|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/pagewalk.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/hugetlb.h> | 
|  |  | 
|  | /* | 
|  | * We want to know the real level where a entry is located ignoring any | 
|  | * folding of levels which may be happening. For example if p4d is folded then | 
|  | * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). | 
|  | */ | 
|  | static int real_depth(int depth) | 
|  | { | 
|  | if (depth == 3 && PTRS_PER_PMD == 1) | 
|  | depth = 2; | 
|  | if (depth == 2 && PTRS_PER_PUD == 1) | 
|  | depth = 1; | 
|  | if (depth == 1 && PTRS_PER_P4D == 1) | 
|  | depth = 0; | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | static int walk_pte_range_inner(pte_t *pte, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  |  | 
|  | for (;;) { | 
|  | err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); | 
|  | if (err) | 
|  | break; | 
|  | if (addr >= end - PAGE_SIZE) | 
|  | break; | 
|  | addr += PAGE_SIZE; | 
|  | pte++; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pte_t *pte; | 
|  | int err = 0; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (walk->no_vma) { | 
|  | pte = pte_offset_map(pmd, addr); | 
|  | err = walk_pte_range_inner(pte, addr, end, walk); | 
|  | pte_unmap(pte); | 
|  | } else { | 
|  | pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); | 
|  | err = walk_pte_range_inner(pte, addr, end, walk); | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_HUGEPD | 
|  | static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk, int pdshift) | 
|  | { | 
|  | int err = 0; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int shift = hugepd_shift(*phpd); | 
|  | int page_size = 1 << shift; | 
|  |  | 
|  | if (!ops->pte_entry) | 
|  | return 0; | 
|  |  | 
|  | if (addr & (page_size - 1)) | 
|  | return 0; | 
|  |  | 
|  | for (;;) { | 
|  | pte_t *pte; | 
|  |  | 
|  | spin_lock(&walk->mm->page_table_lock); | 
|  | pte = hugepte_offset(*phpd, addr, pdshift); | 
|  | err = ops->pte_entry(pte, addr, addr + page_size, walk); | 
|  | spin_unlock(&walk->mm->page_table_lock); | 
|  |  | 
|  | if (err) | 
|  | break; | 
|  | if (addr >= end - page_size) | 
|  | break; | 
|  | addr += page_size; | 
|  | } | 
|  | return err; | 
|  | } | 
|  | #else | 
|  | static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk, int pdshift) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  | int depth = real_depth(3); | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | again: | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none(*pmd)) { | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, depth, walk); | 
|  | if (err) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | walk->action = ACTION_SUBTREE; | 
|  |  | 
|  | /* | 
|  | * This implies that each ->pmd_entry() handler | 
|  | * needs to know about pmd_trans_huge() pmds | 
|  | */ | 
|  | if (ops->pmd_entry) | 
|  | err = ops->pmd_entry(pmd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | if (walk->action == ACTION_AGAIN) | 
|  | goto again; | 
|  |  | 
|  | /* | 
|  | * Check this here so we only break down trans_huge | 
|  | * pages when we _need_ to | 
|  | */ | 
|  | if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) || | 
|  | walk->action == ACTION_CONTINUE || | 
|  | !(ops->pte_entry)) | 
|  | continue; | 
|  |  | 
|  | if (walk->vma) { | 
|  | split_huge_pmd(walk->vma, pmd, addr); | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (is_hugepd(__hugepd(pmd_val(*pmd)))) | 
|  | err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT); | 
|  | else | 
|  | err = walk_pte_range(pmd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  | int depth = real_depth(2); | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | do { | 
|  | again: | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none(*pud)) { | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, depth, walk); | 
|  | if (err) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | walk->action = ACTION_SUBTREE; | 
|  |  | 
|  | if (ops->pud_entry) | 
|  | err = ops->pud_entry(pud, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | if (walk->action == ACTION_AGAIN) | 
|  | goto again; | 
|  |  | 
|  | if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) || | 
|  | walk->action == ACTION_CONTINUE || | 
|  | !(ops->pmd_entry || ops->pte_entry)) | 
|  | continue; | 
|  |  | 
|  | if (walk->vma) | 
|  | split_huge_pud(walk->vma, pud, addr); | 
|  | if (pud_none(*pud)) | 
|  | goto again; | 
|  |  | 
|  | if (is_hugepd(__hugepd(pud_val(*pud)))) | 
|  | err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT); | 
|  | else | 
|  | err = walk_pmd_range(pud, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  | int depth = real_depth(1); | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (p4d_none_or_clear_bad(p4d)) { | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, depth, walk); | 
|  | if (err) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | if (ops->p4d_entry) { | 
|  | err = ops->p4d_entry(p4d, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | if (is_hugepd(__hugepd(p4d_val(*p4d)))) | 
|  | err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT); | 
|  | else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry) | 
|  | err = walk_pud_range(p4d, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int walk_pgd_range(unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  |  | 
|  | if (walk->pgd) | 
|  | pgd = walk->pgd + pgd_index(addr); | 
|  | else | 
|  | pgd = pgd_offset(walk->mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) { | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, 0, walk); | 
|  | if (err) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | if (ops->pgd_entry) { | 
|  | err = ops->pgd_entry(pgd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | if (is_hugepd(__hugepd(pgd_val(*pgd)))) | 
|  | err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT); | 
|  | else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry) | 
|  | err = walk_p4d_range(pgd, addr, next, walk); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); | 
|  | return boundary < end ? boundary : end; | 
|  | } | 
|  |  | 
|  | static int walk_hugetlb_range(unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long next; | 
|  | unsigned long hmask = huge_page_mask(h); | 
|  | unsigned long sz = huge_page_size(h); | 
|  | pte_t *pte; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  | int err = 0; | 
|  |  | 
|  | do { | 
|  | next = hugetlb_entry_end(h, addr, end); | 
|  | pte = huge_pte_offset(walk->mm, addr & hmask, sz); | 
|  |  | 
|  | if (pte) | 
|  | err = ops->hugetlb_entry(pte, hmask, addr, next, walk); | 
|  | else if (ops->pte_hole) | 
|  | err = ops->pte_hole(addr, next, -1, walk); | 
|  |  | 
|  | if (err) | 
|  | break; | 
|  | } while (addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_HUGETLB_PAGE */ | 
|  | static int walk_hugetlb_range(unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | /* | 
|  | * Decide whether we really walk over the current vma on [@start, @end) | 
|  | * or skip it via the returned value. Return 0 if we do walk over the | 
|  | * current vma, and return 1 if we skip the vma. Negative values means | 
|  | * error, where we abort the current walk. | 
|  | */ | 
|  | static int walk_page_test(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  |  | 
|  | if (ops->test_walk) | 
|  | return ops->test_walk(start, end, walk); | 
|  |  | 
|  | /* | 
|  | * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP | 
|  | * range, so we don't walk over it as we do for normal vmas. However, | 
|  | * Some callers are interested in handling hole range and they don't | 
|  | * want to just ignore any single address range. Such users certainly | 
|  | * define their ->pte_hole() callbacks, so let's delegate them to handle | 
|  | * vma(VM_PFNMAP). | 
|  | */ | 
|  | if (vma->vm_flags & VM_PFNMAP) { | 
|  | int err = 1; | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(start, end, -1, walk); | 
|  | return err ? err : 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __walk_page_range(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | int err = 0; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | const struct mm_walk_ops *ops = walk->ops; | 
|  |  | 
|  | if (ops->pre_vma) { | 
|  | err = ops->pre_vma(start, end, walk); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | if (ops->hugetlb_entry) | 
|  | err = walk_hugetlb_range(start, end, walk); | 
|  | } else | 
|  | err = walk_pgd_range(start, end, walk); | 
|  |  | 
|  | if (ops->post_vma) | 
|  | ops->post_vma(walk); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * walk_page_range - walk page table with caller specific callbacks | 
|  | * @mm:		mm_struct representing the target process of page table walk | 
|  | * @start:	start address of the virtual address range | 
|  | * @end:	end address of the virtual address range | 
|  | * @ops:	operation to call during the walk | 
|  | * @private:	private data for callbacks' usage | 
|  | * | 
|  | * Recursively walk the page table tree of the process represented by @mm | 
|  | * within the virtual address range [@start, @end). During walking, we can do | 
|  | * some caller-specific works for each entry, by setting up pmd_entry(), | 
|  | * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these | 
|  | * callbacks, the associated entries/pages are just ignored. | 
|  | * The return values of these callbacks are commonly defined like below: | 
|  | * | 
|  | *  - 0  : succeeded to handle the current entry, and if you don't reach the | 
|  | *         end address yet, continue to walk. | 
|  | *  - >0 : succeeded to handle the current entry, and return to the caller | 
|  | *         with caller specific value. | 
|  | *  - <0 : failed to handle the current entry, and return to the caller | 
|  | *         with error code. | 
|  | * | 
|  | * Before starting to walk page table, some callers want to check whether | 
|  | * they really want to walk over the current vma, typically by checking | 
|  | * its vm_flags. walk_page_test() and @ops->test_walk() are used for this | 
|  | * purpose. | 
|  | * | 
|  | * If operations need to be staged before and committed after a vma is walked, | 
|  | * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), | 
|  | * since it is intended to handle commit-type operations, can't return any | 
|  | * errors. | 
|  | * | 
|  | * struct mm_walk keeps current values of some common data like vma and pmd, | 
|  | * which are useful for the access from callbacks. If you want to pass some | 
|  | * caller-specific data to callbacks, @private should be helpful. | 
|  | * | 
|  | * Locking: | 
|  | *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, | 
|  | *   because these function traverse vma list and/or access to vma's data. | 
|  | */ | 
|  | int walk_page_range(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | int err = 0; | 
|  | unsigned long next; | 
|  | struct vm_area_struct *vma; | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= mm, | 
|  | .private	= private, | 
|  | }; | 
|  |  | 
|  | if (start >= end) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!walk.mm) | 
|  | return -EINVAL; | 
|  |  | 
|  | mmap_assert_locked(walk.mm); | 
|  |  | 
|  | vma = find_vma(walk.mm, start); | 
|  | do { | 
|  | if (!vma) { /* after the last vma */ | 
|  | walk.vma = NULL; | 
|  | next = end; | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(start, next, -1, &walk); | 
|  | } else if (start < vma->vm_start) { /* outside vma */ | 
|  | walk.vma = NULL; | 
|  | next = min(end, vma->vm_start); | 
|  | if (ops->pte_hole) | 
|  | err = ops->pte_hole(start, next, -1, &walk); | 
|  | } else { /* inside vma */ | 
|  | walk.vma = vma; | 
|  | next = min(end, vma->vm_end); | 
|  | vma = find_vma(mm, vma->vm_end); | 
|  |  | 
|  | err = walk_page_test(start, next, &walk); | 
|  | if (err > 0) { | 
|  | /* | 
|  | * positive return values are purely for | 
|  | * controlling the pagewalk, so should never | 
|  | * be passed to the callers. | 
|  | */ | 
|  | err = 0; | 
|  | continue; | 
|  | } | 
|  | if (err < 0) | 
|  | break; | 
|  | err = __walk_page_range(start, next, &walk); | 
|  | } | 
|  | if (err) | 
|  | break; | 
|  | } while (start = next, start < end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * walk_page_range_novma - walk a range of pagetables not backed by a vma | 
|  | * @mm:		mm_struct representing the target process of page table walk | 
|  | * @start:	start address of the virtual address range | 
|  | * @end:	end address of the virtual address range | 
|  | * @ops:	operation to call during the walk | 
|  | * @pgd:	pgd to walk if different from mm->pgd | 
|  | * @private:	private data for callbacks' usage | 
|  | * | 
|  | * Similar to walk_page_range() but can walk any page tables even if they are | 
|  | * not backed by VMAs. Because 'unusual' entries may be walked this function | 
|  | * will also not lock the PTEs for the pte_entry() callback. This is useful for | 
|  | * walking the kernel pages tables or page tables for firmware. | 
|  | */ | 
|  | int walk_page_range_novma(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long end, const struct mm_walk_ops *ops, | 
|  | pgd_t *pgd, | 
|  | void *private) | 
|  | { | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= mm, | 
|  | .pgd		= pgd, | 
|  | .private	= private, | 
|  | .no_vma		= true | 
|  | }; | 
|  |  | 
|  | if (start >= end || !walk.mm) | 
|  | return -EINVAL; | 
|  |  | 
|  | mmap_assert_write_locked(walk.mm); | 
|  |  | 
|  | return walk_pgd_range(start, end, &walk); | 
|  | } | 
|  |  | 
|  | int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .mm		= vma->vm_mm, | 
|  | .vma		= vma, | 
|  | .private	= private, | 
|  | }; | 
|  | int err; | 
|  |  | 
|  | if (!walk.mm) | 
|  | return -EINVAL; | 
|  |  | 
|  | mmap_assert_locked(walk.mm); | 
|  |  | 
|  | err = walk_page_test(vma->vm_start, vma->vm_end, &walk); | 
|  | if (err > 0) | 
|  | return 0; | 
|  | if (err < 0) | 
|  | return err; | 
|  | return __walk_page_range(vma->vm_start, vma->vm_end, &walk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * walk_page_mapping - walk all memory areas mapped into a struct address_space. | 
|  | * @mapping: Pointer to the struct address_space | 
|  | * @first_index: First page offset in the address_space | 
|  | * @nr: Number of incremental page offsets to cover | 
|  | * @ops:	operation to call during the walk | 
|  | * @private:	private data for callbacks' usage | 
|  | * | 
|  | * This function walks all memory areas mapped into a struct address_space. | 
|  | * The walk is limited to only the given page-size index range, but if | 
|  | * the index boundaries cross a huge page-table entry, that entry will be | 
|  | * included. | 
|  | * | 
|  | * Also see walk_page_range() for additional information. | 
|  | * | 
|  | * Locking: | 
|  | *   This function can't require that the struct mm_struct::mmap_lock is held, | 
|  | *   since @mapping may be mapped by multiple processes. Instead | 
|  | *   @mapping->i_mmap_rwsem must be held. This might have implications in the | 
|  | *   callbacks, and it's up tho the caller to ensure that the | 
|  | *   struct mm_struct::mmap_lock is not needed. | 
|  | * | 
|  | *   Also this means that a caller can't rely on the struct | 
|  | *   vm_area_struct::vm_flags to be constant across a call, | 
|  | *   except for immutable flags. Callers requiring this shouldn't use | 
|  | *   this function. | 
|  | * | 
|  | * Return: 0 on success, negative error code on failure, positive number on | 
|  | * caller defined premature termination. | 
|  | */ | 
|  | int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, | 
|  | pgoff_t nr, const struct mm_walk_ops *ops, | 
|  | void *private) | 
|  | { | 
|  | struct mm_walk walk = { | 
|  | .ops		= ops, | 
|  | .private	= private, | 
|  | }; | 
|  | struct vm_area_struct *vma; | 
|  | pgoff_t vba, vea, cba, cea; | 
|  | unsigned long start_addr, end_addr; | 
|  | int err = 0; | 
|  |  | 
|  | lockdep_assert_held(&mapping->i_mmap_rwsem); | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, | 
|  | first_index + nr - 1) { | 
|  | /* Clip to the vma */ | 
|  | vba = vma->vm_pgoff; | 
|  | vea = vba + vma_pages(vma); | 
|  | cba = first_index; | 
|  | cba = max(cba, vba); | 
|  | cea = first_index + nr; | 
|  | cea = min(cea, vea); | 
|  |  | 
|  | start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; | 
|  | end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; | 
|  | if (start_addr >= end_addr) | 
|  | continue; | 
|  |  | 
|  | walk.vma = vma; | 
|  | walk.mm = vma->vm_mm; | 
|  |  | 
|  | err = walk_page_test(vma->vm_start, vma->vm_end, &walk); | 
|  | if (err > 0) { | 
|  | err = 0; | 
|  | break; | 
|  | } else if (err < 0) | 
|  | break; | 
|  |  | 
|  | err = __walk_page_range(start_addr, end_addr, &walk); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } |