|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2016 Facebook | 
|  | * Copyright (C) 2013-2014 Jens Axboe | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/sbitmap.h> | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | static int init_alloc_hint(struct sbitmap *sb, gfp_t flags) | 
|  | { | 
|  | unsigned depth = sb->depth; | 
|  |  | 
|  | sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags); | 
|  | if (!sb->alloc_hint) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (depth && !sb->round_robin) { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | *per_cpu_ptr(sb->alloc_hint, i) = prandom_u32_max(depth); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb, | 
|  | unsigned int depth) | 
|  | { | 
|  | unsigned hint; | 
|  |  | 
|  | hint = this_cpu_read(*sb->alloc_hint); | 
|  | if (unlikely(hint >= depth)) { | 
|  | hint = depth ? prandom_u32_max(depth) : 0; | 
|  | this_cpu_write(*sb->alloc_hint, hint); | 
|  | } | 
|  |  | 
|  | return hint; | 
|  | } | 
|  |  | 
|  | static inline void update_alloc_hint_after_get(struct sbitmap *sb, | 
|  | unsigned int depth, | 
|  | unsigned int hint, | 
|  | unsigned int nr) | 
|  | { | 
|  | if (nr == -1) { | 
|  | /* If the map is full, a hint won't do us much good. */ | 
|  | this_cpu_write(*sb->alloc_hint, 0); | 
|  | } else if (nr == hint || unlikely(sb->round_robin)) { | 
|  | /* Only update the hint if we used it. */ | 
|  | hint = nr + 1; | 
|  | if (hint >= depth - 1) | 
|  | hint = 0; | 
|  | this_cpu_write(*sb->alloc_hint, hint); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if we have deferred clears that we can batch move | 
|  | */ | 
|  | static inline bool sbitmap_deferred_clear(struct sbitmap_word *map) | 
|  | { | 
|  | unsigned long mask; | 
|  |  | 
|  | if (!READ_ONCE(map->cleared)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * First get a stable cleared mask, setting the old mask to 0. | 
|  | */ | 
|  | mask = xchg(&map->cleared, 0); | 
|  |  | 
|  | /* | 
|  | * Now clear the masked bits in our free word | 
|  | */ | 
|  | atomic_long_andnot(mask, (atomic_long_t *)&map->word); | 
|  | BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, | 
|  | gfp_t flags, int node, bool round_robin, | 
|  | bool alloc_hint) | 
|  | { | 
|  | unsigned int bits_per_word; | 
|  |  | 
|  | if (shift < 0) | 
|  | shift = sbitmap_calculate_shift(depth); | 
|  |  | 
|  | bits_per_word = 1U << shift; | 
|  | if (bits_per_word > BITS_PER_LONG) | 
|  | return -EINVAL; | 
|  |  | 
|  | sb->shift = shift; | 
|  | sb->depth = depth; | 
|  | sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); | 
|  | sb->round_robin = round_robin; | 
|  |  | 
|  | if (depth == 0) { | 
|  | sb->map = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (alloc_hint) { | 
|  | if (init_alloc_hint(sb, flags)) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | sb->alloc_hint = NULL; | 
|  | } | 
|  |  | 
|  | sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node); | 
|  | if (!sb->map) { | 
|  | free_percpu(sb->alloc_hint); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_init_node); | 
|  |  | 
|  | void sbitmap_resize(struct sbitmap *sb, unsigned int depth) | 
|  | { | 
|  | unsigned int bits_per_word = 1U << sb->shift; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < sb->map_nr; i++) | 
|  | sbitmap_deferred_clear(&sb->map[i]); | 
|  |  | 
|  | sb->depth = depth; | 
|  | sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_resize); | 
|  |  | 
|  | static int __sbitmap_get_word(unsigned long *word, unsigned long depth, | 
|  | unsigned int hint, bool wrap) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | /* don't wrap if starting from 0 */ | 
|  | wrap = wrap && hint; | 
|  |  | 
|  | while (1) { | 
|  | nr = find_next_zero_bit(word, depth, hint); | 
|  | if (unlikely(nr >= depth)) { | 
|  | /* | 
|  | * We started with an offset, and we didn't reset the | 
|  | * offset to 0 in a failure case, so start from 0 to | 
|  | * exhaust the map. | 
|  | */ | 
|  | if (hint && wrap) { | 
|  | hint = 0; | 
|  | continue; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!test_and_set_bit_lock(nr, word)) | 
|  | break; | 
|  |  | 
|  | hint = nr + 1; | 
|  | if (hint >= depth - 1) | 
|  | hint = 0; | 
|  | } | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, | 
|  | unsigned int alloc_hint) | 
|  | { | 
|  | struct sbitmap_word *map = &sb->map[index]; | 
|  | int nr; | 
|  |  | 
|  | do { | 
|  | nr = __sbitmap_get_word(&map->word, __map_depth(sb, index), | 
|  | alloc_hint, !sb->round_robin); | 
|  | if (nr != -1) | 
|  | break; | 
|  | if (!sbitmap_deferred_clear(map)) | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint) | 
|  | { | 
|  | unsigned int i, index; | 
|  | int nr = -1; | 
|  |  | 
|  | index = SB_NR_TO_INDEX(sb, alloc_hint); | 
|  |  | 
|  | /* | 
|  | * Unless we're doing round robin tag allocation, just use the | 
|  | * alloc_hint to find the right word index. No point in looping | 
|  | * twice in find_next_zero_bit() for that case. | 
|  | */ | 
|  | if (sb->round_robin) | 
|  | alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); | 
|  | else | 
|  | alloc_hint = 0; | 
|  |  | 
|  | for (i = 0; i < sb->map_nr; i++) { | 
|  | nr = sbitmap_find_bit_in_index(sb, index, alloc_hint); | 
|  | if (nr != -1) { | 
|  | nr += index << sb->shift; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Jump to next index. */ | 
|  | alloc_hint = 0; | 
|  | if (++index >= sb->map_nr) | 
|  | index = 0; | 
|  | } | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | int sbitmap_get(struct sbitmap *sb) | 
|  | { | 
|  | int nr; | 
|  | unsigned int hint, depth; | 
|  |  | 
|  | if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) | 
|  | return -1; | 
|  |  | 
|  | depth = READ_ONCE(sb->depth); | 
|  | hint = update_alloc_hint_before_get(sb, depth); | 
|  | nr = __sbitmap_get(sb, hint); | 
|  | update_alloc_hint_after_get(sb, depth, hint, nr); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_get); | 
|  |  | 
|  | static int __sbitmap_get_shallow(struct sbitmap *sb, | 
|  | unsigned int alloc_hint, | 
|  | unsigned long shallow_depth) | 
|  | { | 
|  | unsigned int i, index; | 
|  | int nr = -1; | 
|  |  | 
|  | index = SB_NR_TO_INDEX(sb, alloc_hint); | 
|  |  | 
|  | for (i = 0; i < sb->map_nr; i++) { | 
|  | again: | 
|  | nr = __sbitmap_get_word(&sb->map[index].word, | 
|  | min_t(unsigned int, | 
|  | __map_depth(sb, index), | 
|  | shallow_depth), | 
|  | SB_NR_TO_BIT(sb, alloc_hint), true); | 
|  | if (nr != -1) { | 
|  | nr += index << sb->shift; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (sbitmap_deferred_clear(&sb->map[index])) | 
|  | goto again; | 
|  |  | 
|  | /* Jump to next index. */ | 
|  | index++; | 
|  | alloc_hint = index << sb->shift; | 
|  |  | 
|  | if (index >= sb->map_nr) { | 
|  | index = 0; | 
|  | alloc_hint = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth) | 
|  | { | 
|  | int nr; | 
|  | unsigned int hint, depth; | 
|  |  | 
|  | if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) | 
|  | return -1; | 
|  |  | 
|  | depth = READ_ONCE(sb->depth); | 
|  | hint = update_alloc_hint_before_get(sb, depth); | 
|  | nr = __sbitmap_get_shallow(sb, hint, shallow_depth); | 
|  | update_alloc_hint_after_get(sb, depth, hint, nr); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_get_shallow); | 
|  |  | 
|  | bool sbitmap_any_bit_set(const struct sbitmap *sb) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < sb->map_nr; i++) { | 
|  | if (sb->map[i].word & ~sb->map[i].cleared) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); | 
|  |  | 
|  | static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) | 
|  | { | 
|  | unsigned int i, weight = 0; | 
|  |  | 
|  | for (i = 0; i < sb->map_nr; i++) { | 
|  | const struct sbitmap_word *word = &sb->map[i]; | 
|  | unsigned int word_depth = __map_depth(sb, i); | 
|  |  | 
|  | if (set) | 
|  | weight += bitmap_weight(&word->word, word_depth); | 
|  | else | 
|  | weight += bitmap_weight(&word->cleared, word_depth); | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | static unsigned int sbitmap_cleared(const struct sbitmap *sb) | 
|  | { | 
|  | return __sbitmap_weight(sb, false); | 
|  | } | 
|  |  | 
|  | unsigned int sbitmap_weight(const struct sbitmap *sb) | 
|  | { | 
|  | return __sbitmap_weight(sb, true) - sbitmap_cleared(sb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_weight); | 
|  |  | 
|  | void sbitmap_show(struct sbitmap *sb, struct seq_file *m) | 
|  | { | 
|  | seq_printf(m, "depth=%u\n", sb->depth); | 
|  | seq_printf(m, "busy=%u\n", sbitmap_weight(sb)); | 
|  | seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); | 
|  | seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); | 
|  | seq_printf(m, "map_nr=%u\n", sb->map_nr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_show); | 
|  |  | 
|  | static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) | 
|  | { | 
|  | if ((offset & 0xf) == 0) { | 
|  | if (offset != 0) | 
|  | seq_putc(m, '\n'); | 
|  | seq_printf(m, "%08x:", offset); | 
|  | } | 
|  | if ((offset & 0x1) == 0) | 
|  | seq_putc(m, ' '); | 
|  | seq_printf(m, "%02x", byte); | 
|  | } | 
|  |  | 
|  | void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) | 
|  | { | 
|  | u8 byte = 0; | 
|  | unsigned int byte_bits = 0; | 
|  | unsigned int offset = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sb->map_nr; i++) { | 
|  | unsigned long word = READ_ONCE(sb->map[i].word); | 
|  | unsigned long cleared = READ_ONCE(sb->map[i].cleared); | 
|  | unsigned int word_bits = __map_depth(sb, i); | 
|  |  | 
|  | word &= ~cleared; | 
|  |  | 
|  | while (word_bits > 0) { | 
|  | unsigned int bits = min(8 - byte_bits, word_bits); | 
|  |  | 
|  | byte |= (word & (BIT(bits) - 1)) << byte_bits; | 
|  | byte_bits += bits; | 
|  | if (byte_bits == 8) { | 
|  | emit_byte(m, offset, byte); | 
|  | byte = 0; | 
|  | byte_bits = 0; | 
|  | offset++; | 
|  | } | 
|  | word >>= bits; | 
|  | word_bits -= bits; | 
|  | } | 
|  | } | 
|  | if (byte_bits) { | 
|  | emit_byte(m, offset, byte); | 
|  | offset++; | 
|  | } | 
|  | if (offset) | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); | 
|  |  | 
|  | static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, | 
|  | unsigned int depth) | 
|  | { | 
|  | unsigned int wake_batch; | 
|  | unsigned int shallow_depth; | 
|  |  | 
|  | /* | 
|  | * For each batch, we wake up one queue. We need to make sure that our | 
|  | * batch size is small enough that the full depth of the bitmap, | 
|  | * potentially limited by a shallow depth, is enough to wake up all of | 
|  | * the queues. | 
|  | * | 
|  | * Each full word of the bitmap has bits_per_word bits, and there might | 
|  | * be a partial word. There are depth / bits_per_word full words and | 
|  | * depth % bits_per_word bits left over. In bitwise arithmetic: | 
|  | * | 
|  | * bits_per_word = 1 << shift | 
|  | * depth / bits_per_word = depth >> shift | 
|  | * depth % bits_per_word = depth & ((1 << shift) - 1) | 
|  | * | 
|  | * Each word can be limited to sbq->min_shallow_depth bits. | 
|  | */ | 
|  | shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); | 
|  | depth = ((depth >> sbq->sb.shift) * shallow_depth + | 
|  | min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); | 
|  | wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, | 
|  | SBQ_WAKE_BATCH); | 
|  |  | 
|  | return wake_batch; | 
|  | } | 
|  |  | 
|  | int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, | 
|  | int shift, bool round_robin, gfp_t flags, int node) | 
|  | { | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node, | 
|  | round_robin, true); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sbq->min_shallow_depth = UINT_MAX; | 
|  | sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); | 
|  | atomic_set(&sbq->wake_index, 0); | 
|  | atomic_set(&sbq->ws_active, 0); | 
|  |  | 
|  | sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); | 
|  | if (!sbq->ws) { | 
|  | sbitmap_free(&sbq->sb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < SBQ_WAIT_QUEUES; i++) { | 
|  | init_waitqueue_head(&sbq->ws[i].wait); | 
|  | atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); | 
|  |  | 
|  | static inline void __sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, | 
|  | unsigned int wake_batch) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (sbq->wake_batch != wake_batch) { | 
|  | WRITE_ONCE(sbq->wake_batch, wake_batch); | 
|  | /* | 
|  | * Pairs with the memory barrier in sbitmap_queue_wake_up() | 
|  | * to ensure that the batch size is updated before the wait | 
|  | * counts. | 
|  | */ | 
|  | smp_mb(); | 
|  | for (i = 0; i < SBQ_WAIT_QUEUES; i++) | 
|  | atomic_set(&sbq->ws[i].wait_cnt, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, | 
|  | unsigned int depth) | 
|  | { | 
|  | unsigned int wake_batch; | 
|  |  | 
|  | wake_batch = sbq_calc_wake_batch(sbq, depth); | 
|  | __sbitmap_queue_update_wake_batch(sbq, wake_batch); | 
|  | } | 
|  |  | 
|  | void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq, | 
|  | unsigned int users) | 
|  | { | 
|  | unsigned int wake_batch; | 
|  | unsigned int min_batch; | 
|  | unsigned int depth = (sbq->sb.depth + users - 1) / users; | 
|  |  | 
|  | min_batch = sbq->sb.depth >= (4 * SBQ_WAIT_QUEUES) ? 4 : 1; | 
|  |  | 
|  | wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES, | 
|  | min_batch, SBQ_WAKE_BATCH); | 
|  | __sbitmap_queue_update_wake_batch(sbq, wake_batch); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch); | 
|  |  | 
|  | void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) | 
|  | { | 
|  | sbitmap_queue_update_wake_batch(sbq, depth); | 
|  | sbitmap_resize(&sbq->sb, depth); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_resize); | 
|  |  | 
|  | int __sbitmap_queue_get(struct sbitmap_queue *sbq) | 
|  | { | 
|  | return sbitmap_get(&sbq->sb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__sbitmap_queue_get); | 
|  |  | 
|  | unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags, | 
|  | unsigned int *offset) | 
|  | { | 
|  | struct sbitmap *sb = &sbq->sb; | 
|  | unsigned int hint, depth; | 
|  | unsigned long index, nr; | 
|  | int i; | 
|  |  | 
|  | if (unlikely(sb->round_robin)) | 
|  | return 0; | 
|  |  | 
|  | depth = READ_ONCE(sb->depth); | 
|  | hint = update_alloc_hint_before_get(sb, depth); | 
|  |  | 
|  | index = SB_NR_TO_INDEX(sb, hint); | 
|  |  | 
|  | for (i = 0; i < sb->map_nr; i++) { | 
|  | struct sbitmap_word *map = &sb->map[index]; | 
|  | unsigned long get_mask; | 
|  | unsigned int map_depth = __map_depth(sb, index); | 
|  |  | 
|  | sbitmap_deferred_clear(map); | 
|  | if (map->word == (1UL << (map_depth - 1)) - 1) | 
|  | goto next; | 
|  |  | 
|  | nr = find_first_zero_bit(&map->word, map_depth); | 
|  | if (nr + nr_tags <= map_depth) { | 
|  | atomic_long_t *ptr = (atomic_long_t *) &map->word; | 
|  | unsigned long val; | 
|  |  | 
|  | get_mask = ((1UL << nr_tags) - 1) << nr; | 
|  | val = READ_ONCE(map->word); | 
|  | do { | 
|  | if ((val & ~get_mask) != val) | 
|  | goto next; | 
|  | } while (!atomic_long_try_cmpxchg(ptr, &val, | 
|  | get_mask | val)); | 
|  | get_mask = (get_mask & ~val) >> nr; | 
|  | if (get_mask) { | 
|  | *offset = nr + (index << sb->shift); | 
|  | update_alloc_hint_after_get(sb, depth, hint, | 
|  | *offset + nr_tags - 1); | 
|  | return get_mask; | 
|  | } | 
|  | } | 
|  | next: | 
|  | /* Jump to next index. */ | 
|  | if (++index >= sb->map_nr) | 
|  | index = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, | 
|  | unsigned int shallow_depth) | 
|  | { | 
|  | WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); | 
|  |  | 
|  | return sbitmap_get_shallow(&sbq->sb, shallow_depth); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow); | 
|  |  | 
|  | void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, | 
|  | unsigned int min_shallow_depth) | 
|  | { | 
|  | sbq->min_shallow_depth = min_shallow_depth; | 
|  | sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); | 
|  |  | 
|  | static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) | 
|  | { | 
|  | int i, wake_index; | 
|  |  | 
|  | if (!atomic_read(&sbq->ws_active)) | 
|  | return NULL; | 
|  |  | 
|  | wake_index = atomic_read(&sbq->wake_index); | 
|  | for (i = 0; i < SBQ_WAIT_QUEUES; i++) { | 
|  | struct sbq_wait_state *ws = &sbq->ws[wake_index]; | 
|  |  | 
|  | if (waitqueue_active(&ws->wait) && atomic_read(&ws->wait_cnt)) { | 
|  | if (wake_index != atomic_read(&sbq->wake_index)) | 
|  | atomic_set(&sbq->wake_index, wake_index); | 
|  | return ws; | 
|  | } | 
|  |  | 
|  | wake_index = sbq_index_inc(wake_index); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool __sbq_wake_up(struct sbitmap_queue *sbq, int *nr) | 
|  | { | 
|  | struct sbq_wait_state *ws; | 
|  | unsigned int wake_batch; | 
|  | int wait_cnt, cur, sub; | 
|  | bool ret; | 
|  |  | 
|  | if (*nr <= 0) | 
|  | return false; | 
|  |  | 
|  | ws = sbq_wake_ptr(sbq); | 
|  | if (!ws) | 
|  | return false; | 
|  |  | 
|  | cur = atomic_read(&ws->wait_cnt); | 
|  | do { | 
|  | /* | 
|  | * For concurrent callers of this, callers should call this | 
|  | * function again to wakeup a new batch on a different 'ws'. | 
|  | */ | 
|  | if (cur == 0) | 
|  | return true; | 
|  | sub = min(*nr, cur); | 
|  | wait_cnt = cur - sub; | 
|  | } while (!atomic_try_cmpxchg(&ws->wait_cnt, &cur, wait_cnt)); | 
|  |  | 
|  | /* | 
|  | * If we decremented queue without waiters, retry to avoid lost | 
|  | * wakeups. | 
|  | */ | 
|  | if (wait_cnt > 0) | 
|  | return !waitqueue_active(&ws->wait); | 
|  |  | 
|  | *nr -= sub; | 
|  |  | 
|  | /* | 
|  | * When wait_cnt == 0, we have to be particularly careful as we are | 
|  | * responsible to reset wait_cnt regardless whether we've actually | 
|  | * woken up anybody. But in case we didn't wakeup anybody, we still | 
|  | * need to retry. | 
|  | */ | 
|  | ret = !waitqueue_active(&ws->wait); | 
|  | wake_batch = READ_ONCE(sbq->wake_batch); | 
|  |  | 
|  | /* | 
|  | * Wake up first in case that concurrent callers decrease wait_cnt | 
|  | * while waitqueue is empty. | 
|  | */ | 
|  | wake_up_nr(&ws->wait, wake_batch); | 
|  |  | 
|  | /* | 
|  | * Pairs with the memory barrier in sbitmap_queue_resize() to | 
|  | * ensure that we see the batch size update before the wait | 
|  | * count is reset. | 
|  | * | 
|  | * Also pairs with the implicit barrier between decrementing wait_cnt | 
|  | * and checking for waitqueue_active() to make sure waitqueue_active() | 
|  | * sees result of the wakeup if atomic_dec_return() has seen the result | 
|  | * of atomic_set(). | 
|  | */ | 
|  | smp_mb__before_atomic(); | 
|  |  | 
|  | /* | 
|  | * Increase wake_index before updating wait_cnt, otherwise concurrent | 
|  | * callers can see valid wait_cnt in old waitqueue, which can cause | 
|  | * invalid wakeup on the old waitqueue. | 
|  | */ | 
|  | sbq_index_atomic_inc(&sbq->wake_index); | 
|  | atomic_set(&ws->wait_cnt, wake_batch); | 
|  |  | 
|  | return ret || *nr; | 
|  | } | 
|  |  | 
|  | void sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr) | 
|  | { | 
|  | while (__sbq_wake_up(sbq, &nr)) | 
|  | ; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); | 
|  |  | 
|  | static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag) | 
|  | { | 
|  | if (likely(!sb->round_robin && tag < sb->depth)) | 
|  | data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag); | 
|  | } | 
|  |  | 
|  | void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset, | 
|  | int *tags, int nr_tags) | 
|  | { | 
|  | struct sbitmap *sb = &sbq->sb; | 
|  | unsigned long *addr = NULL; | 
|  | unsigned long mask = 0; | 
|  | int i; | 
|  |  | 
|  | smp_mb__before_atomic(); | 
|  | for (i = 0; i < nr_tags; i++) { | 
|  | const int tag = tags[i] - offset; | 
|  | unsigned long *this_addr; | 
|  |  | 
|  | /* since we're clearing a batch, skip the deferred map */ | 
|  | this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word; | 
|  | if (!addr) { | 
|  | addr = this_addr; | 
|  | } else if (addr != this_addr) { | 
|  | atomic_long_andnot(mask, (atomic_long_t *) addr); | 
|  | mask = 0; | 
|  | addr = this_addr; | 
|  | } | 
|  | mask |= (1UL << SB_NR_TO_BIT(sb, tag)); | 
|  | } | 
|  |  | 
|  | if (mask) | 
|  | atomic_long_andnot(mask, (atomic_long_t *) addr); | 
|  |  | 
|  | smp_mb__after_atomic(); | 
|  | sbitmap_queue_wake_up(sbq, nr_tags); | 
|  | sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(), | 
|  | tags[nr_tags - 1] - offset); | 
|  | } | 
|  |  | 
|  | void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, | 
|  | unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * Once the clear bit is set, the bit may be allocated out. | 
|  | * | 
|  | * Orders READ/WRITE on the associated instance(such as request | 
|  | * of blk_mq) by this bit for avoiding race with re-allocation, | 
|  | * and its pair is the memory barrier implied in __sbitmap_get_word. | 
|  | * | 
|  | * One invariant is that the clear bit has to be zero when the bit | 
|  | * is in use. | 
|  | */ | 
|  | smp_mb__before_atomic(); | 
|  | sbitmap_deferred_clear_bit(&sbq->sb, nr); | 
|  |  | 
|  | /* | 
|  | * Pairs with the memory barrier in set_current_state() to ensure the | 
|  | * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker | 
|  | * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the | 
|  | * waiter. See the comment on waitqueue_active(). | 
|  | */ | 
|  | smp_mb__after_atomic(); | 
|  | sbitmap_queue_wake_up(sbq, 1); | 
|  | sbitmap_update_cpu_hint(&sbq->sb, cpu, nr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_clear); | 
|  |  | 
|  | void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) | 
|  | { | 
|  | int i, wake_index; | 
|  |  | 
|  | /* | 
|  | * Pairs with the memory barrier in set_current_state() like in | 
|  | * sbitmap_queue_wake_up(). | 
|  | */ | 
|  | smp_mb(); | 
|  | wake_index = atomic_read(&sbq->wake_index); | 
|  | for (i = 0; i < SBQ_WAIT_QUEUES; i++) { | 
|  | struct sbq_wait_state *ws = &sbq->ws[wake_index]; | 
|  |  | 
|  | if (waitqueue_active(&ws->wait)) | 
|  | wake_up(&ws->wait); | 
|  |  | 
|  | wake_index = sbq_index_inc(wake_index); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); | 
|  |  | 
|  | void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) | 
|  | { | 
|  | bool first; | 
|  | int i; | 
|  |  | 
|  | sbitmap_show(&sbq->sb, m); | 
|  |  | 
|  | seq_puts(m, "alloc_hint={"); | 
|  | first = true; | 
|  | for_each_possible_cpu(i) { | 
|  | if (!first) | 
|  | seq_puts(m, ", "); | 
|  | first = false; | 
|  | seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i)); | 
|  | } | 
|  | seq_puts(m, "}\n"); | 
|  |  | 
|  | seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); | 
|  | seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); | 
|  | seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); | 
|  |  | 
|  | seq_puts(m, "ws={\n"); | 
|  | for (i = 0; i < SBQ_WAIT_QUEUES; i++) { | 
|  | struct sbq_wait_state *ws = &sbq->ws[i]; | 
|  |  | 
|  | seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", | 
|  | atomic_read(&ws->wait_cnt), | 
|  | waitqueue_active(&ws->wait) ? "active" : "inactive"); | 
|  | } | 
|  | seq_puts(m, "}\n"); | 
|  |  | 
|  | seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin); | 
|  | seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_queue_show); | 
|  |  | 
|  | void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, | 
|  | struct sbq_wait_state *ws, | 
|  | struct sbq_wait *sbq_wait) | 
|  | { | 
|  | if (!sbq_wait->sbq) { | 
|  | sbq_wait->sbq = sbq; | 
|  | atomic_inc(&sbq->ws_active); | 
|  | add_wait_queue(&ws->wait, &sbq_wait->wait); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); | 
|  |  | 
|  | void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) | 
|  | { | 
|  | list_del_init(&sbq_wait->wait.entry); | 
|  | if (sbq_wait->sbq) { | 
|  | atomic_dec(&sbq_wait->sbq->ws_active); | 
|  | sbq_wait->sbq = NULL; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); | 
|  |  | 
|  | void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, | 
|  | struct sbq_wait_state *ws, | 
|  | struct sbq_wait *sbq_wait, int state) | 
|  | { | 
|  | if (!sbq_wait->sbq) { | 
|  | atomic_inc(&sbq->ws_active); | 
|  | sbq_wait->sbq = sbq; | 
|  | } | 
|  | prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); | 
|  |  | 
|  | void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, | 
|  | struct sbq_wait *sbq_wait) | 
|  | { | 
|  | finish_wait(&ws->wait, &sbq_wait->wait); | 
|  | if (sbq_wait->sbq) { | 
|  | atomic_dec(&sbq->ws_active); | 
|  | sbq_wait->sbq = NULL; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sbitmap_finish_wait); |