - x^0) / x' to
// pclmulqdq and handle the x^0 term (i.e. 1) separately. (All CRC
// polynomials have nonzero x^n and x^0 terms.) It works out as: the
// CRC has be XORed with the physically low qword of %xmm1, representing
// floor(t0 / G). The most efficient way to do that is to move it to
// the physically high qword and use a ternlog to combine the two XORs.
.if LSB_CRC && \n == 64
_cond_vex punpcklqdq, %xmm1, %xmm2, %xmm2
_pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1
.if AVX_LEVEL <= 2
_cond_vex pxor, %xmm2, %xmm0, %xmm0
_cond_vex pxor, %xmm1, %xmm0, %xmm0
.else
vpternlogq $0x96, %xmm2, %xmm1, %xmm0
.endif
_cond_vex "pextrq $1,", %xmm0, %rax // (%xmm0 / x^0) mod x^64
.else
_pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1
_cond_vex pxor, %xmm1, %xmm0, %xmm0
.if \n == 8
_cond_vex "pextrb $7 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^56) mod x^8
.elseif \n == 16
_cond_vex "pextrw $3 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^48) mod x^16
.elseif \n == 32
_cond_vex "pextrd $1 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^32) mod x^32
.else // \n == 64 && !LSB_CRC
_cond_vex movq, %xmm0, %rax // (%xmm0 / x^0) mod x^64
.endif
.endif
.if VL > 16
vzeroupper // Needed when ymm or zmm registers may have been used.
.endif
#ifdef __i386__
pop CONSTS_PTR
#endif
RET
.endm
#define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \
SYM_FUNC_START(prefix##_pclmul_sse); \
_crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \
SYM_FUNC_END(prefix##_pclmul_sse); \
\
SYM_FUNC_START(prefix##_vpclmul_avx2); \
_crc_pclmul n=bits, lsb_crc=lsb, vl=32, avx_level=2; \
SYM_FUNC_END(prefix##_vpclmul_avx2); \
\
SYM_FUNC_START(prefix##_vpclmul_avx512); \
_crc_pclmul n=bits, lsb_crc=lsb, vl=64, avx_level=512; \
SYM_FUNC_END(prefix##_vpclmul_avx512);