blob: fb6b46a952cb432163f6adb40bb395d658745efd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <kunit/test.h>
/* keep clangd happy when compiled outside of the route.c include */
#include <net/mctp.h>
#include <net/mctpdevice.h>
#include "utils.h"
#define mctp_test_create_skb_data(h, d) \
__mctp_test_create_skb_data(h, d, sizeof(*d))
struct mctp_frag_test {
unsigned int mtu;
unsigned int msgsize;
unsigned int n_frags;
};
static void mctp_test_fragment(struct kunit *test)
{
const struct mctp_frag_test *params;
struct mctp_test_pktqueue tpq;
int rc, i, n, mtu, msgsize;
struct mctp_test_dev *dev;
struct mctp_dst dst;
struct sk_buff *skb;
struct mctp_hdr hdr;
u8 seq;
params = test->param_value;
mtu = params->mtu;
msgsize = params->msgsize;
hdr.ver = 1;
hdr.src = 8;
hdr.dest = 10;
hdr.flags_seq_tag = MCTP_HDR_FLAG_TO;
skb = mctp_test_create_skb(&hdr, msgsize);
KUNIT_ASSERT_TRUE(test, skb);
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
mctp_test_dst_setup(test, &dst, dev, &tpq, mtu);
rc = mctp_do_fragment_route(&dst, skb, mtu, MCTP_TAG_OWNER);
KUNIT_EXPECT_FALSE(test, rc);
n = tpq.pkts.qlen;
KUNIT_EXPECT_EQ(test, n, params->n_frags);
for (i = 0;; i++) {
struct mctp_hdr *hdr2;
struct sk_buff *skb2;
u8 tag_mask, seq2;
bool first, last;
first = i == 0;
last = i == (n - 1);
skb2 = skb_dequeue(&tpq.pkts);
if (!skb2)
break;
hdr2 = mctp_hdr(skb2);
tag_mask = MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO;
KUNIT_EXPECT_EQ(test, hdr2->ver, hdr.ver);
KUNIT_EXPECT_EQ(test, hdr2->src, hdr.src);
KUNIT_EXPECT_EQ(test, hdr2->dest, hdr.dest);
KUNIT_EXPECT_EQ(test, hdr2->flags_seq_tag & tag_mask,
hdr.flags_seq_tag & tag_mask);
KUNIT_EXPECT_EQ(test,
!!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_SOM), first);
KUNIT_EXPECT_EQ(test,
!!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_EOM), last);
seq2 = (hdr2->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) &
MCTP_HDR_SEQ_MASK;
if (first) {
seq = seq2;
} else {
seq++;
KUNIT_EXPECT_EQ(test, seq2, seq & MCTP_HDR_SEQ_MASK);
}
if (!last)
KUNIT_EXPECT_EQ(test, skb2->len, mtu);
else
KUNIT_EXPECT_LE(test, skb2->len, mtu);
kfree_skb(skb2);
}
mctp_test_dst_release(&dst, &tpq);
mctp_test_destroy_dev(dev);
}
static const struct mctp_frag_test mctp_frag_tests[] = {
{.mtu = 68, .msgsize = 63, .n_frags = 1},
{.mtu = 68, .msgsize = 64, .n_frags = 1},
{.mtu = 68, .msgsize = 65, .n_frags = 2},
{.mtu = 68, .msgsize = 66, .n_frags = 2},
{.mtu = 68, .msgsize = 127, .n_frags = 2},
{.mtu = 68, .msgsize = 128, .n_frags = 2},
{.mtu = 68, .msgsize = 129, .n_frags = 3},
{.mtu = 68, .msgsize = 130, .n_frags = 3},
};
static void mctp_frag_test_to_desc(const struct mctp_frag_test *t, char *desc)
{
sprintf(desc, "mtu %d len %d -> %d frags",
t->msgsize, t->mtu, t->n_frags);
}
KUNIT_ARRAY_PARAM(mctp_frag, mctp_frag_tests, mctp_frag_test_to_desc);
struct mctp_rx_input_test {
struct mctp_hdr hdr;
bool input;
};
static void mctp_test_rx_input(struct kunit *test)
{
const struct mctp_rx_input_test *params;
struct mctp_test_pktqueue tpq;
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct sk_buff *skb;
params = test->param_value;
test->priv = &tpq;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
rt = mctp_test_create_route_direct(&init_net, dev->mdev, 8, 68);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt);
skb = mctp_test_create_skb(&params->hdr, 1);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_pktqueue_init(&tpq);
mctp_pkttype_receive(skb, dev->ndev, &mctp_packet_type, NULL);
KUNIT_EXPECT_EQ(test, !!tpq.pkts.qlen, params->input);
skb_queue_purge(&tpq.pkts);
mctp_test_route_destroy(test, rt);
mctp_test_destroy_dev(dev);
}
#define RX_HDR(_ver, _src, _dest, _fst) \
{ .ver = _ver, .src = _src, .dest = _dest, .flags_seq_tag = _fst }
/* we have a route for EID 8 only */
static const struct mctp_rx_input_test mctp_rx_input_tests[] = {
{ .hdr = RX_HDR(1, 10, 8, 0), .input = true },
{ .hdr = RX_HDR(1, 10, 9, 0), .input = false }, /* no input route */
{ .hdr = RX_HDR(2, 10, 8, 0), .input = false }, /* invalid version */
};
static void mctp_rx_input_test_to_desc(const struct mctp_rx_input_test *t,
char *desc)
{
sprintf(desc, "{%x,%x,%x,%x}", t->hdr.ver, t->hdr.src, t->hdr.dest,
t->hdr.flags_seq_tag);
}
KUNIT_ARRAY_PARAM(mctp_rx_input, mctp_rx_input_tests,
mctp_rx_input_test_to_desc);
/* set up a local dev, route on EID 8, and a socket listening on type 0 */
static void __mctp_route_test_init(struct kunit *test,
struct mctp_test_dev **devp,
struct mctp_dst *dst,
struct mctp_test_pktqueue *tpq,
struct socket **sockp,
unsigned int netid)
{
struct sockaddr_mctp addr = {0};
struct mctp_test_dev *dev;
struct socket *sock;
int rc;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
if (netid != MCTP_NET_ANY)
WRITE_ONCE(dev->mdev->net, netid);
mctp_test_dst_setup(test, dst, dev, tpq, 68);
rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock);
KUNIT_ASSERT_EQ(test, rc, 0);
addr.smctp_family = AF_MCTP;
addr.smctp_network = netid;
addr.smctp_addr.s_addr = 8;
addr.smctp_type = 0;
rc = kernel_bind(sock, (struct sockaddr *)&addr, sizeof(addr));
KUNIT_ASSERT_EQ(test, rc, 0);
*devp = dev;
*sockp = sock;
}
static void __mctp_route_test_fini(struct kunit *test,
struct mctp_test_dev *dev,
struct mctp_dst *dst,
struct mctp_test_pktqueue *tpq,
struct socket *sock)
{
sock_release(sock);
mctp_test_dst_release(dst, tpq);
mctp_test_destroy_dev(dev);
}
struct mctp_route_input_sk_test {
struct mctp_hdr hdr;
u8 type;
bool deliver;
};
static void mctp_test_route_input_sk(struct kunit *test)
{
const struct mctp_route_input_sk_test *params;
struct mctp_test_pktqueue tpq;
struct sk_buff *skb, *skb2;
struct mctp_test_dev *dev;
struct mctp_dst dst;
struct socket *sock;
int rc;
params = test->param_value;
__mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY);
skb = mctp_test_create_skb_data(&params->hdr, &params->type);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_skb_set_dev(skb, dev);
mctp_test_pktqueue_init(&tpq);
rc = mctp_dst_input(&dst, skb);
if (params->deliver) {
KUNIT_EXPECT_EQ(test, rc, 0);
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2);
KUNIT_EXPECT_EQ(test, skb2->len, 1);
skb_free_datagram(sock->sk, skb2);
} else {
KUNIT_EXPECT_NE(test, rc, 0);
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NULL(test, skb2);
}
__mctp_route_test_fini(test, dev, &dst, &tpq, sock);
}
#define FL_S (MCTP_HDR_FLAG_SOM)
#define FL_E (MCTP_HDR_FLAG_EOM)
#define FL_TO (MCTP_HDR_FLAG_TO)
#define FL_T(t) ((t) & MCTP_HDR_TAG_MASK)
static const struct mctp_route_input_sk_test mctp_route_input_sk_tests[] = {
{ .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 0, .deliver = true },
{ .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 1, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, FL_S | FL_E), .type = 0, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, FL_E | FL_TO), .type = 0, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, FL_TO), .type = 0, .deliver = false },
{ .hdr = RX_HDR(1, 10, 8, 0), .type = 0, .deliver = false },
};
static void mctp_route_input_sk_to_desc(const struct mctp_route_input_sk_test *t,
char *desc)
{
sprintf(desc, "{%x,%x,%x,%x} type %d", t->hdr.ver, t->hdr.src,
t->hdr.dest, t->hdr.flags_seq_tag, t->type);
}
KUNIT_ARRAY_PARAM(mctp_route_input_sk, mctp_route_input_sk_tests,
mctp_route_input_sk_to_desc);
struct mctp_route_input_sk_reasm_test {
const char *name;
struct mctp_hdr hdrs[4];
int n_hdrs;
int rx_len;
};
static void mctp_test_route_input_sk_reasm(struct kunit *test)
{
const struct mctp_route_input_sk_reasm_test *params;
struct mctp_test_pktqueue tpq;
struct sk_buff *skb, *skb2;
struct mctp_test_dev *dev;
struct mctp_dst dst;
struct socket *sock;
int i, rc;
u8 c;
params = test->param_value;
__mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY);
for (i = 0; i < params->n_hdrs; i++) {
c = i;
skb = mctp_test_create_skb_data(&params->hdrs[i], &c);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_skb_set_dev(skb, dev);
rc = mctp_dst_input(&dst, skb);
}
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
if (params->rx_len) {
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2);
KUNIT_EXPECT_EQ(test, skb2->len, params->rx_len);
skb_free_datagram(sock->sk, skb2);
} else {
KUNIT_EXPECT_NULL(test, skb2);
}
__mctp_route_test_fini(test, dev, &dst, &tpq, sock);
}
#define RX_FRAG(f, s) RX_HDR(1, 10, 8, FL_TO | (f) | ((s) << MCTP_HDR_SEQ_SHIFT))
static const struct mctp_route_input_sk_reasm_test mctp_route_input_sk_reasm_tests[] = {
{
.name = "single packet",
.hdrs = {
RX_FRAG(FL_S | FL_E, 0),
},
.n_hdrs = 1,
.rx_len = 1,
},
{
.name = "single packet, offset seq",
.hdrs = {
RX_FRAG(FL_S | FL_E, 1),
},
.n_hdrs = 1,
.rx_len = 1,
},
{
.name = "start & end packets",
.hdrs = {
RX_FRAG(FL_S, 0),
RX_FRAG(FL_E, 1),
},
.n_hdrs = 2,
.rx_len = 2,
},
{
.name = "start & end packets, offset seq",
.hdrs = {
RX_FRAG(FL_S, 1),
RX_FRAG(FL_E, 2),
},
.n_hdrs = 2,
.rx_len = 2,
},
{
.name = "start & end packets, out of order",
.hdrs = {
RX_FRAG(FL_E, 1),
RX_FRAG(FL_S, 0),
},
.n_hdrs = 2,
.rx_len = 0,
},
{
.name = "start, middle & end packets",
.hdrs = {
RX_FRAG(FL_S, 0),
RX_FRAG(0, 1),
RX_FRAG(FL_E, 2),
},
.n_hdrs = 3,
.rx_len = 3,
},
{
.name = "missing seq",
.hdrs = {
RX_FRAG(FL_S, 0),
RX_FRAG(FL_E, 2),
},
.n_hdrs = 2,
.rx_len = 0,
},
{
.name = "seq wrap",
.hdrs = {
RX_FRAG(FL_S, 3),
RX_FRAG(FL_E, 0),
},
.n_hdrs = 2,
.rx_len = 2,
},
};
static void mctp_route_input_sk_reasm_to_desc(
const struct mctp_route_input_sk_reasm_test *t,
char *desc)
{
sprintf(desc, "%s", t->name);
}
KUNIT_ARRAY_PARAM(mctp_route_input_sk_reasm, mctp_route_input_sk_reasm_tests,
mctp_route_input_sk_reasm_to_desc);
struct mctp_route_input_sk_keys_test {
const char *name;
mctp_eid_t key_peer_addr;
mctp_eid_t key_local_addr;
u8 key_tag;
struct mctp_hdr hdr;
bool deliver;
};
/* test packet rx in the presence of various key configurations */
static void mctp_test_route_input_sk_keys(struct kunit *test)
{
const struct mctp_route_input_sk_keys_test *params;
struct mctp_test_pktqueue tpq;
struct sk_buff *skb, *skb2;
struct mctp_test_dev *dev;
struct mctp_sk_key *key;
struct netns_mctp *mns;
struct mctp_sock *msk;
struct socket *sock;
unsigned long flags;
struct mctp_dst dst;
unsigned int net;
int rc;
u8 c;
params = test->param_value;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
net = READ_ONCE(dev->mdev->net);
mctp_test_dst_setup(test, &dst, dev, &tpq, 68);
rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock);
KUNIT_ASSERT_EQ(test, rc, 0);
msk = container_of(sock->sk, struct mctp_sock, sk);
mns = &sock_net(sock->sk)->mctp;
/* set the incoming tag according to test params */
key = mctp_key_alloc(msk, net, params->key_local_addr,
params->key_peer_addr, params->key_tag,
GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, key);
spin_lock_irqsave(&mns->keys_lock, flags);
mctp_reserve_tag(&init_net, key, msk);
spin_unlock_irqrestore(&mns->keys_lock, flags);
/* create packet and route */
c = 0;
skb = mctp_test_create_skb_data(&params->hdr, &c);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_skb_set_dev(skb, dev);
rc = mctp_dst_input(&dst, skb);
/* (potentially) receive message */
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
if (params->deliver)
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2);
else
KUNIT_EXPECT_PTR_EQ(test, skb2, NULL);
if (skb2)
skb_free_datagram(sock->sk, skb2);
mctp_key_unref(key);
__mctp_route_test_fini(test, dev, &dst, &tpq, sock);
}
static const struct mctp_route_input_sk_keys_test mctp_route_input_sk_keys_tests[] = {
{
.name = "direct match",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)),
.deliver = true,
},
{
.name = "flipped src/dest",
.key_peer_addr = 8,
.key_local_addr = 9,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)),
.deliver = false,
},
{
.name = "peer addr mismatch",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_T(1)),
.deliver = false,
},
{
.name = "tag value mismatch",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(2)),
.deliver = false,
},
{
.name = "TO mismatch",
.key_peer_addr = 9,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO),
.deliver = false,
},
{
.name = "broadcast response",
.key_peer_addr = MCTP_ADDR_ANY,
.key_local_addr = 8,
.key_tag = 1,
.hdr = RX_HDR(1, 11, 8, FL_S | FL_E | FL_T(1)),
.deliver = true,
},
{
.name = "any local match",
.key_peer_addr = 12,
.key_local_addr = MCTP_ADDR_ANY,
.key_tag = 1,
.hdr = RX_HDR(1, 12, 8, FL_S | FL_E | FL_T(1)),
.deliver = true,
},
};
static void mctp_route_input_sk_keys_to_desc(
const struct mctp_route_input_sk_keys_test *t,
char *desc)
{
sprintf(desc, "%s", t->name);
}
KUNIT_ARRAY_PARAM(mctp_route_input_sk_keys, mctp_route_input_sk_keys_tests,
mctp_route_input_sk_keys_to_desc);
struct test_net {
unsigned int netid;
struct mctp_test_dev *dev;
struct mctp_test_pktqueue tpq;
struct mctp_dst dst;
struct socket *sock;
struct sk_buff *skb;
struct mctp_sk_key *key;
struct {
u8 type;
unsigned int data;
} msg;
};
static void
mctp_test_route_input_multiple_nets_bind_init(struct kunit *test,
struct test_net *t)
{
struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO);
t->msg.data = t->netid;
__mctp_route_test_init(test, &t->dev, &t->dst, &t->tpq, &t->sock,
t->netid);
t->skb = mctp_test_create_skb_data(&hdr, &t->msg);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb);
mctp_test_skb_set_dev(t->skb, t->dev);
mctp_test_pktqueue_init(&t->tpq);
}
static void
mctp_test_route_input_multiple_nets_bind_fini(struct kunit *test,
struct test_net *t)
{
__mctp_route_test_fini(test, t->dev, &t->dst, &t->tpq, t->sock);
}
/* Test that skbs from different nets (otherwise identical) get routed to their
* corresponding socket via the sockets' bind()
*/
static void mctp_test_route_input_multiple_nets_bind(struct kunit *test)
{
struct sk_buff *rx_skb1, *rx_skb2;
struct test_net t1, t2;
int rc;
t1.netid = 1;
t2.netid = 2;
t1.msg.type = 0;
t2.msg.type = 0;
mctp_test_route_input_multiple_nets_bind_init(test, &t1);
mctp_test_route_input_multiple_nets_bind_init(test, &t2);
rc = mctp_dst_input(&t1.dst, t1.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rc = mctp_dst_input(&t2.dst, t2.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1);
KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)),
t1.netid);
kfree_skb(rx_skb1);
rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2);
KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)),
t2.netid);
kfree_skb(rx_skb2);
mctp_test_route_input_multiple_nets_bind_fini(test, &t1);
mctp_test_route_input_multiple_nets_bind_fini(test, &t2);
}
static void
mctp_test_route_input_multiple_nets_key_init(struct kunit *test,
struct test_net *t)
{
struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1));
struct mctp_sock *msk;
struct netns_mctp *mns;
unsigned long flags;
t->msg.data = t->netid;
__mctp_route_test_init(test, &t->dev, &t->dst, &t->tpq, &t->sock,
t->netid);
msk = container_of(t->sock->sk, struct mctp_sock, sk);
t->key = mctp_key_alloc(msk, t->netid, hdr.dest, hdr.src, 1, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key);
mns = &sock_net(t->sock->sk)->mctp;
spin_lock_irqsave(&mns->keys_lock, flags);
mctp_reserve_tag(&init_net, t->key, msk);
spin_unlock_irqrestore(&mns->keys_lock, flags);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key);
t->skb = mctp_test_create_skb_data(&hdr, &t->msg);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb);
mctp_test_skb_set_dev(t->skb, t->dev);
}
static void
mctp_test_route_input_multiple_nets_key_fini(struct kunit *test,
struct test_net *t)
{
mctp_key_unref(t->key);
__mctp_route_test_fini(test, t->dev, &t->dst, &t->tpq, t->sock);
}
/* test that skbs from different nets (otherwise identical) get routed to their
* corresponding socket via the sk_key
*/
static void mctp_test_route_input_multiple_nets_key(struct kunit *test)
{
struct sk_buff *rx_skb1, *rx_skb2;
struct test_net t1, t2;
int rc;
t1.netid = 1;
t2.netid = 2;
/* use type 1 which is not bound */
t1.msg.type = 1;
t2.msg.type = 1;
mctp_test_route_input_multiple_nets_key_init(test, &t1);
mctp_test_route_input_multiple_nets_key_init(test, &t2);
rc = mctp_dst_input(&t1.dst, t1.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rc = mctp_dst_input(&t2.dst, t2.skb);
KUNIT_ASSERT_EQ(test, rc, 0);
rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1);
KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)),
t1.netid);
kfree_skb(rx_skb1);
rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2);
KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg));
KUNIT_EXPECT_EQ(test,
*(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)),
t2.netid);
kfree_skb(rx_skb2);
mctp_test_route_input_multiple_nets_key_fini(test, &t1);
mctp_test_route_input_multiple_nets_key_fini(test, &t2);
}
/* Input route to socket, using a single-packet message, where sock delivery
* fails. Ensure we're handling the failure appropriately.
*/
static void mctp_test_route_input_sk_fail_single(struct kunit *test)
{
const struct mctp_hdr hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO);
struct mctp_test_pktqueue tpq;
struct mctp_test_dev *dev;
struct mctp_dst dst;
struct socket *sock;
struct sk_buff *skb;
int rc;
__mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY);
/* No rcvbuf space, so delivery should fail. __sock_set_rcvbuf will
* clamp the minimum to SOCK_MIN_RCVBUF, so we open-code this.
*/
lock_sock(sock->sk);
WRITE_ONCE(sock->sk->sk_rcvbuf, 0);
release_sock(sock->sk);
skb = mctp_test_create_skb(&hdr, 10);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
skb_get(skb);
mctp_test_skb_set_dev(skb, dev);
/* do route input, which should fail */
rc = mctp_dst_input(&dst, skb);
KUNIT_EXPECT_NE(test, rc, 0);
/* we should hold the only reference to skb */
KUNIT_EXPECT_EQ(test, refcount_read(&skb->users), 1);
kfree_skb(skb);
__mctp_route_test_fini(test, dev, &dst, &tpq, sock);
}
/* Input route to socket, using a fragmented message, where sock delivery fails.
*/
static void mctp_test_route_input_sk_fail_frag(struct kunit *test)
{
const struct mctp_hdr hdrs[2] = { RX_FRAG(FL_S, 0), RX_FRAG(FL_E, 1) };
struct mctp_test_pktqueue tpq;
struct mctp_test_dev *dev;
struct sk_buff *skbs[2];
struct mctp_dst dst;
struct socket *sock;
unsigned int i;
int rc;
__mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY);
lock_sock(sock->sk);
WRITE_ONCE(sock->sk->sk_rcvbuf, 0);
release_sock(sock->sk);
for (i = 0; i < ARRAY_SIZE(skbs); i++) {
skbs[i] = mctp_test_create_skb(&hdrs[i], 10);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skbs[i]);
skb_get(skbs[i]);
mctp_test_skb_set_dev(skbs[i], dev);
}
/* first route input should succeed, we're only queueing to the
* frag list
*/
rc = mctp_dst_input(&dst, skbs[0]);
KUNIT_EXPECT_EQ(test, rc, 0);
/* final route input should fail to deliver to the socket */
rc = mctp_dst_input(&dst, skbs[1]);
KUNIT_EXPECT_NE(test, rc, 0);
/* we should hold the only reference to both skbs */
KUNIT_EXPECT_EQ(test, refcount_read(&skbs[0]->users), 1);
kfree_skb(skbs[0]);
KUNIT_EXPECT_EQ(test, refcount_read(&skbs[1]->users), 1);
kfree_skb(skbs[1]);
__mctp_route_test_fini(test, dev, &dst, &tpq, sock);
}
/* Input route to socket, using a fragmented message created from clones.
*/
static void mctp_test_route_input_cloned_frag(struct kunit *test)
{
/* 5 packet fragments, forming 2 complete messages */
const struct mctp_hdr hdrs[5] = {
RX_FRAG(FL_S, 0),
RX_FRAG(0, 1),
RX_FRAG(FL_E, 2),
RX_FRAG(FL_S, 0),
RX_FRAG(FL_E, 1),
};
const size_t data_len = 3; /* arbitrary */
u8 compare[3 * ARRAY_SIZE(hdrs)];
u8 flat[3 * ARRAY_SIZE(hdrs)];
struct mctp_test_pktqueue tpq;
struct mctp_test_dev *dev;
struct sk_buff *skb[5];
struct sk_buff *rx_skb;
struct mctp_dst dst;
struct socket *sock;
size_t total;
void *p;
int rc;
total = data_len + sizeof(struct mctp_hdr);
__mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY);
/* Create a single skb initially with concatenated packets */
skb[0] = mctp_test_create_skb(&hdrs[0], 5 * total);
mctp_test_skb_set_dev(skb[0], dev);
memset(skb[0]->data, 0 * 0x11, skb[0]->len);
memcpy(skb[0]->data, &hdrs[0], sizeof(struct mctp_hdr));
/* Extract and populate packets */
for (int i = 1; i < 5; i++) {
skb[i] = skb_clone(skb[i - 1], GFP_ATOMIC);
KUNIT_ASSERT_TRUE(test, skb[i]);
p = skb_pull(skb[i], total);
KUNIT_ASSERT_TRUE(test, p);
skb_reset_network_header(skb[i]);
memcpy(skb[i]->data, &hdrs[i], sizeof(struct mctp_hdr));
memset(&skb[i]->data[sizeof(struct mctp_hdr)], i * 0x11, data_len);
}
for (int i = 0; i < 5; i++)
skb_trim(skb[i], total);
/* SOM packets have a type byte to match the socket */
skb[0]->data[4] = 0;
skb[3]->data[4] = 0;
skb_dump("pkt1 ", skb[0], false);
skb_dump("pkt2 ", skb[1], false);
skb_dump("pkt3 ", skb[2], false);
skb_dump("pkt4 ", skb[3], false);
skb_dump("pkt5 ", skb[4], false);
for (int i = 0; i < 5; i++) {
KUNIT_EXPECT_EQ(test, refcount_read(&skb[i]->users), 1);
/* Take a reference so we can check refcounts at the end */
skb_get(skb[i]);
}
/* Feed the fragments into MCTP core */
for (int i = 0; i < 5; i++) {
rc = mctp_dst_input(&dst, skb[i]);
KUNIT_EXPECT_EQ(test, rc, 0);
}
/* Receive first reassembled message */
rx_skb = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_EQ(test, rc, 0);
KUNIT_EXPECT_EQ(test, rx_skb->len, 3 * data_len);
rc = skb_copy_bits(rx_skb, 0, flat, rx_skb->len);
for (int i = 0; i < rx_skb->len; i++)
compare[i] = (i / data_len) * 0x11;
/* Set type byte */
compare[0] = 0;
KUNIT_EXPECT_MEMEQ(test, flat, compare, rx_skb->len);
KUNIT_EXPECT_EQ(test, refcount_read(&rx_skb->users), 1);
kfree_skb(rx_skb);
/* Receive second reassembled message */
rx_skb = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
KUNIT_EXPECT_EQ(test, rc, 0);
KUNIT_EXPECT_EQ(test, rx_skb->len, 2 * data_len);
rc = skb_copy_bits(rx_skb, 0, flat, rx_skb->len);
for (int i = 0; i < rx_skb->len; i++)
compare[i] = (i / data_len + 3) * 0x11;
/* Set type byte */
compare[0] = 0;
KUNIT_EXPECT_MEMEQ(test, flat, compare, rx_skb->len);
KUNIT_EXPECT_EQ(test, refcount_read(&rx_skb->users), 1);
kfree_skb(rx_skb);
/* Check input skb refcounts */
for (int i = 0; i < 5; i++) {
KUNIT_EXPECT_EQ(test, refcount_read(&skb[i]->users), 1);
kfree_skb(skb[i]);
}
__mctp_route_test_fini(test, dev, &dst, &tpq, sock);
}
#if IS_ENABLED(CONFIG_MCTP_FLOWS)
static void mctp_test_flow_init(struct kunit *test,
struct mctp_test_dev **devp,
struct mctp_dst *dst,
struct mctp_test_pktqueue *tpq,
struct socket **sock,
struct sk_buff **skbp,
unsigned int len)
{
struct mctp_test_dev *dev;
struct sk_buff *skb;
/* we have a slightly odd routing setup here; the test route
* is for EID 8, which is our local EID. We don't do a routing
* lookup, so that's fine - all we require is a path through
* mctp_local_output, which will call dst->output on whatever
* route we provide
*/
__mctp_route_test_init(test, &dev, dst, tpq, sock, MCTP_NET_ANY);
/* Assign a single EID. ->addrs is freed on mctp netdev release */
dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL);
dev->mdev->num_addrs = 1;
dev->mdev->addrs[0] = 8;
skb = alloc_skb(len + sizeof(struct mctp_hdr) + 1, GFP_KERNEL);
KUNIT_ASSERT_TRUE(test, skb);
__mctp_cb(skb);
skb_reserve(skb, sizeof(struct mctp_hdr) + 1);
memset(skb_put(skb, len), 0, len);
*devp = dev;
*skbp = skb;
}
static void mctp_test_flow_fini(struct kunit *test,
struct mctp_test_dev *dev,
struct mctp_dst *dst,
struct mctp_test_pktqueue *tpq,
struct socket *sock)
{
__mctp_route_test_fini(test, dev, dst, tpq, sock);
}
/* test that an outgoing skb has the correct MCTP extension data set */
static void mctp_test_packet_flow(struct kunit *test)
{
struct mctp_test_pktqueue tpq;
struct sk_buff *skb, *skb2;
struct mctp_test_dev *dev;
struct mctp_dst dst;
struct mctp_flow *flow;
struct socket *sock;
u8 dst_eid = 8;
int n, rc;
mctp_test_flow_init(test, &dev, &dst, &tpq, &sock, &skb, 30);
rc = mctp_local_output(sock->sk, &dst, skb, dst_eid, MCTP_TAG_OWNER);
KUNIT_ASSERT_EQ(test, rc, 0);
n = tpq.pkts.qlen;
KUNIT_ASSERT_EQ(test, n, 1);
skb2 = skb_dequeue(&tpq.pkts);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb2);
flow = skb_ext_find(skb2, SKB_EXT_MCTP);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow->key);
KUNIT_ASSERT_PTR_EQ(test, flow->key->sk, sock->sk);
kfree_skb(skb2);
mctp_test_flow_fini(test, dev, &dst, &tpq, sock);
}
/* test that outgoing skbs, after fragmentation, all have the correct MCTP
* extension data set.
*/
static void mctp_test_fragment_flow(struct kunit *test)
{
struct mctp_test_pktqueue tpq;
struct mctp_flow *flows[2];
struct sk_buff *tx_skbs[2];
struct mctp_test_dev *dev;
struct mctp_dst dst;
struct sk_buff *skb;
struct socket *sock;
u8 dst_eid = 8;
int n, rc;
mctp_test_flow_init(test, &dev, &dst, &tpq, &sock, &skb, 100);
rc = mctp_local_output(sock->sk, &dst, skb, dst_eid, MCTP_TAG_OWNER);
KUNIT_ASSERT_EQ(test, rc, 0);
n = tpq.pkts.qlen;
KUNIT_ASSERT_EQ(test, n, 2);
/* both resulting packets should have the same flow data */
tx_skbs[0] = skb_dequeue(&tpq.pkts);
tx_skbs[1] = skb_dequeue(&tpq.pkts);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[0]);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[1]);
flows[0] = skb_ext_find(tx_skbs[0], SKB_EXT_MCTP);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]->key);
KUNIT_ASSERT_PTR_EQ(test, flows[0]->key->sk, sock->sk);
flows[1] = skb_ext_find(tx_skbs[1], SKB_EXT_MCTP);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[1]);
KUNIT_ASSERT_PTR_EQ(test, flows[1]->key, flows[0]->key);
kfree_skb(tx_skbs[0]);
kfree_skb(tx_skbs[1]);
mctp_test_flow_fini(test, dev, &dst, &tpq, sock);
}
#else
static void mctp_test_packet_flow(struct kunit *test)
{
kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y");
}
static void mctp_test_fragment_flow(struct kunit *test)
{
kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y");
}
#endif
/* Test that outgoing skbs cause a suitable tag to be created */
static void mctp_test_route_output_key_create(struct kunit *test)
{
const u8 dst_eid = 26, src_eid = 15;
struct mctp_test_pktqueue tpq;
const unsigned int netid = 50;
struct mctp_test_dev *dev;
struct mctp_sk_key *key;
struct netns_mctp *mns;
unsigned long flags;
struct socket *sock;
struct sk_buff *skb;
struct mctp_dst dst;
bool empty, single;
const int len = 2;
int rc;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
WRITE_ONCE(dev->mdev->net, netid);
mctp_test_dst_setup(test, &dst, dev, &tpq, 68);
rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock);
KUNIT_ASSERT_EQ(test, rc, 0);
dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL);
dev->mdev->num_addrs = 1;
dev->mdev->addrs[0] = src_eid;
skb = alloc_skb(sizeof(struct mctp_hdr) + 1 + len, GFP_KERNEL);
KUNIT_ASSERT_TRUE(test, skb);
__mctp_cb(skb);
skb_reserve(skb, sizeof(struct mctp_hdr) + 1 + len);
memset(skb_put(skb, len), 0, len);
mns = &sock_net(sock->sk)->mctp;
/* We assume we're starting from an empty keys list, which requires
* preceding tests to clean up correctly!
*/
spin_lock_irqsave(&mns->keys_lock, flags);
empty = hlist_empty(&mns->keys);
spin_unlock_irqrestore(&mns->keys_lock, flags);
KUNIT_ASSERT_TRUE(test, empty);
rc = mctp_local_output(sock->sk, &dst, skb, dst_eid, MCTP_TAG_OWNER);
KUNIT_ASSERT_EQ(test, rc, 0);
key = NULL;
single = false;
spin_lock_irqsave(&mns->keys_lock, flags);
if (!hlist_empty(&mns->keys)) {
key = hlist_entry(mns->keys.first, struct mctp_sk_key, hlist);
single = hlist_is_singular_node(&key->hlist, &mns->keys);
}
spin_unlock_irqrestore(&mns->keys_lock, flags);
KUNIT_ASSERT_NOT_NULL(test, key);
KUNIT_ASSERT_TRUE(test, single);
KUNIT_EXPECT_EQ(test, key->net, netid);
KUNIT_EXPECT_EQ(test, key->local_addr, src_eid);
KUNIT_EXPECT_EQ(test, key->peer_addr, dst_eid);
/* key has incoming tag, so inverse of what we sent */
KUNIT_EXPECT_FALSE(test, key->tag & MCTP_TAG_OWNER);
sock_release(sock);
mctp_test_dst_release(&dst, &tpq);
mctp_test_destroy_dev(dev);
}
static void mctp_test_route_extaddr_input(struct kunit *test)
{
static const unsigned char haddr[] = { 0xaa, 0x55 };
struct mctp_test_pktqueue tpq;
struct mctp_skb_cb *cb, *cb2;
const unsigned int len = 40;
struct mctp_test_dev *dev;
struct sk_buff *skb, *skb2;
struct mctp_dst dst;
struct mctp_hdr hdr;
struct socket *sock;
int rc;
hdr.ver = 1;
hdr.src = 10;
hdr.dest = 8;
hdr.flags_seq_tag = FL_S | FL_E | FL_TO;
__mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY);
skb = mctp_test_create_skb(&hdr, len);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
/* set our hardware addressing data */
cb = mctp_cb(skb);
memcpy(cb->haddr, haddr, sizeof(haddr));
cb->halen = sizeof(haddr);
mctp_test_skb_set_dev(skb, dev);
rc = mctp_dst_input(&dst, skb);
KUNIT_ASSERT_EQ(test, rc, 0);
skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb2);
KUNIT_ASSERT_EQ(test, skb2->len, len);
cb2 = mctp_cb(skb2);
/* Received SKB should have the hardware addressing as set above.
* We're likely to have the same actual cb here (ie., cb == cb2),
* but it's the comparison that we care about
*/
KUNIT_EXPECT_EQ(test, cb2->halen, sizeof(haddr));
KUNIT_EXPECT_MEMEQ(test, cb2->haddr, haddr, sizeof(haddr));
kfree_skb(skb2);
__mctp_route_test_fini(test, dev, &dst, &tpq, sock);
}
static void mctp_test_route_gw_lookup(struct kunit *test)
{
struct mctp_test_route *rt1, *rt2;
struct mctp_dst dst = { 0 };
struct mctp_test_dev *dev;
int rc;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
/* 8 (local) -> 10 (gateway) via 9 (direct) */
rt1 = mctp_test_create_route_direct(&init_net, dev->mdev, 9, 0);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt1);
rt2 = mctp_test_create_route_gw(&init_net, dev->mdev->net, 10, 9, 0);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt2);
rc = mctp_route_lookup(&init_net, dev->mdev->net, 10, &dst);
KUNIT_EXPECT_EQ(test, rc, 0);
KUNIT_EXPECT_PTR_EQ(test, dst.dev, dev->mdev);
KUNIT_EXPECT_EQ(test, dst.mtu, dev->ndev->mtu);
KUNIT_EXPECT_EQ(test, dst.nexthop, 9);
KUNIT_EXPECT_EQ(test, dst.halen, 0);
mctp_dst_release(&dst);
mctp_test_route_destroy(test, rt2);
mctp_test_route_destroy(test, rt1);
mctp_test_destroy_dev(dev);
}
static void mctp_test_route_gw_loop(struct kunit *test)
{
struct mctp_test_route *rt1, *rt2;
struct mctp_dst dst = { 0 };
struct mctp_test_dev *dev;
int rc;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
/* two routes using each other as the gw */
rt1 = mctp_test_create_route_gw(&init_net, dev->mdev->net, 9, 10, 0);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt1);
rt2 = mctp_test_create_route_gw(&init_net, dev->mdev->net, 10, 9, 0);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt2);
/* this should fail, rather than infinite-loop */
rc = mctp_route_lookup(&init_net, dev->mdev->net, 10, &dst);
KUNIT_EXPECT_NE(test, rc, 0);
mctp_test_route_destroy(test, rt2);
mctp_test_route_destroy(test, rt1);
mctp_test_destroy_dev(dev);
}
struct mctp_route_gw_mtu_test {
/* working away from the local stack */
unsigned int dev, neigh, gw, dst;
unsigned int exp;
};
static void mctp_route_gw_mtu_to_desc(const struct mctp_route_gw_mtu_test *t,
char *desc)
{
sprintf(desc, "dev %d, neigh %d, gw %d, dst %d -> %d",
t->dev, t->neigh, t->gw, t->dst, t->exp);
}
static const struct mctp_route_gw_mtu_test mctp_route_gw_mtu_tests[] = {
/* no route-specific MTUs */
{ 68, 0, 0, 0, 68 },
{ 100, 0, 0, 0, 100 },
/* one route MTU (smaller than dev mtu), others unrestricted */
{ 100, 68, 0, 0, 68 },
{ 100, 0, 68, 0, 68 },
{ 100, 0, 0, 68, 68 },
/* smallest applied, regardless of order */
{ 100, 99, 98, 68, 68 },
{ 99, 100, 98, 68, 68 },
{ 98, 99, 100, 68, 68 },
{ 68, 98, 99, 100, 68 },
};
KUNIT_ARRAY_PARAM(mctp_route_gw_mtu, mctp_route_gw_mtu_tests,
mctp_route_gw_mtu_to_desc);
static void mctp_test_route_gw_mtu(struct kunit *test)
{
const struct mctp_route_gw_mtu_test *mtus = test->param_value;
struct mctp_test_route *rt1, *rt2, *rt3;
struct mctp_dst dst = { 0 };
struct mctp_test_dev *dev;
struct mctp_dev *mdev;
unsigned int netid;
int rc;
dev = mctp_test_create_dev();
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
dev->ndev->mtu = mtus->dev;
mdev = dev->mdev;
netid = mdev->net;
/* 8 (local) -> 11 (dst) via 10 (gw) via 9 (neigh) */
rt1 = mctp_test_create_route_direct(&init_net, mdev, 9, mtus->neigh);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt1);
rt2 = mctp_test_create_route_gw(&init_net, netid, 10, 9, mtus->gw);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt2);
rt3 = mctp_test_create_route_gw(&init_net, netid, 11, 10, mtus->dst);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt3);
rc = mctp_route_lookup(&init_net, dev->mdev->net, 11, &dst);
KUNIT_EXPECT_EQ(test, rc, 0);
KUNIT_EXPECT_EQ(test, dst.mtu, mtus->exp);
mctp_dst_release(&dst);
mctp_test_route_destroy(test, rt3);
mctp_test_route_destroy(test, rt2);
mctp_test_route_destroy(test, rt1);
mctp_test_destroy_dev(dev);
}
#define MCTP_TEST_LLADDR_LEN 2
struct mctp_test_llhdr {
unsigned int magic;
unsigned char src[MCTP_TEST_LLADDR_LEN];
unsigned char dst[MCTP_TEST_LLADDR_LEN];
};
static const unsigned int mctp_test_llhdr_magic = 0x5c78339c;
static int test_dev_header_create(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned int len)
{
struct kunit *test = current->kunit_test;
struct mctp_test_llhdr *hdr;
hdr = skb_push(skb, sizeof(*hdr));
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, hdr);
skb_reset_mac_header(skb);
hdr->magic = mctp_test_llhdr_magic;
memcpy(&hdr->src, saddr, sizeof(hdr->src));
memcpy(&hdr->dst, daddr, sizeof(hdr->dst));
return 0;
}
/* Test the dst_output path for a gateway-routed skb: we should have it
* lookup the nexthop EID in the neighbour table, and call into
* header_ops->create to resolve that to a lladdr. Our mock header_ops->create
* will just set a synthetic link-layer header, which we check after transmit.
*/
static void mctp_test_route_gw_output(struct kunit *test)
{
const unsigned char haddr_self[MCTP_TEST_LLADDR_LEN] = { 0xaa, 0x03 };
const unsigned char haddr_peer[MCTP_TEST_LLADDR_LEN] = { 0xaa, 0x02 };
const struct header_ops ops = {
.create = test_dev_header_create,
};
struct mctp_neigh neigh = { 0 };
struct mctp_test_llhdr *ll_hdr;
struct mctp_dst dst = { 0 };
struct mctp_hdr hdr = { 0 };
struct mctp_test_dev *dev;
struct sk_buff *skb;
unsigned char *buf;
int i, rc;
dev = mctp_test_create_dev_lladdr(sizeof(haddr_self), haddr_self);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
dev->ndev->header_ops = &ops;
dst.dev = dev->mdev;
__mctp_dev_get(dst.dev->dev);
dst.mtu = 68;
dst.nexthop = 9;
/* simple mctp_neigh_add for the gateway (not dest!) endpoint */
INIT_LIST_HEAD(&neigh.list);
neigh.dev = dev->mdev;
mctp_dev_hold(dev->mdev);
neigh.eid = 9;
neigh.source = MCTP_NEIGH_STATIC;
memcpy(neigh.ha, haddr_peer, sizeof(haddr_peer));
list_add_rcu(&neigh.list, &init_net.mctp.neighbours);
hdr.ver = 1;
hdr.src = 8;
hdr.dest = 10;
hdr.flags_seq_tag = FL_S | FL_E | FL_TO;
/* construct enough for a future link-layer header, the provided
* mctp header, and 4 bytes of data
*/
skb = alloc_skb(sizeof(*ll_hdr) + sizeof(hdr) + 4, GFP_KERNEL);
skb->dev = dev->ndev;
__mctp_cb(skb);
skb_reserve(skb, sizeof(*ll_hdr));
memcpy(skb_put(skb, sizeof(hdr)), &hdr, sizeof(hdr));
buf = skb_put(skb, 4);
for (i = 0; i < 4; i++)
buf[i] = i;
/* extra ref over the dev_xmit */
skb_get(skb);
rc = mctp_dst_output(&dst, skb);
KUNIT_EXPECT_EQ(test, rc, 0);
mctp_dst_release(&dst);
list_del_rcu(&neigh.list);
mctp_dev_put(dev->mdev);
/* check that we have our header created with the correct neighbour */
ll_hdr = (void *)skb_mac_header(skb);
KUNIT_EXPECT_EQ(test, ll_hdr->magic, mctp_test_llhdr_magic);
KUNIT_EXPECT_MEMEQ(test, ll_hdr->src, haddr_self, sizeof(haddr_self));
KUNIT_EXPECT_MEMEQ(test, ll_hdr->dst, haddr_peer, sizeof(haddr_peer));
kfree_skb(skb);
}
struct mctp_bind_lookup_test {
/* header of incoming message */
struct mctp_hdr hdr;
u8 ty;
/* mctp network of incoming interface (smctp_network) */
unsigned int net;
/* expected socket, matches .name in lookup_binds, NULL for dropped */
const char *expect;
};
/* Single-packet TO-set message */
#define LK(src, dst) RX_HDR(1, (src), (dst), FL_S | FL_E | FL_TO)
/* Input message test cases for bind lookup tests.
*
* 10 and 11 are local EIDs.
* 20 and 21 are remote EIDs.
*/
static const struct mctp_bind_lookup_test mctp_bind_lookup_tests[] = {
/* both local-eid and remote-eid binds, remote eid is preferenced */
{ .hdr = LK(20, 10), .ty = 1, .net = 1, .expect = "remote20" },
{ .hdr = LK(20, 255), .ty = 1, .net = 1, .expect = "remote20" },
{ .hdr = LK(20, 0), .ty = 1, .net = 1, .expect = "remote20" },
{ .hdr = LK(0, 255), .ty = 1, .net = 1, .expect = "any" },
{ .hdr = LK(0, 11), .ty = 1, .net = 1, .expect = "any" },
{ .hdr = LK(0, 0), .ty = 1, .net = 1, .expect = "any" },
{ .hdr = LK(0, 10), .ty = 1, .net = 1, .expect = "local10" },
{ .hdr = LK(21, 10), .ty = 1, .net = 1, .expect = "local10" },
{ .hdr = LK(21, 11), .ty = 1, .net = 1, .expect = "remote21local11" },
/* both src and dest set to eid=99. unusual, but accepted
* by MCTP stack currently.
*/
{ .hdr = LK(99, 99), .ty = 1, .net = 1, .expect = "any" },
/* unbound smctp_type */
{ .hdr = LK(20, 10), .ty = 3, .net = 1, .expect = NULL },
/* smctp_network tests */
{ .hdr = LK(0, 0), .ty = 1, .net = 7, .expect = "any" },
{ .hdr = LK(21, 10), .ty = 1, .net = 2, .expect = "any" },
/* remote EID 20 matches, but MCTP_NET_ANY in "remote20" resolved
* to net=1, so lookup doesn't match "remote20"
*/
{ .hdr = LK(20, 10), .ty = 1, .net = 3, .expect = "any" },
{ .hdr = LK(21, 10), .ty = 1, .net = 3, .expect = "remote21net3" },
{ .hdr = LK(21, 10), .ty = 1, .net = 4, .expect = "remote21net4" },
{ .hdr = LK(21, 10), .ty = 1, .net = 5, .expect = "remote21net5" },
{ .hdr = LK(21, 10), .ty = 1, .net = 5, .expect = "remote21net5" },
{ .hdr = LK(99, 10), .ty = 1, .net = 8, .expect = "local10net8" },
{ .hdr = LK(99, 10), .ty = 1, .net = 9, .expect = "anynet9" },
{ .hdr = LK(0, 0), .ty = 1, .net = 9, .expect = "anynet9" },
{ .hdr = LK(99, 99), .ty = 1, .net = 9, .expect = "anynet9" },
{ .hdr = LK(20, 10), .ty = 1, .net = 9, .expect = "anynet9" },
};
/* Binds to create during the lookup tests */
static const struct mctp_test_bind_setup lookup_binds[] = {
/* any address and net, type 1 */
{ .name = "any", .bind_addr = MCTP_ADDR_ANY,
.bind_net = MCTP_NET_ANY, .bind_type = 1, },
/* local eid 10, net 1 (resolved from MCTP_NET_ANY) */
{ .name = "local10", .bind_addr = 10,
.bind_net = MCTP_NET_ANY, .bind_type = 1, },
/* local eid 10, net 8 */
{ .name = "local10net8", .bind_addr = 10,
.bind_net = 8, .bind_type = 1, },
/* any EID, net 9 */
{ .name = "anynet9", .bind_addr = MCTP_ADDR_ANY,
.bind_net = 9, .bind_type = 1, },
/* remote eid 20, net 1, any local eid */
{ .name = "remote20", .bind_addr = MCTP_ADDR_ANY,
.bind_net = MCTP_NET_ANY, .bind_type = 1,
.have_peer = true, .peer_addr = 20, .peer_net = MCTP_NET_ANY, },
/* remote eid 20, net 1, local eid 11 */
{ .name = "remote21local11", .bind_addr = 11,
.bind_net = MCTP_NET_ANY, .bind_type = 1,
.have_peer = true, .peer_addr = 21, .peer_net = MCTP_NET_ANY, },
/* remote eid 21, specific net=3 for connect() */
{ .name = "remote21net3", .bind_addr = MCTP_ADDR_ANY,
.bind_net = MCTP_NET_ANY, .bind_type = 1,
.have_peer = true, .peer_addr = 21, .peer_net = 3, },
/* remote eid 21, net 4 for bind, specific net=4 for connect() */
{ .name = "remote21net4", .bind_addr = MCTP_ADDR_ANY,
.bind_net = 4, .bind_type = 1,
.have_peer = true, .peer_addr = 21, .peer_net = 4, },
/* remote eid 21, net 5 for bind, specific net=5 for connect() */
{ .name = "remote21net5", .bind_addr = MCTP_ADDR_ANY,
.bind_net = 5, .bind_type = 1,
.have_peer = true, .peer_addr = 21, .peer_net = 5, },
};
static void mctp_bind_lookup_desc(const struct mctp_bind_lookup_test *t,
char *desc)
{
snprintf(desc, KUNIT_PARAM_DESC_SIZE,
"{src %d dst %d ty %d net %d expect %s}",
t->hdr.src, t->hdr.dest, t->ty, t->net, t->expect);
}
KUNIT_ARRAY_PARAM(mctp_bind_lookup, mctp_bind_lookup_tests,
mctp_bind_lookup_desc);
static void mctp_test_bind_lookup(struct kunit *test)
{
const struct mctp_bind_lookup_test *rx;
struct socket *socks[ARRAY_SIZE(lookup_binds)];
struct sk_buff *skb_pkt = NULL, *skb_sock = NULL;
struct socket *sock_ty0, *sock_expect = NULL;
struct mctp_test_pktqueue tpq;
struct mctp_test_dev *dev;
struct mctp_dst dst;
int rc;
rx = test->param_value;
__mctp_route_test_init(test, &dev, &dst, &tpq, &sock_ty0, rx->net);
/* Create all binds */
for (size_t i = 0; i < ARRAY_SIZE(lookup_binds); i++) {
mctp_test_bind_run(test, &lookup_binds[i],
&rc, &socks[i]);
KUNIT_ASSERT_EQ(test, rc, 0);
/* Record the expected receive socket */
if (rx->expect &&
strcmp(rx->expect, lookup_binds[i].name) == 0) {
KUNIT_ASSERT_NULL(test, sock_expect);
sock_expect = socks[i];
}
}
KUNIT_ASSERT_EQ(test, !!sock_expect, !!rx->expect);
/* Create test message */
skb_pkt = mctp_test_create_skb_data(&rx->hdr, &rx->ty);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb_pkt);
mctp_test_skb_set_dev(skb_pkt, dev);
mctp_test_pktqueue_init(&tpq);
rc = mctp_dst_input(&dst, skb_pkt);
if (rx->expect) {
/* Test the message is received on the expected socket */
KUNIT_EXPECT_EQ(test, rc, 0);
skb_sock = skb_recv_datagram(sock_expect->sk,
MSG_DONTWAIT, &rc);
if (!skb_sock) {
/* Find which socket received it instead */
for (size_t i = 0; i < ARRAY_SIZE(lookup_binds); i++) {
skb_sock = skb_recv_datagram(socks[i]->sk,
MSG_DONTWAIT, &rc);
if (skb_sock) {
KUNIT_FAIL(test,
"received on incorrect socket '%s', expect '%s'",
lookup_binds[i].name,
rx->expect);
goto cleanup;
}
}
KUNIT_FAIL(test, "no message received");
}
} else {
KUNIT_EXPECT_NE(test, rc, 0);
}
cleanup:
kfree_skb(skb_sock);
kfree_skb(skb_pkt);
/* Drop all binds */
for (size_t i = 0; i < ARRAY_SIZE(lookup_binds); i++)
sock_release(socks[i]);
__mctp_route_test_fini(test, dev, &dst, &tpq, sock_ty0);
}
static struct kunit_case mctp_test_cases[] = {
KUNIT_CASE_PARAM(mctp_test_fragment, mctp_frag_gen_params),
KUNIT_CASE_PARAM(mctp_test_rx_input, mctp_rx_input_gen_params),
KUNIT_CASE_PARAM(mctp_test_route_input_sk, mctp_route_input_sk_gen_params),
KUNIT_CASE_PARAM(mctp_test_route_input_sk_reasm,
mctp_route_input_sk_reasm_gen_params),
KUNIT_CASE_PARAM(mctp_test_route_input_sk_keys,
mctp_route_input_sk_keys_gen_params),
KUNIT_CASE(mctp_test_route_input_sk_fail_single),
KUNIT_CASE(mctp_test_route_input_sk_fail_frag),
KUNIT_CASE(mctp_test_route_input_multiple_nets_bind),
KUNIT_CASE(mctp_test_route_input_multiple_nets_key),
KUNIT_CASE(mctp_test_packet_flow),
KUNIT_CASE(mctp_test_fragment_flow),
KUNIT_CASE(mctp_test_route_output_key_create),
KUNIT_CASE(mctp_test_route_input_cloned_frag),
KUNIT_CASE(mctp_test_route_extaddr_input),
KUNIT_CASE(mctp_test_route_gw_lookup),
KUNIT_CASE(mctp_test_route_gw_loop),
KUNIT_CASE_PARAM(mctp_test_route_gw_mtu, mctp_route_gw_mtu_gen_params),
KUNIT_CASE(mctp_test_route_gw_output),
KUNIT_CASE_PARAM(mctp_test_bind_lookup, mctp_bind_lookup_gen_params),
{}
};
static struct kunit_suite mctp_test_suite = {
.name = "mctp-route",
.test_cases = mctp_test_cases,
};
kunit_test_suite(mctp_test_suite);