|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * mm/page-writeback.c | 
|  | * | 
|  | * Copyright (C) 2002, Linus Torvalds. | 
|  | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
|  | * | 
|  | * Contains functions related to writing back dirty pages at the | 
|  | * address_space level. | 
|  | * | 
|  | * 10Apr2002	Andrew Morton | 
|  | *		Initial version | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/sched/rt.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <trace/events/writeback.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Sleep at most 200ms at a time in balance_dirty_pages(). | 
|  | */ | 
|  | #define MAX_PAUSE		max(HZ/5, 1) | 
|  |  | 
|  | /* | 
|  | * Try to keep balance_dirty_pages() call intervals higher than this many pages | 
|  | * by raising pause time to max_pause when falls below it. | 
|  | */ | 
|  | #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10)) | 
|  |  | 
|  | /* | 
|  | * Estimate write bandwidth at 200ms intervals. | 
|  | */ | 
|  | #define BANDWIDTH_INTERVAL	max(HZ/5, 1) | 
|  |  | 
|  | #define RATELIMIT_CALC_SHIFT	10 | 
|  |  | 
|  | /* | 
|  | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | 
|  | * will look to see if it needs to force writeback or throttling. | 
|  | */ | 
|  | static long ratelimit_pages = 32; | 
|  |  | 
|  | /* The following parameters are exported via /proc/sys/vm */ | 
|  |  | 
|  | /* | 
|  | * Start background writeback (via writeback threads) at this percentage | 
|  | */ | 
|  | static int dirty_background_ratio = 10; | 
|  |  | 
|  | /* | 
|  | * dirty_background_bytes starts at 0 (disabled) so that it is a function of | 
|  | * dirty_background_ratio * the amount of dirtyable memory | 
|  | */ | 
|  | static unsigned long dirty_background_bytes; | 
|  |  | 
|  | /* | 
|  | * free highmem will not be subtracted from the total free memory | 
|  | * for calculating free ratios if vm_highmem_is_dirtyable is true | 
|  | */ | 
|  | static int vm_highmem_is_dirtyable; | 
|  |  | 
|  | /* | 
|  | * The generator of dirty data starts writeback at this percentage | 
|  | */ | 
|  | static int vm_dirty_ratio = 20; | 
|  |  | 
|  | /* | 
|  | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of | 
|  | * vm_dirty_ratio * the amount of dirtyable memory | 
|  | */ | 
|  | static unsigned long vm_dirty_bytes; | 
|  |  | 
|  | /* | 
|  | * The interval between `kupdate'-style writebacks | 
|  | */ | 
|  | unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(dirty_writeback_interval); | 
|  |  | 
|  | /* | 
|  | * The longest time for which data is allowed to remain dirty | 
|  | */ | 
|  | unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ | 
|  |  | 
|  | /* | 
|  | * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: | 
|  | * a full sync is triggered after this time elapses without any disk activity. | 
|  | */ | 
|  | int laptop_mode; | 
|  |  | 
|  | EXPORT_SYMBOL(laptop_mode); | 
|  |  | 
|  | /* End of sysctl-exported parameters */ | 
|  |  | 
|  | struct wb_domain global_wb_domain; | 
|  |  | 
|  | /* consolidated parameters for balance_dirty_pages() and its subroutines */ | 
|  | struct dirty_throttle_control { | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | struct wb_domain	*dom; | 
|  | struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */ | 
|  | #endif | 
|  | struct bdi_writeback	*wb; | 
|  | struct fprop_local_percpu *wb_completions; | 
|  |  | 
|  | unsigned long		avail;		/* dirtyable */ | 
|  | unsigned long		dirty;		/* file_dirty + write + nfs */ | 
|  | unsigned long		thresh;		/* dirty threshold */ | 
|  | unsigned long		bg_thresh;	/* dirty background threshold */ | 
|  |  | 
|  | unsigned long		wb_dirty;	/* per-wb counterparts */ | 
|  | unsigned long		wb_thresh; | 
|  | unsigned long		wb_bg_thresh; | 
|  |  | 
|  | unsigned long		pos_ratio; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Length of period for aging writeout fractions of bdis. This is an | 
|  | * arbitrarily chosen number. The longer the period, the slower fractions will | 
|  | * reflect changes in current writeout rate. | 
|  | */ | 
|  | #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  |  | 
|  | #define GDTC_INIT(__wb)		.wb = (__wb),				\ | 
|  | .dom = &global_wb_domain,		\ | 
|  | .wb_completions = &(__wb)->completions | 
|  |  | 
|  | #define GDTC_INIT_NO_WB		.dom = &global_wb_domain | 
|  |  | 
|  | #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\ | 
|  | .dom = mem_cgroup_wb_domain(__wb),	\ | 
|  | .wb_completions = &(__wb)->memcg_completions, \ | 
|  | .gdtc = __gdtc | 
|  |  | 
|  | static bool mdtc_valid(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | return dtc->dom; | 
|  | } | 
|  |  | 
|  | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | return dtc->dom; | 
|  | } | 
|  |  | 
|  | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) | 
|  | { | 
|  | return mdtc->gdtc; | 
|  | } | 
|  |  | 
|  | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) | 
|  | { | 
|  | return &wb->memcg_completions; | 
|  | } | 
|  |  | 
|  | static void wb_min_max_ratio(struct bdi_writeback *wb, | 
|  | unsigned long *minp, unsigned long *maxp) | 
|  | { | 
|  | unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); | 
|  | unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); | 
|  | unsigned long long min = wb->bdi->min_ratio; | 
|  | unsigned long long max = wb->bdi->max_ratio; | 
|  |  | 
|  | /* | 
|  | * @wb may already be clean by the time control reaches here and | 
|  | * the total may not include its bw. | 
|  | */ | 
|  | if (this_bw < tot_bw) { | 
|  | if (min) { | 
|  | min *= this_bw; | 
|  | min = div64_ul(min, tot_bw); | 
|  | } | 
|  | if (max < 100) { | 
|  | max *= this_bw; | 
|  | max = div64_ul(max, tot_bw); | 
|  | } | 
|  | } | 
|  |  | 
|  | *minp = min; | 
|  | *maxp = max; | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | #define GDTC_INIT(__wb)		.wb = (__wb),                           \ | 
|  | .wb_completions = &(__wb)->completions | 
|  | #define GDTC_INIT_NO_WB | 
|  | #define MDTC_INIT(__wb, __gdtc) | 
|  |  | 
|  | static bool mdtc_valid(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | return &global_wb_domain; | 
|  | } | 
|  |  | 
|  | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void wb_min_max_ratio(struct bdi_writeback *wb, | 
|  | unsigned long *minp, unsigned long *maxp) | 
|  | { | 
|  | *minp = wb->bdi->min_ratio; | 
|  | *maxp = wb->bdi->max_ratio; | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | /* | 
|  | * In a memory zone, there is a certain amount of pages we consider | 
|  | * available for the page cache, which is essentially the number of | 
|  | * free and reclaimable pages, minus some zone reserves to protect | 
|  | * lowmem and the ability to uphold the zone's watermarks without | 
|  | * requiring writeback. | 
|  | * | 
|  | * This number of dirtyable pages is the base value of which the | 
|  | * user-configurable dirty ratio is the effective number of pages that | 
|  | * are allowed to be actually dirtied.  Per individual zone, or | 
|  | * globally by using the sum of dirtyable pages over all zones. | 
|  | * | 
|  | * Because the user is allowed to specify the dirty limit globally as | 
|  | * absolute number of bytes, calculating the per-zone dirty limit can | 
|  | * require translating the configured limit into a percentage of | 
|  | * global dirtyable memory first. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * node_dirtyable_memory - number of dirtyable pages in a node | 
|  | * @pgdat: the node | 
|  | * | 
|  | * Return: the node's number of pages potentially available for dirty | 
|  | * page cache.  This is the base value for the per-node dirty limits. | 
|  | */ | 
|  | static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) | 
|  | { | 
|  | unsigned long nr_pages = 0; | 
|  | int z; | 
|  |  | 
|  | for (z = 0; z < MAX_NR_ZONES; z++) { | 
|  | struct zone *zone = pgdat->node_zones + z; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | nr_pages += zone_page_state(zone, NR_FREE_PAGES); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pages reserved for the kernel should not be considered | 
|  | * dirtyable, to prevent a situation where reclaim has to | 
|  | * clean pages in order to balance the zones. | 
|  | */ | 
|  | nr_pages -= min(nr_pages, pgdat->totalreserve_pages); | 
|  |  | 
|  | nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); | 
|  | nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); | 
|  |  | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | static unsigned long highmem_dirtyable_memory(unsigned long total) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | int node; | 
|  | unsigned long x = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_node_state(node, N_HIGH_MEMORY) { | 
|  | for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { | 
|  | struct zone *z; | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | if (!is_highmem_idx(i)) | 
|  | continue; | 
|  |  | 
|  | z = &NODE_DATA(node)->node_zones[i]; | 
|  | if (!populated_zone(z)) | 
|  | continue; | 
|  |  | 
|  | nr_pages = zone_page_state(z, NR_FREE_PAGES); | 
|  | /* watch for underflows */ | 
|  | nr_pages -= min(nr_pages, high_wmark_pages(z)); | 
|  | nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); | 
|  | nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); | 
|  | x += nr_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that the number of highmem pages is never larger | 
|  | * than the number of the total dirtyable memory. This can only | 
|  | * occur in very strange VM situations but we want to make sure | 
|  | * that this does not occur. | 
|  | */ | 
|  | return min(x, total); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * global_dirtyable_memory - number of globally dirtyable pages | 
|  | * | 
|  | * Return: the global number of pages potentially available for dirty | 
|  | * page cache.  This is the base value for the global dirty limits. | 
|  | */ | 
|  | static unsigned long global_dirtyable_memory(void) | 
|  | { | 
|  | unsigned long x; | 
|  |  | 
|  | x = global_zone_page_state(NR_FREE_PAGES); | 
|  | /* | 
|  | * Pages reserved for the kernel should not be considered | 
|  | * dirtyable, to prevent a situation where reclaim has to | 
|  | * clean pages in order to balance the zones. | 
|  | */ | 
|  | x -= min(x, totalreserve_pages); | 
|  |  | 
|  | x += global_node_page_state(NR_INACTIVE_FILE); | 
|  | x += global_node_page_state(NR_ACTIVE_FILE); | 
|  |  | 
|  | if (!vm_highmem_is_dirtyable) | 
|  | x -= highmem_dirtyable_memory(x); | 
|  |  | 
|  | return x + 1;	/* Ensure that we never return 0 */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain | 
|  | * @dtc: dirty_throttle_control of interest | 
|  | * | 
|  | * Calculate @dtc->thresh and ->bg_thresh considering | 
|  | * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller | 
|  | * must ensure that @dtc->avail is set before calling this function.  The | 
|  | * dirty limits will be lifted by 1/4 for real-time tasks. | 
|  | */ | 
|  | static void domain_dirty_limits(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | const unsigned long available_memory = dtc->avail; | 
|  | struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); | 
|  | unsigned long bytes = vm_dirty_bytes; | 
|  | unsigned long bg_bytes = dirty_background_bytes; | 
|  | /* convert ratios to per-PAGE_SIZE for higher precision */ | 
|  | unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; | 
|  | unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; | 
|  | unsigned long thresh; | 
|  | unsigned long bg_thresh; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | /* gdtc is !NULL iff @dtc is for memcg domain */ | 
|  | if (gdtc) { | 
|  | unsigned long global_avail = gdtc->avail; | 
|  |  | 
|  | /* | 
|  | * The byte settings can't be applied directly to memcg | 
|  | * domains.  Convert them to ratios by scaling against | 
|  | * globally available memory.  As the ratios are in | 
|  | * per-PAGE_SIZE, they can be obtained by dividing bytes by | 
|  | * number of pages. | 
|  | */ | 
|  | if (bytes) | 
|  | ratio = min(DIV_ROUND_UP(bytes, global_avail), | 
|  | PAGE_SIZE); | 
|  | if (bg_bytes) | 
|  | bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), | 
|  | PAGE_SIZE); | 
|  | bytes = bg_bytes = 0; | 
|  | } | 
|  |  | 
|  | if (bytes) | 
|  | thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); | 
|  | else | 
|  | thresh = (ratio * available_memory) / PAGE_SIZE; | 
|  |  | 
|  | if (bg_bytes) | 
|  | bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); | 
|  | else | 
|  | bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; | 
|  |  | 
|  | if (bg_thresh >= thresh) | 
|  | bg_thresh = thresh / 2; | 
|  | tsk = current; | 
|  | if (rt_task(tsk)) { | 
|  | bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; | 
|  | thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; | 
|  | } | 
|  | dtc->thresh = thresh; | 
|  | dtc->bg_thresh = bg_thresh; | 
|  |  | 
|  | /* we should eventually report the domain in the TP */ | 
|  | if (!gdtc) | 
|  | trace_global_dirty_state(bg_thresh, thresh); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * global_dirty_limits - background-writeback and dirty-throttling thresholds | 
|  | * @pbackground: out parameter for bg_thresh | 
|  | * @pdirty: out parameter for thresh | 
|  | * | 
|  | * Calculate bg_thresh and thresh for global_wb_domain.  See | 
|  | * domain_dirty_limits() for details. | 
|  | */ | 
|  | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) | 
|  | { | 
|  | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; | 
|  |  | 
|  | gdtc.avail = global_dirtyable_memory(); | 
|  | domain_dirty_limits(&gdtc); | 
|  |  | 
|  | *pbackground = gdtc.bg_thresh; | 
|  | *pdirty = gdtc.thresh; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * node_dirty_limit - maximum number of dirty pages allowed in a node | 
|  | * @pgdat: the node | 
|  | * | 
|  | * Return: the maximum number of dirty pages allowed in a node, based | 
|  | * on the node's dirtyable memory. | 
|  | */ | 
|  | static unsigned long node_dirty_limit(struct pglist_data *pgdat) | 
|  | { | 
|  | unsigned long node_memory = node_dirtyable_memory(pgdat); | 
|  | struct task_struct *tsk = current; | 
|  | unsigned long dirty; | 
|  |  | 
|  | if (vm_dirty_bytes) | 
|  | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * | 
|  | node_memory / global_dirtyable_memory(); | 
|  | else | 
|  | dirty = vm_dirty_ratio * node_memory / 100; | 
|  |  | 
|  | if (rt_task(tsk)) | 
|  | dirty += dirty / 4; | 
|  |  | 
|  | return dirty; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * node_dirty_ok - tells whether a node is within its dirty limits | 
|  | * @pgdat: the node to check | 
|  | * | 
|  | * Return: %true when the dirty pages in @pgdat are within the node's | 
|  | * dirty limit, %false if the limit is exceeded. | 
|  | */ | 
|  | bool node_dirty_ok(struct pglist_data *pgdat) | 
|  | { | 
|  | unsigned long limit = node_dirty_limit(pgdat); | 
|  | unsigned long nr_pages = 0; | 
|  |  | 
|  | nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); | 
|  | nr_pages += node_page_state(pgdat, NR_WRITEBACK); | 
|  |  | 
|  | return nr_pages <= limit; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static int dirty_background_ratio_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write) | 
|  | dirty_background_bytes = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dirty_background_bytes_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write) | 
|  | dirty_background_ratio = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, | 
|  | size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | int old_ratio = vm_dirty_ratio; | 
|  | int ret; | 
|  |  | 
|  | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write && vm_dirty_ratio != old_ratio) { | 
|  | writeback_set_ratelimit(); | 
|  | vm_dirty_bytes = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dirty_bytes_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | unsigned long old_bytes = vm_dirty_bytes; | 
|  | int ret; | 
|  |  | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write && vm_dirty_bytes != old_bytes) { | 
|  | writeback_set_ratelimit(); | 
|  | vm_dirty_ratio = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long wp_next_time(unsigned long cur_time) | 
|  | { | 
|  | cur_time += VM_COMPLETIONS_PERIOD_LEN; | 
|  | /* 0 has a special meaning... */ | 
|  | if (!cur_time) | 
|  | return 1; | 
|  | return cur_time; | 
|  | } | 
|  |  | 
|  | static void wb_domain_writeout_add(struct wb_domain *dom, | 
|  | struct fprop_local_percpu *completions, | 
|  | unsigned int max_prop_frac, long nr) | 
|  | { | 
|  | __fprop_add_percpu_max(&dom->completions, completions, | 
|  | max_prop_frac, nr); | 
|  | /* First event after period switching was turned off? */ | 
|  | if (unlikely(!dom->period_time)) { | 
|  | /* | 
|  | * We can race with other __bdi_writeout_inc calls here but | 
|  | * it does not cause any harm since the resulting time when | 
|  | * timer will fire and what is in writeout_period_time will be | 
|  | * roughly the same. | 
|  | */ | 
|  | dom->period_time = wp_next_time(jiffies); | 
|  | mod_timer(&dom->period_timer, dom->period_time); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increment @wb's writeout completion count and the global writeout | 
|  | * completion count. Called from __folio_end_writeback(). | 
|  | */ | 
|  | static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) | 
|  | { | 
|  | struct wb_domain *cgdom; | 
|  |  | 
|  | wb_stat_mod(wb, WB_WRITTEN, nr); | 
|  | wb_domain_writeout_add(&global_wb_domain, &wb->completions, | 
|  | wb->bdi->max_prop_frac, nr); | 
|  |  | 
|  | cgdom = mem_cgroup_wb_domain(wb); | 
|  | if (cgdom) | 
|  | wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), | 
|  | wb->bdi->max_prop_frac, nr); | 
|  | } | 
|  |  | 
|  | void wb_writeout_inc(struct bdi_writeback *wb) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __wb_writeout_add(wb, 1); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(wb_writeout_inc); | 
|  |  | 
|  | /* | 
|  | * On idle system, we can be called long after we scheduled because we use | 
|  | * deferred timers so count with missed periods. | 
|  | */ | 
|  | static void writeout_period(struct timer_list *t) | 
|  | { | 
|  | struct wb_domain *dom = from_timer(dom, t, period_timer); | 
|  | int miss_periods = (jiffies - dom->period_time) / | 
|  | VM_COMPLETIONS_PERIOD_LEN; | 
|  |  | 
|  | if (fprop_new_period(&dom->completions, miss_periods + 1)) { | 
|  | dom->period_time = wp_next_time(dom->period_time + | 
|  | miss_periods * VM_COMPLETIONS_PERIOD_LEN); | 
|  | mod_timer(&dom->period_timer, dom->period_time); | 
|  | } else { | 
|  | /* | 
|  | * Aging has zeroed all fractions. Stop wasting CPU on period | 
|  | * updates. | 
|  | */ | 
|  | dom->period_time = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int wb_domain_init(struct wb_domain *dom, gfp_t gfp) | 
|  | { | 
|  | memset(dom, 0, sizeof(*dom)); | 
|  |  | 
|  | spin_lock_init(&dom->lock); | 
|  |  | 
|  | timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); | 
|  |  | 
|  | dom->dirty_limit_tstamp = jiffies; | 
|  |  | 
|  | return fprop_global_init(&dom->completions, gfp); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | void wb_domain_exit(struct wb_domain *dom) | 
|  | { | 
|  | del_timer_sync(&dom->period_timer); | 
|  | fprop_global_destroy(&dom->completions); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * bdi_min_ratio keeps the sum of the minimum dirty shares of all | 
|  | * registered backing devices, which, for obvious reasons, can not | 
|  | * exceed 100%. | 
|  | */ | 
|  | static unsigned int bdi_min_ratio; | 
|  |  | 
|  | int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) | 
|  | { | 
|  | unsigned int delta; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_bh(&bdi_lock); | 
|  | if (min_ratio > bdi->max_ratio) { | 
|  | ret = -EINVAL; | 
|  | } else { | 
|  | if (min_ratio < bdi->min_ratio) { | 
|  | delta = bdi->min_ratio - min_ratio; | 
|  | bdi_min_ratio -= delta; | 
|  | bdi->min_ratio = min_ratio; | 
|  | } else { | 
|  | delta = min_ratio - bdi->min_ratio; | 
|  | if (bdi_min_ratio + delta < 100) { | 
|  | bdi_min_ratio += delta; | 
|  | bdi->min_ratio = min_ratio; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_bh(&bdi_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (max_ratio > 100) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_bh(&bdi_lock); | 
|  | if (bdi->min_ratio > max_ratio) { | 
|  | ret = -EINVAL; | 
|  | } else { | 
|  | bdi->max_ratio = max_ratio; | 
|  | bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; | 
|  | } | 
|  | spin_unlock_bh(&bdi_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(bdi_set_max_ratio); | 
|  |  | 
|  | static unsigned long dirty_freerun_ceiling(unsigned long thresh, | 
|  | unsigned long bg_thresh) | 
|  | { | 
|  | return (thresh + bg_thresh) / 2; | 
|  | } | 
|  |  | 
|  | static unsigned long hard_dirty_limit(struct wb_domain *dom, | 
|  | unsigned long thresh) | 
|  | { | 
|  | return max(thresh, dom->dirty_limit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Memory which can be further allocated to a memcg domain is capped by | 
|  | * system-wide clean memory excluding the amount being used in the domain. | 
|  | */ | 
|  | static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, | 
|  | unsigned long filepages, unsigned long headroom) | 
|  | { | 
|  | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); | 
|  | unsigned long clean = filepages - min(filepages, mdtc->dirty); | 
|  | unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); | 
|  | unsigned long other_clean = global_clean - min(global_clean, clean); | 
|  |  | 
|  | mdtc->avail = filepages + min(headroom, other_clean); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wb_calc_thresh - @wb's share of dirty throttling threshold | 
|  | * @dtc: dirty_throttle_context of interest | 
|  | * | 
|  | * Note that balance_dirty_pages() will only seriously take it as a hard limit | 
|  | * when sleeping max_pause per page is not enough to keep the dirty pages under | 
|  | * control. For example, when the device is completely stalled due to some error | 
|  | * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. | 
|  | * In the other normal situations, it acts more gently by throttling the tasks | 
|  | * more (rather than completely block them) when the wb dirty pages go high. | 
|  | * | 
|  | * It allocates high/low dirty limits to fast/slow devices, in order to prevent | 
|  | * - starving fast devices | 
|  | * - piling up dirty pages (that will take long time to sync) on slow devices | 
|  | * | 
|  | * The wb's share of dirty limit will be adapting to its throughput and | 
|  | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. | 
|  | * | 
|  | * Return: @wb's dirty limit in pages. The term "dirty" in the context of | 
|  | * dirty balancing includes all PG_dirty and PG_writeback pages. | 
|  | */ | 
|  | static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | struct wb_domain *dom = dtc_dom(dtc); | 
|  | unsigned long thresh = dtc->thresh; | 
|  | u64 wb_thresh; | 
|  | unsigned long numerator, denominator; | 
|  | unsigned long wb_min_ratio, wb_max_ratio; | 
|  |  | 
|  | /* | 
|  | * Calculate this BDI's share of the thresh ratio. | 
|  | */ | 
|  | fprop_fraction_percpu(&dom->completions, dtc->wb_completions, | 
|  | &numerator, &denominator); | 
|  |  | 
|  | wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; | 
|  | wb_thresh *= numerator; | 
|  | wb_thresh = div64_ul(wb_thresh, denominator); | 
|  |  | 
|  | wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); | 
|  |  | 
|  | wb_thresh += (thresh * wb_min_ratio) / 100; | 
|  | if (wb_thresh > (thresh * wb_max_ratio) / 100) | 
|  | wb_thresh = thresh * wb_max_ratio / 100; | 
|  |  | 
|  | return wb_thresh; | 
|  | } | 
|  |  | 
|  | unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) | 
|  | { | 
|  | struct dirty_throttle_control gdtc = { GDTC_INIT(wb), | 
|  | .thresh = thresh }; | 
|  | return __wb_calc_thresh(&gdtc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *                           setpoint - dirty 3 | 
|  | *        f(dirty) := 1.0 + (----------------) | 
|  | *                           limit - setpoint | 
|  | * | 
|  | * it's a 3rd order polynomial that subjects to | 
|  | * | 
|  | * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast | 
|  | * (2) f(setpoint) = 1.0 => the balance point | 
|  | * (3) f(limit)    = 0   => the hard limit | 
|  | * (4) df/dx      <= 0	 => negative feedback control | 
|  | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) | 
|  | *     => fast response on large errors; small oscillation near setpoint | 
|  | */ | 
|  | static long long pos_ratio_polynom(unsigned long setpoint, | 
|  | unsigned long dirty, | 
|  | unsigned long limit) | 
|  | { | 
|  | long long pos_ratio; | 
|  | long x; | 
|  |  | 
|  | x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, | 
|  | (limit - setpoint) | 1); | 
|  | pos_ratio = x; | 
|  | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | 
|  | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | 
|  | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; | 
|  |  | 
|  | return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dirty position control. | 
|  | * | 
|  | * (o) global/bdi setpoints | 
|  | * | 
|  | * We want the dirty pages be balanced around the global/wb setpoints. | 
|  | * When the number of dirty pages is higher/lower than the setpoint, the | 
|  | * dirty position control ratio (and hence task dirty ratelimit) will be | 
|  | * decreased/increased to bring the dirty pages back to the setpoint. | 
|  | * | 
|  | *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT | 
|  | * | 
|  | *     if (dirty < setpoint) scale up   pos_ratio | 
|  | *     if (dirty > setpoint) scale down pos_ratio | 
|  | * | 
|  | *     if (wb_dirty < wb_setpoint) scale up   pos_ratio | 
|  | *     if (wb_dirty > wb_setpoint) scale down pos_ratio | 
|  | * | 
|  | *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT | 
|  | * | 
|  | * (o) global control line | 
|  | * | 
|  | *     ^ pos_ratio | 
|  | *     | | 
|  | *     |            |<===== global dirty control scope ======>| | 
|  | * 2.0  * * * * * * * | 
|  | *     |            .* | 
|  | *     |            . * | 
|  | *     |            .   * | 
|  | *     |            .     * | 
|  | *     |            .        * | 
|  | *     |            .            * | 
|  | * 1.0 ................................* | 
|  | *     |            .                  .     * | 
|  | *     |            .                  .          * | 
|  | *     |            .                  .              * | 
|  | *     |            .                  .                 * | 
|  | *     |            .                  .                    * | 
|  | *   0 +------------.------------------.----------------------*-------------> | 
|  | *           freerun^          setpoint^                 limit^   dirty pages | 
|  | * | 
|  | * (o) wb control line | 
|  | * | 
|  | *     ^ pos_ratio | 
|  | *     | | 
|  | *     |            * | 
|  | *     |              * | 
|  | *     |                * | 
|  | *     |                  * | 
|  | *     |                    * |<=========== span ============>| | 
|  | * 1.0 .......................* | 
|  | *     |                      . * | 
|  | *     |                      .   * | 
|  | *     |                      .     * | 
|  | *     |                      .       * | 
|  | *     |                      .         * | 
|  | *     |                      .           * | 
|  | *     |                      .             * | 
|  | *     |                      .               * | 
|  | *     |                      .                 * | 
|  | *     |                      .                   * | 
|  | *     |                      .                     * | 
|  | * 1/4 ...............................................* * * * * * * * * * * * | 
|  | *     |                      .                         . | 
|  | *     |                      .                           . | 
|  | *     |                      .                             . | 
|  | *   0 +----------------------.-------------------------------.-------------> | 
|  | *                wb_setpoint^                    x_intercept^ | 
|  | * | 
|  | * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can | 
|  | * be smoothly throttled down to normal if it starts high in situations like | 
|  | * - start writing to a slow SD card and a fast disk at the same time. The SD | 
|  | *   card's wb_dirty may rush to many times higher than wb_setpoint. | 
|  | * - the wb dirty thresh drops quickly due to change of JBOD workload | 
|  | */ | 
|  | static void wb_position_ratio(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | struct bdi_writeback *wb = dtc->wb; | 
|  | unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); | 
|  | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); | 
|  | unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); | 
|  | unsigned long wb_thresh = dtc->wb_thresh; | 
|  | unsigned long x_intercept; | 
|  | unsigned long setpoint;		/* dirty pages' target balance point */ | 
|  | unsigned long wb_setpoint; | 
|  | unsigned long span; | 
|  | long long pos_ratio;		/* for scaling up/down the rate limit */ | 
|  | long x; | 
|  |  | 
|  | dtc->pos_ratio = 0; | 
|  |  | 
|  | if (unlikely(dtc->dirty >= limit)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * global setpoint | 
|  | * | 
|  | * See comment for pos_ratio_polynom(). | 
|  | */ | 
|  | setpoint = (freerun + limit) / 2; | 
|  | pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); | 
|  |  | 
|  | /* | 
|  | * The strictlimit feature is a tool preventing mistrusted filesystems | 
|  | * from growing a large number of dirty pages before throttling. For | 
|  | * such filesystems balance_dirty_pages always checks wb counters | 
|  | * against wb limits. Even if global "nr_dirty" is under "freerun". | 
|  | * This is especially important for fuse which sets bdi->max_ratio to | 
|  | * 1% by default. Without strictlimit feature, fuse writeback may | 
|  | * consume arbitrary amount of RAM because it is accounted in | 
|  | * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". | 
|  | * | 
|  | * Here, in wb_position_ratio(), we calculate pos_ratio based on | 
|  | * two values: wb_dirty and wb_thresh. Let's consider an example: | 
|  | * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global | 
|  | * limits are set by default to 10% and 20% (background and throttle). | 
|  | * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. | 
|  | * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is | 
|  | * about ~6K pages (as the average of background and throttle wb | 
|  | * limits). The 3rd order polynomial will provide positive feedback if | 
|  | * wb_dirty is under wb_setpoint and vice versa. | 
|  | * | 
|  | * Note, that we cannot use global counters in these calculations | 
|  | * because we want to throttle process writing to a strictlimit wb | 
|  | * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB | 
|  | * in the example above). | 
|  | */ | 
|  | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { | 
|  | long long wb_pos_ratio; | 
|  |  | 
|  | if (dtc->wb_dirty < 8) { | 
|  | dtc->pos_ratio = min_t(long long, pos_ratio * 2, | 
|  | 2 << RATELIMIT_CALC_SHIFT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (dtc->wb_dirty >= wb_thresh) | 
|  | return; | 
|  |  | 
|  | wb_setpoint = dirty_freerun_ceiling(wb_thresh, | 
|  | dtc->wb_bg_thresh); | 
|  |  | 
|  | if (wb_setpoint == 0 || wb_setpoint == wb_thresh) | 
|  | return; | 
|  |  | 
|  | wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, | 
|  | wb_thresh); | 
|  |  | 
|  | /* | 
|  | * Typically, for strictlimit case, wb_setpoint << setpoint | 
|  | * and pos_ratio >> wb_pos_ratio. In the other words global | 
|  | * state ("dirty") is not limiting factor and we have to | 
|  | * make decision based on wb counters. But there is an | 
|  | * important case when global pos_ratio should get precedence: | 
|  | * global limits are exceeded (e.g. due to activities on other | 
|  | * wb's) while given strictlimit wb is below limit. | 
|  | * | 
|  | * "pos_ratio * wb_pos_ratio" would work for the case above, | 
|  | * but it would look too non-natural for the case of all | 
|  | * activity in the system coming from a single strictlimit wb | 
|  | * with bdi->max_ratio == 100%. | 
|  | * | 
|  | * Note that min() below somewhat changes the dynamics of the | 
|  | * control system. Normally, pos_ratio value can be well over 3 | 
|  | * (when globally we are at freerun and wb is well below wb | 
|  | * setpoint). Now the maximum pos_ratio in the same situation | 
|  | * is 2. We might want to tweak this if we observe the control | 
|  | * system is too slow to adapt. | 
|  | */ | 
|  | dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have computed basic pos_ratio above based on global situation. If | 
|  | * the wb is over/under its share of dirty pages, we want to scale | 
|  | * pos_ratio further down/up. That is done by the following mechanism. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * wb setpoint | 
|  | * | 
|  | *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) | 
|  | * | 
|  | *                        x_intercept - wb_dirty | 
|  | *                     := -------------------------- | 
|  | *                        x_intercept - wb_setpoint | 
|  | * | 
|  | * The main wb control line is a linear function that subjects to | 
|  | * | 
|  | * (1) f(wb_setpoint) = 1.0 | 
|  | * (2) k = - 1 / (8 * write_bw)  (in single wb case) | 
|  | *     or equally: x_intercept = wb_setpoint + 8 * write_bw | 
|  | * | 
|  | * For single wb case, the dirty pages are observed to fluctuate | 
|  | * regularly within range | 
|  | *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] | 
|  | * for various filesystems, where (2) can yield in a reasonable 12.5% | 
|  | * fluctuation range for pos_ratio. | 
|  | * | 
|  | * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its | 
|  | * own size, so move the slope over accordingly and choose a slope that | 
|  | * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. | 
|  | */ | 
|  | if (unlikely(wb_thresh > dtc->thresh)) | 
|  | wb_thresh = dtc->thresh; | 
|  | /* | 
|  | * It's very possible that wb_thresh is close to 0 not because the | 
|  | * device is slow, but that it has remained inactive for long time. | 
|  | * Honour such devices a reasonable good (hopefully IO efficient) | 
|  | * threshold, so that the occasional writes won't be blocked and active | 
|  | * writes can rampup the threshold quickly. | 
|  | */ | 
|  | wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); | 
|  | /* | 
|  | * scale global setpoint to wb's: | 
|  | *	wb_setpoint = setpoint * wb_thresh / thresh | 
|  | */ | 
|  | x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); | 
|  | wb_setpoint = setpoint * (u64)x >> 16; | 
|  | /* | 
|  | * Use span=(8*write_bw) in single wb case as indicated by | 
|  | * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. | 
|  | * | 
|  | *        wb_thresh                    thresh - wb_thresh | 
|  | * span = --------- * (8 * write_bw) + ------------------ * wb_thresh | 
|  | *         thresh                           thresh | 
|  | */ | 
|  | span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; | 
|  | x_intercept = wb_setpoint + span; | 
|  |  | 
|  | if (dtc->wb_dirty < x_intercept - span / 4) { | 
|  | pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), | 
|  | (x_intercept - wb_setpoint) | 1); | 
|  | } else | 
|  | pos_ratio /= 4; | 
|  |  | 
|  | /* | 
|  | * wb reserve area, safeguard against dirty pool underrun and disk idle | 
|  | * It may push the desired control point of global dirty pages higher | 
|  | * than setpoint. | 
|  | */ | 
|  | x_intercept = wb_thresh / 2; | 
|  | if (dtc->wb_dirty < x_intercept) { | 
|  | if (dtc->wb_dirty > x_intercept / 8) | 
|  | pos_ratio = div_u64(pos_ratio * x_intercept, | 
|  | dtc->wb_dirty); | 
|  | else | 
|  | pos_ratio *= 8; | 
|  | } | 
|  |  | 
|  | dtc->pos_ratio = pos_ratio; | 
|  | } | 
|  |  | 
|  | static void wb_update_write_bandwidth(struct bdi_writeback *wb, | 
|  | unsigned long elapsed, | 
|  | unsigned long written) | 
|  | { | 
|  | const unsigned long period = roundup_pow_of_two(3 * HZ); | 
|  | unsigned long avg = wb->avg_write_bandwidth; | 
|  | unsigned long old = wb->write_bandwidth; | 
|  | u64 bw; | 
|  |  | 
|  | /* | 
|  | * bw = written * HZ / elapsed | 
|  | * | 
|  | *                   bw * elapsed + write_bandwidth * (period - elapsed) | 
|  | * write_bandwidth = --------------------------------------------------- | 
|  | *                                          period | 
|  | * | 
|  | * @written may have decreased due to folio_account_redirty(). | 
|  | * Avoid underflowing @bw calculation. | 
|  | */ | 
|  | bw = written - min(written, wb->written_stamp); | 
|  | bw *= HZ; | 
|  | if (unlikely(elapsed > period)) { | 
|  | bw = div64_ul(bw, elapsed); | 
|  | avg = bw; | 
|  | goto out; | 
|  | } | 
|  | bw += (u64)wb->write_bandwidth * (period - elapsed); | 
|  | bw >>= ilog2(period); | 
|  |  | 
|  | /* | 
|  | * one more level of smoothing, for filtering out sudden spikes | 
|  | */ | 
|  | if (avg > old && old >= (unsigned long)bw) | 
|  | avg -= (avg - old) >> 3; | 
|  |  | 
|  | if (avg < old && old <= (unsigned long)bw) | 
|  | avg += (old - avg) >> 3; | 
|  |  | 
|  | out: | 
|  | /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ | 
|  | avg = max(avg, 1LU); | 
|  | if (wb_has_dirty_io(wb)) { | 
|  | long delta = avg - wb->avg_write_bandwidth; | 
|  | WARN_ON_ONCE(atomic_long_add_return(delta, | 
|  | &wb->bdi->tot_write_bandwidth) <= 0); | 
|  | } | 
|  | wb->write_bandwidth = bw; | 
|  | WRITE_ONCE(wb->avg_write_bandwidth, avg); | 
|  | } | 
|  |  | 
|  | static void update_dirty_limit(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | struct wb_domain *dom = dtc_dom(dtc); | 
|  | unsigned long thresh = dtc->thresh; | 
|  | unsigned long limit = dom->dirty_limit; | 
|  |  | 
|  | /* | 
|  | * Follow up in one step. | 
|  | */ | 
|  | if (limit < thresh) { | 
|  | limit = thresh; | 
|  | goto update; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Follow down slowly. Use the higher one as the target, because thresh | 
|  | * may drop below dirty. This is exactly the reason to introduce | 
|  | * dom->dirty_limit which is guaranteed to lie above the dirty pages. | 
|  | */ | 
|  | thresh = max(thresh, dtc->dirty); | 
|  | if (limit > thresh) { | 
|  | limit -= (limit - thresh) >> 5; | 
|  | goto update; | 
|  | } | 
|  | return; | 
|  | update: | 
|  | dom->dirty_limit = limit; | 
|  | } | 
|  |  | 
|  | static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, | 
|  | unsigned long now) | 
|  | { | 
|  | struct wb_domain *dom = dtc_dom(dtc); | 
|  |  | 
|  | /* | 
|  | * check locklessly first to optimize away locking for the most time | 
|  | */ | 
|  | if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&dom->lock); | 
|  | if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { | 
|  | update_dirty_limit(dtc); | 
|  | dom->dirty_limit_tstamp = now; | 
|  | } | 
|  | spin_unlock(&dom->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maintain wb->dirty_ratelimit, the base dirty throttle rate. | 
|  | * | 
|  | * Normal wb tasks will be curbed at or below it in long term. | 
|  | * Obviously it should be around (write_bw / N) when there are N dd tasks. | 
|  | */ | 
|  | static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, | 
|  | unsigned long dirtied, | 
|  | unsigned long elapsed) | 
|  | { | 
|  | struct bdi_writeback *wb = dtc->wb; | 
|  | unsigned long dirty = dtc->dirty; | 
|  | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); | 
|  | unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); | 
|  | unsigned long setpoint = (freerun + limit) / 2; | 
|  | unsigned long write_bw = wb->avg_write_bandwidth; | 
|  | unsigned long dirty_ratelimit = wb->dirty_ratelimit; | 
|  | unsigned long dirty_rate; | 
|  | unsigned long task_ratelimit; | 
|  | unsigned long balanced_dirty_ratelimit; | 
|  | unsigned long step; | 
|  | unsigned long x; | 
|  | unsigned long shift; | 
|  |  | 
|  | /* | 
|  | * The dirty rate will match the writeout rate in long term, except | 
|  | * when dirty pages are truncated by userspace or re-dirtied by FS. | 
|  | */ | 
|  | dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; | 
|  |  | 
|  | /* | 
|  | * task_ratelimit reflects each dd's dirty rate for the past 200ms. | 
|  | */ | 
|  | task_ratelimit = (u64)dirty_ratelimit * | 
|  | dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; | 
|  | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ | 
|  |  | 
|  | /* | 
|  | * A linear estimation of the "balanced" throttle rate. The theory is, | 
|  | * if there are N dd tasks, each throttled at task_ratelimit, the wb's | 
|  | * dirty_rate will be measured to be (N * task_ratelimit). So the below | 
|  | * formula will yield the balanced rate limit (write_bw / N). | 
|  | * | 
|  | * Note that the expanded form is not a pure rate feedback: | 
|  | *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1) | 
|  | * but also takes pos_ratio into account: | 
|  | *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2) | 
|  | * | 
|  | * (1) is not realistic because pos_ratio also takes part in balancing | 
|  | * the dirty rate.  Consider the state | 
|  | *	pos_ratio = 0.5						     (3) | 
|  | *	rate = 2 * (write_bw / N)				     (4) | 
|  | * If (1) is used, it will stuck in that state! Because each dd will | 
|  | * be throttled at | 
|  | *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5) | 
|  | * yielding | 
|  | *	dirty_rate = N * task_ratelimit = write_bw		     (6) | 
|  | * put (6) into (1) we get | 
|  | *	rate_(i+1) = rate_(i)					     (7) | 
|  | * | 
|  | * So we end up using (2) to always keep | 
|  | *	rate_(i+1) ~= (write_bw / N)				     (8) | 
|  | * regardless of the value of pos_ratio. As long as (8) is satisfied, | 
|  | * pos_ratio is able to drive itself to 1.0, which is not only where | 
|  | * the dirty count meet the setpoint, but also where the slope of | 
|  | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. | 
|  | */ | 
|  | balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, | 
|  | dirty_rate | 1); | 
|  | /* | 
|  | * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw | 
|  | */ | 
|  | if (unlikely(balanced_dirty_ratelimit > write_bw)) | 
|  | balanced_dirty_ratelimit = write_bw; | 
|  |  | 
|  | /* | 
|  | * We could safely do this and return immediately: | 
|  | * | 
|  | *	wb->dirty_ratelimit = balanced_dirty_ratelimit; | 
|  | * | 
|  | * However to get a more stable dirty_ratelimit, the below elaborated | 
|  | * code makes use of task_ratelimit to filter out singular points and | 
|  | * limit the step size. | 
|  | * | 
|  | * The below code essentially only uses the relative value of | 
|  | * | 
|  | *	task_ratelimit - dirty_ratelimit | 
|  | *	= (pos_ratio - 1) * dirty_ratelimit | 
|  | * | 
|  | * which reflects the direction and size of dirty position error. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * dirty_ratelimit will follow balanced_dirty_ratelimit iff | 
|  | * task_ratelimit is on the same side of dirty_ratelimit, too. | 
|  | * For example, when | 
|  | * - dirty_ratelimit > balanced_dirty_ratelimit | 
|  | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) | 
|  | * lowering dirty_ratelimit will help meet both the position and rate | 
|  | * control targets. Otherwise, don't update dirty_ratelimit if it will | 
|  | * only help meet the rate target. After all, what the users ultimately | 
|  | * feel and care are stable dirty rate and small position error. | 
|  | * | 
|  | * |task_ratelimit - dirty_ratelimit| is used to limit the step size | 
|  | * and filter out the singular points of balanced_dirty_ratelimit. Which | 
|  | * keeps jumping around randomly and can even leap far away at times | 
|  | * due to the small 200ms estimation period of dirty_rate (we want to | 
|  | * keep that period small to reduce time lags). | 
|  | */ | 
|  | step = 0; | 
|  |  | 
|  | /* | 
|  | * For strictlimit case, calculations above were based on wb counters | 
|  | * and limits (starting from pos_ratio = wb_position_ratio() and up to | 
|  | * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). | 
|  | * Hence, to calculate "step" properly, we have to use wb_dirty as | 
|  | * "dirty" and wb_setpoint as "setpoint". | 
|  | * | 
|  | * We rampup dirty_ratelimit forcibly if wb_dirty is low because | 
|  | * it's possible that wb_thresh is close to zero due to inactivity | 
|  | * of backing device. | 
|  | */ | 
|  | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { | 
|  | dirty = dtc->wb_dirty; | 
|  | if (dtc->wb_dirty < 8) | 
|  | setpoint = dtc->wb_dirty + 1; | 
|  | else | 
|  | setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; | 
|  | } | 
|  |  | 
|  | if (dirty < setpoint) { | 
|  | x = min3(wb->balanced_dirty_ratelimit, | 
|  | balanced_dirty_ratelimit, task_ratelimit); | 
|  | if (dirty_ratelimit < x) | 
|  | step = x - dirty_ratelimit; | 
|  | } else { | 
|  | x = max3(wb->balanced_dirty_ratelimit, | 
|  | balanced_dirty_ratelimit, task_ratelimit); | 
|  | if (dirty_ratelimit > x) | 
|  | step = dirty_ratelimit - x; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't pursue 100% rate matching. It's impossible since the balanced | 
|  | * rate itself is constantly fluctuating. So decrease the track speed | 
|  | * when it gets close to the target. Helps eliminate pointless tremors. | 
|  | */ | 
|  | shift = dirty_ratelimit / (2 * step + 1); | 
|  | if (shift < BITS_PER_LONG) | 
|  | step = DIV_ROUND_UP(step >> shift, 8); | 
|  | else | 
|  | step = 0; | 
|  |  | 
|  | if (dirty_ratelimit < balanced_dirty_ratelimit) | 
|  | dirty_ratelimit += step; | 
|  | else | 
|  | dirty_ratelimit -= step; | 
|  |  | 
|  | WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); | 
|  | wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; | 
|  |  | 
|  | trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); | 
|  | } | 
|  |  | 
|  | static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, | 
|  | struct dirty_throttle_control *mdtc, | 
|  | bool update_ratelimit) | 
|  | { | 
|  | struct bdi_writeback *wb = gdtc->wb; | 
|  | unsigned long now = jiffies; | 
|  | unsigned long elapsed; | 
|  | unsigned long dirtied; | 
|  | unsigned long written; | 
|  |  | 
|  | spin_lock(&wb->list_lock); | 
|  |  | 
|  | /* | 
|  | * Lockless checks for elapsed time are racy and delayed update after | 
|  | * IO completion doesn't do it at all (to make sure written pages are | 
|  | * accounted reasonably quickly). Make sure elapsed >= 1 to avoid | 
|  | * division errors. | 
|  | */ | 
|  | elapsed = max(now - wb->bw_time_stamp, 1UL); | 
|  | dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); | 
|  | written = percpu_counter_read(&wb->stat[WB_WRITTEN]); | 
|  |  | 
|  | if (update_ratelimit) { | 
|  | domain_update_dirty_limit(gdtc, now); | 
|  | wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); | 
|  |  | 
|  | /* | 
|  | * @mdtc is always NULL if !CGROUP_WRITEBACK but the | 
|  | * compiler has no way to figure that out.  Help it. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { | 
|  | domain_update_dirty_limit(mdtc, now); | 
|  | wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); | 
|  | } | 
|  | } | 
|  | wb_update_write_bandwidth(wb, elapsed, written); | 
|  |  | 
|  | wb->dirtied_stamp = dirtied; | 
|  | wb->written_stamp = written; | 
|  | WRITE_ONCE(wb->bw_time_stamp, now); | 
|  | spin_unlock(&wb->list_lock); | 
|  | } | 
|  |  | 
|  | void wb_update_bandwidth(struct bdi_writeback *wb) | 
|  | { | 
|  | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; | 
|  |  | 
|  | __wb_update_bandwidth(&gdtc, NULL, false); | 
|  | } | 
|  |  | 
|  | /* Interval after which we consider wb idle and don't estimate bandwidth */ | 
|  | #define WB_BANDWIDTH_IDLE_JIF (HZ) | 
|  |  | 
|  | static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) | 
|  | { | 
|  | unsigned long now = jiffies; | 
|  | unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); | 
|  |  | 
|  | if (elapsed > WB_BANDWIDTH_IDLE_JIF && | 
|  | !atomic_read(&wb->writeback_inodes)) { | 
|  | spin_lock(&wb->list_lock); | 
|  | wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); | 
|  | wb->written_stamp = wb_stat(wb, WB_WRITTEN); | 
|  | WRITE_ONCE(wb->bw_time_stamp, now); | 
|  | spin_unlock(&wb->list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a task dirtied this many pages, balance_dirty_pages_ratelimited() | 
|  | * will look to see if it needs to start dirty throttling. | 
|  | * | 
|  | * If dirty_poll_interval is too low, big NUMA machines will call the expensive | 
|  | * global_zone_page_state() too often. So scale it near-sqrt to the safety margin | 
|  | * (the number of pages we may dirty without exceeding the dirty limits). | 
|  | */ | 
|  | static unsigned long dirty_poll_interval(unsigned long dirty, | 
|  | unsigned long thresh) | 
|  | { | 
|  | if (thresh > dirty) | 
|  | return 1UL << (ilog2(thresh - dirty) >> 1); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static unsigned long wb_max_pause(struct bdi_writeback *wb, | 
|  | unsigned long wb_dirty) | 
|  | { | 
|  | unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); | 
|  | unsigned long t; | 
|  |  | 
|  | /* | 
|  | * Limit pause time for small memory systems. If sleeping for too long | 
|  | * time, a small pool of dirty/writeback pages may go empty and disk go | 
|  | * idle. | 
|  | * | 
|  | * 8 serves as the safety ratio. | 
|  | */ | 
|  | t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); | 
|  | t++; | 
|  |  | 
|  | return min_t(unsigned long, t, MAX_PAUSE); | 
|  | } | 
|  |  | 
|  | static long wb_min_pause(struct bdi_writeback *wb, | 
|  | long max_pause, | 
|  | unsigned long task_ratelimit, | 
|  | unsigned long dirty_ratelimit, | 
|  | int *nr_dirtied_pause) | 
|  | { | 
|  | long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); | 
|  | long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); | 
|  | long t;		/* target pause */ | 
|  | long pause;	/* estimated next pause */ | 
|  | int pages;	/* target nr_dirtied_pause */ | 
|  |  | 
|  | /* target for 10ms pause on 1-dd case */ | 
|  | t = max(1, HZ / 100); | 
|  |  | 
|  | /* | 
|  | * Scale up pause time for concurrent dirtiers in order to reduce CPU | 
|  | * overheads. | 
|  | * | 
|  | * (N * 10ms) on 2^N concurrent tasks. | 
|  | */ | 
|  | if (hi > lo) | 
|  | t += (hi - lo) * (10 * HZ) / 1024; | 
|  |  | 
|  | /* | 
|  | * This is a bit convoluted. We try to base the next nr_dirtied_pause | 
|  | * on the much more stable dirty_ratelimit. However the next pause time | 
|  | * will be computed based on task_ratelimit and the two rate limits may | 
|  | * depart considerably at some time. Especially if task_ratelimit goes | 
|  | * below dirty_ratelimit/2 and the target pause is max_pause, the next | 
|  | * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a | 
|  | * result task_ratelimit won't be executed faithfully, which could | 
|  | * eventually bring down dirty_ratelimit. | 
|  | * | 
|  | * We apply two rules to fix it up: | 
|  | * 1) try to estimate the next pause time and if necessary, use a lower | 
|  | *    nr_dirtied_pause so as not to exceed max_pause. When this happens, | 
|  | *    nr_dirtied_pause will be "dancing" with task_ratelimit. | 
|  | * 2) limit the target pause time to max_pause/2, so that the normal | 
|  | *    small fluctuations of task_ratelimit won't trigger rule (1) and | 
|  | *    nr_dirtied_pause will remain as stable as dirty_ratelimit. | 
|  | */ | 
|  | t = min(t, 1 + max_pause / 2); | 
|  | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); | 
|  |  | 
|  | /* | 
|  | * Tiny nr_dirtied_pause is found to hurt I/O performance in the test | 
|  | * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. | 
|  | * When the 16 consecutive reads are often interrupted by some dirty | 
|  | * throttling pause during the async writes, cfq will go into idles | 
|  | * (deadline is fine). So push nr_dirtied_pause as high as possible | 
|  | * until reaches DIRTY_POLL_THRESH=32 pages. | 
|  | */ | 
|  | if (pages < DIRTY_POLL_THRESH) { | 
|  | t = max_pause; | 
|  | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); | 
|  | if (pages > DIRTY_POLL_THRESH) { | 
|  | pages = DIRTY_POLL_THRESH; | 
|  | t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; | 
|  | } | 
|  | } | 
|  |  | 
|  | pause = HZ * pages / (task_ratelimit + 1); | 
|  | if (pause > max_pause) { | 
|  | t = max_pause; | 
|  | pages = task_ratelimit * t / roundup_pow_of_two(HZ); | 
|  | } | 
|  |  | 
|  | *nr_dirtied_pause = pages; | 
|  | /* | 
|  | * The minimal pause time will normally be half the target pause time. | 
|  | */ | 
|  | return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; | 
|  | } | 
|  |  | 
|  | static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) | 
|  | { | 
|  | struct bdi_writeback *wb = dtc->wb; | 
|  | unsigned long wb_reclaimable; | 
|  |  | 
|  | /* | 
|  | * wb_thresh is not treated as some limiting factor as | 
|  | * dirty_thresh, due to reasons | 
|  | * - in JBOD setup, wb_thresh can fluctuate a lot | 
|  | * - in a system with HDD and USB key, the USB key may somehow | 
|  | *   go into state (wb_dirty >> wb_thresh) either because | 
|  | *   wb_dirty starts high, or because wb_thresh drops low. | 
|  | *   In this case we don't want to hard throttle the USB key | 
|  | *   dirtiers for 100 seconds until wb_dirty drops under | 
|  | *   wb_thresh. Instead the auxiliary wb control line in | 
|  | *   wb_position_ratio() will let the dirtier task progress | 
|  | *   at some rate <= (write_bw / 2) for bringing down wb_dirty. | 
|  | */ | 
|  | dtc->wb_thresh = __wb_calc_thresh(dtc); | 
|  | dtc->wb_bg_thresh = dtc->thresh ? | 
|  | div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; | 
|  |  | 
|  | /* | 
|  | * In order to avoid the stacked BDI deadlock we need | 
|  | * to ensure we accurately count the 'dirty' pages when | 
|  | * the threshold is low. | 
|  | * | 
|  | * Otherwise it would be possible to get thresh+n pages | 
|  | * reported dirty, even though there are thresh-m pages | 
|  | * actually dirty; with m+n sitting in the percpu | 
|  | * deltas. | 
|  | */ | 
|  | if (dtc->wb_thresh < 2 * wb_stat_error()) { | 
|  | wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); | 
|  | dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); | 
|  | } else { | 
|  | wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); | 
|  | dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * balance_dirty_pages() must be called by processes which are generating dirty | 
|  | * data.  It looks at the number of dirty pages in the machine and will force | 
|  | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. | 
|  | * If we're over `background_thresh' then the writeback threads are woken to | 
|  | * perform some writeout. | 
|  | */ | 
|  | static int balance_dirty_pages(struct bdi_writeback *wb, | 
|  | unsigned long pages_dirtied, unsigned int flags) | 
|  | { | 
|  | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; | 
|  | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; | 
|  | struct dirty_throttle_control * const gdtc = &gdtc_stor; | 
|  | struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? | 
|  | &mdtc_stor : NULL; | 
|  | struct dirty_throttle_control *sdtc; | 
|  | unsigned long nr_reclaimable;	/* = file_dirty */ | 
|  | long period; | 
|  | long pause; | 
|  | long max_pause; | 
|  | long min_pause; | 
|  | int nr_dirtied_pause; | 
|  | bool dirty_exceeded = false; | 
|  | unsigned long task_ratelimit; | 
|  | unsigned long dirty_ratelimit; | 
|  | struct backing_dev_info *bdi = wb->bdi; | 
|  | bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; | 
|  | unsigned long start_time = jiffies; | 
|  | int ret = 0; | 
|  |  | 
|  | for (;;) { | 
|  | unsigned long now = jiffies; | 
|  | unsigned long dirty, thresh, bg_thresh; | 
|  | unsigned long m_dirty = 0;	/* stop bogus uninit warnings */ | 
|  | unsigned long m_thresh = 0; | 
|  | unsigned long m_bg_thresh = 0; | 
|  |  | 
|  | nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); | 
|  | gdtc->avail = global_dirtyable_memory(); | 
|  | gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); | 
|  |  | 
|  | domain_dirty_limits(gdtc); | 
|  |  | 
|  | if (unlikely(strictlimit)) { | 
|  | wb_dirty_limits(gdtc); | 
|  |  | 
|  | dirty = gdtc->wb_dirty; | 
|  | thresh = gdtc->wb_thresh; | 
|  | bg_thresh = gdtc->wb_bg_thresh; | 
|  | } else { | 
|  | dirty = gdtc->dirty; | 
|  | thresh = gdtc->thresh; | 
|  | bg_thresh = gdtc->bg_thresh; | 
|  | } | 
|  |  | 
|  | if (mdtc) { | 
|  | unsigned long filepages, headroom, writeback; | 
|  |  | 
|  | /* | 
|  | * If @wb belongs to !root memcg, repeat the same | 
|  | * basic calculations for the memcg domain. | 
|  | */ | 
|  | mem_cgroup_wb_stats(wb, &filepages, &headroom, | 
|  | &mdtc->dirty, &writeback); | 
|  | mdtc->dirty += writeback; | 
|  | mdtc_calc_avail(mdtc, filepages, headroom); | 
|  |  | 
|  | domain_dirty_limits(mdtc); | 
|  |  | 
|  | if (unlikely(strictlimit)) { | 
|  | wb_dirty_limits(mdtc); | 
|  | m_dirty = mdtc->wb_dirty; | 
|  | m_thresh = mdtc->wb_thresh; | 
|  | m_bg_thresh = mdtc->wb_bg_thresh; | 
|  | } else { | 
|  | m_dirty = mdtc->dirty; | 
|  | m_thresh = mdtc->thresh; | 
|  | m_bg_thresh = mdtc->bg_thresh; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In laptop mode, we wait until hitting the higher threshold | 
|  | * before starting background writeout, and then write out all | 
|  | * the way down to the lower threshold.  So slow writers cause | 
|  | * minimal disk activity. | 
|  | * | 
|  | * In normal mode, we start background writeout at the lower | 
|  | * background_thresh, to keep the amount of dirty memory low. | 
|  | */ | 
|  | if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh && | 
|  | !writeback_in_progress(wb)) | 
|  | wb_start_background_writeback(wb); | 
|  |  | 
|  | /* | 
|  | * Throttle it only when the background writeback cannot | 
|  | * catch-up. This avoids (excessively) small writeouts | 
|  | * when the wb limits are ramping up in case of !strictlimit. | 
|  | * | 
|  | * In strictlimit case make decision based on the wb counters | 
|  | * and limits. Small writeouts when the wb limits are ramping | 
|  | * up are the price we consciously pay for strictlimit-ing. | 
|  | * | 
|  | * If memcg domain is in effect, @dirty should be under | 
|  | * both global and memcg freerun ceilings. | 
|  | */ | 
|  | if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && | 
|  | (!mdtc || | 
|  | m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { | 
|  | unsigned long intv; | 
|  | unsigned long m_intv; | 
|  |  | 
|  | free_running: | 
|  | intv = dirty_poll_interval(dirty, thresh); | 
|  | m_intv = ULONG_MAX; | 
|  |  | 
|  | current->dirty_paused_when = now; | 
|  | current->nr_dirtied = 0; | 
|  | if (mdtc) | 
|  | m_intv = dirty_poll_interval(m_dirty, m_thresh); | 
|  | current->nr_dirtied_pause = min(intv, m_intv); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Start writeback even when in laptop mode */ | 
|  | if (unlikely(!writeback_in_progress(wb))) | 
|  | wb_start_background_writeback(wb); | 
|  |  | 
|  | mem_cgroup_flush_foreign(wb); | 
|  |  | 
|  | /* | 
|  | * Calculate global domain's pos_ratio and select the | 
|  | * global dtc by default. | 
|  | */ | 
|  | if (!strictlimit) { | 
|  | wb_dirty_limits(gdtc); | 
|  |  | 
|  | if ((current->flags & PF_LOCAL_THROTTLE) && | 
|  | gdtc->wb_dirty < | 
|  | dirty_freerun_ceiling(gdtc->wb_thresh, | 
|  | gdtc->wb_bg_thresh)) | 
|  | /* | 
|  | * LOCAL_THROTTLE tasks must not be throttled | 
|  | * when below the per-wb freerun ceiling. | 
|  | */ | 
|  | goto free_running; | 
|  | } | 
|  |  | 
|  | dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && | 
|  | ((gdtc->dirty > gdtc->thresh) || strictlimit); | 
|  |  | 
|  | wb_position_ratio(gdtc); | 
|  | sdtc = gdtc; | 
|  |  | 
|  | if (mdtc) { | 
|  | /* | 
|  | * If memcg domain is in effect, calculate its | 
|  | * pos_ratio.  @wb should satisfy constraints from | 
|  | * both global and memcg domains.  Choose the one | 
|  | * w/ lower pos_ratio. | 
|  | */ | 
|  | if (!strictlimit) { | 
|  | wb_dirty_limits(mdtc); | 
|  |  | 
|  | if ((current->flags & PF_LOCAL_THROTTLE) && | 
|  | mdtc->wb_dirty < | 
|  | dirty_freerun_ceiling(mdtc->wb_thresh, | 
|  | mdtc->wb_bg_thresh)) | 
|  | /* | 
|  | * LOCAL_THROTTLE tasks must not be | 
|  | * throttled when below the per-wb | 
|  | * freerun ceiling. | 
|  | */ | 
|  | goto free_running; | 
|  | } | 
|  | dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && | 
|  | ((mdtc->dirty > mdtc->thresh) || strictlimit); | 
|  |  | 
|  | wb_position_ratio(mdtc); | 
|  | if (mdtc->pos_ratio < gdtc->pos_ratio) | 
|  | sdtc = mdtc; | 
|  | } | 
|  |  | 
|  | if (dirty_exceeded != wb->dirty_exceeded) | 
|  | wb->dirty_exceeded = dirty_exceeded; | 
|  |  | 
|  | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + | 
|  | BANDWIDTH_INTERVAL)) | 
|  | __wb_update_bandwidth(gdtc, mdtc, true); | 
|  |  | 
|  | /* throttle according to the chosen dtc */ | 
|  | dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); | 
|  | task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> | 
|  | RATELIMIT_CALC_SHIFT; | 
|  | max_pause = wb_max_pause(wb, sdtc->wb_dirty); | 
|  | min_pause = wb_min_pause(wb, max_pause, | 
|  | task_ratelimit, dirty_ratelimit, | 
|  | &nr_dirtied_pause); | 
|  |  | 
|  | if (unlikely(task_ratelimit == 0)) { | 
|  | period = max_pause; | 
|  | pause = max_pause; | 
|  | goto pause; | 
|  | } | 
|  | period = HZ * pages_dirtied / task_ratelimit; | 
|  | pause = period; | 
|  | if (current->dirty_paused_when) | 
|  | pause -= now - current->dirty_paused_when; | 
|  | /* | 
|  | * For less than 1s think time (ext3/4 may block the dirtier | 
|  | * for up to 800ms from time to time on 1-HDD; so does xfs, | 
|  | * however at much less frequency), try to compensate it in | 
|  | * future periods by updating the virtual time; otherwise just | 
|  | * do a reset, as it may be a light dirtier. | 
|  | */ | 
|  | if (pause < min_pause) { | 
|  | trace_balance_dirty_pages(wb, | 
|  | sdtc->thresh, | 
|  | sdtc->bg_thresh, | 
|  | sdtc->dirty, | 
|  | sdtc->wb_thresh, | 
|  | sdtc->wb_dirty, | 
|  | dirty_ratelimit, | 
|  | task_ratelimit, | 
|  | pages_dirtied, | 
|  | period, | 
|  | min(pause, 0L), | 
|  | start_time); | 
|  | if (pause < -HZ) { | 
|  | current->dirty_paused_when = now; | 
|  | current->nr_dirtied = 0; | 
|  | } else if (period) { | 
|  | current->dirty_paused_when += period; | 
|  | current->nr_dirtied = 0; | 
|  | } else if (current->nr_dirtied_pause <= pages_dirtied) | 
|  | current->nr_dirtied_pause += pages_dirtied; | 
|  | break; | 
|  | } | 
|  | if (unlikely(pause > max_pause)) { | 
|  | /* for occasional dropped task_ratelimit */ | 
|  | now += min(pause - max_pause, max_pause); | 
|  | pause = max_pause; | 
|  | } | 
|  |  | 
|  | pause: | 
|  | trace_balance_dirty_pages(wb, | 
|  | sdtc->thresh, | 
|  | sdtc->bg_thresh, | 
|  | sdtc->dirty, | 
|  | sdtc->wb_thresh, | 
|  | sdtc->wb_dirty, | 
|  | dirty_ratelimit, | 
|  | task_ratelimit, | 
|  | pages_dirtied, | 
|  | period, | 
|  | pause, | 
|  | start_time); | 
|  | if (flags & BDP_ASYNC) { | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  | __set_current_state(TASK_KILLABLE); | 
|  | wb->dirty_sleep = now; | 
|  | io_schedule_timeout(pause); | 
|  |  | 
|  | current->dirty_paused_when = now + pause; | 
|  | current->nr_dirtied = 0; | 
|  | current->nr_dirtied_pause = nr_dirtied_pause; | 
|  |  | 
|  | /* | 
|  | * This is typically equal to (dirty < thresh) and can also | 
|  | * keep "1000+ dd on a slow USB stick" under control. | 
|  | */ | 
|  | if (task_ratelimit) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * In the case of an unresponsive NFS server and the NFS dirty | 
|  | * pages exceeds dirty_thresh, give the other good wb's a pipe | 
|  | * to go through, so that tasks on them still remain responsive. | 
|  | * | 
|  | * In theory 1 page is enough to keep the consumer-producer | 
|  | * pipe going: the flusher cleans 1 page => the task dirties 1 | 
|  | * more page. However wb_dirty has accounting errors.  So use | 
|  | * the larger and more IO friendly wb_stat_error. | 
|  | */ | 
|  | if (sdtc->wb_dirty <= wb_stat_error()) | 
|  | break; | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(int, bdp_ratelimits); | 
|  |  | 
|  | /* | 
|  | * Normal tasks are throttled by | 
|  | *	loop { | 
|  | *		dirty tsk->nr_dirtied_pause pages; | 
|  | *		take a snap in balance_dirty_pages(); | 
|  | *	} | 
|  | * However there is a worst case. If every task exit immediately when dirtied | 
|  | * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be | 
|  | * called to throttle the page dirties. The solution is to save the not yet | 
|  | * throttled page dirties in dirty_throttle_leaks on task exit and charge them | 
|  | * randomly into the running tasks. This works well for the above worst case, | 
|  | * as the new task will pick up and accumulate the old task's leaked dirty | 
|  | * count and eventually get throttled. | 
|  | */ | 
|  | DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; | 
|  |  | 
|  | /** | 
|  | * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. | 
|  | * @mapping: address_space which was dirtied. | 
|  | * @flags: BDP flags. | 
|  | * | 
|  | * Processes which are dirtying memory should call in here once for each page | 
|  | * which was newly dirtied.  The function will periodically check the system's | 
|  | * dirty state and will initiate writeback if needed. | 
|  | * | 
|  | * See balance_dirty_pages_ratelimited() for details. | 
|  | * | 
|  | * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to | 
|  | * indicate that memory is out of balance and the caller must wait | 
|  | * for I/O to complete.  Otherwise, it will return 0 to indicate | 
|  | * that either memory was already in balance, or it was able to sleep | 
|  | * until the amount of dirty memory returned to balance. | 
|  | */ | 
|  | int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | struct backing_dev_info *bdi = inode_to_bdi(inode); | 
|  | struct bdi_writeback *wb = NULL; | 
|  | int ratelimit; | 
|  | int ret = 0; | 
|  | int *p; | 
|  |  | 
|  | if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) | 
|  | return ret; | 
|  |  | 
|  | if (inode_cgwb_enabled(inode)) | 
|  | wb = wb_get_create_current(bdi, GFP_KERNEL); | 
|  | if (!wb) | 
|  | wb = &bdi->wb; | 
|  |  | 
|  | ratelimit = current->nr_dirtied_pause; | 
|  | if (wb->dirty_exceeded) | 
|  | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); | 
|  |  | 
|  | preempt_disable(); | 
|  | /* | 
|  | * This prevents one CPU to accumulate too many dirtied pages without | 
|  | * calling into balance_dirty_pages(), which can happen when there are | 
|  | * 1000+ tasks, all of them start dirtying pages at exactly the same | 
|  | * time, hence all honoured too large initial task->nr_dirtied_pause. | 
|  | */ | 
|  | p =  this_cpu_ptr(&bdp_ratelimits); | 
|  | if (unlikely(current->nr_dirtied >= ratelimit)) | 
|  | *p = 0; | 
|  | else if (unlikely(*p >= ratelimit_pages)) { | 
|  | *p = 0; | 
|  | ratelimit = 0; | 
|  | } | 
|  | /* | 
|  | * Pick up the dirtied pages by the exited tasks. This avoids lots of | 
|  | * short-lived tasks (eg. gcc invocations in a kernel build) escaping | 
|  | * the dirty throttling and livelock other long-run dirtiers. | 
|  | */ | 
|  | p = this_cpu_ptr(&dirty_throttle_leaks); | 
|  | if (*p > 0 && current->nr_dirtied < ratelimit) { | 
|  | unsigned long nr_pages_dirtied; | 
|  | nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); | 
|  | *p -= nr_pages_dirtied; | 
|  | current->nr_dirtied += nr_pages_dirtied; | 
|  | } | 
|  | preempt_enable(); | 
|  |  | 
|  | if (unlikely(current->nr_dirtied >= ratelimit)) | 
|  | ret = balance_dirty_pages(wb, current->nr_dirtied, flags); | 
|  |  | 
|  | wb_put(wb); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); | 
|  |  | 
|  | /** | 
|  | * balance_dirty_pages_ratelimited - balance dirty memory state. | 
|  | * @mapping: address_space which was dirtied. | 
|  | * | 
|  | * Processes which are dirtying memory should call in here once for each page | 
|  | * which was newly dirtied.  The function will periodically check the system's | 
|  | * dirty state and will initiate writeback if needed. | 
|  | * | 
|  | * Once we're over the dirty memory limit we decrease the ratelimiting | 
|  | * by a lot, to prevent individual processes from overshooting the limit | 
|  | * by (ratelimit_pages) each. | 
|  | */ | 
|  | void balance_dirty_pages_ratelimited(struct address_space *mapping) | 
|  | { | 
|  | balance_dirty_pages_ratelimited_flags(mapping, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); | 
|  |  | 
|  | /** | 
|  | * wb_over_bg_thresh - does @wb need to be written back? | 
|  | * @wb: bdi_writeback of interest | 
|  | * | 
|  | * Determines whether background writeback should keep writing @wb or it's | 
|  | * clean enough. | 
|  | * | 
|  | * Return: %true if writeback should continue. | 
|  | */ | 
|  | bool wb_over_bg_thresh(struct bdi_writeback *wb) | 
|  | { | 
|  | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; | 
|  | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; | 
|  | struct dirty_throttle_control * const gdtc = &gdtc_stor; | 
|  | struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? | 
|  | &mdtc_stor : NULL; | 
|  | unsigned long reclaimable; | 
|  | unsigned long thresh; | 
|  |  | 
|  | /* | 
|  | * Similar to balance_dirty_pages() but ignores pages being written | 
|  | * as we're trying to decide whether to put more under writeback. | 
|  | */ | 
|  | gdtc->avail = global_dirtyable_memory(); | 
|  | gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); | 
|  | domain_dirty_limits(gdtc); | 
|  |  | 
|  | if (gdtc->dirty > gdtc->bg_thresh) | 
|  | return true; | 
|  |  | 
|  | thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); | 
|  | if (thresh < 2 * wb_stat_error()) | 
|  | reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); | 
|  | else | 
|  | reclaimable = wb_stat(wb, WB_RECLAIMABLE); | 
|  |  | 
|  | if (reclaimable > thresh) | 
|  | return true; | 
|  |  | 
|  | if (mdtc) { | 
|  | unsigned long filepages, headroom, writeback; | 
|  |  | 
|  | mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, | 
|  | &writeback); | 
|  | mdtc_calc_avail(mdtc, filepages, headroom); | 
|  | domain_dirty_limits(mdtc);	/* ditto, ignore writeback */ | 
|  |  | 
|  | if (mdtc->dirty > mdtc->bg_thresh) | 
|  | return true; | 
|  |  | 
|  | thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); | 
|  | if (thresh < 2 * wb_stat_error()) | 
|  | reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); | 
|  | else | 
|  | reclaimable = wb_stat(wb, WB_RECLAIMABLE); | 
|  |  | 
|  | if (reclaimable > thresh) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | /* | 
|  | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs | 
|  | */ | 
|  | static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | unsigned int old_interval = dirty_writeback_interval; | 
|  | int ret; | 
|  |  | 
|  | ret = proc_dointvec(table, write, buffer, length, ppos); | 
|  |  | 
|  | /* | 
|  | * Writing 0 to dirty_writeback_interval will disable periodic writeback | 
|  | * and a different non-zero value will wakeup the writeback threads. | 
|  | * wb_wakeup_delayed() would be more appropriate, but it's a pain to | 
|  | * iterate over all bdis and wbs. | 
|  | * The reason we do this is to make the change take effect immediately. | 
|  | */ | 
|  | if (!ret && write && dirty_writeback_interval && | 
|  | dirty_writeback_interval != old_interval) | 
|  | wakeup_flusher_threads(WB_REASON_PERIODIC); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void laptop_mode_timer_fn(struct timer_list *t) | 
|  | { | 
|  | struct backing_dev_info *backing_dev_info = | 
|  | from_timer(backing_dev_info, t, laptop_mode_wb_timer); | 
|  |  | 
|  | wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've spun up the disk and we're in laptop mode: schedule writeback | 
|  | * of all dirty data a few seconds from now.  If the flush is already scheduled | 
|  | * then push it back - the user is still using the disk. | 
|  | */ | 
|  | void laptop_io_completion(struct backing_dev_info *info) | 
|  | { | 
|  | mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're in laptop mode and we've just synced. The sync's writes will have | 
|  | * caused another writeback to be scheduled by laptop_io_completion. | 
|  | * Nothing needs to be written back anymore, so we unschedule the writeback. | 
|  | */ | 
|  | void laptop_sync_completion(void) | 
|  | { | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) | 
|  | del_timer(&bdi->laptop_mode_wb_timer); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If ratelimit_pages is too high then we can get into dirty-data overload | 
|  | * if a large number of processes all perform writes at the same time. | 
|  | * | 
|  | * Here we set ratelimit_pages to a level which ensures that when all CPUs are | 
|  | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory | 
|  | * thresholds. | 
|  | */ | 
|  |  | 
|  | void writeback_set_ratelimit(void) | 
|  | { | 
|  | struct wb_domain *dom = &global_wb_domain; | 
|  | unsigned long background_thresh; | 
|  | unsigned long dirty_thresh; | 
|  |  | 
|  | global_dirty_limits(&background_thresh, &dirty_thresh); | 
|  | dom->dirty_limit = dirty_thresh; | 
|  | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); | 
|  | if (ratelimit_pages < 16) | 
|  | ratelimit_pages = 16; | 
|  | } | 
|  |  | 
|  | static int page_writeback_cpu_online(unsigned int cpu) | 
|  | { | 
|  | writeback_set_ratelimit(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  |  | 
|  | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ | 
|  | static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; | 
|  |  | 
|  | static struct ctl_table vm_page_writeback_sysctls[] = { | 
|  | { | 
|  | .procname   = "dirty_background_ratio", | 
|  | .data       = &dirty_background_ratio, | 
|  | .maxlen     = sizeof(dirty_background_ratio), | 
|  | .mode       = 0644, | 
|  | .proc_handler   = dirty_background_ratio_handler, | 
|  | .extra1     = SYSCTL_ZERO, | 
|  | .extra2     = SYSCTL_ONE_HUNDRED, | 
|  | }, | 
|  | { | 
|  | .procname   = "dirty_background_bytes", | 
|  | .data       = &dirty_background_bytes, | 
|  | .maxlen     = sizeof(dirty_background_bytes), | 
|  | .mode       = 0644, | 
|  | .proc_handler   = dirty_background_bytes_handler, | 
|  | .extra1     = SYSCTL_LONG_ONE, | 
|  | }, | 
|  | { | 
|  | .procname   = "dirty_ratio", | 
|  | .data       = &vm_dirty_ratio, | 
|  | .maxlen     = sizeof(vm_dirty_ratio), | 
|  | .mode       = 0644, | 
|  | .proc_handler   = dirty_ratio_handler, | 
|  | .extra1     = SYSCTL_ZERO, | 
|  | .extra2     = SYSCTL_ONE_HUNDRED, | 
|  | }, | 
|  | { | 
|  | .procname   = "dirty_bytes", | 
|  | .data       = &vm_dirty_bytes, | 
|  | .maxlen     = sizeof(vm_dirty_bytes), | 
|  | .mode       = 0644, | 
|  | .proc_handler   = dirty_bytes_handler, | 
|  | .extra1     = (void *)&dirty_bytes_min, | 
|  | }, | 
|  | { | 
|  | .procname   = "dirty_writeback_centisecs", | 
|  | .data       = &dirty_writeback_interval, | 
|  | .maxlen     = sizeof(dirty_writeback_interval), | 
|  | .mode       = 0644, | 
|  | .proc_handler   = dirty_writeback_centisecs_handler, | 
|  | }, | 
|  | { | 
|  | .procname   = "dirty_expire_centisecs", | 
|  | .data       = &dirty_expire_interval, | 
|  | .maxlen     = sizeof(dirty_expire_interval), | 
|  | .mode       = 0644, | 
|  | .proc_handler   = proc_dointvec_minmax, | 
|  | .extra1     = SYSCTL_ZERO, | 
|  | }, | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | { | 
|  | .procname	= "highmem_is_dirtyable", | 
|  | .data		= &vm_highmem_is_dirtyable, | 
|  | .maxlen		= sizeof(vm_highmem_is_dirtyable), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_ONE, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .procname	= "laptop_mode", | 
|  | .data		= &laptop_mode, | 
|  | .maxlen		= sizeof(laptop_mode), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_jiffies, | 
|  | }, | 
|  | {} | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Called early on to tune the page writeback dirty limits. | 
|  | * | 
|  | * We used to scale dirty pages according to how total memory | 
|  | * related to pages that could be allocated for buffers. | 
|  | * | 
|  | * However, that was when we used "dirty_ratio" to scale with | 
|  | * all memory, and we don't do that any more. "dirty_ratio" | 
|  | * is now applied to total non-HIGHPAGE memory, and as such we can't | 
|  | * get into the old insane situation any more where we had | 
|  | * large amounts of dirty pages compared to a small amount of | 
|  | * non-HIGHMEM memory. | 
|  | * | 
|  | * But we might still want to scale the dirty_ratio by how | 
|  | * much memory the box has.. | 
|  | */ | 
|  | void __init page_writeback_init(void) | 
|  | { | 
|  | BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); | 
|  |  | 
|  | cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", | 
|  | page_writeback_cpu_online, NULL); | 
|  | cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, | 
|  | page_writeback_cpu_online); | 
|  | #ifdef CONFIG_SYSCTL | 
|  | register_sysctl_init("vm", vm_page_writeback_sysctls); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tag_pages_for_writeback - tag pages to be written by write_cache_pages | 
|  | * @mapping: address space structure to write | 
|  | * @start: starting page index | 
|  | * @end: ending page index (inclusive) | 
|  | * | 
|  | * This function scans the page range from @start to @end (inclusive) and tags | 
|  | * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is | 
|  | * that write_cache_pages (or whoever calls this function) will then use | 
|  | * TOWRITE tag to identify pages eligible for writeback.  This mechanism is | 
|  | * used to avoid livelocking of writeback by a process steadily creating new | 
|  | * dirty pages in the file (thus it is important for this function to be quick | 
|  | * so that it can tag pages faster than a dirtying process can create them). | 
|  | */ | 
|  | void tag_pages_for_writeback(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t end) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start); | 
|  | unsigned int tagged = 0; | 
|  | void *page; | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { | 
|  | xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); | 
|  | if (++tagged % XA_CHECK_SCHED) | 
|  | continue; | 
|  |  | 
|  | xas_pause(&xas); | 
|  | xas_unlock_irq(&xas); | 
|  | cond_resched(); | 
|  | xas_lock_irq(&xas); | 
|  | } | 
|  | xas_unlock_irq(&xas); | 
|  | } | 
|  | EXPORT_SYMBOL(tag_pages_for_writeback); | 
|  |  | 
|  | /** | 
|  | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 
|  | * @mapping: address space structure to write | 
|  | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
|  | * @writepage: function called for each page | 
|  | * @data: data passed to writepage function | 
|  | * | 
|  | * If a page is already under I/O, write_cache_pages() skips it, even | 
|  | * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
|  | * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
|  | * and msync() need to guarantee that all the data which was dirty at the time | 
|  | * the call was made get new I/O started against them.  If wbc->sync_mode is | 
|  | * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
|  | * existing IO to complete. | 
|  | * | 
|  | * To avoid livelocks (when other process dirties new pages), we first tag | 
|  | * pages which should be written back with TOWRITE tag and only then start | 
|  | * writing them. For data-integrity sync we have to be careful so that we do | 
|  | * not miss some pages (e.g., because some other process has cleared TOWRITE | 
|  | * tag we set). The rule we follow is that TOWRITE tag can be cleared only | 
|  | * by the process clearing the DIRTY tag (and submitting the page for IO). | 
|  | * | 
|  | * To avoid deadlocks between range_cyclic writeback and callers that hold | 
|  | * pages in PageWriteback to aggregate IO until write_cache_pages() returns, | 
|  | * we do not loop back to the start of the file. Doing so causes a page | 
|  | * lock/page writeback access order inversion - we should only ever lock | 
|  | * multiple pages in ascending page->index order, and looping back to the start | 
|  | * of the file violates that rule and causes deadlocks. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise | 
|  | */ | 
|  | int write_cache_pages(struct address_space *mapping, | 
|  | struct writeback_control *wbc, writepage_t writepage, | 
|  | void *data) | 
|  | { | 
|  | int ret = 0; | 
|  | int done = 0; | 
|  | int error; | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  | pgoff_t index; | 
|  | pgoff_t end;		/* Inclusive */ | 
|  | pgoff_t done_index; | 
|  | int range_whole = 0; | 
|  | xa_mark_t tag; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | if (wbc->range_cyclic) { | 
|  | index = mapping->writeback_index; /* prev offset */ | 
|  | end = -1; | 
|  | } else { | 
|  | index = wbc->range_start >> PAGE_SHIFT; | 
|  | end = wbc->range_end >> PAGE_SHIFT; | 
|  | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
|  | range_whole = 1; | 
|  | } | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { | 
|  | tag_pages_for_writeback(mapping, index, end); | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | } else { | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  | } | 
|  | done_index = index; | 
|  | while (!done && (index <= end)) { | 
|  | int i; | 
|  |  | 
|  | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, | 
|  | tag); | 
|  | if (nr_pages == 0) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | done_index = page->index; | 
|  |  | 
|  | lock_page(page); | 
|  |  | 
|  | /* | 
|  | * Page truncated or invalidated. We can freely skip it | 
|  | * then, even for data integrity operations: the page | 
|  | * has disappeared concurrently, so there could be no | 
|  | * real expectation of this data integrity operation | 
|  | * even if there is now a new, dirty page at the same | 
|  | * pagecache address. | 
|  | */ | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | continue_unlock: | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!PageDirty(page)) { | 
|  | /* someone wrote it for us */ | 
|  | goto continue_unlock; | 
|  | } | 
|  |  | 
|  | if (PageWriteback(page)) { | 
|  | if (wbc->sync_mode != WB_SYNC_NONE) | 
|  | wait_on_page_writeback(page); | 
|  | else | 
|  | goto continue_unlock; | 
|  | } | 
|  |  | 
|  | BUG_ON(PageWriteback(page)); | 
|  | if (!clear_page_dirty_for_io(page)) | 
|  | goto continue_unlock; | 
|  |  | 
|  | trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); | 
|  | error = (*writepage)(page, wbc, data); | 
|  | if (unlikely(error)) { | 
|  | /* | 
|  | * Handle errors according to the type of | 
|  | * writeback. There's no need to continue for | 
|  | * background writeback. Just push done_index | 
|  | * past this page so media errors won't choke | 
|  | * writeout for the entire file. For integrity | 
|  | * writeback, we must process the entire dirty | 
|  | * set regardless of errors because the fs may | 
|  | * still have state to clear for each page. In | 
|  | * that case we continue processing and return | 
|  | * the first error. | 
|  | */ | 
|  | if (error == AOP_WRITEPAGE_ACTIVATE) { | 
|  | unlock_page(page); | 
|  | error = 0; | 
|  | } else if (wbc->sync_mode != WB_SYNC_ALL) { | 
|  | ret = error; | 
|  | done_index = page->index + 1; | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  | if (!ret) | 
|  | ret = error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We stop writing back only if we are not doing | 
|  | * integrity sync. In case of integrity sync we have to | 
|  | * keep going until we have written all the pages | 
|  | * we tagged for writeback prior to entering this loop. | 
|  | */ | 
|  | if (--wbc->nr_to_write <= 0 && | 
|  | wbc->sync_mode == WB_SYNC_NONE) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we hit the last page and there is more work to be done: wrap | 
|  | * back the index back to the start of the file for the next | 
|  | * time we are called. | 
|  | */ | 
|  | if (wbc->range_cyclic && !done) | 
|  | done_index = 0; | 
|  | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 
|  | mapping->writeback_index = done_index; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(write_cache_pages); | 
|  |  | 
|  | /* | 
|  | * Function used by generic_writepages to call the real writepage | 
|  | * function and set the mapping flags on error | 
|  | */ | 
|  | static int __writepage(struct page *page, struct writeback_control *wbc, | 
|  | void *data) | 
|  | { | 
|  | struct address_space *mapping = data; | 
|  | int ret = mapping->a_ops->writepage(page, wbc); | 
|  | mapping_set_error(mapping, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. | 
|  | * @mapping: address space structure to write | 
|  | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
|  | * | 
|  | * This is a library function, which implements the writepages() | 
|  | * address_space_operation. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise | 
|  | */ | 
|  | int generic_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct blk_plug plug; | 
|  | int ret; | 
|  |  | 
|  | /* deal with chardevs and other special file */ | 
|  | if (!mapping->a_ops->writepage) | 
|  | return 0; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | ret = write_cache_pages(mapping, wbc, __writepage, mapping); | 
|  | blk_finish_plug(&plug); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(generic_writepages); | 
|  |  | 
|  | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) | 
|  | { | 
|  | int ret; | 
|  | struct bdi_writeback *wb; | 
|  |  | 
|  | if (wbc->nr_to_write <= 0) | 
|  | return 0; | 
|  | wb = inode_to_wb_wbc(mapping->host, wbc); | 
|  | wb_bandwidth_estimate_start(wb); | 
|  | while (1) { | 
|  | if (mapping->a_ops->writepages) | 
|  | ret = mapping->a_ops->writepages(mapping, wbc); | 
|  | else | 
|  | ret = generic_writepages(mapping, wbc); | 
|  | if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Lacking an allocation context or the locality or writeback | 
|  | * state of any of the inode's pages, throttle based on | 
|  | * writeback activity on the local node. It's as good a | 
|  | * guess as any. | 
|  | */ | 
|  | reclaim_throttle(NODE_DATA(numa_node_id()), | 
|  | VMSCAN_THROTTLE_WRITEBACK); | 
|  | } | 
|  | /* | 
|  | * Usually few pages are written by now from those we've just submitted | 
|  | * but if there's constant writeback being submitted, this makes sure | 
|  | * writeback bandwidth is updated once in a while. | 
|  | */ | 
|  | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + | 
|  | BANDWIDTH_INTERVAL)) | 
|  | wb_update_bandwidth(wb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_write_one - write out a single folio and wait on I/O. | 
|  | * @folio: The folio to write. | 
|  | * | 
|  | * The folio must be locked by the caller and will be unlocked upon return. | 
|  | * | 
|  | * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this | 
|  | * function returns. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise | 
|  | */ | 
|  | int folio_write_one(struct folio *folio) | 
|  | { | 
|  | struct address_space *mapping = folio->mapping; | 
|  | int ret = 0; | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_ALL, | 
|  | .nr_to_write = folio_nr_pages(folio), | 
|  | }; | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  |  | 
|  | folio_wait_writeback(folio); | 
|  |  | 
|  | if (folio_clear_dirty_for_io(folio)) { | 
|  | folio_get(folio); | 
|  | ret = mapping->a_ops->writepage(&folio->page, &wbc); | 
|  | if (ret == 0) | 
|  | folio_wait_writeback(folio); | 
|  | folio_put(folio); | 
|  | } else { | 
|  | folio_unlock(folio); | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | ret = filemap_check_errors(mapping); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(folio_write_one); | 
|  |  | 
|  | /* | 
|  | * For address_spaces which do not use buffers nor write back. | 
|  | */ | 
|  | bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) | 
|  | { | 
|  | if (!folio_test_dirty(folio)) | 
|  | return !folio_test_set_dirty(folio); | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(noop_dirty_folio); | 
|  |  | 
|  | /* | 
|  | * Helper function for set_page_dirty family. | 
|  | * | 
|  | * Caller must hold lock_page_memcg(). | 
|  | * | 
|  | * NOTE: This relies on being atomic wrt interrupts. | 
|  | */ | 
|  | static void folio_account_dirtied(struct folio *folio, | 
|  | struct address_space *mapping) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | trace_writeback_dirty_folio(folio, mapping); | 
|  |  | 
|  | if (mapping_can_writeback(mapping)) { | 
|  | struct bdi_writeback *wb; | 
|  | long nr = folio_nr_pages(folio); | 
|  |  | 
|  | inode_attach_wb(inode, &folio->page); | 
|  | wb = inode_to_wb(inode); | 
|  |  | 
|  | __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); | 
|  | __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); | 
|  | __node_stat_mod_folio(folio, NR_DIRTIED, nr); | 
|  | wb_stat_mod(wb, WB_RECLAIMABLE, nr); | 
|  | wb_stat_mod(wb, WB_DIRTIED, nr); | 
|  | task_io_account_write(nr * PAGE_SIZE); | 
|  | current->nr_dirtied += nr; | 
|  | __this_cpu_add(bdp_ratelimits, nr); | 
|  |  | 
|  | mem_cgroup_track_foreign_dirty(folio, wb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for deaccounting dirty page without writeback. | 
|  | * | 
|  | * Caller must hold lock_page_memcg(). | 
|  | */ | 
|  | void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) | 
|  | { | 
|  | long nr = folio_nr_pages(folio); | 
|  |  | 
|  | lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); | 
|  | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); | 
|  | wb_stat_mod(wb, WB_RECLAIMABLE, -nr); | 
|  | task_io_account_cancelled_write(nr * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the folio dirty, and set it dirty in the page cache, and mark | 
|  | * the inode dirty. | 
|  | * | 
|  | * If warn is true, then emit a warning if the folio is not uptodate and has | 
|  | * not been truncated. | 
|  | * | 
|  | * The caller must hold lock_page_memcg().  Most callers have the folio | 
|  | * locked.  A few have the folio blocked from truncation through other | 
|  | * means (eg zap_page_range() has it mapped and is holding the page table | 
|  | * lock).  This can also be called from mark_buffer_dirty(), which I | 
|  | * cannot prove is always protected against truncate. | 
|  | */ | 
|  | void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, | 
|  | int warn) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | if (folio->mapping) {	/* Race with truncate? */ | 
|  | WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); | 
|  | folio_account_dirtied(folio, mapping); | 
|  | __xa_set_mark(&mapping->i_pages, folio_index(folio), | 
|  | PAGECACHE_TAG_DIRTY); | 
|  | } | 
|  | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. | 
|  | * @mapping: Address space this folio belongs to. | 
|  | * @folio: Folio to be marked as dirty. | 
|  | * | 
|  | * Filesystems which do not use buffer heads should call this function | 
|  | * from their set_page_dirty address space operation.  It ignores the | 
|  | * contents of folio_get_private(), so if the filesystem marks individual | 
|  | * blocks as dirty, the filesystem should handle that itself. | 
|  | * | 
|  | * This is also sometimes used by filesystems which use buffer_heads when | 
|  | * a single buffer is being dirtied: we want to set the folio dirty in | 
|  | * that case, but not all the buffers.  This is a "bottom-up" dirtying, | 
|  | * whereas block_dirty_folio() is a "top-down" dirtying. | 
|  | * | 
|  | * The caller must ensure this doesn't race with truncation.  Most will | 
|  | * simply hold the folio lock, but e.g. zap_pte_range() calls with the | 
|  | * folio mapped and the pte lock held, which also locks out truncation. | 
|  | */ | 
|  | bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) | 
|  | { | 
|  | folio_memcg_lock(folio); | 
|  | if (folio_test_set_dirty(folio)) { | 
|  | folio_memcg_unlock(folio); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); | 
|  | folio_memcg_unlock(folio); | 
|  |  | 
|  | if (mapping->host) { | 
|  | /* !PageAnon && !swapper_space */ | 
|  | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(filemap_dirty_folio); | 
|  |  | 
|  | /** | 
|  | * folio_account_redirty - Manually account for redirtying a page. | 
|  | * @folio: The folio which is being redirtied. | 
|  | * | 
|  | * Most filesystems should call folio_redirty_for_writepage() instead | 
|  | * of this fuction.  If your filesystem is doing writeback outside the | 
|  | * context of a writeback_control(), it can call this when redirtying | 
|  | * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED, | 
|  | * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN, | 
|  | * WB_WRITTEN) in long term. The mismatches will lead to systematic errors | 
|  | * in balanced_dirty_ratelimit and the dirty pages position control. | 
|  | */ | 
|  | void folio_account_redirty(struct folio *folio) | 
|  | { | 
|  | struct address_space *mapping = folio->mapping; | 
|  |  | 
|  | if (mapping && mapping_can_writeback(mapping)) { | 
|  | struct inode *inode = mapping->host; | 
|  | struct bdi_writeback *wb; | 
|  | struct wb_lock_cookie cookie = {}; | 
|  | long nr = folio_nr_pages(folio); | 
|  |  | 
|  | wb = unlocked_inode_to_wb_begin(inode, &cookie); | 
|  | current->nr_dirtied -= nr; | 
|  | node_stat_mod_folio(folio, NR_DIRTIED, -nr); | 
|  | wb_stat_mod(wb, WB_DIRTIED, -nr); | 
|  | unlocked_inode_to_wb_end(inode, &cookie); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(folio_account_redirty); | 
|  |  | 
|  | /** | 
|  | * folio_redirty_for_writepage - Decline to write a dirty folio. | 
|  | * @wbc: The writeback control. | 
|  | * @folio: The folio. | 
|  | * | 
|  | * When a writepage implementation decides that it doesn't want to write | 
|  | * @folio for some reason, it should call this function, unlock @folio and | 
|  | * return 0. | 
|  | * | 
|  | * Return: True if we redirtied the folio.  False if someone else dirtied | 
|  | * it first. | 
|  | */ | 
|  | bool folio_redirty_for_writepage(struct writeback_control *wbc, | 
|  | struct folio *folio) | 
|  | { | 
|  | bool ret; | 
|  | long nr = folio_nr_pages(folio); | 
|  |  | 
|  | wbc->pages_skipped += nr; | 
|  | ret = filemap_dirty_folio(folio->mapping, folio); | 
|  | folio_account_redirty(folio); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(folio_redirty_for_writepage); | 
|  |  | 
|  | /** | 
|  | * folio_mark_dirty - Mark a folio as being modified. | 
|  | * @folio: The folio. | 
|  | * | 
|  | * The folio may not be truncated while this function is running. | 
|  | * Holding the folio lock is sufficient to prevent truncation, but some | 
|  | * callers cannot acquire a sleeping lock.  These callers instead hold | 
|  | * the page table lock for a page table which contains at least one page | 
|  | * in this folio.  Truncation will block on the page table lock as it | 
|  | * unmaps pages before removing the folio from its mapping. | 
|  | * | 
|  | * Return: True if the folio was newly dirtied, false if it was already dirty. | 
|  | */ | 
|  | bool folio_mark_dirty(struct folio *folio) | 
|  | { | 
|  | struct address_space *mapping = folio_mapping(folio); | 
|  |  | 
|  | if (likely(mapping)) { | 
|  | /* | 
|  | * readahead/lru_deactivate_page could remain | 
|  | * PG_readahead/PG_reclaim due to race with folio_end_writeback | 
|  | * About readahead, if the folio is written, the flags would be | 
|  | * reset. So no problem. | 
|  | * About lru_deactivate_page, if the folio is redirtied, | 
|  | * the flag will be reset. So no problem. but if the | 
|  | * folio is used by readahead it will confuse readahead | 
|  | * and make it restart the size rampup process. But it's | 
|  | * a trivial problem. | 
|  | */ | 
|  | if (folio_test_reclaim(folio)) | 
|  | folio_clear_reclaim(folio); | 
|  | return mapping->a_ops->dirty_folio(mapping, folio); | 
|  | } | 
|  |  | 
|  | return noop_dirty_folio(mapping, folio); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_mark_dirty); | 
|  |  | 
|  | /* | 
|  | * set_page_dirty() is racy if the caller has no reference against | 
|  | * page->mapping->host, and if the page is unlocked.  This is because another | 
|  | * CPU could truncate the page off the mapping and then free the mapping. | 
|  | * | 
|  | * Usually, the page _is_ locked, or the caller is a user-space process which | 
|  | * holds a reference on the inode by having an open file. | 
|  | * | 
|  | * In other cases, the page should be locked before running set_page_dirty(). | 
|  | */ | 
|  | int set_page_dirty_lock(struct page *page) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | lock_page(page); | 
|  | ret = set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(set_page_dirty_lock); | 
|  |  | 
|  | /* | 
|  | * This cancels just the dirty bit on the kernel page itself, it does NOT | 
|  | * actually remove dirty bits on any mmap's that may be around. It also | 
|  | * leaves the page tagged dirty, so any sync activity will still find it on | 
|  | * the dirty lists, and in particular, clear_page_dirty_for_io() will still | 
|  | * look at the dirty bits in the VM. | 
|  | * | 
|  | * Doing this should *normally* only ever be done when a page is truncated, | 
|  | * and is not actually mapped anywhere at all. However, fs/buffer.c does | 
|  | * this when it notices that somebody has cleaned out all the buffers on a | 
|  | * page without actually doing it through the VM. Can you say "ext3 is | 
|  | * horribly ugly"? Thought you could. | 
|  | */ | 
|  | void __folio_cancel_dirty(struct folio *folio) | 
|  | { | 
|  | struct address_space *mapping = folio_mapping(folio); | 
|  |  | 
|  | if (mapping_can_writeback(mapping)) { | 
|  | struct inode *inode = mapping->host; | 
|  | struct bdi_writeback *wb; | 
|  | struct wb_lock_cookie cookie = {}; | 
|  |  | 
|  | folio_memcg_lock(folio); | 
|  | wb = unlocked_inode_to_wb_begin(inode, &cookie); | 
|  |  | 
|  | if (folio_test_clear_dirty(folio)) | 
|  | folio_account_cleaned(folio, wb); | 
|  |  | 
|  | unlocked_inode_to_wb_end(inode, &cookie); | 
|  | folio_memcg_unlock(folio); | 
|  | } else { | 
|  | folio_clear_dirty(folio); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__folio_cancel_dirty); | 
|  |  | 
|  | /* | 
|  | * Clear a folio's dirty flag, while caring for dirty memory accounting. | 
|  | * Returns true if the folio was previously dirty. | 
|  | * | 
|  | * This is for preparing to put the folio under writeout.  We leave | 
|  | * the folio tagged as dirty in the xarray so that a concurrent | 
|  | * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. | 
|  | * The ->writepage implementation will run either folio_start_writeback() | 
|  | * or folio_mark_dirty(), at which stage we bring the folio's dirty flag | 
|  | * and xarray dirty tag back into sync. | 
|  | * | 
|  | * This incoherency between the folio's dirty flag and xarray tag is | 
|  | * unfortunate, but it only exists while the folio is locked. | 
|  | */ | 
|  | bool folio_clear_dirty_for_io(struct folio *folio) | 
|  | { | 
|  | struct address_space *mapping = folio_mapping(folio); | 
|  | bool ret = false; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  |  | 
|  | if (mapping && mapping_can_writeback(mapping)) { | 
|  | struct inode *inode = mapping->host; | 
|  | struct bdi_writeback *wb; | 
|  | struct wb_lock_cookie cookie = {}; | 
|  |  | 
|  | /* | 
|  | * Yes, Virginia, this is indeed insane. | 
|  | * | 
|  | * We use this sequence to make sure that | 
|  | *  (a) we account for dirty stats properly | 
|  | *  (b) we tell the low-level filesystem to | 
|  | *      mark the whole folio dirty if it was | 
|  | *      dirty in a pagetable. Only to then | 
|  | *  (c) clean the folio again and return 1 to | 
|  | *      cause the writeback. | 
|  | * | 
|  | * This way we avoid all nasty races with the | 
|  | * dirty bit in multiple places and clearing | 
|  | * them concurrently from different threads. | 
|  | * | 
|  | * Note! Normally the "folio_mark_dirty(folio)" | 
|  | * has no effect on the actual dirty bit - since | 
|  | * that will already usually be set. But we | 
|  | * need the side effects, and it can help us | 
|  | * avoid races. | 
|  | * | 
|  | * We basically use the folio "master dirty bit" | 
|  | * as a serialization point for all the different | 
|  | * threads doing their things. | 
|  | */ | 
|  | if (folio_mkclean(folio)) | 
|  | folio_mark_dirty(folio); | 
|  | /* | 
|  | * We carefully synchronise fault handlers against | 
|  | * installing a dirty pte and marking the folio dirty | 
|  | * at this point.  We do this by having them hold the | 
|  | * page lock while dirtying the folio, and folios are | 
|  | * always locked coming in here, so we get the desired | 
|  | * exclusion. | 
|  | */ | 
|  | wb = unlocked_inode_to_wb_begin(inode, &cookie); | 
|  | if (folio_test_clear_dirty(folio)) { | 
|  | long nr = folio_nr_pages(folio); | 
|  | lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); | 
|  | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); | 
|  | wb_stat_mod(wb, WB_RECLAIMABLE, -nr); | 
|  | ret = true; | 
|  | } | 
|  | unlocked_inode_to_wb_end(inode, &cookie); | 
|  | return ret; | 
|  | } | 
|  | return folio_test_clear_dirty(folio); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_clear_dirty_for_io); | 
|  |  | 
|  | static void wb_inode_writeback_start(struct bdi_writeback *wb) | 
|  | { | 
|  | atomic_inc(&wb->writeback_inodes); | 
|  | } | 
|  |  | 
|  | static void wb_inode_writeback_end(struct bdi_writeback *wb) | 
|  | { | 
|  | unsigned long flags; | 
|  | atomic_dec(&wb->writeback_inodes); | 
|  | /* | 
|  | * Make sure estimate of writeback throughput gets updated after | 
|  | * writeback completed. We delay the update by BANDWIDTH_INTERVAL | 
|  | * (which is the interval other bandwidth updates use for batching) so | 
|  | * that if multiple inodes end writeback at a similar time, they get | 
|  | * batched into one bandwidth update. | 
|  | */ | 
|  | spin_lock_irqsave(&wb->work_lock, flags); | 
|  | if (test_bit(WB_registered, &wb->state)) | 
|  | queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); | 
|  | spin_unlock_irqrestore(&wb->work_lock, flags); | 
|  | } | 
|  |  | 
|  | bool __folio_end_writeback(struct folio *folio) | 
|  | { | 
|  | long nr = folio_nr_pages(folio); | 
|  | struct address_space *mapping = folio_mapping(folio); | 
|  | bool ret; | 
|  |  | 
|  | folio_memcg_lock(folio); | 
|  | if (mapping && mapping_use_writeback_tags(mapping)) { | 
|  | struct inode *inode = mapping->host; | 
|  | struct backing_dev_info *bdi = inode_to_bdi(inode); | 
|  | unsigned long flags; | 
|  |  | 
|  | xa_lock_irqsave(&mapping->i_pages, flags); | 
|  | ret = folio_test_clear_writeback(folio); | 
|  | if (ret) { | 
|  | __xa_clear_mark(&mapping->i_pages, folio_index(folio), | 
|  | PAGECACHE_TAG_WRITEBACK); | 
|  | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { | 
|  | struct bdi_writeback *wb = inode_to_wb(inode); | 
|  |  | 
|  | wb_stat_mod(wb, WB_WRITEBACK, -nr); | 
|  | __wb_writeout_add(wb, nr); | 
|  | if (!mapping_tagged(mapping, | 
|  | PAGECACHE_TAG_WRITEBACK)) | 
|  | wb_inode_writeback_end(wb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mapping->host && !mapping_tagged(mapping, | 
|  | PAGECACHE_TAG_WRITEBACK)) | 
|  | sb_clear_inode_writeback(mapping->host); | 
|  |  | 
|  | xa_unlock_irqrestore(&mapping->i_pages, flags); | 
|  | } else { | 
|  | ret = folio_test_clear_writeback(folio); | 
|  | } | 
|  | if (ret) { | 
|  | lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); | 
|  | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); | 
|  | node_stat_mod_folio(folio, NR_WRITTEN, nr); | 
|  | } | 
|  | folio_memcg_unlock(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool __folio_start_writeback(struct folio *folio, bool keep_write) | 
|  | { | 
|  | long nr = folio_nr_pages(folio); | 
|  | struct address_space *mapping = folio_mapping(folio); | 
|  | bool ret; | 
|  | int access_ret; | 
|  |  | 
|  | folio_memcg_lock(folio); | 
|  | if (mapping && mapping_use_writeback_tags(mapping)) { | 
|  | XA_STATE(xas, &mapping->i_pages, folio_index(folio)); | 
|  | struct inode *inode = mapping->host; | 
|  | struct backing_dev_info *bdi = inode_to_bdi(inode); | 
|  | unsigned long flags; | 
|  |  | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | xas_load(&xas); | 
|  | ret = folio_test_set_writeback(folio); | 
|  | if (!ret) { | 
|  | bool on_wblist; | 
|  |  | 
|  | on_wblist = mapping_tagged(mapping, | 
|  | PAGECACHE_TAG_WRITEBACK); | 
|  |  | 
|  | xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); | 
|  | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { | 
|  | struct bdi_writeback *wb = inode_to_wb(inode); | 
|  |  | 
|  | wb_stat_mod(wb, WB_WRITEBACK, nr); | 
|  | if (!on_wblist) | 
|  | wb_inode_writeback_start(wb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can come through here when swapping | 
|  | * anonymous folios, so we don't necessarily | 
|  | * have an inode to track for sync. | 
|  | */ | 
|  | if (mapping->host && !on_wblist) | 
|  | sb_mark_inode_writeback(mapping->host); | 
|  | } | 
|  | if (!folio_test_dirty(folio)) | 
|  | xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); | 
|  | if (!keep_write) | 
|  | xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | } else { | 
|  | ret = folio_test_set_writeback(folio); | 
|  | } | 
|  | if (!ret) { | 
|  | lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); | 
|  | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); | 
|  | } | 
|  | folio_memcg_unlock(folio); | 
|  | access_ret = arch_make_folio_accessible(folio); | 
|  | /* | 
|  | * If writeback has been triggered on a page that cannot be made | 
|  | * accessible, it is too late to recover here. | 
|  | */ | 
|  | VM_BUG_ON_FOLIO(access_ret != 0, folio); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__folio_start_writeback); | 
|  |  | 
|  | /** | 
|  | * folio_wait_writeback - Wait for a folio to finish writeback. | 
|  | * @folio: The folio to wait for. | 
|  | * | 
|  | * If the folio is currently being written back to storage, wait for the | 
|  | * I/O to complete. | 
|  | * | 
|  | * Context: Sleeps.  Must be called in process context and with | 
|  | * no spinlocks held.  Caller should hold a reference on the folio. | 
|  | * If the folio is not locked, writeback may start again after writeback | 
|  | * has finished. | 
|  | */ | 
|  | void folio_wait_writeback(struct folio *folio) | 
|  | { | 
|  | while (folio_test_writeback(folio)) { | 
|  | trace_folio_wait_writeback(folio, folio_mapping(folio)); | 
|  | folio_wait_bit(folio, PG_writeback); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(folio_wait_writeback); | 
|  |  | 
|  | /** | 
|  | * folio_wait_writeback_killable - Wait for a folio to finish writeback. | 
|  | * @folio: The folio to wait for. | 
|  | * | 
|  | * If the folio is currently being written back to storage, wait for the | 
|  | * I/O to complete or a fatal signal to arrive. | 
|  | * | 
|  | * Context: Sleeps.  Must be called in process context and with | 
|  | * no spinlocks held.  Caller should hold a reference on the folio. | 
|  | * If the folio is not locked, writeback may start again after writeback | 
|  | * has finished. | 
|  | * Return: 0 on success, -EINTR if we get a fatal signal while waiting. | 
|  | */ | 
|  | int folio_wait_writeback_killable(struct folio *folio) | 
|  | { | 
|  | while (folio_test_writeback(folio)) { | 
|  | trace_folio_wait_writeback(folio, folio_mapping(folio)); | 
|  | if (folio_wait_bit_killable(folio, PG_writeback)) | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); | 
|  |  | 
|  | /** | 
|  | * folio_wait_stable() - wait for writeback to finish, if necessary. | 
|  | * @folio: The folio to wait on. | 
|  | * | 
|  | * This function determines if the given folio is related to a backing | 
|  | * device that requires folio contents to be held stable during writeback. | 
|  | * If so, then it will wait for any pending writeback to complete. | 
|  | * | 
|  | * Context: Sleeps.  Must be called in process context and with | 
|  | * no spinlocks held.  Caller should hold a reference on the folio. | 
|  | * If the folio is not locked, writeback may start again after writeback | 
|  | * has finished. | 
|  | */ | 
|  | void folio_wait_stable(struct folio *folio) | 
|  | { | 
|  | if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES) | 
|  | folio_wait_writeback(folio); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(folio_wait_stable); |