|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/mm/page_alloc.c | 
|  | * | 
|  | *  Manages the free list, the system allocates free pages here. | 
|  | *  Note that kmalloc() lives in slab.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
|  | *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
|  | *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
|  | *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
|  | *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
|  | *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
|  | */ | 
|  |  | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kasan.h> | 
|  | #include <linux/kmsan.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/fault-inject.h> | 
|  | #include <linux/page-isolation.h> | 
|  | #include <linux/debugobjects.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/compaction.h> | 
|  | #include <trace/events/kmem.h> | 
|  | #include <trace/events/oom.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/sched/rt.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/page_owner.h> | 
|  | #include <linux/page_table_check.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/psi.h> | 
|  | #include <linux/padata.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/div64.h> | 
|  | #include "internal.h" | 
|  | #include "shuffle.h" | 
|  | #include "page_reporting.h" | 
|  | #include "swap.h" | 
|  |  | 
|  | /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ | 
|  | typedef int __bitwise fpi_t; | 
|  |  | 
|  | /* No special request */ | 
|  | #define FPI_NONE		((__force fpi_t)0) | 
|  |  | 
|  | /* | 
|  | * Skip free page reporting notification for the (possibly merged) page. | 
|  | * This does not hinder free page reporting from grabbing the page, | 
|  | * reporting it and marking it "reported" -  it only skips notifying | 
|  | * the free page reporting infrastructure about a newly freed page. For | 
|  | * example, used when temporarily pulling a page from a freelist and | 
|  | * putting it back unmodified. | 
|  | */ | 
|  | #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0)) | 
|  |  | 
|  | /* | 
|  | * Place the (possibly merged) page to the tail of the freelist. Will ignore | 
|  | * page shuffling (relevant code - e.g., memory onlining - is expected to | 
|  | * shuffle the whole zone). | 
|  | * | 
|  | * Note: No code should rely on this flag for correctness - it's purely | 
|  | *       to allow for optimizations when handing back either fresh pages | 
|  | *       (memory onlining) or untouched pages (page isolation, free page | 
|  | *       reporting). | 
|  | */ | 
|  | #define FPI_TO_TAIL		((__force fpi_t)BIT(1)) | 
|  |  | 
|  | /* | 
|  | * Don't poison memory with KASAN (only for the tag-based modes). | 
|  | * During boot, all non-reserved memblock memory is exposed to page_alloc. | 
|  | * Poisoning all that memory lengthens boot time, especially on systems with | 
|  | * large amount of RAM. This flag is used to skip that poisoning. | 
|  | * This is only done for the tag-based KASAN modes, as those are able to | 
|  | * detect memory corruptions with the memory tags assigned by default. | 
|  | * All memory allocated normally after boot gets poisoned as usual. | 
|  | */ | 
|  | #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2)) | 
|  |  | 
|  | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ | 
|  | static DEFINE_MUTEX(pcp_batch_high_lock); | 
|  | #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) | 
|  |  | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) | 
|  | /* | 
|  | * On SMP, spin_trylock is sufficient protection. | 
|  | * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. | 
|  | */ | 
|  | #define pcp_trylock_prepare(flags)	do { } while (0) | 
|  | #define pcp_trylock_finish(flag)	do { } while (0) | 
|  | #else | 
|  |  | 
|  | /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ | 
|  | #define pcp_trylock_prepare(flags)	local_irq_save(flags) | 
|  | #define pcp_trylock_finish(flags)	local_irq_restore(flags) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid | 
|  | * a migration causing the wrong PCP to be locked and remote memory being | 
|  | * potentially allocated, pin the task to the CPU for the lookup+lock. | 
|  | * preempt_disable is used on !RT because it is faster than migrate_disable. | 
|  | * migrate_disable is used on RT because otherwise RT spinlock usage is | 
|  | * interfered with and a high priority task cannot preempt the allocator. | 
|  | */ | 
|  | #ifndef CONFIG_PREEMPT_RT | 
|  | #define pcpu_task_pin()		preempt_disable() | 
|  | #define pcpu_task_unpin()	preempt_enable() | 
|  | #else | 
|  | #define pcpu_task_pin()		migrate_disable() | 
|  | #define pcpu_task_unpin()	migrate_enable() | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Generic helper to lookup and a per-cpu variable with an embedded spinlock. | 
|  | * Return value should be used with equivalent unlock helper. | 
|  | */ | 
|  | #define pcpu_spin_lock(type, member, ptr)				\ | 
|  | ({									\ | 
|  | type *_ret;							\ | 
|  | pcpu_task_pin();						\ | 
|  | _ret = this_cpu_ptr(ptr);					\ | 
|  | spin_lock(&_ret->member);					\ | 
|  | _ret;								\ | 
|  | }) | 
|  |  | 
|  | #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\ | 
|  | ({									\ | 
|  | type *_ret;							\ | 
|  | pcpu_task_pin();						\ | 
|  | _ret = this_cpu_ptr(ptr);					\ | 
|  | spin_lock_irqsave(&_ret->member, flags);			\ | 
|  | _ret;								\ | 
|  | }) | 
|  |  | 
|  | #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\ | 
|  | ({									\ | 
|  | type *_ret;							\ | 
|  | pcpu_task_pin();						\ | 
|  | _ret = this_cpu_ptr(ptr);					\ | 
|  | if (!spin_trylock_irqsave(&_ret->member, flags)) {		\ | 
|  | pcpu_task_unpin();					\ | 
|  | _ret = NULL;						\ | 
|  | }								\ | 
|  | _ret;								\ | 
|  | }) | 
|  |  | 
|  | #define pcpu_spin_unlock(member, ptr)					\ | 
|  | ({									\ | 
|  | spin_unlock(&ptr->member);					\ | 
|  | pcpu_task_unpin();						\ | 
|  | }) | 
|  |  | 
|  | #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\ | 
|  | ({									\ | 
|  | spin_unlock_irqrestore(&ptr->member, flags);			\ | 
|  | pcpu_task_unpin();						\ | 
|  | }) | 
|  |  | 
|  | /* struct per_cpu_pages specific helpers. */ | 
|  | #define pcp_spin_lock(ptr)						\ | 
|  | pcpu_spin_lock(struct per_cpu_pages, lock, ptr) | 
|  |  | 
|  | #define pcp_spin_lock_irqsave(ptr, flags)				\ | 
|  | pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) | 
|  |  | 
|  | #define pcp_spin_trylock_irqsave(ptr, flags)				\ | 
|  | pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) | 
|  |  | 
|  | #define pcp_spin_unlock(ptr)						\ | 
|  | pcpu_spin_unlock(lock, ptr) | 
|  |  | 
|  | #define pcp_spin_unlock_irqrestore(ptr, flags)				\ | 
|  | pcpu_spin_unlock_irqrestore(lock, ptr, flags) | 
|  | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID | 
|  | DEFINE_PER_CPU(int, numa_node); | 
|  | EXPORT_PER_CPU_SYMBOL(numa_node); | 
|  | #endif | 
|  |  | 
|  | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | /* | 
|  | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | 
|  | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | 
|  | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | 
|  | * defined in <linux/topology.h>. | 
|  | */ | 
|  | DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */ | 
|  | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | 
|  | #endif | 
|  |  | 
|  | static DEFINE_MUTEX(pcpu_drain_mutex); | 
|  |  | 
|  | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY | 
|  | volatile unsigned long latent_entropy __latent_entropy; | 
|  | EXPORT_SYMBOL(latent_entropy); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Array of node states. | 
|  | */ | 
|  | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { | 
|  | [N_POSSIBLE] = NODE_MASK_ALL, | 
|  | [N_ONLINE] = { { [0] = 1UL } }, | 
|  | #ifndef CONFIG_NUMA | 
|  | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | 
|  | #endif | 
|  | [N_MEMORY] = { { [0] = 1UL } }, | 
|  | [N_CPU] = { { [0] = 1UL } }, | 
|  | #endif	/* NUMA */ | 
|  | }; | 
|  | EXPORT_SYMBOL(node_states); | 
|  |  | 
|  | atomic_long_t _totalram_pages __read_mostly; | 
|  | EXPORT_SYMBOL(_totalram_pages); | 
|  | unsigned long totalreserve_pages __read_mostly; | 
|  | unsigned long totalcma_pages __read_mostly; | 
|  |  | 
|  | int percpu_pagelist_high_fraction; | 
|  | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; | 
|  | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); | 
|  | EXPORT_SYMBOL(init_on_alloc); | 
|  |  | 
|  | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); | 
|  | EXPORT_SYMBOL(init_on_free); | 
|  |  | 
|  | static bool _init_on_alloc_enabled_early __read_mostly | 
|  | = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); | 
|  | static int __init early_init_on_alloc(char *buf) | 
|  | { | 
|  |  | 
|  | return kstrtobool(buf, &_init_on_alloc_enabled_early); | 
|  | } | 
|  | early_param("init_on_alloc", early_init_on_alloc); | 
|  |  | 
|  | static bool _init_on_free_enabled_early __read_mostly | 
|  | = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); | 
|  | static int __init early_init_on_free(char *buf) | 
|  | { | 
|  | return kstrtobool(buf, &_init_on_free_enabled_early); | 
|  | } | 
|  | early_param("init_on_free", early_init_on_free); | 
|  |  | 
|  | /* | 
|  | * A cached value of the page's pageblock's migratetype, used when the page is | 
|  | * put on a pcplist. Used to avoid the pageblock migratetype lookup when | 
|  | * freeing from pcplists in most cases, at the cost of possibly becoming stale. | 
|  | * Also the migratetype set in the page does not necessarily match the pcplist | 
|  | * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | 
|  | * other index - this ensures that it will be put on the correct CMA freelist. | 
|  | */ | 
|  | static inline int get_pcppage_migratetype(struct page *page) | 
|  | { | 
|  | return page->index; | 
|  | } | 
|  |  | 
|  | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | 
|  | { | 
|  | page->index = migratetype; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | /* | 
|  | * The following functions are used by the suspend/hibernate code to temporarily | 
|  | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | 
|  | * while devices are suspended.  To avoid races with the suspend/hibernate code, | 
|  | * they should always be called with system_transition_mutex held | 
|  | * (gfp_allowed_mask also should only be modified with system_transition_mutex | 
|  | * held, unless the suspend/hibernate code is guaranteed not to run in parallel | 
|  | * with that modification). | 
|  | */ | 
|  |  | 
|  | static gfp_t saved_gfp_mask; | 
|  |  | 
|  | void pm_restore_gfp_mask(void) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&system_transition_mutex)); | 
|  | if (saved_gfp_mask) { | 
|  | gfp_allowed_mask = saved_gfp_mask; | 
|  | saved_gfp_mask = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void pm_restrict_gfp_mask(void) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&system_transition_mutex)); | 
|  | WARN_ON(saved_gfp_mask); | 
|  | saved_gfp_mask = gfp_allowed_mask; | 
|  | gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); | 
|  | } | 
|  |  | 
|  | bool pm_suspended_storage(void) | 
|  | { | 
|  | if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_PM_SLEEP */ | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
|  | unsigned int pageblock_order __read_mostly; | 
|  | #endif | 
|  |  | 
|  | static void __free_pages_ok(struct page *page, unsigned int order, | 
|  | fpi_t fpi_flags); | 
|  |  | 
|  | /* | 
|  | * results with 256, 32 in the lowmem_reserve sysctl: | 
|  | *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
|  | *	1G machine -> (16M dma, 784M normal, 224M high) | 
|  | *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
|  | *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
|  | *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA | 
|  | * | 
|  | * TBD: should special case ZONE_DMA32 machines here - in those we normally | 
|  | * don't need any ZONE_NORMAL reservation | 
|  | */ | 
|  | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | [ZONE_DMA] = 256, | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | [ZONE_DMA32] = 256, | 
|  | #endif | 
|  | [ZONE_NORMAL] = 32, | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | [ZONE_HIGHMEM] = 0, | 
|  | #endif | 
|  | [ZONE_MOVABLE] = 0, | 
|  | }; | 
|  |  | 
|  | static char * const zone_names[MAX_NR_ZONES] = { | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | "DMA", | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | "DMA32", | 
|  | #endif | 
|  | "Normal", | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | "HighMem", | 
|  | #endif | 
|  | "Movable", | 
|  | #ifdef CONFIG_ZONE_DEVICE | 
|  | "Device", | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | const char * const migratetype_names[MIGRATE_TYPES] = { | 
|  | "Unmovable", | 
|  | "Movable", | 
|  | "Reclaimable", | 
|  | "HighAtomic", | 
|  | #ifdef CONFIG_CMA | 
|  | "CMA", | 
|  | #endif | 
|  | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | "Isolate", | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { | 
|  | [NULL_COMPOUND_DTOR] = NULL, | 
|  | [COMPOUND_PAGE_DTOR] = free_compound_page, | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | [HUGETLB_PAGE_DTOR] = free_huge_page, | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | int min_free_kbytes = 1024; | 
|  | int user_min_free_kbytes = -1; | 
|  | int watermark_boost_factor __read_mostly = 15000; | 
|  | int watermark_scale_factor = 10; | 
|  |  | 
|  | static unsigned long nr_kernel_pages __initdata; | 
|  | static unsigned long nr_all_pages __initdata; | 
|  | static unsigned long dma_reserve __initdata; | 
|  |  | 
|  | static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; | 
|  | static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; | 
|  | static unsigned long required_kernelcore __initdata; | 
|  | static unsigned long required_kernelcore_percent __initdata; | 
|  | static unsigned long required_movablecore __initdata; | 
|  | static unsigned long required_movablecore_percent __initdata; | 
|  | static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; | 
|  | bool mirrored_kernelcore __initdata_memblock; | 
|  |  | 
|  | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | 
|  | int movable_zone; | 
|  | EXPORT_SYMBOL(movable_zone); | 
|  |  | 
|  | #if MAX_NUMNODES > 1 | 
|  | unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; | 
|  | unsigned int nr_online_nodes __read_mostly = 1; | 
|  | EXPORT_SYMBOL(nr_node_ids); | 
|  | EXPORT_SYMBOL(nr_online_nodes); | 
|  | #endif | 
|  |  | 
|  | int page_group_by_mobility_disabled __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | /* | 
|  | * During boot we initialize deferred pages on-demand, as needed, but once | 
|  | * page_alloc_init_late() has finished, the deferred pages are all initialized, | 
|  | * and we can permanently disable that path. | 
|  | */ | 
|  | static DEFINE_STATIC_KEY_TRUE(deferred_pages); | 
|  |  | 
|  | static inline bool deferred_pages_enabled(void) | 
|  | { | 
|  | return static_branch_unlikely(&deferred_pages); | 
|  | } | 
|  |  | 
|  | /* Returns true if the struct page for the pfn is uninitialised */ | 
|  | static inline bool __meminit early_page_uninitialised(unsigned long pfn) | 
|  | { | 
|  | int nid = early_pfn_to_nid(pfn); | 
|  |  | 
|  | if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true when the remaining initialisation should be deferred until | 
|  | * later in the boot cycle when it can be parallelised. | 
|  | */ | 
|  | static bool __meminit | 
|  | defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | 
|  | { | 
|  | static unsigned long prev_end_pfn, nr_initialised; | 
|  |  | 
|  | if (early_page_ext_enabled()) | 
|  | return false; | 
|  | /* | 
|  | * prev_end_pfn static that contains the end of previous zone | 
|  | * No need to protect because called very early in boot before smp_init. | 
|  | */ | 
|  | if (prev_end_pfn != end_pfn) { | 
|  | prev_end_pfn = end_pfn; | 
|  | nr_initialised = 0; | 
|  | } | 
|  |  | 
|  | /* Always populate low zones for address-constrained allocations */ | 
|  | if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) | 
|  | return false; | 
|  |  | 
|  | if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) | 
|  | return true; | 
|  | /* | 
|  | * We start only with one section of pages, more pages are added as | 
|  | * needed until the rest of deferred pages are initialized. | 
|  | */ | 
|  | nr_initialised++; | 
|  | if ((nr_initialised > PAGES_PER_SECTION) && | 
|  | (pfn & (PAGES_PER_SECTION - 1)) == 0) { | 
|  | NODE_DATA(nid)->first_deferred_pfn = pfn; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | #else | 
|  | static inline bool deferred_pages_enabled(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool early_page_uninitialised(unsigned long pfn) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Return a pointer to the bitmap storing bits affecting a block of pages */ | 
|  | static inline unsigned long *get_pageblock_bitmap(const struct page *page, | 
|  | unsigned long pfn) | 
|  | { | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | return section_to_usemap(__pfn_to_section(pfn)); | 
|  | #else | 
|  | return page_zone(page)->pageblock_flags; | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  | } | 
|  |  | 
|  | static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) | 
|  | { | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | pfn &= (PAGES_PER_SECTION-1); | 
|  | #else | 
|  | pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | unsigned long __get_pfnblock_flags_mask(const struct page *page, | 
|  | unsigned long pfn, | 
|  | unsigned long mask) | 
|  | { | 
|  | unsigned long *bitmap; | 
|  | unsigned long bitidx, word_bitidx; | 
|  | unsigned long word; | 
|  |  | 
|  | bitmap = get_pageblock_bitmap(page, pfn); | 
|  | bitidx = pfn_to_bitidx(page, pfn); | 
|  | word_bitidx = bitidx / BITS_PER_LONG; | 
|  | bitidx &= (BITS_PER_LONG-1); | 
|  | /* | 
|  | * This races, without locks, with set_pfnblock_flags_mask(). Ensure | 
|  | * a consistent read of the memory array, so that results, even though | 
|  | * racy, are not corrupted. | 
|  | */ | 
|  | word = READ_ONCE(bitmap[word_bitidx]); | 
|  | return (word >> bitidx) & mask; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | 
|  | * @page: The page within the block of interest | 
|  | * @pfn: The target page frame number | 
|  | * @mask: mask of bits that the caller is interested in | 
|  | * | 
|  | * Return: pageblock_bits flags | 
|  | */ | 
|  | unsigned long get_pfnblock_flags_mask(const struct page *page, | 
|  | unsigned long pfn, unsigned long mask) | 
|  | { | 
|  | return __get_pfnblock_flags_mask(page, pfn, mask); | 
|  | } | 
|  |  | 
|  | static __always_inline int get_pfnblock_migratetype(const struct page *page, | 
|  | unsigned long pfn) | 
|  | { | 
|  | return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | 
|  | * @page: The page within the block of interest | 
|  | * @flags: The flags to set | 
|  | * @pfn: The target page frame number | 
|  | * @mask: mask of bits that the caller is interested in | 
|  | */ | 
|  | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | 
|  | unsigned long pfn, | 
|  | unsigned long mask) | 
|  | { | 
|  | unsigned long *bitmap; | 
|  | unsigned long bitidx, word_bitidx; | 
|  | unsigned long word; | 
|  |  | 
|  | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | 
|  | BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); | 
|  |  | 
|  | bitmap = get_pageblock_bitmap(page, pfn); | 
|  | bitidx = pfn_to_bitidx(page, pfn); | 
|  | word_bitidx = bitidx / BITS_PER_LONG; | 
|  | bitidx &= (BITS_PER_LONG-1); | 
|  |  | 
|  | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | 
|  |  | 
|  | mask <<= bitidx; | 
|  | flags <<= bitidx; | 
|  |  | 
|  | word = READ_ONCE(bitmap[word_bitidx]); | 
|  | do { | 
|  | } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); | 
|  | } | 
|  |  | 
|  | void set_pageblock_migratetype(struct page *page, int migratetype) | 
|  | { | 
|  | if (unlikely(page_group_by_mobility_disabled && | 
|  | migratetype < MIGRATE_PCPTYPES)) | 
|  | migratetype = MIGRATE_UNMOVABLE; | 
|  |  | 
|  | set_pfnblock_flags_mask(page, (unsigned long)migratetype, | 
|  | page_to_pfn(page), MIGRATETYPE_MASK); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned seq; | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | unsigned long sp, start_pfn; | 
|  |  | 
|  | do { | 
|  | seq = zone_span_seqbegin(zone); | 
|  | start_pfn = zone->zone_start_pfn; | 
|  | sp = zone->spanned_pages; | 
|  | if (!zone_spans_pfn(zone, pfn)) | 
|  | ret = 1; | 
|  | } while (zone_span_seqretry(zone, seq)); | 
|  |  | 
|  | if (ret) | 
|  | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", | 
|  | pfn, zone_to_nid(zone), zone->name, | 
|  | start_pfn, start_pfn + sp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int page_is_consistent(struct zone *zone, struct page *page) | 
|  | { | 
|  | if (zone != page_zone(page)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * Temporary debugging check for pages not lying within a given zone. | 
|  | */ | 
|  | static int __maybe_unused bad_range(struct zone *zone, struct page *page) | 
|  | { | 
|  | if (page_outside_zone_boundaries(zone, page)) | 
|  | return 1; | 
|  | if (!page_is_consistent(zone, page)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void bad_page(struct page *page, const char *reason) | 
|  | { | 
|  | static unsigned long resume; | 
|  | static unsigned long nr_shown; | 
|  | static unsigned long nr_unshown; | 
|  |  | 
|  | /* | 
|  | * Allow a burst of 60 reports, then keep quiet for that minute; | 
|  | * or allow a steady drip of one report per second. | 
|  | */ | 
|  | if (nr_shown == 60) { | 
|  | if (time_before(jiffies, resume)) { | 
|  | nr_unshown++; | 
|  | goto out; | 
|  | } | 
|  | if (nr_unshown) { | 
|  | pr_alert( | 
|  | "BUG: Bad page state: %lu messages suppressed\n", | 
|  | nr_unshown); | 
|  | nr_unshown = 0; | 
|  | } | 
|  | nr_shown = 0; | 
|  | } | 
|  | if (nr_shown++ == 0) | 
|  | resume = jiffies + 60 * HZ; | 
|  |  | 
|  | pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n", | 
|  | current->comm, page_to_pfn(page)); | 
|  | dump_page(page, reason); | 
|  |  | 
|  | print_modules(); | 
|  | dump_stack(); | 
|  | out: | 
|  | /* Leave bad fields for debug, except PageBuddy could make trouble */ | 
|  | page_mapcount_reset(page); /* remove PageBuddy */ | 
|  | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  | } | 
|  |  | 
|  | static inline unsigned int order_to_pindex(int migratetype, int order) | 
|  | { | 
|  | int base = order; | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | if (order > PAGE_ALLOC_COSTLY_ORDER) { | 
|  | VM_BUG_ON(order != pageblock_order); | 
|  | return NR_LOWORDER_PCP_LISTS; | 
|  | } | 
|  | #else | 
|  | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); | 
|  | #endif | 
|  |  | 
|  | return (MIGRATE_PCPTYPES * base) + migratetype; | 
|  | } | 
|  |  | 
|  | static inline int pindex_to_order(unsigned int pindex) | 
|  | { | 
|  | int order = pindex / MIGRATE_PCPTYPES; | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | if (pindex == NR_LOWORDER_PCP_LISTS) | 
|  | order = pageblock_order; | 
|  | #else | 
|  | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); | 
|  | #endif | 
|  |  | 
|  | return order; | 
|  | } | 
|  |  | 
|  | static inline bool pcp_allowed_order(unsigned int order) | 
|  | { | 
|  | if (order <= PAGE_ALLOC_COSTLY_ORDER) | 
|  | return true; | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | if (order == pageblock_order) | 
|  | return true; | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void free_the_page(struct page *page, unsigned int order) | 
|  | { | 
|  | if (pcp_allowed_order(order))		/* Via pcp? */ | 
|  | free_unref_page(page, order); | 
|  | else | 
|  | __free_pages_ok(page, order, FPI_NONE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Higher-order pages are called "compound pages".  They are structured thusly: | 
|  | * | 
|  | * The first PAGE_SIZE page is called the "head page" and have PG_head set. | 
|  | * | 
|  | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded | 
|  | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | 
|  | * | 
|  | * The first tail page's ->compound_dtor holds the offset in array of compound | 
|  | * page destructors. See compound_page_dtors. | 
|  | * | 
|  | * The first tail page's ->compound_order holds the order of allocation. | 
|  | * This usage means that zero-order pages may not be compound. | 
|  | */ | 
|  |  | 
|  | void free_compound_page(struct page *page) | 
|  | { | 
|  | mem_cgroup_uncharge(page_folio(page)); | 
|  | free_the_page(page, compound_order(page)); | 
|  | } | 
|  |  | 
|  | static void prep_compound_head(struct page *page, unsigned int order) | 
|  | { | 
|  | set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); | 
|  | set_compound_order(page, order); | 
|  | atomic_set(compound_mapcount_ptr(page), -1); | 
|  | atomic_set(compound_pincount_ptr(page), 0); | 
|  | } | 
|  |  | 
|  | static void prep_compound_tail(struct page *head, int tail_idx) | 
|  | { | 
|  | struct page *p = head + tail_idx; | 
|  |  | 
|  | p->mapping = TAIL_MAPPING; | 
|  | set_compound_head(p, head); | 
|  | } | 
|  |  | 
|  | void prep_compound_page(struct page *page, unsigned int order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  |  | 
|  | __SetPageHead(page); | 
|  | for (i = 1; i < nr_pages; i++) | 
|  | prep_compound_tail(page, i); | 
|  |  | 
|  | prep_compound_head(page, order); | 
|  | } | 
|  |  | 
|  | void destroy_large_folio(struct folio *folio) | 
|  | { | 
|  | enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); | 
|  | compound_page_dtors[dtor](&folio->page); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | unsigned int _debug_guardpage_minorder; | 
|  |  | 
|  | bool _debug_pagealloc_enabled_early __read_mostly | 
|  | = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); | 
|  | EXPORT_SYMBOL(_debug_pagealloc_enabled_early); | 
|  | DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); | 
|  | EXPORT_SYMBOL(_debug_pagealloc_enabled); | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); | 
|  |  | 
|  | static int __init early_debug_pagealloc(char *buf) | 
|  | { | 
|  | return kstrtobool(buf, &_debug_pagealloc_enabled_early); | 
|  | } | 
|  | early_param("debug_pagealloc", early_debug_pagealloc); | 
|  |  | 
|  | static int __init debug_guardpage_minorder_setup(char *buf) | 
|  | { | 
|  | unsigned long res; | 
|  |  | 
|  | if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) { | 
|  | pr_err("Bad debug_guardpage_minorder value\n"); | 
|  | return 0; | 
|  | } | 
|  | _debug_guardpage_minorder = res; | 
|  | pr_info("Setting debug_guardpage_minorder to %lu\n", res); | 
|  | return 0; | 
|  | } | 
|  | early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); | 
|  |  | 
|  | static inline bool set_page_guard(struct zone *zone, struct page *page, | 
|  | unsigned int order, int migratetype) | 
|  | { | 
|  | if (!debug_guardpage_enabled()) | 
|  | return false; | 
|  |  | 
|  | if (order >= debug_guardpage_minorder()) | 
|  | return false; | 
|  |  | 
|  | __SetPageGuard(page); | 
|  | INIT_LIST_HEAD(&page->buddy_list); | 
|  | set_page_private(page, order); | 
|  | /* Guard pages are not available for any usage */ | 
|  | if (!is_migrate_isolate(migratetype)) | 
|  | __mod_zone_freepage_state(zone, -(1 << order), migratetype); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
|  | unsigned int order, int migratetype) | 
|  | { | 
|  | if (!debug_guardpage_enabled()) | 
|  | return; | 
|  |  | 
|  | __ClearPageGuard(page); | 
|  |  | 
|  | set_page_private(page, 0); | 
|  | if (!is_migrate_isolate(migratetype)) | 
|  | __mod_zone_freepage_state(zone, (1 << order), migratetype); | 
|  | } | 
|  | #else | 
|  | static inline bool set_page_guard(struct zone *zone, struct page *page, | 
|  | unsigned int order, int migratetype) { return false; } | 
|  | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
|  | unsigned int order, int migratetype) {} | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Enable static keys related to various memory debugging and hardening options. | 
|  | * Some override others, and depend on early params that are evaluated in the | 
|  | * order of appearance. So we need to first gather the full picture of what was | 
|  | * enabled, and then make decisions. | 
|  | */ | 
|  | void __init init_mem_debugging_and_hardening(void) | 
|  | { | 
|  | bool page_poisoning_requested = false; | 
|  |  | 
|  | #ifdef CONFIG_PAGE_POISONING | 
|  | /* | 
|  | * Page poisoning is debug page alloc for some arches. If | 
|  | * either of those options are enabled, enable poisoning. | 
|  | */ | 
|  | if (page_poisoning_enabled() || | 
|  | (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && | 
|  | debug_pagealloc_enabled())) { | 
|  | static_branch_enable(&_page_poisoning_enabled); | 
|  | page_poisoning_requested = true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && | 
|  | page_poisoning_requested) { | 
|  | pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " | 
|  | "will take precedence over init_on_alloc and init_on_free\n"); | 
|  | _init_on_alloc_enabled_early = false; | 
|  | _init_on_free_enabled_early = false; | 
|  | } | 
|  |  | 
|  | if (_init_on_alloc_enabled_early) | 
|  | static_branch_enable(&init_on_alloc); | 
|  | else | 
|  | static_branch_disable(&init_on_alloc); | 
|  |  | 
|  | if (_init_on_free_enabled_early) | 
|  | static_branch_enable(&init_on_free); | 
|  | else | 
|  | static_branch_disable(&init_on_free); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_KMSAN) && | 
|  | (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) | 
|  | pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if (!debug_pagealloc_enabled()) | 
|  | return; | 
|  |  | 
|  | static_branch_enable(&_debug_pagealloc_enabled); | 
|  |  | 
|  | if (!debug_guardpage_minorder()) | 
|  | return; | 
|  |  | 
|  | static_branch_enable(&_debug_guardpage_enabled); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void set_buddy_order(struct page *page, unsigned int order) | 
|  | { | 
|  | set_page_private(page, order); | 
|  | __SetPageBuddy(page); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | static inline struct capture_control *task_capc(struct zone *zone) | 
|  | { | 
|  | struct capture_control *capc = current->capture_control; | 
|  |  | 
|  | return unlikely(capc) && | 
|  | !(current->flags & PF_KTHREAD) && | 
|  | !capc->page && | 
|  | capc->cc->zone == zone ? capc : NULL; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | compaction_capture(struct capture_control *capc, struct page *page, | 
|  | int order, int migratetype) | 
|  | { | 
|  | if (!capc || order != capc->cc->order) | 
|  | return false; | 
|  |  | 
|  | /* Do not accidentally pollute CMA or isolated regions*/ | 
|  | if (is_migrate_cma(migratetype) || | 
|  | is_migrate_isolate(migratetype)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Do not let lower order allocations pollute a movable pageblock. | 
|  | * This might let an unmovable request use a reclaimable pageblock | 
|  | * and vice-versa but no more than normal fallback logic which can | 
|  | * have trouble finding a high-order free page. | 
|  | */ | 
|  | if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) | 
|  | return false; | 
|  |  | 
|  | capc->page = page; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline struct capture_control *task_capc(struct zone *zone) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | compaction_capture(struct capture_control *capc, struct page *page, | 
|  | int order, int migratetype) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_COMPACTION */ | 
|  |  | 
|  | /* Used for pages not on another list */ | 
|  | static inline void add_to_free_list(struct page *page, struct zone *zone, | 
|  | unsigned int order, int migratetype) | 
|  | { | 
|  | struct free_area *area = &zone->free_area[order]; | 
|  |  | 
|  | list_add(&page->buddy_list, &area->free_list[migratetype]); | 
|  | area->nr_free++; | 
|  | } | 
|  |  | 
|  | /* Used for pages not on another list */ | 
|  | static inline void add_to_free_list_tail(struct page *page, struct zone *zone, | 
|  | unsigned int order, int migratetype) | 
|  | { | 
|  | struct free_area *area = &zone->free_area[order]; | 
|  |  | 
|  | list_add_tail(&page->buddy_list, &area->free_list[migratetype]); | 
|  | area->nr_free++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used for pages which are on another list. Move the pages to the tail | 
|  | * of the list - so the moved pages won't immediately be considered for | 
|  | * allocation again (e.g., optimization for memory onlining). | 
|  | */ | 
|  | static inline void move_to_free_list(struct page *page, struct zone *zone, | 
|  | unsigned int order, int migratetype) | 
|  | { | 
|  | struct free_area *area = &zone->free_area[order]; | 
|  |  | 
|  | list_move_tail(&page->buddy_list, &area->free_list[migratetype]); | 
|  | } | 
|  |  | 
|  | static inline void del_page_from_free_list(struct page *page, struct zone *zone, | 
|  | unsigned int order) | 
|  | { | 
|  | /* clear reported state and update reported page count */ | 
|  | if (page_reported(page)) | 
|  | __ClearPageReported(page); | 
|  |  | 
|  | list_del(&page->buddy_list); | 
|  | __ClearPageBuddy(page); | 
|  | set_page_private(page, 0); | 
|  | zone->free_area[order].nr_free--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is not the largest possible page, check if the buddy | 
|  | * of the next-highest order is free. If it is, it's possible | 
|  | * that pages are being freed that will coalesce soon. In case, | 
|  | * that is happening, add the free page to the tail of the list | 
|  | * so it's less likely to be used soon and more likely to be merged | 
|  | * as a higher order page | 
|  | */ | 
|  | static inline bool | 
|  | buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, | 
|  | struct page *page, unsigned int order) | 
|  | { | 
|  | unsigned long higher_page_pfn; | 
|  | struct page *higher_page; | 
|  |  | 
|  | if (order >= MAX_ORDER - 2) | 
|  | return false; | 
|  |  | 
|  | higher_page_pfn = buddy_pfn & pfn; | 
|  | higher_page = page + (higher_page_pfn - pfn); | 
|  |  | 
|  | return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, | 
|  | NULL) != NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freeing function for a buddy system allocator. | 
|  | * | 
|  | * The concept of a buddy system is to maintain direct-mapped table | 
|  | * (containing bit values) for memory blocks of various "orders". | 
|  | * The bottom level table contains the map for the smallest allocatable | 
|  | * units of memory (here, pages), and each level above it describes | 
|  | * pairs of units from the levels below, hence, "buddies". | 
|  | * At a high level, all that happens here is marking the table entry | 
|  | * at the bottom level available, and propagating the changes upward | 
|  | * as necessary, plus some accounting needed to play nicely with other | 
|  | * parts of the VM system. | 
|  | * At each level, we keep a list of pages, which are heads of continuous | 
|  | * free pages of length of (1 << order) and marked with PageBuddy. | 
|  | * Page's order is recorded in page_private(page) field. | 
|  | * So when we are allocating or freeing one, we can derive the state of the | 
|  | * other.  That is, if we allocate a small block, and both were | 
|  | * free, the remainder of the region must be split into blocks. | 
|  | * If a block is freed, and its buddy is also free, then this | 
|  | * triggers coalescing into a block of larger size. | 
|  | * | 
|  | * -- nyc | 
|  | */ | 
|  |  | 
|  | static inline void __free_one_page(struct page *page, | 
|  | unsigned long pfn, | 
|  | struct zone *zone, unsigned int order, | 
|  | int migratetype, fpi_t fpi_flags) | 
|  | { | 
|  | struct capture_control *capc = task_capc(zone); | 
|  | unsigned long buddy_pfn = 0; | 
|  | unsigned long combined_pfn; | 
|  | struct page *buddy; | 
|  | bool to_tail; | 
|  |  | 
|  | VM_BUG_ON(!zone_is_initialized(zone)); | 
|  | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); | 
|  |  | 
|  | VM_BUG_ON(migratetype == -1); | 
|  | if (likely(!is_migrate_isolate(migratetype))) | 
|  | __mod_zone_freepage_state(zone, 1 << order, migratetype); | 
|  |  | 
|  | VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); | 
|  | VM_BUG_ON_PAGE(bad_range(zone, page), page); | 
|  |  | 
|  | while (order < MAX_ORDER - 1) { | 
|  | if (compaction_capture(capc, page, order, migratetype)) { | 
|  | __mod_zone_freepage_state(zone, -(1 << order), | 
|  | migratetype); | 
|  | return; | 
|  | } | 
|  |  | 
|  | buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); | 
|  | if (!buddy) | 
|  | goto done_merging; | 
|  |  | 
|  | if (unlikely(order >= pageblock_order)) { | 
|  | /* | 
|  | * We want to prevent merge between freepages on pageblock | 
|  | * without fallbacks and normal pageblock. Without this, | 
|  | * pageblock isolation could cause incorrect freepage or CMA | 
|  | * accounting or HIGHATOMIC accounting. | 
|  | */ | 
|  | int buddy_mt = get_pageblock_migratetype(buddy); | 
|  |  | 
|  | if (migratetype != buddy_mt | 
|  | && (!migratetype_is_mergeable(migratetype) || | 
|  | !migratetype_is_mergeable(buddy_mt))) | 
|  | goto done_merging; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | 
|  | * merge with it and move up one order. | 
|  | */ | 
|  | if (page_is_guard(buddy)) | 
|  | clear_page_guard(zone, buddy, order, migratetype); | 
|  | else | 
|  | del_page_from_free_list(buddy, zone, order); | 
|  | combined_pfn = buddy_pfn & pfn; | 
|  | page = page + (combined_pfn - pfn); | 
|  | pfn = combined_pfn; | 
|  | order++; | 
|  | } | 
|  |  | 
|  | done_merging: | 
|  | set_buddy_order(page, order); | 
|  |  | 
|  | if (fpi_flags & FPI_TO_TAIL) | 
|  | to_tail = true; | 
|  | else if (is_shuffle_order(order)) | 
|  | to_tail = shuffle_pick_tail(); | 
|  | else | 
|  | to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); | 
|  |  | 
|  | if (to_tail) | 
|  | add_to_free_list_tail(page, zone, order, migratetype); | 
|  | else | 
|  | add_to_free_list(page, zone, order, migratetype); | 
|  |  | 
|  | /* Notify page reporting subsystem of freed page */ | 
|  | if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) | 
|  | page_reporting_notify_free(order); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * split_free_page() -- split a free page at split_pfn_offset | 
|  | * @free_page:		the original free page | 
|  | * @order:		the order of the page | 
|  | * @split_pfn_offset:	split offset within the page | 
|  | * | 
|  | * Return -ENOENT if the free page is changed, otherwise 0 | 
|  | * | 
|  | * It is used when the free page crosses two pageblocks with different migratetypes | 
|  | * at split_pfn_offset within the page. The split free page will be put into | 
|  | * separate migratetype lists afterwards. Otherwise, the function achieves | 
|  | * nothing. | 
|  | */ | 
|  | int split_free_page(struct page *free_page, | 
|  | unsigned int order, unsigned long split_pfn_offset) | 
|  | { | 
|  | struct zone *zone = page_zone(free_page); | 
|  | unsigned long free_page_pfn = page_to_pfn(free_page); | 
|  | unsigned long pfn; | 
|  | unsigned long flags; | 
|  | int free_page_order; | 
|  | int mt; | 
|  | int ret = 0; | 
|  |  | 
|  | if (split_pfn_offset == 0) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  |  | 
|  | if (!PageBuddy(free_page) || buddy_order(free_page) != order) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mt = get_pageblock_migratetype(free_page); | 
|  | if (likely(!is_migrate_isolate(mt))) | 
|  | __mod_zone_freepage_state(zone, -(1UL << order), mt); | 
|  |  | 
|  | del_page_from_free_list(free_page, zone, order); | 
|  | for (pfn = free_page_pfn; | 
|  | pfn < free_page_pfn + (1UL << order);) { | 
|  | int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); | 
|  |  | 
|  | free_page_order = min_t(unsigned int, | 
|  | pfn ? __ffs(pfn) : order, | 
|  | __fls(split_pfn_offset)); | 
|  | __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, | 
|  | mt, FPI_NONE); | 
|  | pfn += 1UL << free_page_order; | 
|  | split_pfn_offset -= (1UL << free_page_order); | 
|  | /* we have done the first part, now switch to second part */ | 
|  | if (split_pfn_offset == 0) | 
|  | split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | return ret; | 
|  | } | 
|  | /* | 
|  | * A bad page could be due to a number of fields. Instead of multiple branches, | 
|  | * try and check multiple fields with one check. The caller must do a detailed | 
|  | * check if necessary. | 
|  | */ | 
|  | static inline bool page_expected_state(struct page *page, | 
|  | unsigned long check_flags) | 
|  | { | 
|  | if (unlikely(atomic_read(&page->_mapcount) != -1)) | 
|  | return false; | 
|  |  | 
|  | if (unlikely((unsigned long)page->mapping | | 
|  | page_ref_count(page) | | 
|  | #ifdef CONFIG_MEMCG | 
|  | page->memcg_data | | 
|  | #endif | 
|  | (page->flags & check_flags))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char *page_bad_reason(struct page *page, unsigned long flags) | 
|  | { | 
|  | const char *bad_reason = NULL; | 
|  |  | 
|  | if (unlikely(atomic_read(&page->_mapcount) != -1)) | 
|  | bad_reason = "nonzero mapcount"; | 
|  | if (unlikely(page->mapping != NULL)) | 
|  | bad_reason = "non-NULL mapping"; | 
|  | if (unlikely(page_ref_count(page) != 0)) | 
|  | bad_reason = "nonzero _refcount"; | 
|  | if (unlikely(page->flags & flags)) { | 
|  | if (flags == PAGE_FLAGS_CHECK_AT_PREP) | 
|  | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; | 
|  | else | 
|  | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | 
|  | } | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (unlikely(page->memcg_data)) | 
|  | bad_reason = "page still charged to cgroup"; | 
|  | #endif | 
|  | return bad_reason; | 
|  | } | 
|  |  | 
|  | static void free_page_is_bad_report(struct page *page) | 
|  | { | 
|  | bad_page(page, | 
|  | page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); | 
|  | } | 
|  |  | 
|  | static inline bool free_page_is_bad(struct page *page) | 
|  | { | 
|  | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) | 
|  | return false; | 
|  |  | 
|  | /* Something has gone sideways, find it */ | 
|  | free_page_is_bad_report(page); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int free_tail_pages_check(struct page *head_page, struct page *page) | 
|  | { | 
|  | int ret = 1; | 
|  |  | 
|  | /* | 
|  | * We rely page->lru.next never has bit 0 set, unless the page | 
|  | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | 
|  | */ | 
|  | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | switch (page - head_page) { | 
|  | case 1: | 
|  | /* the first tail page: ->mapping may be compound_mapcount() */ | 
|  | if (unlikely(compound_mapcount(page))) { | 
|  | bad_page(page, "nonzero compound_mapcount"); | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | /* | 
|  | * the second tail page: ->mapping is | 
|  | * deferred_list.next -- ignore value. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | if (page->mapping != TAIL_MAPPING) { | 
|  | bad_page(page, "corrupted mapping in tail page"); | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (unlikely(!PageTail(page))) { | 
|  | bad_page(page, "PageTail not set"); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(compound_head(page) != head_page)) { | 
|  | bad_page(page, "compound_head not consistent"); | 
|  | goto out; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | page->mapping = NULL; | 
|  | clear_compound_head(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip KASAN memory poisoning when either: | 
|  | * | 
|  | * 1. Deferred memory initialization has not yet completed, | 
|  | *    see the explanation below. | 
|  | * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, | 
|  | *    see the comment next to it. | 
|  | * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, | 
|  | *    see the comment next to it. | 
|  | * | 
|  | * Poisoning pages during deferred memory init will greatly lengthen the | 
|  | * process and cause problem in large memory systems as the deferred pages | 
|  | * initialization is done with interrupt disabled. | 
|  | * | 
|  | * Assuming that there will be no reference to those newly initialized | 
|  | * pages before they are ever allocated, this should have no effect on | 
|  | * KASAN memory tracking as the poison will be properly inserted at page | 
|  | * allocation time. The only corner case is when pages are allocated by | 
|  | * on-demand allocation and then freed again before the deferred pages | 
|  | * initialization is done, but this is not likely to happen. | 
|  | */ | 
|  | static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) | 
|  | { | 
|  | return deferred_pages_enabled() || | 
|  | (!IS_ENABLED(CONFIG_KASAN_GENERIC) && | 
|  | (fpi_flags & FPI_SKIP_KASAN_POISON)) || | 
|  | PageSkipKASanPoison(page); | 
|  | } | 
|  |  | 
|  | static void kernel_init_pages(struct page *page, int numpages) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* s390's use of memset() could override KASAN redzones. */ | 
|  | kasan_disable_current(); | 
|  | for (i = 0; i < numpages; i++) | 
|  | clear_highpage_kasan_tagged(page + i); | 
|  | kasan_enable_current(); | 
|  | } | 
|  |  | 
|  | static __always_inline bool free_pages_prepare(struct page *page, | 
|  | unsigned int order, bool check_free, fpi_t fpi_flags) | 
|  | { | 
|  | int bad = 0; | 
|  | bool init = want_init_on_free(); | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  |  | 
|  | trace_mm_page_free(page, order); | 
|  | kmsan_free_page(page, order); | 
|  |  | 
|  | if (unlikely(PageHWPoison(page)) && !order) { | 
|  | /* | 
|  | * Do not let hwpoison pages hit pcplists/buddy | 
|  | * Untie memcg state and reset page's owner | 
|  | */ | 
|  | if (memcg_kmem_enabled() && PageMemcgKmem(page)) | 
|  | __memcg_kmem_uncharge_page(page, order); | 
|  | reset_page_owner(page, order); | 
|  | page_table_check_free(page, order); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check tail pages before head page information is cleared to | 
|  | * avoid checking PageCompound for order-0 pages. | 
|  | */ | 
|  | if (unlikely(order)) { | 
|  | bool compound = PageCompound(page); | 
|  | int i; | 
|  |  | 
|  | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | 
|  |  | 
|  | if (compound) { | 
|  | ClearPageDoubleMap(page); | 
|  | ClearPageHasHWPoisoned(page); | 
|  | } | 
|  | for (i = 1; i < (1 << order); i++) { | 
|  | if (compound) | 
|  | bad += free_tail_pages_check(page, page + i); | 
|  | if (unlikely(free_page_is_bad(page + i))) { | 
|  | bad++; | 
|  | continue; | 
|  | } | 
|  | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
|  | } | 
|  | } | 
|  | if (PageMappingFlags(page)) | 
|  | page->mapping = NULL; | 
|  | if (memcg_kmem_enabled() && PageMemcgKmem(page)) | 
|  | __memcg_kmem_uncharge_page(page, order); | 
|  | if (check_free && free_page_is_bad(page)) | 
|  | bad++; | 
|  | if (bad) | 
|  | return false; | 
|  |  | 
|  | page_cpupid_reset_last(page); | 
|  | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
|  | reset_page_owner(page, order); | 
|  | page_table_check_free(page, order); | 
|  |  | 
|  | if (!PageHighMem(page)) { | 
|  | debug_check_no_locks_freed(page_address(page), | 
|  | PAGE_SIZE << order); | 
|  | debug_check_no_obj_freed(page_address(page), | 
|  | PAGE_SIZE << order); | 
|  | } | 
|  |  | 
|  | kernel_poison_pages(page, 1 << order); | 
|  |  | 
|  | /* | 
|  | * As memory initialization might be integrated into KASAN, | 
|  | * KASAN poisoning and memory initialization code must be | 
|  | * kept together to avoid discrepancies in behavior. | 
|  | * | 
|  | * With hardware tag-based KASAN, memory tags must be set before the | 
|  | * page becomes unavailable via debug_pagealloc or arch_free_page. | 
|  | */ | 
|  | if (!should_skip_kasan_poison(page, fpi_flags)) { | 
|  | kasan_poison_pages(page, order, init); | 
|  |  | 
|  | /* Memory is already initialized if KASAN did it internally. */ | 
|  | if (kasan_has_integrated_init()) | 
|  | init = false; | 
|  | } | 
|  | if (init) | 
|  | kernel_init_pages(page, 1 << order); | 
|  |  | 
|  | /* | 
|  | * arch_free_page() can make the page's contents inaccessible.  s390 | 
|  | * does this.  So nothing which can access the page's contents should | 
|  | * happen after this. | 
|  | */ | 
|  | arch_free_page(page, order); | 
|  |  | 
|  | debug_pagealloc_unmap_pages(page, 1 << order); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | /* | 
|  | * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed | 
|  | * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when | 
|  | * moved from pcp lists to free lists. | 
|  | */ | 
|  | static bool free_pcp_prepare(struct page *page, unsigned int order) | 
|  | { | 
|  | return free_pages_prepare(page, order, true, FPI_NONE); | 
|  | } | 
|  |  | 
|  | /* return true if this page has an inappropriate state */ | 
|  | static bool bulkfree_pcp_prepare(struct page *page) | 
|  | { | 
|  | if (debug_pagealloc_enabled_static()) | 
|  | return free_page_is_bad(page); | 
|  | else | 
|  | return false; | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * With DEBUG_VM disabled, order-0 pages being freed are checked only when | 
|  | * moving from pcp lists to free list in order to reduce overhead. With | 
|  | * debug_pagealloc enabled, they are checked also immediately when being freed | 
|  | * to the pcp lists. | 
|  | */ | 
|  | static bool free_pcp_prepare(struct page *page, unsigned int order) | 
|  | { | 
|  | if (debug_pagealloc_enabled_static()) | 
|  | return free_pages_prepare(page, order, true, FPI_NONE); | 
|  | else | 
|  | return free_pages_prepare(page, order, false, FPI_NONE); | 
|  | } | 
|  |  | 
|  | static bool bulkfree_pcp_prepare(struct page *page) | 
|  | { | 
|  | return free_page_is_bad(page); | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_VM */ | 
|  |  | 
|  | /* | 
|  | * Frees a number of pages from the PCP lists | 
|  | * Assumes all pages on list are in same zone. | 
|  | * count is the number of pages to free. | 
|  | */ | 
|  | static void free_pcppages_bulk(struct zone *zone, int count, | 
|  | struct per_cpu_pages *pcp, | 
|  | int pindex) | 
|  | { | 
|  | int min_pindex = 0; | 
|  | int max_pindex = NR_PCP_LISTS - 1; | 
|  | unsigned int order; | 
|  | bool isolated_pageblocks; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Ensure proper count is passed which otherwise would stuck in the | 
|  | * below while (list_empty(list)) loop. | 
|  | */ | 
|  | count = min(pcp->count, count); | 
|  |  | 
|  | /* Ensure requested pindex is drained first. */ | 
|  | pindex = pindex - 1; | 
|  |  | 
|  | /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ | 
|  | spin_lock(&zone->lock); | 
|  | isolated_pageblocks = has_isolate_pageblock(zone); | 
|  |  | 
|  | while (count > 0) { | 
|  | struct list_head *list; | 
|  | int nr_pages; | 
|  |  | 
|  | /* Remove pages from lists in a round-robin fashion. */ | 
|  | do { | 
|  | if (++pindex > max_pindex) | 
|  | pindex = min_pindex; | 
|  | list = &pcp->lists[pindex]; | 
|  | if (!list_empty(list)) | 
|  | break; | 
|  |  | 
|  | if (pindex == max_pindex) | 
|  | max_pindex--; | 
|  | if (pindex == min_pindex) | 
|  | min_pindex++; | 
|  | } while (1); | 
|  |  | 
|  | order = pindex_to_order(pindex); | 
|  | nr_pages = 1 << order; | 
|  | do { | 
|  | int mt; | 
|  |  | 
|  | page = list_last_entry(list, struct page, pcp_list); | 
|  | mt = get_pcppage_migratetype(page); | 
|  |  | 
|  | /* must delete to avoid corrupting pcp list */ | 
|  | list_del(&page->pcp_list); | 
|  | count -= nr_pages; | 
|  | pcp->count -= nr_pages; | 
|  |  | 
|  | if (bulkfree_pcp_prepare(page)) | 
|  | continue; | 
|  |  | 
|  | /* MIGRATE_ISOLATE page should not go to pcplists */ | 
|  | VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | 
|  | /* Pageblock could have been isolated meanwhile */ | 
|  | if (unlikely(isolated_pageblocks)) | 
|  | mt = get_pageblock_migratetype(page); | 
|  |  | 
|  | __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); | 
|  | trace_mm_page_pcpu_drain(page, order, mt); | 
|  | } while (count > 0 && !list_empty(list)); | 
|  | } | 
|  |  | 
|  | spin_unlock(&zone->lock); | 
|  | } | 
|  |  | 
|  | static void free_one_page(struct zone *zone, | 
|  | struct page *page, unsigned long pfn, | 
|  | unsigned int order, | 
|  | int migratetype, fpi_t fpi_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | if (unlikely(has_isolate_pageblock(zone) || | 
|  | is_migrate_isolate(migratetype))) { | 
|  | migratetype = get_pfnblock_migratetype(page, pfn); | 
|  | } | 
|  | __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  |  | 
|  | static void __meminit __init_single_page(struct page *page, unsigned long pfn, | 
|  | unsigned long zone, int nid) | 
|  | { | 
|  | mm_zero_struct_page(page); | 
|  | set_page_links(page, zone, nid, pfn); | 
|  | init_page_count(page); | 
|  | page_mapcount_reset(page); | 
|  | page_cpupid_reset_last(page); | 
|  | page_kasan_tag_reset(page); | 
|  |  | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  | #ifdef WANT_PAGE_VIRTUAL | 
|  | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
|  | if (!is_highmem_idx(zone)) | 
|  | set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | static void __meminit init_reserved_page(unsigned long pfn) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | int nid, zid; | 
|  |  | 
|  | if (!early_page_uninitialised(pfn)) | 
|  | return; | 
|  |  | 
|  | nid = early_pfn_to_nid(pfn); | 
|  | pgdat = NODE_DATA(nid); | 
|  |  | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | struct zone *zone = &pgdat->node_zones[zid]; | 
|  |  | 
|  | if (zone_spans_pfn(zone, pfn)) | 
|  | break; | 
|  | } | 
|  | __init_single_page(pfn_to_page(pfn), pfn, zid, nid); | 
|  | } | 
|  | #else | 
|  | static inline void init_reserved_page(unsigned long pfn) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
|  |  | 
|  | /* | 
|  | * Initialised pages do not have PageReserved set. This function is | 
|  | * called for each range allocated by the bootmem allocator and | 
|  | * marks the pages PageReserved. The remaining valid pages are later | 
|  | * sent to the buddy page allocator. | 
|  | */ | 
|  | void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) | 
|  | { | 
|  | unsigned long start_pfn = PFN_DOWN(start); | 
|  | unsigned long end_pfn = PFN_UP(end); | 
|  |  | 
|  | for (; start_pfn < end_pfn; start_pfn++) { | 
|  | if (pfn_valid(start_pfn)) { | 
|  | struct page *page = pfn_to_page(start_pfn); | 
|  |  | 
|  | init_reserved_page(start_pfn); | 
|  |  | 
|  | /* Avoid false-positive PageTail() */ | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  |  | 
|  | /* | 
|  | * no need for atomic set_bit because the struct | 
|  | * page is not visible yet so nobody should | 
|  | * access it yet. | 
|  | */ | 
|  | __SetPageReserved(page); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __free_pages_ok(struct page *page, unsigned int order, | 
|  | fpi_t fpi_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  | int migratetype; | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | if (!free_pages_prepare(page, order, true, fpi_flags)) | 
|  | return; | 
|  |  | 
|  | migratetype = get_pfnblock_migratetype(page, pfn); | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | if (unlikely(has_isolate_pageblock(zone) || | 
|  | is_migrate_isolate(migratetype))) { | 
|  | migratetype = get_pfnblock_migratetype(page, pfn); | 
|  | } | 
|  | __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  |  | 
|  | __count_vm_events(PGFREE, 1 << order); | 
|  | } | 
|  |  | 
|  | void __free_pages_core(struct page *page, unsigned int order) | 
|  | { | 
|  | unsigned int nr_pages = 1 << order; | 
|  | struct page *p = page; | 
|  | unsigned int loop; | 
|  |  | 
|  | /* | 
|  | * When initializing the memmap, __init_single_page() sets the refcount | 
|  | * of all pages to 1 ("allocated"/"not free"). We have to set the | 
|  | * refcount of all involved pages to 0. | 
|  | */ | 
|  | prefetchw(p); | 
|  | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | 
|  | prefetchw(p + 1); | 
|  | __ClearPageReserved(p); | 
|  | set_page_count(p, 0); | 
|  | } | 
|  | __ClearPageReserved(p); | 
|  | set_page_count(p, 0); | 
|  |  | 
|  | atomic_long_add(nr_pages, &page_zone(page)->managed_pages); | 
|  |  | 
|  | /* | 
|  | * Bypass PCP and place fresh pages right to the tail, primarily | 
|  | * relevant for memory onlining. | 
|  | */ | 
|  | __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* | 
|  | * During memory init memblocks map pfns to nids. The search is expensive and | 
|  | * this caches recent lookups. The implementation of __early_pfn_to_nid | 
|  | * treats start/end as pfns. | 
|  | */ | 
|  | struct mminit_pfnnid_cache { | 
|  | unsigned long last_start; | 
|  | unsigned long last_end; | 
|  | int last_nid; | 
|  | }; | 
|  |  | 
|  | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; | 
|  |  | 
|  | /* | 
|  | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | 
|  | */ | 
|  | static int __meminit __early_pfn_to_nid(unsigned long pfn, | 
|  | struct mminit_pfnnid_cache *state) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int nid; | 
|  |  | 
|  | if (state->last_start <= pfn && pfn < state->last_end) | 
|  | return state->last_nid; | 
|  |  | 
|  | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); | 
|  | if (nid != NUMA_NO_NODE) { | 
|  | state->last_start = start_pfn; | 
|  | state->last_end = end_pfn; | 
|  | state->last_nid = nid; | 
|  | } | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | int __meminit early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | static DEFINE_SPINLOCK(early_pfn_lock); | 
|  | int nid; | 
|  |  | 
|  | spin_lock(&early_pfn_lock); | 
|  | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); | 
|  | if (nid < 0) | 
|  | nid = first_online_node; | 
|  | spin_unlock(&early_pfn_lock); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | void __init memblock_free_pages(struct page *page, unsigned long pfn, | 
|  | unsigned int order) | 
|  | { | 
|  | if (early_page_uninitialised(pfn)) | 
|  | return; | 
|  | if (!kmsan_memblock_free_pages(page, order)) { | 
|  | /* KMSAN will take care of these pages. */ | 
|  | return; | 
|  | } | 
|  | __free_pages_core(page, order); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the whole (or subset of) a pageblock given by the interval of | 
|  | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | 
|  | * with the migration of free compaction scanner. | 
|  | * | 
|  | * Return struct page pointer of start_pfn, or NULL if checks were not passed. | 
|  | * | 
|  | * It's possible on some configurations to have a setup like node0 node1 node0 | 
|  | * i.e. it's possible that all pages within a zones range of pages do not | 
|  | * belong to a single zone. We assume that a border between node0 and node1 | 
|  | * can occur within a single pageblock, but not a node0 node1 node0 | 
|  | * interleaving within a single pageblock. It is therefore sufficient to check | 
|  | * the first and last page of a pageblock and avoid checking each individual | 
|  | * page in a pageblock. | 
|  | */ | 
|  | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | 
|  | unsigned long end_pfn, struct zone *zone) | 
|  | { | 
|  | struct page *start_page; | 
|  | struct page *end_page; | 
|  |  | 
|  | /* end_pfn is one past the range we are checking */ | 
|  | end_pfn--; | 
|  |  | 
|  | if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) | 
|  | return NULL; | 
|  |  | 
|  | start_page = pfn_to_online_page(start_pfn); | 
|  | if (!start_page) | 
|  | return NULL; | 
|  |  | 
|  | if (page_zone(start_page) != zone) | 
|  | return NULL; | 
|  |  | 
|  | end_page = pfn_to_page(end_pfn); | 
|  |  | 
|  | /* This gives a shorter code than deriving page_zone(end_page) */ | 
|  | if (page_zone_id(start_page) != page_zone_id(end_page)) | 
|  | return NULL; | 
|  |  | 
|  | return start_page; | 
|  | } | 
|  |  | 
|  | void set_zone_contiguous(struct zone *zone) | 
|  | { | 
|  | unsigned long block_start_pfn = zone->zone_start_pfn; | 
|  | unsigned long block_end_pfn; | 
|  |  | 
|  | block_end_pfn = pageblock_end_pfn(block_start_pfn); | 
|  | for (; block_start_pfn < zone_end_pfn(zone); | 
|  | block_start_pfn = block_end_pfn, | 
|  | block_end_pfn += pageblock_nr_pages) { | 
|  |  | 
|  | block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | 
|  |  | 
|  | if (!__pageblock_pfn_to_page(block_start_pfn, | 
|  | block_end_pfn, zone)) | 
|  | return; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* We confirm that there is no hole */ | 
|  | zone->contiguous = true; | 
|  | } | 
|  |  | 
|  | void clear_zone_contiguous(struct zone *zone) | 
|  | { | 
|  | zone->contiguous = false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | static void __init deferred_free_range(unsigned long pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | /* Free a large naturally-aligned chunk if possible */ | 
|  | if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { | 
|  | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  | __free_pages_core(page, pageblock_order); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++, page++, pfn++) { | 
|  | if (pageblock_aligned(pfn)) | 
|  | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  | __free_pages_core(page, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Completion tracking for deferred_init_memmap() threads */ | 
|  | static atomic_t pgdat_init_n_undone __initdata; | 
|  | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | 
|  |  | 
|  | static inline void __init pgdat_init_report_one_done(void) | 
|  | { | 
|  | if (atomic_dec_and_test(&pgdat_init_n_undone)) | 
|  | complete(&pgdat_init_all_done_comp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if page needs to be initialized or freed to buddy allocator. | 
|  | * | 
|  | * We check if a current large page is valid by only checking the validity | 
|  | * of the head pfn. | 
|  | */ | 
|  | static inline bool __init deferred_pfn_valid(unsigned long pfn) | 
|  | { | 
|  | if (pageblock_aligned(pfn) && !pfn_valid(pfn)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free pages to buddy allocator. Try to free aligned pages in | 
|  | * pageblock_nr_pages sizes. | 
|  | */ | 
|  | static void __init deferred_free_pages(unsigned long pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long nr_free = 0; | 
|  |  | 
|  | for (; pfn < end_pfn; pfn++) { | 
|  | if (!deferred_pfn_valid(pfn)) { | 
|  | deferred_free_range(pfn - nr_free, nr_free); | 
|  | nr_free = 0; | 
|  | } else if (pageblock_aligned(pfn)) { | 
|  | deferred_free_range(pfn - nr_free, nr_free); | 
|  | nr_free = 1; | 
|  | } else { | 
|  | nr_free++; | 
|  | } | 
|  | } | 
|  | /* Free the last block of pages to allocator */ | 
|  | deferred_free_range(pfn - nr_free, nr_free); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize struct pages.  We minimize pfn page lookups and scheduler checks | 
|  | * by performing it only once every pageblock_nr_pages. | 
|  | * Return number of pages initialized. | 
|  | */ | 
|  | static unsigned long  __init deferred_init_pages(struct zone *zone, | 
|  | unsigned long pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | int nid = zone_to_nid(zone); | 
|  | unsigned long nr_pages = 0; | 
|  | int zid = zone_idx(zone); | 
|  | struct page *page = NULL; | 
|  |  | 
|  | for (; pfn < end_pfn; pfn++) { | 
|  | if (!deferred_pfn_valid(pfn)) { | 
|  | page = NULL; | 
|  | continue; | 
|  | } else if (!page || pageblock_aligned(pfn)) { | 
|  | page = pfn_to_page(pfn); | 
|  | } else { | 
|  | page++; | 
|  | } | 
|  | __init_single_page(page, pfn, zid, nid); | 
|  | nr_pages++; | 
|  | } | 
|  | return (nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is meant to pre-load the iterator for the zone init. | 
|  | * Specifically it walks through the ranges until we are caught up to the | 
|  | * first_init_pfn value and exits there. If we never encounter the value we | 
|  | * return false indicating there are no valid ranges left. | 
|  | */ | 
|  | static bool __init | 
|  | deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, | 
|  | unsigned long *spfn, unsigned long *epfn, | 
|  | unsigned long first_init_pfn) | 
|  | { | 
|  | u64 j; | 
|  |  | 
|  | /* | 
|  | * Start out by walking through the ranges in this zone that have | 
|  | * already been initialized. We don't need to do anything with them | 
|  | * so we just need to flush them out of the system. | 
|  | */ | 
|  | for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { | 
|  | if (*epfn <= first_init_pfn) | 
|  | continue; | 
|  | if (*spfn < first_init_pfn) | 
|  | *spfn = first_init_pfn; | 
|  | *i = j; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize and free pages. We do it in two loops: first we initialize | 
|  | * struct page, then free to buddy allocator, because while we are | 
|  | * freeing pages we can access pages that are ahead (computing buddy | 
|  | * page in __free_one_page()). | 
|  | * | 
|  | * In order to try and keep some memory in the cache we have the loop | 
|  | * broken along max page order boundaries. This way we will not cause | 
|  | * any issues with the buddy page computation. | 
|  | */ | 
|  | static unsigned long __init | 
|  | deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, | 
|  | unsigned long *end_pfn) | 
|  | { | 
|  | unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); | 
|  | unsigned long spfn = *start_pfn, epfn = *end_pfn; | 
|  | unsigned long nr_pages = 0; | 
|  | u64 j = *i; | 
|  |  | 
|  | /* First we loop through and initialize the page values */ | 
|  | for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { | 
|  | unsigned long t; | 
|  |  | 
|  | if (mo_pfn <= *start_pfn) | 
|  | break; | 
|  |  | 
|  | t = min(mo_pfn, *end_pfn); | 
|  | nr_pages += deferred_init_pages(zone, *start_pfn, t); | 
|  |  | 
|  | if (mo_pfn < *end_pfn) { | 
|  | *start_pfn = mo_pfn; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset values and now loop through freeing pages as needed */ | 
|  | swap(j, *i); | 
|  |  | 
|  | for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { | 
|  | unsigned long t; | 
|  |  | 
|  | if (mo_pfn <= spfn) | 
|  | break; | 
|  |  | 
|  | t = min(mo_pfn, epfn); | 
|  | deferred_free_pages(spfn, t); | 
|  |  | 
|  | if (mo_pfn <= epfn) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, | 
|  | void *arg) | 
|  | { | 
|  | unsigned long spfn, epfn; | 
|  | struct zone *zone = arg; | 
|  | u64 i; | 
|  |  | 
|  | deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); | 
|  |  | 
|  | /* | 
|  | * Initialize and free pages in MAX_ORDER sized increments so that we | 
|  | * can avoid introducing any issues with the buddy allocator. | 
|  | */ | 
|  | while (spfn < end_pfn) { | 
|  | deferred_init_maxorder(&i, zone, &spfn, &epfn); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* An arch may override for more concurrency. */ | 
|  | __weak int __init | 
|  | deferred_page_init_max_threads(const struct cpumask *node_cpumask) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Initialise remaining memory on a node */ | 
|  | static int __init deferred_init_memmap(void *data) | 
|  | { | 
|  | pg_data_t *pgdat = data; | 
|  | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
|  | unsigned long spfn = 0, epfn = 0; | 
|  | unsigned long first_init_pfn, flags; | 
|  | unsigned long start = jiffies; | 
|  | struct zone *zone; | 
|  | int zid, max_threads; | 
|  | u64 i; | 
|  |  | 
|  | /* Bind memory initialisation thread to a local node if possible */ | 
|  | if (!cpumask_empty(cpumask)) | 
|  | set_cpus_allowed_ptr(current, cpumask); | 
|  |  | 
|  | pgdat_resize_lock(pgdat, &flags); | 
|  | first_init_pfn = pgdat->first_deferred_pfn; | 
|  | if (first_init_pfn == ULONG_MAX) { | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  | pgdat_init_report_one_done(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Sanity check boundaries */ | 
|  | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | 
|  | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | 
|  | pgdat->first_deferred_pfn = ULONG_MAX; | 
|  |  | 
|  | /* | 
|  | * Once we unlock here, the zone cannot be grown anymore, thus if an | 
|  | * interrupt thread must allocate this early in boot, zone must be | 
|  | * pre-grown prior to start of deferred page initialization. | 
|  | */ | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  |  | 
|  | /* Only the highest zone is deferred so find it */ | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | zone = pgdat->node_zones + zid; | 
|  | if (first_init_pfn < zone_end_pfn(zone)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If the zone is empty somebody else may have cleared out the zone */ | 
|  | if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | 
|  | first_init_pfn)) | 
|  | goto zone_empty; | 
|  |  | 
|  | max_threads = deferred_page_init_max_threads(cpumask); | 
|  |  | 
|  | while (spfn < epfn) { | 
|  | unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); | 
|  | struct padata_mt_job job = { | 
|  | .thread_fn   = deferred_init_memmap_chunk, | 
|  | .fn_arg      = zone, | 
|  | .start       = spfn, | 
|  | .size        = epfn_align - spfn, | 
|  | .align       = PAGES_PER_SECTION, | 
|  | .min_chunk   = PAGES_PER_SECTION, | 
|  | .max_threads = max_threads, | 
|  | }; | 
|  |  | 
|  | padata_do_multithreaded(&job); | 
|  | deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | 
|  | epfn_align); | 
|  | } | 
|  | zone_empty: | 
|  | /* Sanity check that the next zone really is unpopulated */ | 
|  | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | 
|  |  | 
|  | pr_info("node %d deferred pages initialised in %ums\n", | 
|  | pgdat->node_id, jiffies_to_msecs(jiffies - start)); | 
|  |  | 
|  | pgdat_init_report_one_done(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this zone has deferred pages, try to grow it by initializing enough | 
|  | * deferred pages to satisfy the allocation specified by order, rounded up to | 
|  | * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments | 
|  | * of SECTION_SIZE bytes by initializing struct pages in increments of | 
|  | * PAGES_PER_SECTION * sizeof(struct page) bytes. | 
|  | * | 
|  | * Return true when zone was grown, otherwise return false. We return true even | 
|  | * when we grow less than requested, to let the caller decide if there are | 
|  | * enough pages to satisfy the allocation. | 
|  | * | 
|  | * Note: We use noinline because this function is needed only during boot, and | 
|  | * it is called from a __ref function _deferred_grow_zone. This way we are | 
|  | * making sure that it is not inlined into permanent text section. | 
|  | */ | 
|  | static noinline bool __init | 
|  | deferred_grow_zone(struct zone *zone, unsigned int order) | 
|  | { | 
|  | unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); | 
|  | pg_data_t *pgdat = zone->zone_pgdat; | 
|  | unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; | 
|  | unsigned long spfn, epfn, flags; | 
|  | unsigned long nr_pages = 0; | 
|  | u64 i; | 
|  |  | 
|  | /* Only the last zone may have deferred pages */ | 
|  | if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) | 
|  | return false; | 
|  |  | 
|  | pgdat_resize_lock(pgdat, &flags); | 
|  |  | 
|  | /* | 
|  | * If someone grew this zone while we were waiting for spinlock, return | 
|  | * true, as there might be enough pages already. | 
|  | */ | 
|  | if (first_deferred_pfn != pgdat->first_deferred_pfn) { | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If the zone is empty somebody else may have cleared out the zone */ | 
|  | if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | 
|  | first_deferred_pfn)) { | 
|  | pgdat->first_deferred_pfn = ULONG_MAX; | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  | /* Retry only once. */ | 
|  | return first_deferred_pfn != ULONG_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize and free pages in MAX_ORDER sized increments so | 
|  | * that we can avoid introducing any issues with the buddy | 
|  | * allocator. | 
|  | */ | 
|  | while (spfn < epfn) { | 
|  | /* update our first deferred PFN for this section */ | 
|  | first_deferred_pfn = spfn; | 
|  |  | 
|  | nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); | 
|  | touch_nmi_watchdog(); | 
|  |  | 
|  | /* We should only stop along section boundaries */ | 
|  | if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) | 
|  | continue; | 
|  |  | 
|  | /* If our quota has been met we can stop here */ | 
|  | if (nr_pages >= nr_pages_needed) | 
|  | break; | 
|  | } | 
|  |  | 
|  | pgdat->first_deferred_pfn = spfn; | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  |  | 
|  | return nr_pages > 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deferred_grow_zone() is __init, but it is called from | 
|  | * get_page_from_freelist() during early boot until deferred_pages permanently | 
|  | * disables this call. This is why we have refdata wrapper to avoid warning, | 
|  | * and to ensure that the function body gets unloaded. | 
|  | */ | 
|  | static bool __ref | 
|  | _deferred_grow_zone(struct zone *zone, unsigned int order) | 
|  | { | 
|  | return deferred_grow_zone(zone, order); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
|  |  | 
|  | void __init page_alloc_init_late(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | int nid; | 
|  |  | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  |  | 
|  | /* There will be num_node_state(N_MEMORY) threads */ | 
|  | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); | 
|  | } | 
|  |  | 
|  | /* Block until all are initialised */ | 
|  | wait_for_completion(&pgdat_init_all_done_comp); | 
|  |  | 
|  | /* | 
|  | * We initialized the rest of the deferred pages.  Permanently disable | 
|  | * on-demand struct page initialization. | 
|  | */ | 
|  | static_branch_disable(&deferred_pages); | 
|  |  | 
|  | /* Reinit limits that are based on free pages after the kernel is up */ | 
|  | files_maxfiles_init(); | 
|  | #endif | 
|  |  | 
|  | buffer_init(); | 
|  |  | 
|  | /* Discard memblock private memory */ | 
|  | memblock_discard(); | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) | 
|  | shuffle_free_memory(NODE_DATA(nid)); | 
|  |  | 
|  | for_each_populated_zone(zone) | 
|  | set_zone_contiguous(zone); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ | 
|  | void __init init_cma_reserved_pageblock(struct page *page) | 
|  | { | 
|  | unsigned i = pageblock_nr_pages; | 
|  | struct page *p = page; | 
|  |  | 
|  | do { | 
|  | __ClearPageReserved(p); | 
|  | set_page_count(p, 0); | 
|  | } while (++p, --i); | 
|  |  | 
|  | set_pageblock_migratetype(page, MIGRATE_CMA); | 
|  | set_page_refcounted(page); | 
|  | __free_pages(page, pageblock_order); | 
|  |  | 
|  | adjust_managed_page_count(page, pageblock_nr_pages); | 
|  | page_zone(page)->cma_pages += pageblock_nr_pages; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The order of subdivision here is critical for the IO subsystem. | 
|  | * Please do not alter this order without good reasons and regression | 
|  | * testing. Specifically, as large blocks of memory are subdivided, | 
|  | * the order in which smaller blocks are delivered depends on the order | 
|  | * they're subdivided in this function. This is the primary factor | 
|  | * influencing the order in which pages are delivered to the IO | 
|  | * subsystem according to empirical testing, and this is also justified | 
|  | * by considering the behavior of a buddy system containing a single | 
|  | * large block of memory acted on by a series of small allocations. | 
|  | * This behavior is a critical factor in sglist merging's success. | 
|  | * | 
|  | * -- nyc | 
|  | */ | 
|  | static inline void expand(struct zone *zone, struct page *page, | 
|  | int low, int high, int migratetype) | 
|  | { | 
|  | unsigned long size = 1 << high; | 
|  |  | 
|  | while (high > low) { | 
|  | high--; | 
|  | size >>= 1; | 
|  | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); | 
|  |  | 
|  | /* | 
|  | * Mark as guard pages (or page), that will allow to | 
|  | * merge back to allocator when buddy will be freed. | 
|  | * Corresponding page table entries will not be touched, | 
|  | * pages will stay not present in virtual address space | 
|  | */ | 
|  | if (set_page_guard(zone, &page[size], high, migratetype)) | 
|  | continue; | 
|  |  | 
|  | add_to_free_list(&page[size], zone, high, migratetype); | 
|  | set_buddy_order(&page[size], high); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_new_page_bad(struct page *page) | 
|  | { | 
|  | if (unlikely(page->flags & __PG_HWPOISON)) { | 
|  | /* Don't complain about hwpoisoned pages */ | 
|  | page_mapcount_reset(page); /* remove PageBuddy */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | bad_page(page, | 
|  | page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This page is about to be returned from the page allocator | 
|  | */ | 
|  | static inline int check_new_page(struct page *page) | 
|  | { | 
|  | if (likely(page_expected_state(page, | 
|  | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | 
|  | return 0; | 
|  |  | 
|  | check_new_page_bad(page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool check_new_pages(struct page *page, unsigned int order) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < (1 << order); i++) { | 
|  | struct page *p = page + i; | 
|  |  | 
|  | if (unlikely(check_new_page(p))) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | /* | 
|  | * With DEBUG_VM enabled, order-0 pages are checked for expected state when | 
|  | * being allocated from pcp lists. With debug_pagealloc also enabled, they are | 
|  | * also checked when pcp lists are refilled from the free lists. | 
|  | */ | 
|  | static inline bool check_pcp_refill(struct page *page, unsigned int order) | 
|  | { | 
|  | if (debug_pagealloc_enabled_static()) | 
|  | return check_new_pages(page, order); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool check_new_pcp(struct page *page, unsigned int order) | 
|  | { | 
|  | return check_new_pages(page, order); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * With DEBUG_VM disabled, free order-0 pages are checked for expected state | 
|  | * when pcp lists are being refilled from the free lists. With debug_pagealloc | 
|  | * enabled, they are also checked when being allocated from the pcp lists. | 
|  | */ | 
|  | static inline bool check_pcp_refill(struct page *page, unsigned int order) | 
|  | { | 
|  | return check_new_pages(page, order); | 
|  | } | 
|  | static inline bool check_new_pcp(struct page *page, unsigned int order) | 
|  | { | 
|  | if (debug_pagealloc_enabled_static()) | 
|  | return check_new_pages(page, order); | 
|  | else | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_VM */ | 
|  |  | 
|  | static inline bool should_skip_kasan_unpoison(gfp_t flags) | 
|  | { | 
|  | /* Don't skip if a software KASAN mode is enabled. */ | 
|  | if (IS_ENABLED(CONFIG_KASAN_GENERIC) || | 
|  | IS_ENABLED(CONFIG_KASAN_SW_TAGS)) | 
|  | return false; | 
|  |  | 
|  | /* Skip, if hardware tag-based KASAN is not enabled. */ | 
|  | if (!kasan_hw_tags_enabled()) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * With hardware tag-based KASAN enabled, skip if this has been | 
|  | * requested via __GFP_SKIP_KASAN_UNPOISON. | 
|  | */ | 
|  | return flags & __GFP_SKIP_KASAN_UNPOISON; | 
|  | } | 
|  |  | 
|  | static inline bool should_skip_init(gfp_t flags) | 
|  | { | 
|  | /* Don't skip, if hardware tag-based KASAN is not enabled. */ | 
|  | if (!kasan_hw_tags_enabled()) | 
|  | return false; | 
|  |  | 
|  | /* For hardware tag-based KASAN, skip if requested. */ | 
|  | return (flags & __GFP_SKIP_ZERO); | 
|  | } | 
|  |  | 
|  | inline void post_alloc_hook(struct page *page, unsigned int order, | 
|  | gfp_t gfp_flags) | 
|  | { | 
|  | bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && | 
|  | !should_skip_init(gfp_flags); | 
|  | bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); | 
|  | int i; | 
|  |  | 
|  | set_page_private(page, 0); | 
|  | set_page_refcounted(page); | 
|  |  | 
|  | arch_alloc_page(page, order); | 
|  | debug_pagealloc_map_pages(page, 1 << order); | 
|  |  | 
|  | /* | 
|  | * Page unpoisoning must happen before memory initialization. | 
|  | * Otherwise, the poison pattern will be overwritten for __GFP_ZERO | 
|  | * allocations and the page unpoisoning code will complain. | 
|  | */ | 
|  | kernel_unpoison_pages(page, 1 << order); | 
|  |  | 
|  | /* | 
|  | * As memory initialization might be integrated into KASAN, | 
|  | * KASAN unpoisoning and memory initializion code must be | 
|  | * kept together to avoid discrepancies in behavior. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * If memory tags should be zeroed (which happens only when memory | 
|  | * should be initialized as well). | 
|  | */ | 
|  | if (init_tags) { | 
|  | /* Initialize both memory and tags. */ | 
|  | for (i = 0; i != 1 << order; ++i) | 
|  | tag_clear_highpage(page + i); | 
|  |  | 
|  | /* Note that memory is already initialized by the loop above. */ | 
|  | init = false; | 
|  | } | 
|  | if (!should_skip_kasan_unpoison(gfp_flags)) { | 
|  | /* Unpoison shadow memory or set memory tags. */ | 
|  | kasan_unpoison_pages(page, order, init); | 
|  |  | 
|  | /* Note that memory is already initialized by KASAN. */ | 
|  | if (kasan_has_integrated_init()) | 
|  | init = false; | 
|  | } else { | 
|  | /* Ensure page_address() dereferencing does not fault. */ | 
|  | for (i = 0; i != 1 << order; ++i) | 
|  | page_kasan_tag_reset(page + i); | 
|  | } | 
|  | /* If memory is still not initialized, do it now. */ | 
|  | if (init) | 
|  | kernel_init_pages(page, 1 << order); | 
|  | /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ | 
|  | if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) | 
|  | SetPageSkipKASanPoison(page); | 
|  |  | 
|  | set_page_owner(page, order, gfp_flags); | 
|  | page_table_check_alloc(page, order); | 
|  | } | 
|  |  | 
|  | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, | 
|  | unsigned int alloc_flags) | 
|  | { | 
|  | post_alloc_hook(page, order, gfp_flags); | 
|  |  | 
|  | if (order && (gfp_flags & __GFP_COMP)) | 
|  | prep_compound_page(page, order); | 
|  |  | 
|  | /* | 
|  | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to | 
|  | * allocate the page. The expectation is that the caller is taking | 
|  | * steps that will free more memory. The caller should avoid the page | 
|  | * being used for !PFMEMALLOC purposes. | 
|  | */ | 
|  | if (alloc_flags & ALLOC_NO_WATERMARKS) | 
|  | set_page_pfmemalloc(page); | 
|  | else | 
|  | clear_page_pfmemalloc(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go through the free lists for the given migratetype and remove | 
|  | * the smallest available page from the freelists | 
|  | */ | 
|  | static __always_inline | 
|  | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | 
|  | int migratetype) | 
|  | { | 
|  | unsigned int current_order; | 
|  | struct free_area *area; | 
|  | struct page *page; | 
|  |  | 
|  | /* Find a page of the appropriate size in the preferred list */ | 
|  | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
|  | area = &(zone->free_area[current_order]); | 
|  | page = get_page_from_free_area(area, migratetype); | 
|  | if (!page) | 
|  | continue; | 
|  | del_page_from_free_list(page, zone, current_order); | 
|  | expand(zone, page, order, current_order, migratetype); | 
|  | set_pcppage_migratetype(page, migratetype); | 
|  | trace_mm_page_alloc_zone_locked(page, order, migratetype, | 
|  | pcp_allowed_order(order) && | 
|  | migratetype < MIGRATE_PCPTYPES); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This array describes the order lists are fallen back to when | 
|  | * the free lists for the desirable migrate type are depleted | 
|  | * | 
|  | * The other migratetypes do not have fallbacks. | 
|  | */ | 
|  | static int fallbacks[MIGRATE_TYPES][3] = { | 
|  | [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES }, | 
|  | [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, | 
|  | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES }, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, | 
|  | unsigned int order) | 
|  | { | 
|  | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | 
|  | } | 
|  | #else | 
|  | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | 
|  | unsigned int order) { return NULL; } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Move the free pages in a range to the freelist tail of the requested type. | 
|  | * Note that start_page and end_pages are not aligned on a pageblock | 
|  | * boundary. If alignment is required, use move_freepages_block() | 
|  | */ | 
|  | static int move_freepages(struct zone *zone, | 
|  | unsigned long start_pfn, unsigned long end_pfn, | 
|  | int migratetype, int *num_movable) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long pfn; | 
|  | unsigned int order; | 
|  | int pages_moved = 0; | 
|  |  | 
|  | for (pfn = start_pfn; pfn <= end_pfn;) { | 
|  | page = pfn_to_page(pfn); | 
|  | if (!PageBuddy(page)) { | 
|  | /* | 
|  | * We assume that pages that could be isolated for | 
|  | * migration are movable. But we don't actually try | 
|  | * isolating, as that would be expensive. | 
|  | */ | 
|  | if (num_movable && | 
|  | (PageLRU(page) || __PageMovable(page))) | 
|  | (*num_movable)++; | 
|  | pfn++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Make sure we are not inadvertently changing nodes */ | 
|  | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | 
|  | VM_BUG_ON_PAGE(page_zone(page) != zone, page); | 
|  |  | 
|  | order = buddy_order(page); | 
|  | move_to_free_list(page, zone, order, migratetype); | 
|  | pfn += 1 << order; | 
|  | pages_moved += 1 << order; | 
|  | } | 
|  |  | 
|  | return pages_moved; | 
|  | } | 
|  |  | 
|  | int move_freepages_block(struct zone *zone, struct page *page, | 
|  | int migratetype, int *num_movable) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn, pfn; | 
|  |  | 
|  | if (num_movable) | 
|  | *num_movable = 0; | 
|  |  | 
|  | pfn = page_to_pfn(page); | 
|  | start_pfn = pageblock_start_pfn(pfn); | 
|  | end_pfn = pageblock_end_pfn(pfn) - 1; | 
|  |  | 
|  | /* Do not cross zone boundaries */ | 
|  | if (!zone_spans_pfn(zone, start_pfn)) | 
|  | start_pfn = pfn; | 
|  | if (!zone_spans_pfn(zone, end_pfn)) | 
|  | return 0; | 
|  |  | 
|  | return move_freepages(zone, start_pfn, end_pfn, migratetype, | 
|  | num_movable); | 
|  | } | 
|  |  | 
|  | static void change_pageblock_range(struct page *pageblock_page, | 
|  | int start_order, int migratetype) | 
|  | { | 
|  | int nr_pageblocks = 1 << (start_order - pageblock_order); | 
|  |  | 
|  | while (nr_pageblocks--) { | 
|  | set_pageblock_migratetype(pageblock_page, migratetype); | 
|  | pageblock_page += pageblock_nr_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we are falling back to another migratetype during allocation, try to | 
|  | * steal extra free pages from the same pageblocks to satisfy further | 
|  | * allocations, instead of polluting multiple pageblocks. | 
|  | * | 
|  | * If we are stealing a relatively large buddy page, it is likely there will | 
|  | * be more free pages in the pageblock, so try to steal them all. For | 
|  | * reclaimable and unmovable allocations, we steal regardless of page size, | 
|  | * as fragmentation caused by those allocations polluting movable pageblocks | 
|  | * is worse than movable allocations stealing from unmovable and reclaimable | 
|  | * pageblocks. | 
|  | */ | 
|  | static bool can_steal_fallback(unsigned int order, int start_mt) | 
|  | { | 
|  | /* | 
|  | * Leaving this order check is intended, although there is | 
|  | * relaxed order check in next check. The reason is that | 
|  | * we can actually steal whole pageblock if this condition met, | 
|  | * but, below check doesn't guarantee it and that is just heuristic | 
|  | * so could be changed anytime. | 
|  | */ | 
|  | if (order >= pageblock_order) | 
|  | return true; | 
|  |  | 
|  | if (order >= pageblock_order / 2 || | 
|  | start_mt == MIGRATE_RECLAIMABLE || | 
|  | start_mt == MIGRATE_UNMOVABLE || | 
|  | page_group_by_mobility_disabled) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool boost_watermark(struct zone *zone) | 
|  | { | 
|  | unsigned long max_boost; | 
|  |  | 
|  | if (!watermark_boost_factor) | 
|  | return false; | 
|  | /* | 
|  | * Don't bother in zones that are unlikely to produce results. | 
|  | * On small machines, including kdump capture kernels running | 
|  | * in a small area, boosting the watermark can cause an out of | 
|  | * memory situation immediately. | 
|  | */ | 
|  | if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) | 
|  | return false; | 
|  |  | 
|  | max_boost = mult_frac(zone->_watermark[WMARK_HIGH], | 
|  | watermark_boost_factor, 10000); | 
|  |  | 
|  | /* | 
|  | * high watermark may be uninitialised if fragmentation occurs | 
|  | * very early in boot so do not boost. We do not fall | 
|  | * through and boost by pageblock_nr_pages as failing | 
|  | * allocations that early means that reclaim is not going | 
|  | * to help and it may even be impossible to reclaim the | 
|  | * boosted watermark resulting in a hang. | 
|  | */ | 
|  | if (!max_boost) | 
|  | return false; | 
|  |  | 
|  | max_boost = max(pageblock_nr_pages, max_boost); | 
|  |  | 
|  | zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, | 
|  | max_boost); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function implements actual steal behaviour. If order is large enough, | 
|  | * we can steal whole pageblock. If not, we first move freepages in this | 
|  | * pageblock to our migratetype and determine how many already-allocated pages | 
|  | * are there in the pageblock with a compatible migratetype. If at least half | 
|  | * of pages are free or compatible, we can change migratetype of the pageblock | 
|  | * itself, so pages freed in the future will be put on the correct free list. | 
|  | */ | 
|  | static void steal_suitable_fallback(struct zone *zone, struct page *page, | 
|  | unsigned int alloc_flags, int start_type, bool whole_block) | 
|  | { | 
|  | unsigned int current_order = buddy_order(page); | 
|  | int free_pages, movable_pages, alike_pages; | 
|  | int old_block_type; | 
|  |  | 
|  | old_block_type = get_pageblock_migratetype(page); | 
|  |  | 
|  | /* | 
|  | * This can happen due to races and we want to prevent broken | 
|  | * highatomic accounting. | 
|  | */ | 
|  | if (is_migrate_highatomic(old_block_type)) | 
|  | goto single_page; | 
|  |  | 
|  | /* Take ownership for orders >= pageblock_order */ | 
|  | if (current_order >= pageblock_order) { | 
|  | change_pageblock_range(page, current_order, start_type); | 
|  | goto single_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Boost watermarks to increase reclaim pressure to reduce the | 
|  | * likelihood of future fallbacks. Wake kswapd now as the node | 
|  | * may be balanced overall and kswapd will not wake naturally. | 
|  | */ | 
|  | if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) | 
|  | set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); | 
|  |  | 
|  | /* We are not allowed to try stealing from the whole block */ | 
|  | if (!whole_block) | 
|  | goto single_page; | 
|  |  | 
|  | free_pages = move_freepages_block(zone, page, start_type, | 
|  | &movable_pages); | 
|  | /* | 
|  | * Determine how many pages are compatible with our allocation. | 
|  | * For movable allocation, it's the number of movable pages which | 
|  | * we just obtained. For other types it's a bit more tricky. | 
|  | */ | 
|  | if (start_type == MIGRATE_MOVABLE) { | 
|  | alike_pages = movable_pages; | 
|  | } else { | 
|  | /* | 
|  | * If we are falling back a RECLAIMABLE or UNMOVABLE allocation | 
|  | * to MOVABLE pageblock, consider all non-movable pages as | 
|  | * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or | 
|  | * vice versa, be conservative since we can't distinguish the | 
|  | * exact migratetype of non-movable pages. | 
|  | */ | 
|  | if (old_block_type == MIGRATE_MOVABLE) | 
|  | alike_pages = pageblock_nr_pages | 
|  | - (free_pages + movable_pages); | 
|  | else | 
|  | alike_pages = 0; | 
|  | } | 
|  |  | 
|  | /* moving whole block can fail due to zone boundary conditions */ | 
|  | if (!free_pages) | 
|  | goto single_page; | 
|  |  | 
|  | /* | 
|  | * If a sufficient number of pages in the block are either free or of | 
|  | * comparable migratability as our allocation, claim the whole block. | 
|  | */ | 
|  | if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || | 
|  | page_group_by_mobility_disabled) | 
|  | set_pageblock_migratetype(page, start_type); | 
|  |  | 
|  | return; | 
|  |  | 
|  | single_page: | 
|  | move_to_free_list(page, zone, current_order, start_type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether there is a suitable fallback freepage with requested order. | 
|  | * If only_stealable is true, this function returns fallback_mt only if | 
|  | * we can steal other freepages all together. This would help to reduce | 
|  | * fragmentation due to mixed migratetype pages in one pageblock. | 
|  | */ | 
|  | int find_suitable_fallback(struct free_area *area, unsigned int order, | 
|  | int migratetype, bool only_stealable, bool *can_steal) | 
|  | { | 
|  | int i; | 
|  | int fallback_mt; | 
|  |  | 
|  | if (area->nr_free == 0) | 
|  | return -1; | 
|  |  | 
|  | *can_steal = false; | 
|  | for (i = 0;; i++) { | 
|  | fallback_mt = fallbacks[migratetype][i]; | 
|  | if (fallback_mt == MIGRATE_TYPES) | 
|  | break; | 
|  |  | 
|  | if (free_area_empty(area, fallback_mt)) | 
|  | continue; | 
|  |  | 
|  | if (can_steal_fallback(order, migratetype)) | 
|  | *can_steal = true; | 
|  |  | 
|  | if (!only_stealable) | 
|  | return fallback_mt; | 
|  |  | 
|  | if (*can_steal) | 
|  | return fallback_mt; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve a pageblock for exclusive use of high-order atomic allocations if | 
|  | * there are no empty page blocks that contain a page with a suitable order | 
|  | */ | 
|  | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | 
|  | unsigned int alloc_order) | 
|  | { | 
|  | int mt; | 
|  | unsigned long max_managed, flags; | 
|  |  | 
|  | /* | 
|  | * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | 
|  | * Check is race-prone but harmless. | 
|  | */ | 
|  | max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; | 
|  | if (zone->nr_reserved_highatomic >= max_managed) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  |  | 
|  | /* Recheck the nr_reserved_highatomic limit under the lock */ | 
|  | if (zone->nr_reserved_highatomic >= max_managed) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Yoink! */ | 
|  | mt = get_pageblock_migratetype(page); | 
|  | /* Only reserve normal pageblocks (i.e., they can merge with others) */ | 
|  | if (migratetype_is_mergeable(mt)) { | 
|  | zone->nr_reserved_highatomic += pageblock_nr_pages; | 
|  | set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | 
|  | move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used when an allocation is about to fail under memory pressure. This | 
|  | * potentially hurts the reliability of high-order allocations when under | 
|  | * intense memory pressure but failed atomic allocations should be easier | 
|  | * to recover from than an OOM. | 
|  | * | 
|  | * If @force is true, try to unreserve a pageblock even though highatomic | 
|  | * pageblock is exhausted. | 
|  | */ | 
|  | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, | 
|  | bool force) | 
|  | { | 
|  | struct zonelist *zonelist = ac->zonelist; | 
|  | unsigned long flags; | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | struct page *page; | 
|  | int order; | 
|  | bool ret; | 
|  |  | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, | 
|  | ac->nodemask) { | 
|  | /* | 
|  | * Preserve at least one pageblock unless memory pressure | 
|  | * is really high. | 
|  | */ | 
|  | if (!force && zone->nr_reserved_highatomic <= | 
|  | pageblock_nr_pages) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | struct free_area *area = &(zone->free_area[order]); | 
|  |  | 
|  | page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * In page freeing path, migratetype change is racy so | 
|  | * we can counter several free pages in a pageblock | 
|  | * in this loop although we changed the pageblock type | 
|  | * from highatomic to ac->migratetype. So we should | 
|  | * adjust the count once. | 
|  | */ | 
|  | if (is_migrate_highatomic_page(page)) { | 
|  | /* | 
|  | * It should never happen but changes to | 
|  | * locking could inadvertently allow a per-cpu | 
|  | * drain to add pages to MIGRATE_HIGHATOMIC | 
|  | * while unreserving so be safe and watch for | 
|  | * underflows. | 
|  | */ | 
|  | zone->nr_reserved_highatomic -= min( | 
|  | pageblock_nr_pages, | 
|  | zone->nr_reserved_highatomic); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert to ac->migratetype and avoid the normal | 
|  | * pageblock stealing heuristics. Minimally, the caller | 
|  | * is doing the work and needs the pages. More | 
|  | * importantly, if the block was always converted to | 
|  | * MIGRATE_UNMOVABLE or another type then the number | 
|  | * of pageblocks that cannot be completely freed | 
|  | * may increase. | 
|  | */ | 
|  | set_pageblock_migratetype(page, ac->migratetype); | 
|  | ret = move_freepages_block(zone, page, ac->migratetype, | 
|  | NULL); | 
|  | if (ret) { | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try finding a free buddy page on the fallback list and put it on the free | 
|  | * list of requested migratetype, possibly along with other pages from the same | 
|  | * block, depending on fragmentation avoidance heuristics. Returns true if | 
|  | * fallback was found so that __rmqueue_smallest() can grab it. | 
|  | * | 
|  | * The use of signed ints for order and current_order is a deliberate | 
|  | * deviation from the rest of this file, to make the for loop | 
|  | * condition simpler. | 
|  | */ | 
|  | static __always_inline bool | 
|  | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, | 
|  | unsigned int alloc_flags) | 
|  | { | 
|  | struct free_area *area; | 
|  | int current_order; | 
|  | int min_order = order; | 
|  | struct page *page; | 
|  | int fallback_mt; | 
|  | bool can_steal; | 
|  |  | 
|  | /* | 
|  | * Do not steal pages from freelists belonging to other pageblocks | 
|  | * i.e. orders < pageblock_order. If there are no local zones free, | 
|  | * the zonelists will be reiterated without ALLOC_NOFRAGMENT. | 
|  | */ | 
|  | if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) | 
|  | min_order = pageblock_order; | 
|  |  | 
|  | /* | 
|  | * Find the largest available free page in the other list. This roughly | 
|  | * approximates finding the pageblock with the most free pages, which | 
|  | * would be too costly to do exactly. | 
|  | */ | 
|  | for (current_order = MAX_ORDER - 1; current_order >= min_order; | 
|  | --current_order) { | 
|  | area = &(zone->free_area[current_order]); | 
|  | fallback_mt = find_suitable_fallback(area, current_order, | 
|  | start_migratetype, false, &can_steal); | 
|  | if (fallback_mt == -1) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We cannot steal all free pages from the pageblock and the | 
|  | * requested migratetype is movable. In that case it's better to | 
|  | * steal and split the smallest available page instead of the | 
|  | * largest available page, because even if the next movable | 
|  | * allocation falls back into a different pageblock than this | 
|  | * one, it won't cause permanent fragmentation. | 
|  | */ | 
|  | if (!can_steal && start_migratetype == MIGRATE_MOVABLE | 
|  | && current_order > order) | 
|  | goto find_smallest; | 
|  |  | 
|  | goto do_steal; | 
|  | } | 
|  |  | 
|  | return false; | 
|  |  | 
|  | find_smallest: | 
|  | for (current_order = order; current_order < MAX_ORDER; | 
|  | current_order++) { | 
|  | area = &(zone->free_area[current_order]); | 
|  | fallback_mt = find_suitable_fallback(area, current_order, | 
|  | start_migratetype, false, &can_steal); | 
|  | if (fallback_mt != -1) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This should not happen - we already found a suitable fallback | 
|  | * when looking for the largest page. | 
|  | */ | 
|  | VM_BUG_ON(current_order == MAX_ORDER); | 
|  |  | 
|  | do_steal: | 
|  | page = get_page_from_free_area(area, fallback_mt); | 
|  |  | 
|  | steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, | 
|  | can_steal); | 
|  |  | 
|  | trace_mm_page_alloc_extfrag(page, order, current_order, | 
|  | start_migratetype, fallback_mt); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the hard work of removing an element from the buddy allocator. | 
|  | * Call me with the zone->lock already held. | 
|  | */ | 
|  | static __always_inline struct page * | 
|  | __rmqueue(struct zone *zone, unsigned int order, int migratetype, | 
|  | unsigned int alloc_flags) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_CMA)) { | 
|  | /* | 
|  | * Balance movable allocations between regular and CMA areas by | 
|  | * allocating from CMA when over half of the zone's free memory | 
|  | * is in the CMA area. | 
|  | */ | 
|  | if (alloc_flags & ALLOC_CMA && | 
|  | zone_page_state(zone, NR_FREE_CMA_PAGES) > | 
|  | zone_page_state(zone, NR_FREE_PAGES) / 2) { | 
|  | page = __rmqueue_cma_fallback(zone, order); | 
|  | if (page) | 
|  | return page; | 
|  | } | 
|  | } | 
|  | retry: | 
|  | page = __rmqueue_smallest(zone, order, migratetype); | 
|  | if (unlikely(!page)) { | 
|  | if (alloc_flags & ALLOC_CMA) | 
|  | page = __rmqueue_cma_fallback(zone, order); | 
|  |  | 
|  | if (!page && __rmqueue_fallback(zone, order, migratetype, | 
|  | alloc_flags)) | 
|  | goto retry; | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain a specified number of elements from the buddy allocator, all under | 
|  | * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
|  | * Returns the number of new pages which were placed at *list. | 
|  | */ | 
|  | static int rmqueue_bulk(struct zone *zone, unsigned int order, | 
|  | unsigned long count, struct list_head *list, | 
|  | int migratetype, unsigned int alloc_flags) | 
|  | { | 
|  | int i, allocated = 0; | 
|  |  | 
|  | /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ | 
|  | spin_lock(&zone->lock); | 
|  | for (i = 0; i < count; ++i) { | 
|  | struct page *page = __rmqueue(zone, order, migratetype, | 
|  | alloc_flags); | 
|  | if (unlikely(page == NULL)) | 
|  | break; | 
|  |  | 
|  | if (unlikely(check_pcp_refill(page, order))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Split buddy pages returned by expand() are received here in | 
|  | * physical page order. The page is added to the tail of | 
|  | * caller's list. From the callers perspective, the linked list | 
|  | * is ordered by page number under some conditions. This is | 
|  | * useful for IO devices that can forward direction from the | 
|  | * head, thus also in the physical page order. This is useful | 
|  | * for IO devices that can merge IO requests if the physical | 
|  | * pages are ordered properly. | 
|  | */ | 
|  | list_add_tail(&page->pcp_list, list); | 
|  | allocated++; | 
|  | if (is_migrate_cma(get_pcppage_migratetype(page))) | 
|  | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, | 
|  | -(1 << order)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i pages were removed from the buddy list even if some leak due | 
|  | * to check_pcp_refill failing so adjust NR_FREE_PAGES based | 
|  | * on i. Do not confuse with 'allocated' which is the number of | 
|  | * pages added to the pcp list. | 
|  | */ | 
|  | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); | 
|  | spin_unlock(&zone->lock); | 
|  | return allocated; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Called from the vmstat counter updater to drain pagesets of this | 
|  | * currently executing processor on remote nodes after they have | 
|  | * expired. | 
|  | */ | 
|  | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) | 
|  | { | 
|  | int to_drain, batch; | 
|  |  | 
|  | batch = READ_ONCE(pcp->batch); | 
|  | to_drain = min(pcp->count, batch); | 
|  | if (to_drain > 0) { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * free_pcppages_bulk expects IRQs disabled for zone->lock | 
|  | * so even though pcp->lock is not intended to be IRQ-safe, | 
|  | * it's needed in this context. | 
|  | */ | 
|  | spin_lock_irqsave(&pcp->lock, flags); | 
|  | free_pcppages_bulk(zone, to_drain, pcp, 0); | 
|  | spin_unlock_irqrestore(&pcp->lock, flags); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Drain pcplists of the indicated processor and zone. | 
|  | */ | 
|  | static void drain_pages_zone(unsigned int cpu, struct zone *zone) | 
|  | { | 
|  | struct per_cpu_pages *pcp; | 
|  |  | 
|  | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | 
|  | if (pcp->count) { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* See drain_zone_pages on why this is disabling IRQs */ | 
|  | spin_lock_irqsave(&pcp->lock, flags); | 
|  | free_pcppages_bulk(zone, pcp->count, pcp, 0); | 
|  | spin_unlock_irqrestore(&pcp->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drain pcplists of all zones on the indicated processor. | 
|  | */ | 
|  | static void drain_pages(unsigned int cpu) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | drain_pages_zone(cpu, zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
|  | */ | 
|  | void drain_local_pages(struct zone *zone) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (zone) | 
|  | drain_pages_zone(cpu, zone); | 
|  | else | 
|  | drain_pages(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The implementation of drain_all_pages(), exposing an extra parameter to | 
|  | * drain on all cpus. | 
|  | * | 
|  | * drain_all_pages() is optimized to only execute on cpus where pcplists are | 
|  | * not empty. The check for non-emptiness can however race with a free to | 
|  | * pcplist that has not yet increased the pcp->count from 0 to 1. Callers | 
|  | * that need the guarantee that every CPU has drained can disable the | 
|  | * optimizing racy check. | 
|  | */ | 
|  | static void __drain_all_pages(struct zone *zone, bool force_all_cpus) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * Allocate in the BSS so we won't require allocation in | 
|  | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | 
|  | */ | 
|  | static cpumask_t cpus_with_pcps; | 
|  |  | 
|  | /* | 
|  | * Do not drain if one is already in progress unless it's specific to | 
|  | * a zone. Such callers are primarily CMA and memory hotplug and need | 
|  | * the drain to be complete when the call returns. | 
|  | */ | 
|  | if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { | 
|  | if (!zone) | 
|  | return; | 
|  | mutex_lock(&pcpu_drain_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't care about racing with CPU hotplug event | 
|  | * as offline notification will cause the notified | 
|  | * cpu to drain that CPU pcps and on_each_cpu_mask | 
|  | * disables preemption as part of its processing | 
|  | */ | 
|  | for_each_online_cpu(cpu) { | 
|  | struct per_cpu_pages *pcp; | 
|  | struct zone *z; | 
|  | bool has_pcps = false; | 
|  |  | 
|  | if (force_all_cpus) { | 
|  | /* | 
|  | * The pcp.count check is racy, some callers need a | 
|  | * guarantee that no cpu is missed. | 
|  | */ | 
|  | has_pcps = true; | 
|  | } else if (zone) { | 
|  | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | 
|  | if (pcp->count) | 
|  | has_pcps = true; | 
|  | } else { | 
|  | for_each_populated_zone(z) { | 
|  | pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); | 
|  | if (pcp->count) { | 
|  | has_pcps = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_pcps) | 
|  | cpumask_set_cpu(cpu, &cpus_with_pcps); | 
|  | else | 
|  | cpumask_clear_cpu(cpu, &cpus_with_pcps); | 
|  | } | 
|  |  | 
|  | for_each_cpu(cpu, &cpus_with_pcps) { | 
|  | if (zone) | 
|  | drain_pages_zone(cpu, zone); | 
|  | else | 
|  | drain_pages(cpu); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&pcpu_drain_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. | 
|  | * | 
|  | * When zone parameter is non-NULL, spill just the single zone's pages. | 
|  | */ | 
|  | void drain_all_pages(struct zone *zone) | 
|  | { | 
|  | __drain_all_pages(zone, false); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIBERNATION | 
|  |  | 
|  | /* | 
|  | * Touch the watchdog for every WD_PAGE_COUNT pages. | 
|  | */ | 
|  | #define WD_PAGE_COUNT	(128*1024) | 
|  |  | 
|  | void mark_free_pages(struct zone *zone) | 
|  | { | 
|  | unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; | 
|  | unsigned long flags; | 
|  | unsigned int order, t; | 
|  | struct page *page; | 
|  |  | 
|  | if (zone_is_empty(zone)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  |  | 
|  | max_zone_pfn = zone_end_pfn(zone); | 
|  | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 
|  | if (pfn_valid(pfn)) { | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | if (!--page_count) { | 
|  | touch_nmi_watchdog(); | 
|  | page_count = WD_PAGE_COUNT; | 
|  | } | 
|  |  | 
|  | if (page_zone(page) != zone) | 
|  | continue; | 
|  |  | 
|  | if (!swsusp_page_is_forbidden(page)) | 
|  | swsusp_unset_page_free(page); | 
|  | } | 
|  |  | 
|  | for_each_migratetype_order(order, t) { | 
|  | list_for_each_entry(page, | 
|  | &zone->free_area[order].free_list[t], buddy_list) { | 
|  | unsigned long i; | 
|  |  | 
|  | pfn = page_to_pfn(page); | 
|  | for (i = 0; i < (1UL << order); i++) { | 
|  | if (!--page_count) { | 
|  | touch_nmi_watchdog(); | 
|  | page_count = WD_PAGE_COUNT; | 
|  | } | 
|  | swsusp_set_page_free(pfn_to_page(pfn + i)); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | static bool free_unref_page_prepare(struct page *page, unsigned long pfn, | 
|  | unsigned int order) | 
|  | { | 
|  | int migratetype; | 
|  |  | 
|  | if (!free_pcp_prepare(page, order)) | 
|  | return false; | 
|  |  | 
|  | migratetype = get_pfnblock_migratetype(page, pfn); | 
|  | set_pcppage_migratetype(page, migratetype); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, | 
|  | bool free_high) | 
|  | { | 
|  | int min_nr_free, max_nr_free; | 
|  |  | 
|  | /* Free everything if batch freeing high-order pages. */ | 
|  | if (unlikely(free_high)) | 
|  | return pcp->count; | 
|  |  | 
|  | /* Check for PCP disabled or boot pageset */ | 
|  | if (unlikely(high < batch)) | 
|  | return 1; | 
|  |  | 
|  | /* Leave at least pcp->batch pages on the list */ | 
|  | min_nr_free = batch; | 
|  | max_nr_free = high - batch; | 
|  |  | 
|  | /* | 
|  | * Double the number of pages freed each time there is subsequent | 
|  | * freeing of pages without any allocation. | 
|  | */ | 
|  | batch <<= pcp->free_factor; | 
|  | if (batch < max_nr_free) | 
|  | pcp->free_factor++; | 
|  | batch = clamp(batch, min_nr_free, max_nr_free); | 
|  |  | 
|  | return batch; | 
|  | } | 
|  |  | 
|  | static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, | 
|  | bool free_high) | 
|  | { | 
|  | int high = READ_ONCE(pcp->high); | 
|  |  | 
|  | if (unlikely(!high || free_high)) | 
|  | return 0; | 
|  |  | 
|  | if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) | 
|  | return high; | 
|  |  | 
|  | /* | 
|  | * If reclaim is active, limit the number of pages that can be | 
|  | * stored on pcp lists | 
|  | */ | 
|  | return min(READ_ONCE(pcp->batch) << 2, high); | 
|  | } | 
|  |  | 
|  | static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, | 
|  | struct page *page, int migratetype, | 
|  | unsigned int order) | 
|  | { | 
|  | int high; | 
|  | int pindex; | 
|  | bool free_high; | 
|  |  | 
|  | __count_vm_events(PGFREE, 1 << order); | 
|  | pindex = order_to_pindex(migratetype, order); | 
|  | list_add(&page->pcp_list, &pcp->lists[pindex]); | 
|  | pcp->count += 1 << order; | 
|  |  | 
|  | /* | 
|  | * As high-order pages other than THP's stored on PCP can contribute | 
|  | * to fragmentation, limit the number stored when PCP is heavily | 
|  | * freeing without allocation. The remainder after bulk freeing | 
|  | * stops will be drained from vmstat refresh context. | 
|  | */ | 
|  | free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); | 
|  |  | 
|  | high = nr_pcp_high(pcp, zone, free_high); | 
|  | if (pcp->count >= high) { | 
|  | int batch = READ_ONCE(pcp->batch); | 
|  |  | 
|  | free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a pcp page | 
|  | */ | 
|  | void free_unref_page(struct page *page, unsigned int order) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long __maybe_unused UP_flags; | 
|  | struct per_cpu_pages *pcp; | 
|  | struct zone *zone; | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | int migratetype; | 
|  |  | 
|  | if (!free_unref_page_prepare(page, pfn, order)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We only track unmovable, reclaimable and movable on pcp lists. | 
|  | * Place ISOLATE pages on the isolated list because they are being | 
|  | * offlined but treat HIGHATOMIC as movable pages so we can get those | 
|  | * areas back if necessary. Otherwise, we may have to free | 
|  | * excessively into the page allocator | 
|  | */ | 
|  | migratetype = get_pcppage_migratetype(page); | 
|  | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { | 
|  | if (unlikely(is_migrate_isolate(migratetype))) { | 
|  | free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); | 
|  | return; | 
|  | } | 
|  | migratetype = MIGRATE_MOVABLE; | 
|  | } | 
|  |  | 
|  | zone = page_zone(page); | 
|  | pcp_trylock_prepare(UP_flags); | 
|  | pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); | 
|  | if (pcp) { | 
|  | free_unref_page_commit(zone, pcp, page, migratetype, order); | 
|  | pcp_spin_unlock_irqrestore(pcp, flags); | 
|  | } else { | 
|  | free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); | 
|  | } | 
|  | pcp_trylock_finish(UP_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a list of 0-order pages | 
|  | */ | 
|  | void free_unref_page_list(struct list_head *list) | 
|  | { | 
|  | struct page *page, *next; | 
|  | struct per_cpu_pages *pcp = NULL; | 
|  | struct zone *locked_zone = NULL; | 
|  | unsigned long flags; | 
|  | int batch_count = 0; | 
|  | int migratetype; | 
|  |  | 
|  | /* Prepare pages for freeing */ | 
|  | list_for_each_entry_safe(page, next, list, lru) { | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | if (!free_unref_page_prepare(page, pfn, 0)) { | 
|  | list_del(&page->lru); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free isolated pages directly to the allocator, see | 
|  | * comment in free_unref_page. | 
|  | */ | 
|  | migratetype = get_pcppage_migratetype(page); | 
|  | if (unlikely(is_migrate_isolate(migratetype))) { | 
|  | list_del(&page->lru); | 
|  | free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(page, next, list, lru) { | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | /* Different zone, different pcp lock. */ | 
|  | if (zone != locked_zone) { | 
|  | if (pcp) | 
|  | pcp_spin_unlock_irqrestore(pcp, flags); | 
|  |  | 
|  | locked_zone = zone; | 
|  | pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-isolated types over MIGRATE_PCPTYPES get added | 
|  | * to the MIGRATE_MOVABLE pcp list. | 
|  | */ | 
|  | migratetype = get_pcppage_migratetype(page); | 
|  | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) | 
|  | migratetype = MIGRATE_MOVABLE; | 
|  |  | 
|  | trace_mm_page_free_batched(page); | 
|  | free_unref_page_commit(zone, pcp, page, migratetype, 0); | 
|  |  | 
|  | /* | 
|  | * Guard against excessive IRQ disabled times when we get | 
|  | * a large list of pages to free. | 
|  | */ | 
|  | if (++batch_count == SWAP_CLUSTER_MAX) { | 
|  | pcp_spin_unlock_irqrestore(pcp, flags); | 
|  | batch_count = 0; | 
|  | pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pcp) | 
|  | pcp_spin_unlock_irqrestore(pcp, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split_page takes a non-compound higher-order page, and splits it into | 
|  | * n (1<<order) sub-pages: page[0..n] | 
|  | * Each sub-page must be freed individually. | 
|  | * | 
|  | * Note: this is probably too low level an operation for use in drivers. | 
|  | * Please consult with lkml before using this in your driver. | 
|  | */ | 
|  | void split_page(struct page *page, unsigned int order) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageCompound(page), page); | 
|  | VM_BUG_ON_PAGE(!page_count(page), page); | 
|  |  | 
|  | for (i = 1; i < (1 << order); i++) | 
|  | set_page_refcounted(page + i); | 
|  | split_page_owner(page, 1 << order); | 
|  | split_page_memcg(page, 1 << order); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(split_page); | 
|  |  | 
|  | int __isolate_free_page(struct page *page, unsigned int order) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  | int mt = get_pageblock_migratetype(page); | 
|  |  | 
|  | if (!is_migrate_isolate(mt)) { | 
|  | unsigned long watermark; | 
|  | /* | 
|  | * Obey watermarks as if the page was being allocated. We can | 
|  | * emulate a high-order watermark check with a raised order-0 | 
|  | * watermark, because we already know our high-order page | 
|  | * exists. | 
|  | */ | 
|  | watermark = zone->_watermark[WMARK_MIN] + (1UL << order); | 
|  | if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) | 
|  | return 0; | 
|  |  | 
|  | __mod_zone_freepage_state(zone, -(1UL << order), mt); | 
|  | } | 
|  |  | 
|  | del_page_from_free_list(page, zone, order); | 
|  |  | 
|  | /* | 
|  | * Set the pageblock if the isolated page is at least half of a | 
|  | * pageblock | 
|  | */ | 
|  | if (order >= pageblock_order - 1) { | 
|  | struct page *endpage = page + (1 << order) - 1; | 
|  | for (; page < endpage; page += pageblock_nr_pages) { | 
|  | int mt = get_pageblock_migratetype(page); | 
|  | /* | 
|  | * Only change normal pageblocks (i.e., they can merge | 
|  | * with others) | 
|  | */ | 
|  | if (migratetype_is_mergeable(mt)) | 
|  | set_pageblock_migratetype(page, | 
|  | MIGRATE_MOVABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1UL << order; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __putback_isolated_page - Return a now-isolated page back where we got it | 
|  | * @page: Page that was isolated | 
|  | * @order: Order of the isolated page | 
|  | * @mt: The page's pageblock's migratetype | 
|  | * | 
|  | * This function is meant to return a page pulled from the free lists via | 
|  | * __isolate_free_page back to the free lists they were pulled from. | 
|  | */ | 
|  | void __putback_isolated_page(struct page *page, unsigned int order, int mt) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | /* zone lock should be held when this function is called */ | 
|  | lockdep_assert_held(&zone->lock); | 
|  |  | 
|  | /* Return isolated page to tail of freelist. */ | 
|  | __free_one_page(page, page_to_pfn(page), zone, order, mt, | 
|  | FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update NUMA hit/miss statistics | 
|  | */ | 
|  | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, | 
|  | long nr_account) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | enum numa_stat_item local_stat = NUMA_LOCAL; | 
|  |  | 
|  | /* skip numa counters update if numa stats is disabled */ | 
|  | if (!static_branch_likely(&vm_numa_stat_key)) | 
|  | return; | 
|  |  | 
|  | if (zone_to_nid(z) != numa_node_id()) | 
|  | local_stat = NUMA_OTHER; | 
|  |  | 
|  | if (zone_to_nid(z) == zone_to_nid(preferred_zone)) | 
|  | __count_numa_events(z, NUMA_HIT, nr_account); | 
|  | else { | 
|  | __count_numa_events(z, NUMA_MISS, nr_account); | 
|  | __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); | 
|  | } | 
|  | __count_numa_events(z, local_stat, nr_account); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, | 
|  | unsigned int order, unsigned int alloc_flags, | 
|  | int migratetype) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  |  | 
|  | do { | 
|  | page = NULL; | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | /* | 
|  | * order-0 request can reach here when the pcplist is skipped | 
|  | * due to non-CMA allocation context. HIGHATOMIC area is | 
|  | * reserved for high-order atomic allocation, so order-0 | 
|  | * request should skip it. | 
|  | */ | 
|  | if (order > 0 && alloc_flags & ALLOC_HARDER) | 
|  | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | 
|  | if (!page) { | 
|  | page = __rmqueue(zone, order, migratetype, alloc_flags); | 
|  | if (!page) { | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | __mod_zone_freepage_state(zone, -(1 << order), | 
|  | get_pcppage_migratetype(page)); | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } while (check_new_pages(page, order)); | 
|  |  | 
|  | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | 
|  | zone_statistics(preferred_zone, zone, 1); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* Remove page from the per-cpu list, caller must protect the list */ | 
|  | static inline | 
|  | struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, | 
|  | int migratetype, | 
|  | unsigned int alloc_flags, | 
|  | struct per_cpu_pages *pcp, | 
|  | struct list_head *list) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | do { | 
|  | if (list_empty(list)) { | 
|  | int batch = READ_ONCE(pcp->batch); | 
|  | int alloced; | 
|  |  | 
|  | /* | 
|  | * Scale batch relative to order if batch implies | 
|  | * free pages can be stored on the PCP. Batch can | 
|  | * be 1 for small zones or for boot pagesets which | 
|  | * should never store free pages as the pages may | 
|  | * belong to arbitrary zones. | 
|  | */ | 
|  | if (batch > 1) | 
|  | batch = max(batch >> order, 2); | 
|  | alloced = rmqueue_bulk(zone, order, | 
|  | batch, list, | 
|  | migratetype, alloc_flags); | 
|  |  | 
|  | pcp->count += alloced << order; | 
|  | if (unlikely(list_empty(list))) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | page = list_first_entry(list, struct page, pcp_list); | 
|  | list_del(&page->pcp_list); | 
|  | pcp->count -= 1 << order; | 
|  | } while (check_new_pcp(page, order)); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* Lock and remove page from the per-cpu list */ | 
|  | static struct page *rmqueue_pcplist(struct zone *preferred_zone, | 
|  | struct zone *zone, unsigned int order, | 
|  | int migratetype, unsigned int alloc_flags) | 
|  | { | 
|  | struct per_cpu_pages *pcp; | 
|  | struct list_head *list; | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  | unsigned long __maybe_unused UP_flags; | 
|  |  | 
|  | /* | 
|  | * spin_trylock may fail due to a parallel drain. In the future, the | 
|  | * trylock will also protect against IRQ reentrancy. | 
|  | */ | 
|  | pcp_trylock_prepare(UP_flags); | 
|  | pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); | 
|  | if (!pcp) { | 
|  | pcp_trylock_finish(UP_flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On allocation, reduce the number of pages that are batch freed. | 
|  | * See nr_pcp_free() where free_factor is increased for subsequent | 
|  | * frees. | 
|  | */ | 
|  | pcp->free_factor >>= 1; | 
|  | list = &pcp->lists[order_to_pindex(migratetype, order)]; | 
|  | page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); | 
|  | pcp_spin_unlock_irqrestore(pcp, flags); | 
|  | pcp_trylock_finish(UP_flags); | 
|  | if (page) { | 
|  | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | 
|  | zone_statistics(preferred_zone, zone, 1); | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a page from the given zone. | 
|  | * Use pcplists for THP or "cheap" high-order allocations. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Do not instrument rmqueue() with KMSAN. This function may call | 
|  | * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). | 
|  | * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it | 
|  | * may call rmqueue() again, which will result in a deadlock. | 
|  | */ | 
|  | __no_sanitize_memory | 
|  | static inline | 
|  | struct page *rmqueue(struct zone *preferred_zone, | 
|  | struct zone *zone, unsigned int order, | 
|  | gfp_t gfp_flags, unsigned int alloc_flags, | 
|  | int migratetype) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * We most definitely don't want callers attempting to | 
|  | * allocate greater than order-1 page units with __GFP_NOFAIL. | 
|  | */ | 
|  | WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); | 
|  |  | 
|  | if (likely(pcp_allowed_order(order))) { | 
|  | /* | 
|  | * MIGRATE_MOVABLE pcplist could have the pages on CMA area and | 
|  | * we need to skip it when CMA area isn't allowed. | 
|  | */ | 
|  | if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || | 
|  | migratetype != MIGRATE_MOVABLE) { | 
|  | page = rmqueue_pcplist(preferred_zone, zone, order, | 
|  | migratetype, alloc_flags); | 
|  | if (likely(page)) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, | 
|  | migratetype); | 
|  |  | 
|  | out: | 
|  | /* Separate test+clear to avoid unnecessary atomics */ | 
|  | if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { | 
|  | clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); | 
|  | wakeup_kswapd(zone, 0, 0, zone_idx(zone)); | 
|  | } | 
|  |  | 
|  | VM_BUG_ON_PAGE(page && bad_range(zone, page), page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIL_PAGE_ALLOC | 
|  |  | 
|  | static struct { | 
|  | struct fault_attr attr; | 
|  |  | 
|  | bool ignore_gfp_highmem; | 
|  | bool ignore_gfp_reclaim; | 
|  | u32 min_order; | 
|  | } fail_page_alloc = { | 
|  | .attr = FAULT_ATTR_INITIALIZER, | 
|  | .ignore_gfp_reclaim = true, | 
|  | .ignore_gfp_highmem = true, | 
|  | .min_order = 1, | 
|  | }; | 
|  |  | 
|  | static int __init setup_fail_page_alloc(char *str) | 
|  | { | 
|  | return setup_fault_attr(&fail_page_alloc.attr, str); | 
|  | } | 
|  | __setup("fail_page_alloc=", setup_fail_page_alloc); | 
|  |  | 
|  | static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | if (order < fail_page_alloc.min_order) | 
|  | return false; | 
|  | if (gfp_mask & __GFP_NOFAIL) | 
|  | return false; | 
|  | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) | 
|  | return false; | 
|  | if (fail_page_alloc.ignore_gfp_reclaim && | 
|  | (gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | return false; | 
|  |  | 
|  | if (gfp_mask & __GFP_NOWARN) | 
|  | fail_page_alloc.attr.no_warn = true; | 
|  |  | 
|  | return should_fail(&fail_page_alloc.attr, 1 << order); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | 
|  |  | 
|  | static int __init fail_page_alloc_debugfs(void) | 
|  | { | 
|  | umode_t mode = S_IFREG | 0600; | 
|  | struct dentry *dir; | 
|  |  | 
|  | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, | 
|  | &fail_page_alloc.attr); | 
|  |  | 
|  | debugfs_create_bool("ignore-gfp-wait", mode, dir, | 
|  | &fail_page_alloc.ignore_gfp_reclaim); | 
|  | debugfs_create_bool("ignore-gfp-highmem", mode, dir, | 
|  | &fail_page_alloc.ignore_gfp_highmem); | 
|  | debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(fail_page_alloc_debugfs); | 
|  |  | 
|  | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | 
|  |  | 
|  | #else /* CONFIG_FAIL_PAGE_ALLOC */ | 
|  |  | 
|  | static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | 
|  |  | 
|  | noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | return __should_fail_alloc_page(gfp_mask, order); | 
|  | } | 
|  | ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); | 
|  |  | 
|  | static inline long __zone_watermark_unusable_free(struct zone *z, | 
|  | unsigned int order, unsigned int alloc_flags) | 
|  | { | 
|  | const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); | 
|  | long unusable_free = (1 << order) - 1; | 
|  |  | 
|  | /* | 
|  | * If the caller does not have rights to ALLOC_HARDER then subtract | 
|  | * the high-atomic reserves. This will over-estimate the size of the | 
|  | * atomic reserve but it avoids a search. | 
|  | */ | 
|  | if (likely(!alloc_harder)) | 
|  | unusable_free += z->nr_reserved_highatomic; | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | /* If allocation can't use CMA areas don't use free CMA pages */ | 
|  | if (!(alloc_flags & ALLOC_CMA)) | 
|  | unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); | 
|  | #endif | 
|  |  | 
|  | return unusable_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if free base pages are above 'mark'. For high-order checks it | 
|  | * will return true of the order-0 watermark is reached and there is at least | 
|  | * one free page of a suitable size. Checking now avoids taking the zone lock | 
|  | * to check in the allocation paths if no pages are free. | 
|  | */ | 
|  | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
|  | int highest_zoneidx, unsigned int alloc_flags, | 
|  | long free_pages) | 
|  | { | 
|  | long min = mark; | 
|  | int o; | 
|  | const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); | 
|  |  | 
|  | /* free_pages may go negative - that's OK */ | 
|  | free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); | 
|  |  | 
|  | if (alloc_flags & ALLOC_HIGH) | 
|  | min -= min / 2; | 
|  |  | 
|  | if (unlikely(alloc_harder)) { | 
|  | /* | 
|  | * OOM victims can try even harder than normal ALLOC_HARDER | 
|  | * users on the grounds that it's definitely going to be in | 
|  | * the exit path shortly and free memory. Any allocation it | 
|  | * makes during the free path will be small and short-lived. | 
|  | */ | 
|  | if (alloc_flags & ALLOC_OOM) | 
|  | min -= min / 2; | 
|  | else | 
|  | min -= min / 4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check watermarks for an order-0 allocation request. If these | 
|  | * are not met, then a high-order request also cannot go ahead | 
|  | * even if a suitable page happened to be free. | 
|  | */ | 
|  | if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) | 
|  | return false; | 
|  |  | 
|  | /* If this is an order-0 request then the watermark is fine */ | 
|  | if (!order) | 
|  | return true; | 
|  |  | 
|  | /* For a high-order request, check at least one suitable page is free */ | 
|  | for (o = order; o < MAX_ORDER; o++) { | 
|  | struct free_area *area = &z->free_area[o]; | 
|  | int mt; | 
|  |  | 
|  | if (!area->nr_free) | 
|  | continue; | 
|  |  | 
|  | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { | 
|  | if (!free_area_empty(area, mt)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | if ((alloc_flags & ALLOC_CMA) && | 
|  | !free_area_empty(area, MIGRATE_CMA)) { | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  | if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
|  | int highest_zoneidx, unsigned int alloc_flags) | 
|  | { | 
|  | return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, | 
|  | zone_page_state(z, NR_FREE_PAGES)); | 
|  | } | 
|  |  | 
|  | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, | 
|  | unsigned long mark, int highest_zoneidx, | 
|  | unsigned int alloc_flags, gfp_t gfp_mask) | 
|  | { | 
|  | long free_pages; | 
|  |  | 
|  | free_pages = zone_page_state(z, NR_FREE_PAGES); | 
|  |  | 
|  | /* | 
|  | * Fast check for order-0 only. If this fails then the reserves | 
|  | * need to be calculated. | 
|  | */ | 
|  | if (!order) { | 
|  | long usable_free; | 
|  | long reserved; | 
|  |  | 
|  | usable_free = free_pages; | 
|  | reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); | 
|  |  | 
|  | /* reserved may over estimate high-atomic reserves. */ | 
|  | usable_free -= min(usable_free, reserved); | 
|  | if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, | 
|  | free_pages)) | 
|  | return true; | 
|  | /* | 
|  | * Ignore watermark boosting for GFP_ATOMIC order-0 allocations | 
|  | * when checking the min watermark. The min watermark is the | 
|  | * point where boosting is ignored so that kswapd is woken up | 
|  | * when below the low watermark. | 
|  | */ | 
|  | if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost | 
|  | && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { | 
|  | mark = z->_watermark[WMARK_MIN]; | 
|  | return __zone_watermark_ok(z, order, mark, highest_zoneidx, | 
|  | alloc_flags, free_pages); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, | 
|  | unsigned long mark, int highest_zoneidx) | 
|  | { | 
|  | long free_pages = zone_page_state(z, NR_FREE_PAGES); | 
|  |  | 
|  | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | 
|  | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | 
|  |  | 
|  | return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, | 
|  | free_pages); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; | 
|  |  | 
|  | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
|  | { | 
|  | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= | 
|  | node_reclaim_distance; | 
|  | } | 
|  | #else	/* CONFIG_NUMA */ | 
|  | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif	/* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid | 
|  | * fragmentation is subtle. If the preferred zone was HIGHMEM then | 
|  | * premature use of a lower zone may cause lowmem pressure problems that | 
|  | * are worse than fragmentation. If the next zone is ZONE_DMA then it is | 
|  | * probably too small. It only makes sense to spread allocations to avoid | 
|  | * fragmentation between the Normal and DMA32 zones. | 
|  | */ | 
|  | static inline unsigned int | 
|  | alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned int alloc_flags; | 
|  |  | 
|  | /* | 
|  | * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD | 
|  | * to save a branch. | 
|  | */ | 
|  | alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | if (!zone) | 
|  | return alloc_flags; | 
|  |  | 
|  | if (zone_idx(zone) != ZONE_NORMAL) | 
|  | return alloc_flags; | 
|  |  | 
|  | /* | 
|  | * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and | 
|  | * the pointer is within zone->zone_pgdat->node_zones[]. Also assume | 
|  | * on UMA that if Normal is populated then so is DMA32. | 
|  | */ | 
|  | BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); | 
|  | if (nr_online_nodes > 1 && !populated_zone(--zone)) | 
|  | return alloc_flags; | 
|  |  | 
|  | alloc_flags |= ALLOC_NOFRAGMENT; | 
|  | #endif /* CONFIG_ZONE_DMA32 */ | 
|  | return alloc_flags; | 
|  | } | 
|  |  | 
|  | /* Must be called after current_gfp_context() which can change gfp_mask */ | 
|  | static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, | 
|  | unsigned int alloc_flags) | 
|  | { | 
|  | #ifdef CONFIG_CMA | 
|  | if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) | 
|  | alloc_flags |= ALLOC_CMA; | 
|  | #endif | 
|  | return alloc_flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_page_from_freelist goes through the zonelist trying to allocate | 
|  | * a page. | 
|  | */ | 
|  | static struct page * | 
|  | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, | 
|  | const struct alloc_context *ac) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | struct pglist_data *last_pgdat = NULL; | 
|  | bool last_pgdat_dirty_ok = false; | 
|  | bool no_fallback; | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Scan zonelist, looking for a zone with enough free. | 
|  | * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. | 
|  | */ | 
|  | no_fallback = alloc_flags & ALLOC_NOFRAGMENT; | 
|  | z = ac->preferred_zoneref; | 
|  | for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, | 
|  | ac->nodemask) { | 
|  | struct page *page; | 
|  | unsigned long mark; | 
|  |  | 
|  | if (cpusets_enabled() && | 
|  | (alloc_flags & ALLOC_CPUSET) && | 
|  | !__cpuset_zone_allowed(zone, gfp_mask)) | 
|  | continue; | 
|  | /* | 
|  | * When allocating a page cache page for writing, we | 
|  | * want to get it from a node that is within its dirty | 
|  | * limit, such that no single node holds more than its | 
|  | * proportional share of globally allowed dirty pages. | 
|  | * The dirty limits take into account the node's | 
|  | * lowmem reserves and high watermark so that kswapd | 
|  | * should be able to balance it without having to | 
|  | * write pages from its LRU list. | 
|  | * | 
|  | * XXX: For now, allow allocations to potentially | 
|  | * exceed the per-node dirty limit in the slowpath | 
|  | * (spread_dirty_pages unset) before going into reclaim, | 
|  | * which is important when on a NUMA setup the allowed | 
|  | * nodes are together not big enough to reach the | 
|  | * global limit.  The proper fix for these situations | 
|  | * will require awareness of nodes in the | 
|  | * dirty-throttling and the flusher threads. | 
|  | */ | 
|  | if (ac->spread_dirty_pages) { | 
|  | if (last_pgdat != zone->zone_pgdat) { | 
|  | last_pgdat = zone->zone_pgdat; | 
|  | last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); | 
|  | } | 
|  |  | 
|  | if (!last_pgdat_dirty_ok) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (no_fallback && nr_online_nodes > 1 && | 
|  | zone != ac->preferred_zoneref->zone) { | 
|  | int local_nid; | 
|  |  | 
|  | /* | 
|  | * If moving to a remote node, retry but allow | 
|  | * fragmenting fallbacks. Locality is more important | 
|  | * than fragmentation avoidance. | 
|  | */ | 
|  | local_nid = zone_to_nid(ac->preferred_zoneref->zone); | 
|  | if (zone_to_nid(zone) != local_nid) { | 
|  | alloc_flags &= ~ALLOC_NOFRAGMENT; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); | 
|  | if (!zone_watermark_fast(zone, order, mark, | 
|  | ac->highest_zoneidx, alloc_flags, | 
|  | gfp_mask)) { | 
|  | int ret; | 
|  |  | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | /* | 
|  | * Watermark failed for this zone, but see if we can | 
|  | * grow this zone if it contains deferred pages. | 
|  | */ | 
|  | if (static_branch_unlikely(&deferred_pages)) { | 
|  | if (_deferred_grow_zone(zone, order)) | 
|  | goto try_this_zone; | 
|  | } | 
|  | #endif | 
|  | /* Checked here to keep the fast path fast */ | 
|  | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | 
|  | if (alloc_flags & ALLOC_NO_WATERMARKS) | 
|  | goto try_this_zone; | 
|  |  | 
|  | if (!node_reclaim_enabled() || | 
|  | !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) | 
|  | continue; | 
|  |  | 
|  | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); | 
|  | switch (ret) { | 
|  | case NODE_RECLAIM_NOSCAN: | 
|  | /* did not scan */ | 
|  | continue; | 
|  | case NODE_RECLAIM_FULL: | 
|  | /* scanned but unreclaimable */ | 
|  | continue; | 
|  | default: | 
|  | /* did we reclaim enough */ | 
|  | if (zone_watermark_ok(zone, order, mark, | 
|  | ac->highest_zoneidx, alloc_flags)) | 
|  | goto try_this_zone; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | try_this_zone: | 
|  | page = rmqueue(ac->preferred_zoneref->zone, zone, order, | 
|  | gfp_mask, alloc_flags, ac->migratetype); | 
|  | if (page) { | 
|  | prep_new_page(page, order, gfp_mask, alloc_flags); | 
|  |  | 
|  | /* | 
|  | * If this is a high-order atomic allocation then check | 
|  | * if the pageblock should be reserved for the future | 
|  | */ | 
|  | if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | 
|  | reserve_highatomic_pageblock(page, zone, order); | 
|  |  | 
|  | return page; | 
|  | } else { | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | /* Try again if zone has deferred pages */ | 
|  | if (static_branch_unlikely(&deferred_pages)) { | 
|  | if (_deferred_grow_zone(zone, order)) | 
|  | goto try_this_zone; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's possible on a UMA machine to get through all zones that are | 
|  | * fragmented. If avoiding fragmentation, reset and try again. | 
|  | */ | 
|  | if (no_fallback) { | 
|  | alloc_flags &= ~ALLOC_NOFRAGMENT; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) | 
|  | { | 
|  | unsigned int filter = SHOW_MEM_FILTER_NODES; | 
|  |  | 
|  | /* | 
|  | * This documents exceptions given to allocations in certain | 
|  | * contexts that are allowed to allocate outside current's set | 
|  | * of allowed nodes. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | if (tsk_is_oom_victim(current) || | 
|  | (current->flags & (PF_MEMALLOC | PF_EXITING))) | 
|  | filter &= ~SHOW_MEM_FILTER_NODES; | 
|  | if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | filter &= ~SHOW_MEM_FILTER_NODES; | 
|  |  | 
|  | __show_mem(filter, nodemask, gfp_zone(gfp_mask)); | 
|  | } | 
|  |  | 
|  | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) | 
|  | { | 
|  | struct va_format vaf; | 
|  | va_list args; | 
|  | static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); | 
|  |  | 
|  | if ((gfp_mask & __GFP_NOWARN) || | 
|  | !__ratelimit(&nopage_rs) || | 
|  | ((gfp_mask & __GFP_DMA) && !has_managed_dma())) | 
|  | return; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vaf.fmt = fmt; | 
|  | vaf.va = &args; | 
|  | pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", | 
|  | current->comm, &vaf, gfp_mask, &gfp_mask, | 
|  | nodemask_pr_args(nodemask)); | 
|  | va_end(args); | 
|  |  | 
|  | cpuset_print_current_mems_allowed(); | 
|  | pr_cont("\n"); | 
|  | dump_stack(); | 
|  | warn_alloc_show_mem(gfp_mask, nodemask); | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, | 
|  | unsigned int alloc_flags, | 
|  | const struct alloc_context *ac) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = get_page_from_freelist(gfp_mask, order, | 
|  | alloc_flags|ALLOC_CPUSET, ac); | 
|  | /* | 
|  | * fallback to ignore cpuset restriction if our nodes | 
|  | * are depleted | 
|  | */ | 
|  | if (!page) | 
|  | page = get_page_from_freelist(gfp_mask, order, | 
|  | alloc_flags, ac); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | 
|  | const struct alloc_context *ac, unsigned long *did_some_progress) | 
|  | { | 
|  | struct oom_control oc = { | 
|  | .zonelist = ac->zonelist, | 
|  | .nodemask = ac->nodemask, | 
|  | .memcg = NULL, | 
|  | .gfp_mask = gfp_mask, | 
|  | .order = order, | 
|  | }; | 
|  | struct page *page; | 
|  |  | 
|  | *did_some_progress = 0; | 
|  |  | 
|  | /* | 
|  | * Acquire the oom lock.  If that fails, somebody else is | 
|  | * making progress for us. | 
|  | */ | 
|  | if (!mutex_trylock(&oom_lock)) { | 
|  | *did_some_progress = 1; | 
|  | schedule_timeout_uninterruptible(1); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go through the zonelist yet one more time, keep very high watermark | 
|  | * here, this is only to catch a parallel oom killing, we must fail if | 
|  | * we're still under heavy pressure. But make sure that this reclaim | 
|  | * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY | 
|  | * allocation which will never fail due to oom_lock already held. | 
|  | */ | 
|  | page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & | 
|  | ~__GFP_DIRECT_RECLAIM, order, | 
|  | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | 
|  | if (page) | 
|  | goto out; | 
|  |  | 
|  | /* Coredumps can quickly deplete all memory reserves */ | 
|  | if (current->flags & PF_DUMPCORE) | 
|  | goto out; | 
|  | /* The OOM killer will not help higher order allocs */ | 
|  | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | goto out; | 
|  | /* | 
|  | * We have already exhausted all our reclaim opportunities without any | 
|  | * success so it is time to admit defeat. We will skip the OOM killer | 
|  | * because it is very likely that the caller has a more reasonable | 
|  | * fallback than shooting a random task. | 
|  | * | 
|  | * The OOM killer may not free memory on a specific node. | 
|  | */ | 
|  | if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) | 
|  | goto out; | 
|  | /* The OOM killer does not needlessly kill tasks for lowmem */ | 
|  | if (ac->highest_zoneidx < ZONE_NORMAL) | 
|  | goto out; | 
|  | if (pm_suspended_storage()) | 
|  | goto out; | 
|  | /* | 
|  | * XXX: GFP_NOFS allocations should rather fail than rely on | 
|  | * other request to make a forward progress. | 
|  | * We are in an unfortunate situation where out_of_memory cannot | 
|  | * do much for this context but let's try it to at least get | 
|  | * access to memory reserved if the current task is killed (see | 
|  | * out_of_memory). Once filesystems are ready to handle allocation | 
|  | * failures more gracefully we should just bail out here. | 
|  | */ | 
|  |  | 
|  | /* Exhausted what can be done so it's blame time */ | 
|  | if (out_of_memory(&oc) || | 
|  | WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { | 
|  | *did_some_progress = 1; | 
|  |  | 
|  | /* | 
|  | * Help non-failing allocations by giving them access to memory | 
|  | * reserves | 
|  | */ | 
|  | if (gfp_mask & __GFP_NOFAIL) | 
|  | page = __alloc_pages_cpuset_fallback(gfp_mask, order, | 
|  | ALLOC_NO_WATERMARKS, ac); | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&oom_lock); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maximum number of compaction retries with a progress before OOM | 
|  | * killer is consider as the only way to move forward. | 
|  | */ | 
|  | #define MAX_COMPACT_RETRIES 16 | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | /* Try memory compaction for high-order allocations before reclaim */ | 
|  | static struct page * | 
|  | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
|  | unsigned int alloc_flags, const struct alloc_context *ac, | 
|  | enum compact_priority prio, enum compact_result *compact_result) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | unsigned long pflags; | 
|  | unsigned int noreclaim_flag; | 
|  |  | 
|  | if (!order) | 
|  | return NULL; | 
|  |  | 
|  | psi_memstall_enter(&pflags); | 
|  | delayacct_compact_start(); | 
|  | noreclaim_flag = memalloc_noreclaim_save(); | 
|  |  | 
|  | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, | 
|  | prio, &page); | 
|  |  | 
|  | memalloc_noreclaim_restore(noreclaim_flag); | 
|  | psi_memstall_leave(&pflags); | 
|  | delayacct_compact_end(); | 
|  |  | 
|  | if (*compact_result == COMPACT_SKIPPED) | 
|  | return NULL; | 
|  | /* | 
|  | * At least in one zone compaction wasn't deferred or skipped, so let's | 
|  | * count a compaction stall | 
|  | */ | 
|  | count_vm_event(COMPACTSTALL); | 
|  |  | 
|  | /* Prep a captured page if available */ | 
|  | if (page) | 
|  | prep_new_page(page, order, gfp_mask, alloc_flags); | 
|  |  | 
|  | /* Try get a page from the freelist if available */ | 
|  | if (!page) | 
|  | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  |  | 
|  | if (page) { | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | zone->compact_blockskip_flush = false; | 
|  | compaction_defer_reset(zone, order, true); | 
|  | count_vm_event(COMPACTSUCCESS); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's bad if compaction run occurs and fails. The most likely reason | 
|  | * is that pages exist, but not enough to satisfy watermarks. | 
|  | */ | 
|  | count_vm_event(COMPACTFAIL); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, | 
|  | enum compact_result compact_result, | 
|  | enum compact_priority *compact_priority, | 
|  | int *compaction_retries) | 
|  | { | 
|  | int max_retries = MAX_COMPACT_RETRIES; | 
|  | int min_priority; | 
|  | bool ret = false; | 
|  | int retries = *compaction_retries; | 
|  | enum compact_priority priority = *compact_priority; | 
|  |  | 
|  | if (!order) | 
|  | return false; | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | return false; | 
|  |  | 
|  | if (compaction_made_progress(compact_result)) | 
|  | (*compaction_retries)++; | 
|  |  | 
|  | /* | 
|  | * compaction considers all the zone as desperately out of memory | 
|  | * so it doesn't really make much sense to retry except when the | 
|  | * failure could be caused by insufficient priority | 
|  | */ | 
|  | if (compaction_failed(compact_result)) | 
|  | goto check_priority; | 
|  |  | 
|  | /* | 
|  | * compaction was skipped because there are not enough order-0 pages | 
|  | * to work with, so we retry only if it looks like reclaim can help. | 
|  | */ | 
|  | if (compaction_needs_reclaim(compact_result)) { | 
|  | ret = compaction_zonelist_suitable(ac, order, alloc_flags); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make sure the compaction wasn't deferred or didn't bail out early | 
|  | * due to locks contention before we declare that we should give up. | 
|  | * But the next retry should use a higher priority if allowed, so | 
|  | * we don't just keep bailing out endlessly. | 
|  | */ | 
|  | if (compaction_withdrawn(compact_result)) { | 
|  | goto check_priority; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * !costly requests are much more important than __GFP_RETRY_MAYFAIL | 
|  | * costly ones because they are de facto nofail and invoke OOM | 
|  | * killer to move on while costly can fail and users are ready | 
|  | * to cope with that. 1/4 retries is rather arbitrary but we | 
|  | * would need much more detailed feedback from compaction to | 
|  | * make a better decision. | 
|  | */ | 
|  | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | max_retries /= 4; | 
|  | if (*compaction_retries <= max_retries) { | 
|  | ret = true; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure there are attempts at the highest priority if we exhausted | 
|  | * all retries or failed at the lower priorities. | 
|  | */ | 
|  | check_priority: | 
|  | min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? | 
|  | MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; | 
|  |  | 
|  | if (*compact_priority > min_priority) { | 
|  | (*compact_priority)--; | 
|  | *compaction_retries = 0; | 
|  | ret = true; | 
|  | } | 
|  | out: | 
|  | trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline struct page * | 
|  | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
|  | unsigned int alloc_flags, const struct alloc_context *ac, | 
|  | enum compact_priority prio, enum compact_result *compact_result) | 
|  | { | 
|  | *compact_result = COMPACT_SKIPPED; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, | 
|  | enum compact_result compact_result, | 
|  | enum compact_priority *compact_priority, | 
|  | int *compaction_retries) | 
|  | { | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  |  | 
|  | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * There are setups with compaction disabled which would prefer to loop | 
|  | * inside the allocator rather than hit the oom killer prematurely. | 
|  | * Let's give them a good hope and keep retrying while the order-0 | 
|  | * watermarks are OK. | 
|  | */ | 
|  | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
|  | ac->highest_zoneidx, ac->nodemask) { | 
|  | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), | 
|  | ac->highest_zoneidx, alloc_flags)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_COMPACTION */ | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | static struct lockdep_map __fs_reclaim_map = | 
|  | STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); | 
|  |  | 
|  | static bool __need_reclaim(gfp_t gfp_mask) | 
|  | { | 
|  | /* no reclaim without waiting on it */ | 
|  | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | return false; | 
|  |  | 
|  | /* this guy won't enter reclaim */ | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | return false; | 
|  |  | 
|  | if (gfp_mask & __GFP_NOLOCKDEP) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void __fs_reclaim_acquire(unsigned long ip) | 
|  | { | 
|  | lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); | 
|  | } | 
|  |  | 
|  | void __fs_reclaim_release(unsigned long ip) | 
|  | { | 
|  | lock_release(&__fs_reclaim_map, ip); | 
|  | } | 
|  |  | 
|  | void fs_reclaim_acquire(gfp_t gfp_mask) | 
|  | { | 
|  | gfp_mask = current_gfp_context(gfp_mask); | 
|  |  | 
|  | if (__need_reclaim(gfp_mask)) { | 
|  | if (gfp_mask & __GFP_FS) | 
|  | __fs_reclaim_acquire(_RET_IP_); | 
|  |  | 
|  | #ifdef CONFIG_MMU_NOTIFIER | 
|  | lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); | 
|  | lock_map_release(&__mmu_notifier_invalidate_range_start_map); | 
|  | #endif | 
|  |  | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); | 
|  |  | 
|  | void fs_reclaim_release(gfp_t gfp_mask) | 
|  | { | 
|  | gfp_mask = current_gfp_context(gfp_mask); | 
|  |  | 
|  | if (__need_reclaim(gfp_mask)) { | 
|  | if (gfp_mask & __GFP_FS) | 
|  | __fs_reclaim_release(_RET_IP_); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fs_reclaim_release); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Zonelists may change due to hotplug during allocation. Detect when zonelists | 
|  | * have been rebuilt so allocation retries. Reader side does not lock and | 
|  | * retries the allocation if zonelist changes. Writer side is protected by the | 
|  | * embedded spin_lock. | 
|  | */ | 
|  | static DEFINE_SEQLOCK(zonelist_update_seq); | 
|  |  | 
|  | static unsigned int zonelist_iter_begin(void) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) | 
|  | return read_seqbegin(&zonelist_update_seq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int check_retry_zonelist(unsigned int seq) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) | 
|  | return read_seqretry(&zonelist_update_seq, seq); | 
|  |  | 
|  | return seq; | 
|  | } | 
|  |  | 
|  | /* Perform direct synchronous page reclaim */ | 
|  | static unsigned long | 
|  | __perform_reclaim(gfp_t gfp_mask, unsigned int order, | 
|  | const struct alloc_context *ac) | 
|  | { | 
|  | unsigned int noreclaim_flag; | 
|  | unsigned long progress; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* We now go into synchronous reclaim */ | 
|  | cpuset_memory_pressure_bump(); | 
|  | fs_reclaim_acquire(gfp_mask); | 
|  | noreclaim_flag = memalloc_noreclaim_save(); | 
|  |  | 
|  | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, | 
|  | ac->nodemask); | 
|  |  | 
|  | memalloc_noreclaim_restore(noreclaim_flag); | 
|  | fs_reclaim_release(gfp_mask); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | return progress; | 
|  | } | 
|  |  | 
|  | /* The really slow allocator path where we enter direct reclaim */ | 
|  | static inline struct page * | 
|  | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | 
|  | unsigned int alloc_flags, const struct alloc_context *ac, | 
|  | unsigned long *did_some_progress) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | unsigned long pflags; | 
|  | bool drained = false; | 
|  |  | 
|  | psi_memstall_enter(&pflags); | 
|  | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); | 
|  | if (unlikely(!(*did_some_progress))) | 
|  | goto out; | 
|  |  | 
|  | retry: | 
|  | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  |  | 
|  | /* | 
|  | * If an allocation failed after direct reclaim, it could be because | 
|  | * pages are pinned on the per-cpu lists or in high alloc reserves. | 
|  | * Shrink them and try again | 
|  | */ | 
|  | if (!page && !drained) { | 
|  | unreserve_highatomic_pageblock(ac, false); | 
|  | drain_all_pages(NULL); | 
|  | drained = true; | 
|  | goto retry; | 
|  | } | 
|  | out: | 
|  | psi_memstall_leave(&pflags); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, | 
|  | const struct alloc_context *ac) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | pg_data_t *last_pgdat = NULL; | 
|  | enum zone_type highest_zoneidx = ac->highest_zoneidx; | 
|  |  | 
|  | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, | 
|  | ac->nodemask) { | 
|  | if (!managed_zone(zone)) | 
|  | continue; | 
|  | if (last_pgdat != zone->zone_pgdat) { | 
|  | wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); | 
|  | last_pgdat = zone->zone_pgdat; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned int | 
|  | gfp_to_alloc_flags(gfp_t gfp_mask) | 
|  | { | 
|  | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; | 
|  |  | 
|  | /* | 
|  | * __GFP_HIGH is assumed to be the same as ALLOC_HIGH | 
|  | * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD | 
|  | * to save two branches. | 
|  | */ | 
|  | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); | 
|  | BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); | 
|  |  | 
|  | /* | 
|  | * The caller may dip into page reserves a bit more if the caller | 
|  | * cannot run direct reclaim, or if the caller has realtime scheduling | 
|  | * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will | 
|  | * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). | 
|  | */ | 
|  | alloc_flags |= (__force int) | 
|  | (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); | 
|  |  | 
|  | if (gfp_mask & __GFP_ATOMIC) { | 
|  | /* | 
|  | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even | 
|  | * if it can't schedule. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | alloc_flags |= ALLOC_HARDER; | 
|  | /* | 
|  | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the | 
|  | * comment for __cpuset_node_allowed(). | 
|  | */ | 
|  | alloc_flags &= ~ALLOC_CPUSET; | 
|  | } else if (unlikely(rt_task(current)) && in_task()) | 
|  | alloc_flags |= ALLOC_HARDER; | 
|  |  | 
|  | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); | 
|  |  | 
|  | return alloc_flags; | 
|  | } | 
|  |  | 
|  | static bool oom_reserves_allowed(struct task_struct *tsk) | 
|  | { | 
|  | if (!tsk_is_oom_victim(tsk)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * !MMU doesn't have oom reaper so give access to memory reserves | 
|  | * only to the thread with TIF_MEMDIE set | 
|  | */ | 
|  | if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Distinguish requests which really need access to full memory | 
|  | * reserves from oom victims which can live with a portion of it | 
|  | */ | 
|  | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) | 
|  | { | 
|  | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) | 
|  | return 0; | 
|  | if (gfp_mask & __GFP_MEMALLOC) | 
|  | return ALLOC_NO_WATERMARKS; | 
|  | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) | 
|  | return ALLOC_NO_WATERMARKS; | 
|  | if (!in_interrupt()) { | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | return ALLOC_NO_WATERMARKS; | 
|  | else if (oom_reserves_allowed(current)) | 
|  | return ALLOC_OOM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | 
|  | { | 
|  | return !!__gfp_pfmemalloc_flags(gfp_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks whether it makes sense to retry the reclaim to make a forward progress | 
|  | * for the given allocation request. | 
|  | * | 
|  | * We give up when we either have tried MAX_RECLAIM_RETRIES in a row | 
|  | * without success, or when we couldn't even meet the watermark if we | 
|  | * reclaimed all remaining pages on the LRU lists. | 
|  | * | 
|  | * Returns true if a retry is viable or false to enter the oom path. | 
|  | */ | 
|  | static inline bool | 
|  | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | 
|  | struct alloc_context *ac, int alloc_flags, | 
|  | bool did_some_progress, int *no_progress_loops) | 
|  | { | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  | bool ret = false; | 
|  |  | 
|  | /* | 
|  | * Costly allocations might have made a progress but this doesn't mean | 
|  | * their order will become available due to high fragmentation so | 
|  | * always increment the no progress counter for them | 
|  | */ | 
|  | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | 
|  | *no_progress_loops = 0; | 
|  | else | 
|  | (*no_progress_loops)++; | 
|  |  | 
|  | /* | 
|  | * Make sure we converge to OOM if we cannot make any progress | 
|  | * several times in the row. | 
|  | */ | 
|  | if (*no_progress_loops > MAX_RECLAIM_RETRIES) { | 
|  | /* Before OOM, exhaust highatomic_reserve */ | 
|  | return unreserve_highatomic_pageblock(ac, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Keep reclaiming pages while there is a chance this will lead | 
|  | * somewhere.  If none of the target zones can satisfy our allocation | 
|  | * request even if all reclaimable pages are considered then we are | 
|  | * screwed and have to go OOM. | 
|  | */ | 
|  | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
|  | ac->highest_zoneidx, ac->nodemask) { | 
|  | unsigned long available; | 
|  | unsigned long reclaimable; | 
|  | unsigned long min_wmark = min_wmark_pages(zone); | 
|  | bool wmark; | 
|  |  | 
|  | available = reclaimable = zone_reclaimable_pages(zone); | 
|  | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); | 
|  |  | 
|  | /* | 
|  | * Would the allocation succeed if we reclaimed all | 
|  | * reclaimable pages? | 
|  | */ | 
|  | wmark = __zone_watermark_ok(zone, order, min_wmark, | 
|  | ac->highest_zoneidx, alloc_flags, available); | 
|  | trace_reclaim_retry_zone(z, order, reclaimable, | 
|  | available, min_wmark, *no_progress_loops, wmark); | 
|  | if (wmark) { | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Memory allocation/reclaim might be called from a WQ context and the | 
|  | * current implementation of the WQ concurrency control doesn't | 
|  | * recognize that a particular WQ is congested if the worker thread is | 
|  | * looping without ever sleeping. Therefore we have to do a short sleep | 
|  | * here rather than calling cond_resched(). | 
|  | */ | 
|  | if (current->flags & PF_WQ_WORKER) | 
|  | schedule_timeout_uninterruptible(1); | 
|  | else | 
|  | cond_resched(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) | 
|  | { | 
|  | /* | 
|  | * It's possible that cpuset's mems_allowed and the nodemask from | 
|  | * mempolicy don't intersect. This should be normally dealt with by | 
|  | * policy_nodemask(), but it's possible to race with cpuset update in | 
|  | * such a way the check therein was true, and then it became false | 
|  | * before we got our cpuset_mems_cookie here. | 
|  | * This assumes that for all allocations, ac->nodemask can come only | 
|  | * from MPOL_BIND mempolicy (whose documented semantics is to be ignored | 
|  | * when it does not intersect with the cpuset restrictions) or the | 
|  | * caller can deal with a violated nodemask. | 
|  | */ | 
|  | if (cpusets_enabled() && ac->nodemask && | 
|  | !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { | 
|  | ac->nodemask = NULL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When updating a task's mems_allowed or mempolicy nodemask, it is | 
|  | * possible to race with parallel threads in such a way that our | 
|  | * allocation can fail while the mask is being updated. If we are about | 
|  | * to fail, check if the cpuset changed during allocation and if so, | 
|  | * retry. | 
|  | */ | 
|  | if (read_mems_allowed_retry(cpuset_mems_cookie)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | 
|  | struct alloc_context *ac) | 
|  | { | 
|  | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; | 
|  | const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; | 
|  | struct page *page = NULL; | 
|  | unsigned int alloc_flags; | 
|  | unsigned long did_some_progress; | 
|  | enum compact_priority compact_priority; | 
|  | enum compact_result compact_result; | 
|  | int compaction_retries; | 
|  | int no_progress_loops; | 
|  | unsigned int cpuset_mems_cookie; | 
|  | unsigned int zonelist_iter_cookie; | 
|  | int reserve_flags; | 
|  |  | 
|  | /* | 
|  | * We also sanity check to catch abuse of atomic reserves being used by | 
|  | * callers that are not in atomic context. | 
|  | */ | 
|  | if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | 
|  | (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | 
|  | gfp_mask &= ~__GFP_ATOMIC; | 
|  |  | 
|  | restart: | 
|  | compaction_retries = 0; | 
|  | no_progress_loops = 0; | 
|  | compact_priority = DEF_COMPACT_PRIORITY; | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | zonelist_iter_cookie = zonelist_iter_begin(); | 
|  |  | 
|  | /* | 
|  | * The fast path uses conservative alloc_flags to succeed only until | 
|  | * kswapd needs to be woken up, and to avoid the cost of setting up | 
|  | * alloc_flags precisely. So we do that now. | 
|  | */ | 
|  | alloc_flags = gfp_to_alloc_flags(gfp_mask); | 
|  |  | 
|  | /* | 
|  | * We need to recalculate the starting point for the zonelist iterator | 
|  | * because we might have used different nodemask in the fast path, or | 
|  | * there was a cpuset modification and we are retrying - otherwise we | 
|  | * could end up iterating over non-eligible zones endlessly. | 
|  | */ | 
|  | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
|  | ac->highest_zoneidx, ac->nodemask); | 
|  | if (!ac->preferred_zoneref->zone) | 
|  | goto nopage; | 
|  |  | 
|  | /* | 
|  | * Check for insane configurations where the cpuset doesn't contain | 
|  | * any suitable zone to satisfy the request - e.g. non-movable | 
|  | * GFP_HIGHUSER allocations from MOVABLE nodes only. | 
|  | */ | 
|  | if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { | 
|  | struct zoneref *z = first_zones_zonelist(ac->zonelist, | 
|  | ac->highest_zoneidx, | 
|  | &cpuset_current_mems_allowed); | 
|  | if (!z->zone) | 
|  | goto nopage; | 
|  | } | 
|  |  | 
|  | if (alloc_flags & ALLOC_KSWAPD) | 
|  | wake_all_kswapds(order, gfp_mask, ac); | 
|  |  | 
|  | /* | 
|  | * The adjusted alloc_flags might result in immediate success, so try | 
|  | * that first | 
|  | */ | 
|  | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* | 
|  | * For costly allocations, try direct compaction first, as it's likely | 
|  | * that we have enough base pages and don't need to reclaim. For non- | 
|  | * movable high-order allocations, do that as well, as compaction will | 
|  | * try prevent permanent fragmentation by migrating from blocks of the | 
|  | * same migratetype. | 
|  | * Don't try this for allocations that are allowed to ignore | 
|  | * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. | 
|  | */ | 
|  | if (can_direct_reclaim && | 
|  | (costly_order || | 
|  | (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) | 
|  | && !gfp_pfmemalloc_allowed(gfp_mask)) { | 
|  | page = __alloc_pages_direct_compact(gfp_mask, order, | 
|  | alloc_flags, ac, | 
|  | INIT_COMPACT_PRIORITY, | 
|  | &compact_result); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* | 
|  | * Checks for costly allocations with __GFP_NORETRY, which | 
|  | * includes some THP page fault allocations | 
|  | */ | 
|  | if (costly_order && (gfp_mask & __GFP_NORETRY)) { | 
|  | /* | 
|  | * If allocating entire pageblock(s) and compaction | 
|  | * failed because all zones are below low watermarks | 
|  | * or is prohibited because it recently failed at this | 
|  | * order, fail immediately unless the allocator has | 
|  | * requested compaction and reclaim retry. | 
|  | * | 
|  | * Reclaim is | 
|  | *  - potentially very expensive because zones are far | 
|  | *    below their low watermarks or this is part of very | 
|  | *    bursty high order allocations, | 
|  | *  - not guaranteed to help because isolate_freepages() | 
|  | *    may not iterate over freed pages as part of its | 
|  | *    linear scan, and | 
|  | *  - unlikely to make entire pageblocks free on its | 
|  | *    own. | 
|  | */ | 
|  | if (compact_result == COMPACT_SKIPPED || | 
|  | compact_result == COMPACT_DEFERRED) | 
|  | goto nopage; | 
|  |  | 
|  | /* | 
|  | * Looks like reclaim/compaction is worth trying, but | 
|  | * sync compaction could be very expensive, so keep | 
|  | * using async compaction. | 
|  | */ | 
|  | compact_priority = INIT_COMPACT_PRIORITY; | 
|  | } | 
|  | } | 
|  |  | 
|  | retry: | 
|  | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ | 
|  | if (alloc_flags & ALLOC_KSWAPD) | 
|  | wake_all_kswapds(order, gfp_mask, ac); | 
|  |  | 
|  | reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); | 
|  | if (reserve_flags) | 
|  | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | | 
|  | (alloc_flags & ALLOC_KSWAPD); | 
|  |  | 
|  | /* | 
|  | * Reset the nodemask and zonelist iterators if memory policies can be | 
|  | * ignored. These allocations are high priority and system rather than | 
|  | * user oriented. | 
|  | */ | 
|  | if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { | 
|  | ac->nodemask = NULL; | 
|  | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
|  | ac->highest_zoneidx, ac->nodemask); | 
|  | } | 
|  |  | 
|  | /* Attempt with potentially adjusted zonelist and alloc_flags */ | 
|  | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* Caller is not willing to reclaim, we can't balance anything */ | 
|  | if (!can_direct_reclaim) | 
|  | goto nopage; | 
|  |  | 
|  | /* Avoid recursion of direct reclaim */ | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | goto nopage; | 
|  |  | 
|  | /* Try direct reclaim and then allocating */ | 
|  | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | 
|  | &did_some_progress); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* Try direct compaction and then allocating */ | 
|  | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, | 
|  | compact_priority, &compact_result); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* Do not loop if specifically requested */ | 
|  | if (gfp_mask & __GFP_NORETRY) | 
|  | goto nopage; | 
|  |  | 
|  | /* | 
|  | * Do not retry costly high order allocations unless they are | 
|  | * __GFP_RETRY_MAYFAIL | 
|  | */ | 
|  | if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) | 
|  | goto nopage; | 
|  |  | 
|  | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, | 
|  | did_some_progress > 0, &no_progress_loops)) | 
|  | goto retry; | 
|  |  | 
|  | /* | 
|  | * It doesn't make any sense to retry for the compaction if the order-0 | 
|  | * reclaim is not able to make any progress because the current | 
|  | * implementation of the compaction depends on the sufficient amount | 
|  | * of free memory (see __compaction_suitable) | 
|  | */ | 
|  | if (did_some_progress > 0 && | 
|  | should_compact_retry(ac, order, alloc_flags, | 
|  | compact_result, &compact_priority, | 
|  | &compaction_retries)) | 
|  | goto retry; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Deal with possible cpuset update races or zonelist updates to avoid | 
|  | * a unnecessary OOM kill. | 
|  | */ | 
|  | if (check_retry_cpuset(cpuset_mems_cookie, ac) || | 
|  | check_retry_zonelist(zonelist_iter_cookie)) | 
|  | goto restart; | 
|  |  | 
|  | /* Reclaim has failed us, start killing things */ | 
|  | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | /* Avoid allocations with no watermarks from looping endlessly */ | 
|  | if (tsk_is_oom_victim(current) && | 
|  | (alloc_flags & ALLOC_OOM || | 
|  | (gfp_mask & __GFP_NOMEMALLOC))) | 
|  | goto nopage; | 
|  |  | 
|  | /* Retry as long as the OOM killer is making progress */ | 
|  | if (did_some_progress) { | 
|  | no_progress_loops = 0; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | nopage: | 
|  | /* | 
|  | * Deal with possible cpuset update races or zonelist updates to avoid | 
|  | * a unnecessary OOM kill. | 
|  | */ | 
|  | if (check_retry_cpuset(cpuset_mems_cookie, ac) || | 
|  | check_retry_zonelist(zonelist_iter_cookie)) | 
|  | goto restart; | 
|  |  | 
|  | /* | 
|  | * Make sure that __GFP_NOFAIL request doesn't leak out and make sure | 
|  | * we always retry | 
|  | */ | 
|  | if (gfp_mask & __GFP_NOFAIL) { | 
|  | /* | 
|  | * All existing users of the __GFP_NOFAIL are blockable, so warn | 
|  | * of any new users that actually require GFP_NOWAIT | 
|  | */ | 
|  | if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * PF_MEMALLOC request from this context is rather bizarre | 
|  | * because we cannot reclaim anything and only can loop waiting | 
|  | * for somebody to do a work for us | 
|  | */ | 
|  | WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); | 
|  |  | 
|  | /* | 
|  | * non failing costly orders are a hard requirement which we | 
|  | * are not prepared for much so let's warn about these users | 
|  | * so that we can identify them and convert them to something | 
|  | * else. | 
|  | */ | 
|  | WARN_ON_ONCE_GFP(costly_order, gfp_mask); | 
|  |  | 
|  | /* | 
|  | * Help non-failing allocations by giving them access to memory | 
|  | * reserves but do not use ALLOC_NO_WATERMARKS because this | 
|  | * could deplete whole memory reserves which would just make | 
|  | * the situation worse | 
|  | */ | 
|  | page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); | 
|  | if (page) | 
|  | goto got_pg; | 
|  |  | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } | 
|  | fail: | 
|  | warn_alloc(gfp_mask, ac->nodemask, | 
|  | "page allocation failure: order:%u", order); | 
|  | got_pg: | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, | 
|  | int preferred_nid, nodemask_t *nodemask, | 
|  | struct alloc_context *ac, gfp_t *alloc_gfp, | 
|  | unsigned int *alloc_flags) | 
|  | { | 
|  | ac->highest_zoneidx = gfp_zone(gfp_mask); | 
|  | ac->zonelist = node_zonelist(preferred_nid, gfp_mask); | 
|  | ac->nodemask = nodemask; | 
|  | ac->migratetype = gfp_migratetype(gfp_mask); | 
|  |  | 
|  | if (cpusets_enabled()) { | 
|  | *alloc_gfp |= __GFP_HARDWALL; | 
|  | /* | 
|  | * When we are in the interrupt context, it is irrelevant | 
|  | * to the current task context. It means that any node ok. | 
|  | */ | 
|  | if (in_task() && !ac->nodemask) | 
|  | ac->nodemask = &cpuset_current_mems_allowed; | 
|  | else | 
|  | *alloc_flags |= ALLOC_CPUSET; | 
|  | } | 
|  |  | 
|  | might_alloc(gfp_mask); | 
|  |  | 
|  | if (should_fail_alloc_page(gfp_mask, order)) | 
|  | return false; | 
|  |  | 
|  | *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); | 
|  |  | 
|  | /* Dirty zone balancing only done in the fast path */ | 
|  | ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); | 
|  |  | 
|  | /* | 
|  | * The preferred zone is used for statistics but crucially it is | 
|  | * also used as the starting point for the zonelist iterator. It | 
|  | * may get reset for allocations that ignore memory policies. | 
|  | */ | 
|  | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
|  | ac->highest_zoneidx, ac->nodemask); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array | 
|  | * @gfp: GFP flags for the allocation | 
|  | * @preferred_nid: The preferred NUMA node ID to allocate from | 
|  | * @nodemask: Set of nodes to allocate from, may be NULL | 
|  | * @nr_pages: The number of pages desired on the list or array | 
|  | * @page_list: Optional list to store the allocated pages | 
|  | * @page_array: Optional array to store the pages | 
|  | * | 
|  | * This is a batched version of the page allocator that attempts to | 
|  | * allocate nr_pages quickly. Pages are added to page_list if page_list | 
|  | * is not NULL, otherwise it is assumed that the page_array is valid. | 
|  | * | 
|  | * For lists, nr_pages is the number of pages that should be allocated. | 
|  | * | 
|  | * For arrays, only NULL elements are populated with pages and nr_pages | 
|  | * is the maximum number of pages that will be stored in the array. | 
|  | * | 
|  | * Returns the number of pages on the list or array. | 
|  | */ | 
|  | unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, | 
|  | nodemask_t *nodemask, int nr_pages, | 
|  | struct list_head *page_list, | 
|  | struct page **page_array) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  | unsigned long __maybe_unused UP_flags; | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  | struct per_cpu_pages *pcp; | 
|  | struct list_head *pcp_list; | 
|  | struct alloc_context ac; | 
|  | gfp_t alloc_gfp; | 
|  | unsigned int alloc_flags = ALLOC_WMARK_LOW; | 
|  | int nr_populated = 0, nr_account = 0; | 
|  |  | 
|  | /* | 
|  | * Skip populated array elements to determine if any pages need | 
|  | * to be allocated before disabling IRQs. | 
|  | */ | 
|  | while (page_array && nr_populated < nr_pages && page_array[nr_populated]) | 
|  | nr_populated++; | 
|  |  | 
|  | /* No pages requested? */ | 
|  | if (unlikely(nr_pages <= 0)) | 
|  | goto out; | 
|  |  | 
|  | /* Already populated array? */ | 
|  | if (unlikely(page_array && nr_pages - nr_populated == 0)) | 
|  | goto out; | 
|  |  | 
|  | /* Bulk allocator does not support memcg accounting. */ | 
|  | if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) | 
|  | goto failed; | 
|  |  | 
|  | /* Use the single page allocator for one page. */ | 
|  | if (nr_pages - nr_populated == 1) | 
|  | goto failed; | 
|  |  | 
|  | #ifdef CONFIG_PAGE_OWNER | 
|  | /* | 
|  | * PAGE_OWNER may recurse into the allocator to allocate space to | 
|  | * save the stack with pagesets.lock held. Releasing/reacquiring | 
|  | * removes much of the performance benefit of bulk allocation so | 
|  | * force the caller to allocate one page at a time as it'll have | 
|  | * similar performance to added complexity to the bulk allocator. | 
|  | */ | 
|  | if (static_branch_unlikely(&page_owner_inited)) | 
|  | goto failed; | 
|  | #endif | 
|  |  | 
|  | /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ | 
|  | gfp &= gfp_allowed_mask; | 
|  | alloc_gfp = gfp; | 
|  | if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) | 
|  | goto out; | 
|  | gfp = alloc_gfp; | 
|  |  | 
|  | /* Find an allowed local zone that meets the low watermark. */ | 
|  | for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { | 
|  | unsigned long mark; | 
|  |  | 
|  | if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && | 
|  | !__cpuset_zone_allowed(zone, gfp)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && | 
|  | zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; | 
|  | if (zone_watermark_fast(zone, 0,  mark, | 
|  | zonelist_zone_idx(ac.preferred_zoneref), | 
|  | alloc_flags, gfp)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no allowed local zones that meets the watermarks then | 
|  | * try to allocate a single page and reclaim if necessary. | 
|  | */ | 
|  | if (unlikely(!zone)) | 
|  | goto failed; | 
|  |  | 
|  | /* Is a parallel drain in progress? */ | 
|  | pcp_trylock_prepare(UP_flags); | 
|  | pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); | 
|  | if (!pcp) | 
|  | goto failed_irq; | 
|  |  | 
|  | /* Attempt the batch allocation */ | 
|  | pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; | 
|  | while (nr_populated < nr_pages) { | 
|  |  | 
|  | /* Skip existing pages */ | 
|  | if (page_array && page_array[nr_populated]) { | 
|  | nr_populated++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, | 
|  | pcp, pcp_list); | 
|  | if (unlikely(!page)) { | 
|  | /* Try and allocate at least one page */ | 
|  | if (!nr_account) { | 
|  | pcp_spin_unlock_irqrestore(pcp, flags); | 
|  | goto failed_irq; | 
|  | } | 
|  | break; | 
|  | } | 
|  | nr_account++; | 
|  |  | 
|  | prep_new_page(page, 0, gfp, 0); | 
|  | if (page_list) | 
|  | list_add(&page->lru, page_list); | 
|  | else | 
|  | page_array[nr_populated] = page; | 
|  | nr_populated++; | 
|  | } | 
|  |  | 
|  | pcp_spin_unlock_irqrestore(pcp, flags); | 
|  | pcp_trylock_finish(UP_flags); | 
|  |  | 
|  | __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); | 
|  | zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); | 
|  |  | 
|  | out: | 
|  | return nr_populated; | 
|  |  | 
|  | failed_irq: | 
|  | pcp_trylock_finish(UP_flags); | 
|  |  | 
|  | failed: | 
|  | page = __alloc_pages(gfp, 0, preferred_nid, nodemask); | 
|  | if (page) { | 
|  | if (page_list) | 
|  | list_add(&page->lru, page_list); | 
|  | else | 
|  | page_array[nr_populated] = page; | 
|  | nr_populated++; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__alloc_pages_bulk); | 
|  |  | 
|  | /* | 
|  | * This is the 'heart' of the zoned buddy allocator. | 
|  | */ | 
|  | struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, | 
|  | nodemask_t *nodemask) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned int alloc_flags = ALLOC_WMARK_LOW; | 
|  | gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ | 
|  | struct alloc_context ac = { }; | 
|  |  | 
|  | /* | 
|  | * There are several places where we assume that the order value is sane | 
|  | * so bail out early if the request is out of bound. | 
|  | */ | 
|  | if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) | 
|  | return NULL; | 
|  |  | 
|  | gfp &= gfp_allowed_mask; | 
|  | /* | 
|  | * Apply scoped allocation constraints. This is mainly about GFP_NOFS | 
|  | * resp. GFP_NOIO which has to be inherited for all allocation requests | 
|  | * from a particular context which has been marked by | 
|  | * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures | 
|  | * movable zones are not used during allocation. | 
|  | */ | 
|  | gfp = current_gfp_context(gfp); | 
|  | alloc_gfp = gfp; | 
|  | if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, | 
|  | &alloc_gfp, &alloc_flags)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Forbid the first pass from falling back to types that fragment | 
|  | * memory until all local zones are considered. | 
|  | */ | 
|  | alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); | 
|  |  | 
|  | /* First allocation attempt */ | 
|  | page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); | 
|  | if (likely(page)) | 
|  | goto out; | 
|  |  | 
|  | alloc_gfp = gfp; | 
|  | ac.spread_dirty_pages = false; | 
|  |  | 
|  | /* | 
|  | * Restore the original nodemask if it was potentially replaced with | 
|  | * &cpuset_current_mems_allowed to optimize the fast-path attempt. | 
|  | */ | 
|  | ac.nodemask = nodemask; | 
|  |  | 
|  | page = __alloc_pages_slowpath(alloc_gfp, order, &ac); | 
|  |  | 
|  | out: | 
|  | if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && | 
|  | unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { | 
|  | __free_pages(page, order); | 
|  | page = NULL; | 
|  | } | 
|  |  | 
|  | trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); | 
|  | kmsan_alloc_page(page, order, alloc_gfp); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL(__alloc_pages); | 
|  |  | 
|  | struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, | 
|  | nodemask_t *nodemask) | 
|  | { | 
|  | struct page *page = __alloc_pages(gfp | __GFP_COMP, order, | 
|  | preferred_nid, nodemask); | 
|  |  | 
|  | if (page && order > 1) | 
|  | prep_transhuge_page(page); | 
|  | return (struct folio *)page; | 
|  | } | 
|  | EXPORT_SYMBOL(__folio_alloc); | 
|  |  | 
|  | /* | 
|  | * Common helper functions. Never use with __GFP_HIGHMEM because the returned | 
|  | * address cannot represent highmem pages. Use alloc_pages and then kmap if | 
|  | * you need to access high mem. | 
|  | */ | 
|  | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); | 
|  | if (!page) | 
|  | return 0; | 
|  | return (unsigned long) page_address(page); | 
|  | } | 
|  | EXPORT_SYMBOL(__get_free_pages); | 
|  |  | 
|  | unsigned long get_zeroed_page(gfp_t gfp_mask) | 
|  | { | 
|  | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(get_zeroed_page); | 
|  |  | 
|  | /** | 
|  | * __free_pages - Free pages allocated with alloc_pages(). | 
|  | * @page: The page pointer returned from alloc_pages(). | 
|  | * @order: The order of the allocation. | 
|  | * | 
|  | * This function can free multi-page allocations that are not compound | 
|  | * pages.  It does not check that the @order passed in matches that of | 
|  | * the allocation, so it is easy to leak memory.  Freeing more memory | 
|  | * than was allocated will probably emit a warning. | 
|  | * | 
|  | * If the last reference to this page is speculative, it will be released | 
|  | * by put_page() which only frees the first page of a non-compound | 
|  | * allocation.  To prevent the remaining pages from being leaked, we free | 
|  | * the subsequent pages here.  If you want to use the page's reference | 
|  | * count to decide when to free the allocation, you should allocate a | 
|  | * compound page, and use put_page() instead of __free_pages(). | 
|  | * | 
|  | * Context: May be called in interrupt context or while holding a normal | 
|  | * spinlock, but not in NMI context or while holding a raw spinlock. | 
|  | */ | 
|  | void __free_pages(struct page *page, unsigned int order) | 
|  | { | 
|  | if (put_page_testzero(page)) | 
|  | free_the_page(page, order); | 
|  | else if (!PageHead(page)) | 
|  | while (order-- > 0) | 
|  | free_the_page(page + (1 << order), order); | 
|  | } | 
|  | EXPORT_SYMBOL(__free_pages); | 
|  |  | 
|  | void free_pages(unsigned long addr, unsigned int order) | 
|  | { | 
|  | if (addr != 0) { | 
|  | VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
|  | __free_pages(virt_to_page((void *)addr), order); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(free_pages); | 
|  |  | 
|  | /* | 
|  | * Page Fragment: | 
|  | *  An arbitrary-length arbitrary-offset area of memory which resides | 
|  | *  within a 0 or higher order page.  Multiple fragments within that page | 
|  | *  are individually refcounted, in the page's reference counter. | 
|  | * | 
|  | * The page_frag functions below provide a simple allocation framework for | 
|  | * page fragments.  This is used by the network stack and network device | 
|  | * drivers to provide a backing region of memory for use as either an | 
|  | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | 
|  | */ | 
|  | static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | gfp_t gfp = gfp_mask; | 
|  |  | 
|  | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
|  | gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | 
|  | __GFP_NOMEMALLOC; | 
|  | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | 
|  | PAGE_FRAG_CACHE_MAX_ORDER); | 
|  | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | 
|  | #endif | 
|  | if (unlikely(!page)) | 
|  | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | 
|  |  | 
|  | nc->va = page ? page_address(page) : NULL; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | void __page_frag_cache_drain(struct page *page, unsigned int count) | 
|  | { | 
|  | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); | 
|  |  | 
|  | if (page_ref_sub_and_test(page, count)) | 
|  | free_the_page(page, compound_order(page)); | 
|  | } | 
|  | EXPORT_SYMBOL(__page_frag_cache_drain); | 
|  |  | 
|  | void *page_frag_alloc_align(struct page_frag_cache *nc, | 
|  | unsigned int fragsz, gfp_t gfp_mask, | 
|  | unsigned int align_mask) | 
|  | { | 
|  | unsigned int size = PAGE_SIZE; | 
|  | struct page *page; | 
|  | int offset; | 
|  |  | 
|  | if (unlikely(!nc->va)) { | 
|  | refill: | 
|  | page = __page_frag_cache_refill(nc, gfp_mask); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
|  | /* if size can vary use size else just use PAGE_SIZE */ | 
|  | size = nc->size; | 
|  | #endif | 
|  | /* Even if we own the page, we do not use atomic_set(). | 
|  | * This would break get_page_unless_zero() users. | 
|  | */ | 
|  | page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); | 
|  |  | 
|  | /* reset page count bias and offset to start of new frag */ | 
|  | nc->pfmemalloc = page_is_pfmemalloc(page); | 
|  | nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; | 
|  | nc->offset = size; | 
|  | } | 
|  |  | 
|  | offset = nc->offset - fragsz; | 
|  | if (unlikely(offset < 0)) { | 
|  | page = virt_to_page(nc->va); | 
|  |  | 
|  | if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) | 
|  | goto refill; | 
|  |  | 
|  | if (unlikely(nc->pfmemalloc)) { | 
|  | free_the_page(page, compound_order(page)); | 
|  | goto refill; | 
|  | } | 
|  |  | 
|  | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | 
|  | /* if size can vary use size else just use PAGE_SIZE */ | 
|  | size = nc->size; | 
|  | #endif | 
|  | /* OK, page count is 0, we can safely set it */ | 
|  | set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); | 
|  |  | 
|  | /* reset page count bias and offset to start of new frag */ | 
|  | nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; | 
|  | offset = size - fragsz; | 
|  | if (unlikely(offset < 0)) { | 
|  | /* | 
|  | * The caller is trying to allocate a fragment | 
|  | * with fragsz > PAGE_SIZE but the cache isn't big | 
|  | * enough to satisfy the request, this may | 
|  | * happen in low memory conditions. | 
|  | * We don't release the cache page because | 
|  | * it could make memory pressure worse | 
|  | * so we simply return NULL here. | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | nc->pagecnt_bias--; | 
|  | offset &= align_mask; | 
|  | nc->offset = offset; | 
|  |  | 
|  | return nc->va + offset; | 
|  | } | 
|  | EXPORT_SYMBOL(page_frag_alloc_align); | 
|  |  | 
|  | /* | 
|  | * Frees a page fragment allocated out of either a compound or order 0 page. | 
|  | */ | 
|  | void page_frag_free(void *addr) | 
|  | { | 
|  | struct page *page = virt_to_head_page(addr); | 
|  |  | 
|  | if (unlikely(put_page_testzero(page))) | 
|  | free_the_page(page, compound_order(page)); | 
|  | } | 
|  | EXPORT_SYMBOL(page_frag_free); | 
|  |  | 
|  | static void *make_alloc_exact(unsigned long addr, unsigned int order, | 
|  | size_t size) | 
|  | { | 
|  | if (addr) { | 
|  | unsigned long alloc_end = addr + (PAGE_SIZE << order); | 
|  | unsigned long used = addr + PAGE_ALIGN(size); | 
|  |  | 
|  | split_page(virt_to_page((void *)addr), order); | 
|  | while (used < alloc_end) { | 
|  | free_page(used); | 
|  | used += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | return (void *)addr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | 
|  | * @size: the number of bytes to allocate | 
|  | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP | 
|  | * | 
|  | * This function is similar to alloc_pages(), except that it allocates the | 
|  | * minimum number of pages to satisfy the request.  alloc_pages() can only | 
|  | * allocate memory in power-of-two pages. | 
|  | * | 
|  | * This function is also limited by MAX_ORDER. | 
|  | * | 
|  | * Memory allocated by this function must be released by free_pages_exact(). | 
|  | * | 
|  | * Return: pointer to the allocated area or %NULL in case of error. | 
|  | */ | 
|  | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned int order = get_order(size); | 
|  | unsigned long addr; | 
|  |  | 
|  | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) | 
|  | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); | 
|  |  | 
|  | addr = __get_free_pages(gfp_mask, order); | 
|  | return make_alloc_exact(addr, order, size); | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_pages_exact); | 
|  |  | 
|  | /** | 
|  | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | 
|  | *			   pages on a node. | 
|  | * @nid: the preferred node ID where memory should be allocated | 
|  | * @size: the number of bytes to allocate | 
|  | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP | 
|  | * | 
|  | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | 
|  | * back. | 
|  | * | 
|  | * Return: pointer to the allocated area or %NULL in case of error. | 
|  | */ | 
|  | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned int order = get_order(size); | 
|  | struct page *p; | 
|  |  | 
|  | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) | 
|  | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); | 
|  |  | 
|  | p = alloc_pages_node(nid, gfp_mask, order); | 
|  | if (!p) | 
|  | return NULL; | 
|  | return make_alloc_exact((unsigned long)page_address(p), order, size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_pages_exact - release memory allocated via alloc_pages_exact() | 
|  | * @virt: the value returned by alloc_pages_exact. | 
|  | * @size: size of allocation, same value as passed to alloc_pages_exact(). | 
|  | * | 
|  | * Release the memory allocated by a previous call to alloc_pages_exact. | 
|  | */ | 
|  | void free_pages_exact(void *virt, size_t size) | 
|  | { | 
|  | unsigned long addr = (unsigned long)virt; | 
|  | unsigned long end = addr + PAGE_ALIGN(size); | 
|  |  | 
|  | while (addr < end) { | 
|  | free_page(addr); | 
|  | addr += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(free_pages_exact); | 
|  |  | 
|  | /** | 
|  | * nr_free_zone_pages - count number of pages beyond high watermark | 
|  | * @offset: The zone index of the highest zone | 
|  | * | 
|  | * nr_free_zone_pages() counts the number of pages which are beyond the | 
|  | * high watermark within all zones at or below a given zone index.  For each | 
|  | * zone, the number of pages is calculated as: | 
|  | * | 
|  | *     nr_free_zone_pages = managed_pages - high_pages | 
|  | * | 
|  | * Return: number of pages beyond high watermark. | 
|  | */ | 
|  | static unsigned long nr_free_zone_pages(int offset) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  |  | 
|  | /* Just pick one node, since fallback list is circular */ | 
|  | unsigned long sum = 0; | 
|  |  | 
|  | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); | 
|  |  | 
|  | for_each_zone_zonelist(zone, z, zonelist, offset) { | 
|  | unsigned long size = zone_managed_pages(zone); | 
|  | unsigned long high = high_wmark_pages(zone); | 
|  | if (size > high) | 
|  | sum += size - high; | 
|  | } | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nr_free_buffer_pages - count number of pages beyond high watermark | 
|  | * | 
|  | * nr_free_buffer_pages() counts the number of pages which are beyond the high | 
|  | * watermark within ZONE_DMA and ZONE_NORMAL. | 
|  | * | 
|  | * Return: number of pages beyond high watermark within ZONE_DMA and | 
|  | * ZONE_NORMAL. | 
|  | */ | 
|  | unsigned long nr_free_buffer_pages(void) | 
|  | { | 
|  | return nr_free_zone_pages(gfp_zone(GFP_USER)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); | 
|  |  | 
|  | static inline void show_node(struct zone *zone) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_NUMA)) | 
|  | printk("Node %d ", zone_to_nid(zone)); | 
|  | } | 
|  |  | 
|  | long si_mem_available(void) | 
|  | { | 
|  | long available; | 
|  | unsigned long pagecache; | 
|  | unsigned long wmark_low = 0; | 
|  | unsigned long pages[NR_LRU_LISTS]; | 
|  | unsigned long reclaimable; | 
|  | struct zone *zone; | 
|  | int lru; | 
|  |  | 
|  | for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) | 
|  | pages[lru] = global_node_page_state(NR_LRU_BASE + lru); | 
|  |  | 
|  | for_each_zone(zone) | 
|  | wmark_low += low_wmark_pages(zone); | 
|  |  | 
|  | /* | 
|  | * Estimate the amount of memory available for userspace allocations, | 
|  | * without causing swapping or OOM. | 
|  | */ | 
|  | available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; | 
|  |  | 
|  | /* | 
|  | * Not all the page cache can be freed, otherwise the system will | 
|  | * start swapping or thrashing. Assume at least half of the page | 
|  | * cache, or the low watermark worth of cache, needs to stay. | 
|  | */ | 
|  | pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; | 
|  | pagecache -= min(pagecache / 2, wmark_low); | 
|  | available += pagecache; | 
|  |  | 
|  | /* | 
|  | * Part of the reclaimable slab and other kernel memory consists of | 
|  | * items that are in use, and cannot be freed. Cap this estimate at the | 
|  | * low watermark. | 
|  | */ | 
|  | reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + | 
|  | global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); | 
|  | available += reclaimable - min(reclaimable / 2, wmark_low); | 
|  |  | 
|  | if (available < 0) | 
|  | available = 0; | 
|  | return available; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(si_mem_available); | 
|  |  | 
|  | void si_meminfo(struct sysinfo *val) | 
|  | { | 
|  | val->totalram = totalram_pages(); | 
|  | val->sharedram = global_node_page_state(NR_SHMEM); | 
|  | val->freeram = global_zone_page_state(NR_FREE_PAGES); | 
|  | val->bufferram = nr_blockdev_pages(); | 
|  | val->totalhigh = totalhigh_pages(); | 
|  | val->freehigh = nr_free_highpages(); | 
|  | val->mem_unit = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(si_meminfo); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void si_meminfo_node(struct sysinfo *val, int nid) | 
|  | { | 
|  | int zone_type;		/* needs to be signed */ | 
|  | unsigned long managed_pages = 0; | 
|  | unsigned long managed_highpages = 0; | 
|  | unsigned long free_highpages = 0; | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  |  | 
|  | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) | 
|  | managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); | 
|  | val->totalram = managed_pages; | 
|  | val->sharedram = node_page_state(pgdat, NR_SHMEM); | 
|  | val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | 
|  | struct zone *zone = &pgdat->node_zones[zone_type]; | 
|  |  | 
|  | if (is_highmem(zone)) { | 
|  | managed_highpages += zone_managed_pages(zone); | 
|  | free_highpages += zone_page_state(zone, NR_FREE_PAGES); | 
|  | } | 
|  | } | 
|  | val->totalhigh = managed_highpages; | 
|  | val->freehigh = free_highpages; | 
|  | #else | 
|  | val->totalhigh = managed_highpages; | 
|  | val->freehigh = free_highpages; | 
|  | #endif | 
|  | val->mem_unit = PAGE_SIZE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine whether the node should be displayed or not, depending on whether | 
|  | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | 
|  | */ | 
|  | static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) | 
|  | { | 
|  | if (!(flags & SHOW_MEM_FILTER_NODES)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * no node mask - aka implicit memory numa policy. Do not bother with | 
|  | * the synchronization - read_mems_allowed_begin - because we do not | 
|  | * have to be precise here. | 
|  | */ | 
|  | if (!nodemask) | 
|  | nodemask = &cpuset_current_mems_allowed; | 
|  |  | 
|  | return !node_isset(nid, *nodemask); | 
|  | } | 
|  |  | 
|  | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  |  | 
|  | static void show_migration_types(unsigned char type) | 
|  | { | 
|  | static const char types[MIGRATE_TYPES] = { | 
|  | [MIGRATE_UNMOVABLE]	= 'U', | 
|  | [MIGRATE_MOVABLE]	= 'M', | 
|  | [MIGRATE_RECLAIMABLE]	= 'E', | 
|  | [MIGRATE_HIGHATOMIC]	= 'H', | 
|  | #ifdef CONFIG_CMA | 
|  | [MIGRATE_CMA]		= 'C', | 
|  | #endif | 
|  | #ifdef CONFIG_MEMORY_ISOLATION | 
|  | [MIGRATE_ISOLATE]	= 'I', | 
|  | #endif | 
|  | }; | 
|  | char tmp[MIGRATE_TYPES + 1]; | 
|  | char *p = tmp; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MIGRATE_TYPES; i++) { | 
|  | if (type & (1 << i)) | 
|  | *p++ = types[i]; | 
|  | } | 
|  |  | 
|  | *p = '\0'; | 
|  | printk(KERN_CONT "(%s) ", tmp); | 
|  | } | 
|  |  | 
|  | static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) | 
|  | { | 
|  | int zone_idx; | 
|  | for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) | 
|  | if (zone_managed_pages(pgdat->node_zones + zone_idx)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Show free area list (used inside shift_scroll-lock stuff) | 
|  | * We also calculate the percentage fragmentation. We do this by counting the | 
|  | * memory on each free list with the exception of the first item on the list. | 
|  | * | 
|  | * Bits in @filter: | 
|  | * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | 
|  | *   cpuset. | 
|  | */ | 
|  | void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) | 
|  | { | 
|  | unsigned long free_pcp = 0; | 
|  | int cpu, nid; | 
|  | struct zone *zone; | 
|  | pg_data_t *pgdat; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | if (zone_idx(zone) > max_zone_idx) | 
|  | continue; | 
|  | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
|  | continue; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; | 
|  | } | 
|  |  | 
|  | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" | 
|  | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | 
|  | " unevictable:%lu dirty:%lu writeback:%lu\n" | 
|  | " slab_reclaimable:%lu slab_unreclaimable:%lu\n" | 
|  | " mapped:%lu shmem:%lu pagetables:%lu\n" | 
|  | " sec_pagetables:%lu bounce:%lu\n" | 
|  | " kernel_misc_reclaimable:%lu\n" | 
|  | " free:%lu free_pcp:%lu free_cma:%lu\n", | 
|  | global_node_page_state(NR_ACTIVE_ANON), | 
|  | global_node_page_state(NR_INACTIVE_ANON), | 
|  | global_node_page_state(NR_ISOLATED_ANON), | 
|  | global_node_page_state(NR_ACTIVE_FILE), | 
|  | global_node_page_state(NR_INACTIVE_FILE), | 
|  | global_node_page_state(NR_ISOLATED_FILE), | 
|  | global_node_page_state(NR_UNEVICTABLE), | 
|  | global_node_page_state(NR_FILE_DIRTY), | 
|  | global_node_page_state(NR_WRITEBACK), | 
|  | global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), | 
|  | global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), | 
|  | global_node_page_state(NR_FILE_MAPPED), | 
|  | global_node_page_state(NR_SHMEM), | 
|  | global_node_page_state(NR_PAGETABLE), | 
|  | global_node_page_state(NR_SECONDARY_PAGETABLE), | 
|  | global_zone_page_state(NR_BOUNCE), | 
|  | global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), | 
|  | global_zone_page_state(NR_FREE_PAGES), | 
|  | free_pcp, | 
|  | global_zone_page_state(NR_FREE_CMA_PAGES)); | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  | if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) | 
|  | continue; | 
|  | if (!node_has_managed_zones(pgdat, max_zone_idx)) | 
|  | continue; | 
|  |  | 
|  | printk("Node %d" | 
|  | " active_anon:%lukB" | 
|  | " inactive_anon:%lukB" | 
|  | " active_file:%lukB" | 
|  | " inactive_file:%lukB" | 
|  | " unevictable:%lukB" | 
|  | " isolated(anon):%lukB" | 
|  | " isolated(file):%lukB" | 
|  | " mapped:%lukB" | 
|  | " dirty:%lukB" | 
|  | " writeback:%lukB" | 
|  | " shmem:%lukB" | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | " shmem_thp: %lukB" | 
|  | " shmem_pmdmapped: %lukB" | 
|  | " anon_thp: %lukB" | 
|  | #endif | 
|  | " writeback_tmp:%lukB" | 
|  | " kernel_stack:%lukB" | 
|  | #ifdef CONFIG_SHADOW_CALL_STACK | 
|  | " shadow_call_stack:%lukB" | 
|  | #endif | 
|  | " pagetables:%lukB" | 
|  | " sec_pagetables:%lukB" | 
|  | " all_unreclaimable? %s" | 
|  | "\n", | 
|  | pgdat->node_id, | 
|  | K(node_page_state(pgdat, NR_ACTIVE_ANON)), | 
|  | K(node_page_state(pgdat, NR_INACTIVE_ANON)), | 
|  | K(node_page_state(pgdat, NR_ACTIVE_FILE)), | 
|  | K(node_page_state(pgdat, NR_INACTIVE_FILE)), | 
|  | K(node_page_state(pgdat, NR_UNEVICTABLE)), | 
|  | K(node_page_state(pgdat, NR_ISOLATED_ANON)), | 
|  | K(node_page_state(pgdat, NR_ISOLATED_FILE)), | 
|  | K(node_page_state(pgdat, NR_FILE_MAPPED)), | 
|  | K(node_page_state(pgdat, NR_FILE_DIRTY)), | 
|  | K(node_page_state(pgdat, NR_WRITEBACK)), | 
|  | K(node_page_state(pgdat, NR_SHMEM)), | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | K(node_page_state(pgdat, NR_SHMEM_THPS)), | 
|  | K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), | 
|  | K(node_page_state(pgdat, NR_ANON_THPS)), | 
|  | #endif | 
|  | K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), | 
|  | node_page_state(pgdat, NR_KERNEL_STACK_KB), | 
|  | #ifdef CONFIG_SHADOW_CALL_STACK | 
|  | node_page_state(pgdat, NR_KERNEL_SCS_KB), | 
|  | #endif | 
|  | K(node_page_state(pgdat, NR_PAGETABLE)), | 
|  | K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), | 
|  | pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? | 
|  | "yes" : "no"); | 
|  | } | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | int i; | 
|  |  | 
|  | if (zone_idx(zone) > max_zone_idx) | 
|  | continue; | 
|  | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
|  | continue; | 
|  |  | 
|  | free_pcp = 0; | 
|  | for_each_online_cpu(cpu) | 
|  | free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; | 
|  |  | 
|  | show_node(zone); | 
|  | printk(KERN_CONT | 
|  | "%s" | 
|  | " free:%lukB" | 
|  | " boost:%lukB" | 
|  | " min:%lukB" | 
|  | " low:%lukB" | 
|  | " high:%lukB" | 
|  | " reserved_highatomic:%luKB" | 
|  | " active_anon:%lukB" | 
|  | " inactive_anon:%lukB" | 
|  | " active_file:%lukB" | 
|  | " inactive_file:%lukB" | 
|  | " unevictable:%lukB" | 
|  | " writepending:%lukB" | 
|  | " present:%lukB" | 
|  | " managed:%lukB" | 
|  | " mlocked:%lukB" | 
|  | " bounce:%lukB" | 
|  | " free_pcp:%lukB" | 
|  | " local_pcp:%ukB" | 
|  | " free_cma:%lukB" | 
|  | "\n", | 
|  | zone->name, | 
|  | K(zone_page_state(zone, NR_FREE_PAGES)), | 
|  | K(zone->watermark_boost), | 
|  | K(min_wmark_pages(zone)), | 
|  | K(low_wmark_pages(zone)), | 
|  | K(high_wmark_pages(zone)), | 
|  | K(zone->nr_reserved_highatomic), | 
|  | K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), | 
|  | K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), | 
|  | K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), | 
|  | K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), | 
|  | K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), | 
|  | K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), | 
|  | K(zone->present_pages), | 
|  | K(zone_managed_pages(zone)), | 
|  | K(zone_page_state(zone, NR_MLOCK)), | 
|  | K(zone_page_state(zone, NR_BOUNCE)), | 
|  | K(free_pcp), | 
|  | K(this_cpu_read(zone->per_cpu_pageset->count)), | 
|  | K(zone_page_state(zone, NR_FREE_CMA_PAGES))); | 
|  | printk("lowmem_reserve[]:"); | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | unsigned int order; | 
|  | unsigned long nr[MAX_ORDER], flags, total = 0; | 
|  | unsigned char types[MAX_ORDER]; | 
|  |  | 
|  | if (zone_idx(zone) > max_zone_idx) | 
|  | continue; | 
|  | if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
|  | continue; | 
|  | show_node(zone); | 
|  | printk(KERN_CONT "%s: ", zone->name); | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | struct free_area *area = &zone->free_area[order]; | 
|  | int type; | 
|  |  | 
|  | nr[order] = area->nr_free; | 
|  | total += nr[order] << order; | 
|  |  | 
|  | types[order] = 0; | 
|  | for (type = 0; type < MIGRATE_TYPES; type++) { | 
|  | if (!free_area_empty(area, type)) | 
|  | types[order] |= 1 << type; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | printk(KERN_CONT "%lu*%lukB ", | 
|  | nr[order], K(1UL) << order); | 
|  | if (nr[order]) | 
|  | show_migration_types(types[order]); | 
|  | } | 
|  | printk(KERN_CONT "= %lukB\n", K(total)); | 
|  | } | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | if (show_mem_node_skip(filter, nid, nodemask)) | 
|  | continue; | 
|  | hugetlb_show_meminfo_node(nid); | 
|  | } | 
|  |  | 
|  | printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); | 
|  |  | 
|  | show_swap_cache_info(); | 
|  | } | 
|  |  | 
|  | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) | 
|  | { | 
|  | zoneref->zone = zone; | 
|  | zoneref->zone_idx = zone_idx(zone); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Builds allocation fallback zone lists. | 
|  | * | 
|  | * Add all populated zones of a node to the zonelist. | 
|  | */ | 
|  | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) | 
|  | { | 
|  | struct zone *zone; | 
|  | enum zone_type zone_type = MAX_NR_ZONES; | 
|  | int nr_zones = 0; | 
|  |  | 
|  | do { | 
|  | zone_type--; | 
|  | zone = pgdat->node_zones + zone_type; | 
|  | if (populated_zone(zone)) { | 
|  | zoneref_set_zone(zone, &zonerefs[nr_zones++]); | 
|  | check_highest_zone(zone_type); | 
|  | } | 
|  | } while (zone_type); | 
|  |  | 
|  | return nr_zones; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | static int __parse_numa_zonelist_order(char *s) | 
|  | { | 
|  | /* | 
|  | * We used to support different zonelists modes but they turned | 
|  | * out to be just not useful. Let's keep the warning in place | 
|  | * if somebody still use the cmd line parameter so that we do | 
|  | * not fail it silently | 
|  | */ | 
|  | if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { | 
|  | pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | char numa_zonelist_order[] = "Node"; | 
|  |  | 
|  | /* | 
|  | * sysctl handler for numa_zonelist_order | 
|  | */ | 
|  | int numa_zonelist_order_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | if (write) | 
|  | return __parse_numa_zonelist_order(buffer); | 
|  | return proc_dostring(table, write, buffer, length, ppos); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int node_load[MAX_NUMNODES]; | 
|  |  | 
|  | /** | 
|  | * find_next_best_node - find the next node that should appear in a given node's fallback list | 
|  | * @node: node whose fallback list we're appending | 
|  | * @used_node_mask: nodemask_t of already used nodes | 
|  | * | 
|  | * We use a number of factors to determine which is the next node that should | 
|  | * appear on a given node's fallback list.  The node should not have appeared | 
|  | * already in @node's fallback list, and it should be the next closest node | 
|  | * according to the distance array (which contains arbitrary distance values | 
|  | * from each node to each node in the system), and should also prefer nodes | 
|  | * with no CPUs, since presumably they'll have very little allocation pressure | 
|  | * on them otherwise. | 
|  | * | 
|  | * Return: node id of the found node or %NUMA_NO_NODE if no node is found. | 
|  | */ | 
|  | int find_next_best_node(int node, nodemask_t *used_node_mask) | 
|  | { | 
|  | int n, val; | 
|  | int min_val = INT_MAX; | 
|  | int best_node = NUMA_NO_NODE; | 
|  |  | 
|  | /* Use the local node if we haven't already */ | 
|  | if (!node_isset(node, *used_node_mask)) { | 
|  | node_set(node, *used_node_mask); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | for_each_node_state(n, N_MEMORY) { | 
|  |  | 
|  | /* Don't want a node to appear more than once */ | 
|  | if (node_isset(n, *used_node_mask)) | 
|  | continue; | 
|  |  | 
|  | /* Use the distance array to find the distance */ | 
|  | val = node_distance(node, n); | 
|  |  | 
|  | /* Penalize nodes under us ("prefer the next node") */ | 
|  | val += (n < node); | 
|  |  | 
|  | /* Give preference to headless and unused nodes */ | 
|  | if (!cpumask_empty(cpumask_of_node(n))) | 
|  | val += PENALTY_FOR_NODE_WITH_CPUS; | 
|  |  | 
|  | /* Slight preference for less loaded node */ | 
|  | val *= MAX_NUMNODES; | 
|  | val += node_load[n]; | 
|  |  | 
|  | if (val < min_val) { | 
|  | min_val = val; | 
|  | best_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (best_node >= 0) | 
|  | node_set(best_node, *used_node_mask); | 
|  |  | 
|  | return best_node; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Build zonelists ordered by node and zones within node. | 
|  | * This results in maximum locality--normal zone overflows into local | 
|  | * DMA zone, if any--but risks exhausting DMA zone. | 
|  | */ | 
|  | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, | 
|  | unsigned nr_nodes) | 
|  | { | 
|  | struct zoneref *zonerefs; | 
|  | int i; | 
|  |  | 
|  | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | 
|  |  | 
|  | for (i = 0; i < nr_nodes; i++) { | 
|  | int nr_zones; | 
|  |  | 
|  | pg_data_t *node = NODE_DATA(node_order[i]); | 
|  |  | 
|  | nr_zones = build_zonerefs_node(node, zonerefs); | 
|  | zonerefs += nr_zones; | 
|  | } | 
|  | zonerefs->zone = NULL; | 
|  | zonerefs->zone_idx = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build gfp_thisnode zonelists | 
|  | */ | 
|  | static void build_thisnode_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | struct zoneref *zonerefs; | 
|  | int nr_zones; | 
|  |  | 
|  | zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; | 
|  | nr_zones = build_zonerefs_node(pgdat, zonerefs); | 
|  | zonerefs += nr_zones; | 
|  | zonerefs->zone = NULL; | 
|  | zonerefs->zone_idx = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build zonelists ordered by zone and nodes within zones. | 
|  | * This results in conserving DMA zone[s] until all Normal memory is | 
|  | * exhausted, but results in overflowing to remote node while memory | 
|  | * may still exist in local DMA zone. | 
|  | */ | 
|  |  | 
|  | static void build_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | static int node_order[MAX_NUMNODES]; | 
|  | int node, nr_nodes = 0; | 
|  | nodemask_t used_mask = NODE_MASK_NONE; | 
|  | int local_node, prev_node; | 
|  |  | 
|  | /* NUMA-aware ordering of nodes */ | 
|  | local_node = pgdat->node_id; | 
|  | prev_node = local_node; | 
|  |  | 
|  | memset(node_order, 0, sizeof(node_order)); | 
|  | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
|  | /* | 
|  | * We don't want to pressure a particular node. | 
|  | * So adding penalty to the first node in same | 
|  | * distance group to make it round-robin. | 
|  | */ | 
|  | if (node_distance(local_node, node) != | 
|  | node_distance(local_node, prev_node)) | 
|  | node_load[node] += 1; | 
|  |  | 
|  | node_order[nr_nodes++] = node; | 
|  | prev_node = node; | 
|  | } | 
|  |  | 
|  | build_zonelists_in_node_order(pgdat, node_order, nr_nodes); | 
|  | build_thisnode_zonelists(pgdat); | 
|  | pr_info("Fallback order for Node %d: ", local_node); | 
|  | for (node = 0; node < nr_nodes; node++) | 
|  | pr_cont("%d ", node_order[node]); | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | /* | 
|  | * Return node id of node used for "local" allocations. | 
|  | * I.e., first node id of first zone in arg node's generic zonelist. | 
|  | * Used for initializing percpu 'numa_mem', which is used primarily | 
|  | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | 
|  | */ | 
|  | int local_memory_node(int node) | 
|  | { | 
|  | struct zoneref *z; | 
|  |  | 
|  | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | 
|  | gfp_zone(GFP_KERNEL), | 
|  | NULL); | 
|  | return zone_to_nid(z->zone); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void setup_min_unmapped_ratio(void); | 
|  | static void setup_min_slab_ratio(void); | 
|  | #else	/* CONFIG_NUMA */ | 
|  |  | 
|  | static void build_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | int node, local_node; | 
|  | struct zoneref *zonerefs; | 
|  | int nr_zones; | 
|  |  | 
|  | local_node = pgdat->node_id; | 
|  |  | 
|  | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | 
|  | nr_zones = build_zonerefs_node(pgdat, zonerefs); | 
|  | zonerefs += nr_zones; | 
|  |  | 
|  | /* | 
|  | * Now we build the zonelist so that it contains the zones | 
|  | * of all the other nodes. | 
|  | * We don't want to pressure a particular node, so when | 
|  | * building the zones for node N, we make sure that the | 
|  | * zones coming right after the local ones are those from | 
|  | * node N+1 (modulo N) | 
|  | */ | 
|  | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); | 
|  | zonerefs += nr_zones; | 
|  | } | 
|  | for (node = 0; node < local_node; node++) { | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  | nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); | 
|  | zonerefs += nr_zones; | 
|  | } | 
|  |  | 
|  | zonerefs->zone = NULL; | 
|  | zonerefs->zone_idx = 0; | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * Boot pageset table. One per cpu which is going to be used for all | 
|  | * zones and all nodes. The parameters will be set in such a way | 
|  | * that an item put on a list will immediately be handed over to | 
|  | * the buddy list. This is safe since pageset manipulation is done | 
|  | * with interrupts disabled. | 
|  | * | 
|  | * The boot_pagesets must be kept even after bootup is complete for | 
|  | * unused processors and/or zones. They do play a role for bootstrapping | 
|  | * hotplugged processors. | 
|  | * | 
|  | * zoneinfo_show() and maybe other functions do | 
|  | * not check if the processor is online before following the pageset pointer. | 
|  | * Other parts of the kernel may not check if the zone is available. | 
|  | */ | 
|  | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); | 
|  | /* These effectively disable the pcplists in the boot pageset completely */ | 
|  | #define BOOT_PAGESET_HIGH	0 | 
|  | #define BOOT_PAGESET_BATCH	1 | 
|  | static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); | 
|  | static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); | 
|  | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); | 
|  |  | 
|  | static void __build_all_zonelists(void *data) | 
|  | { | 
|  | int nid; | 
|  | int __maybe_unused cpu; | 
|  | pg_data_t *self = data; | 
|  |  | 
|  | write_seqlock(&zonelist_update_seq); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | memset(node_load, 0, sizeof(node_load)); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This node is hotadded and no memory is yet present.   So just | 
|  | * building zonelists is fine - no need to touch other nodes. | 
|  | */ | 
|  | if (self && !node_online(self->node_id)) { | 
|  | build_zonelists(self); | 
|  | } else { | 
|  | /* | 
|  | * All possible nodes have pgdat preallocated | 
|  | * in free_area_init | 
|  | */ | 
|  | for_each_node(nid) { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  |  | 
|  | build_zonelists(pgdat); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
|  | /* | 
|  | * We now know the "local memory node" for each node-- | 
|  | * i.e., the node of the first zone in the generic zonelist. | 
|  | * Set up numa_mem percpu variable for on-line cpus.  During | 
|  | * boot, only the boot cpu should be on-line;  we'll init the | 
|  | * secondary cpus' numa_mem as they come on-line.  During | 
|  | * node/memory hotplug, we'll fixup all on-line cpus. | 
|  | */ | 
|  | for_each_online_cpu(cpu) | 
|  | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | write_sequnlock(&zonelist_update_seq); | 
|  | } | 
|  |  | 
|  | static noinline void __init | 
|  | build_all_zonelists_init(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | __build_all_zonelists(NULL); | 
|  |  | 
|  | /* | 
|  | * Initialize the boot_pagesets that are going to be used | 
|  | * for bootstrapping processors. The real pagesets for | 
|  | * each zone will be allocated later when the per cpu | 
|  | * allocator is available. | 
|  | * | 
|  | * boot_pagesets are used also for bootstrapping offline | 
|  | * cpus if the system is already booted because the pagesets | 
|  | * are needed to initialize allocators on a specific cpu too. | 
|  | * F.e. the percpu allocator needs the page allocator which | 
|  | * needs the percpu allocator in order to allocate its pagesets | 
|  | * (a chicken-egg dilemma). | 
|  | */ | 
|  | for_each_possible_cpu(cpu) | 
|  | per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); | 
|  |  | 
|  | mminit_verify_zonelist(); | 
|  | cpuset_init_current_mems_allowed(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unless system_state == SYSTEM_BOOTING. | 
|  | * | 
|  | * __ref due to call of __init annotated helper build_all_zonelists_init | 
|  | * [protected by SYSTEM_BOOTING]. | 
|  | */ | 
|  | void __ref build_all_zonelists(pg_data_t *pgdat) | 
|  | { | 
|  | unsigned long vm_total_pages; | 
|  |  | 
|  | if (system_state == SYSTEM_BOOTING) { | 
|  | build_all_zonelists_init(); | 
|  | } else { | 
|  | __build_all_zonelists(pgdat); | 
|  | /* cpuset refresh routine should be here */ | 
|  | } | 
|  | /* Get the number of free pages beyond high watermark in all zones. */ | 
|  | vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); | 
|  | /* | 
|  | * Disable grouping by mobility if the number of pages in the | 
|  | * system is too low to allow the mechanism to work. It would be | 
|  | * more accurate, but expensive to check per-zone. This check is | 
|  | * made on memory-hotadd so a system can start with mobility | 
|  | * disabled and enable it later | 
|  | */ | 
|  | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) | 
|  | page_group_by_mobility_disabled = 1; | 
|  | else | 
|  | page_group_by_mobility_disabled = 0; | 
|  |  | 
|  | pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n", | 
|  | nr_online_nodes, | 
|  | page_group_by_mobility_disabled ? "off" : "on", | 
|  | vm_total_pages); | 
|  | #ifdef CONFIG_NUMA | 
|  | pr_info("Policy zone: %s\n", zone_names[policy_zone]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ | 
|  | static bool __meminit | 
|  | overlap_memmap_init(unsigned long zone, unsigned long *pfn) | 
|  | { | 
|  | static struct memblock_region *r; | 
|  |  | 
|  | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | 
|  | if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { | 
|  | for_each_mem_region(r) { | 
|  | if (*pfn < memblock_region_memory_end_pfn(r)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (*pfn >= memblock_region_memory_base_pfn(r) && | 
|  | memblock_is_mirror(r)) { | 
|  | *pfn = memblock_region_memory_end_pfn(r); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initially all pages are reserved - free ones are freed | 
|  | * up by memblock_free_all() once the early boot process is | 
|  | * done. Non-atomic initialization, single-pass. | 
|  | * | 
|  | * All aligned pageblocks are initialized to the specified migratetype | 
|  | * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related | 
|  | * zone stats (e.g., nr_isolate_pageblock) are touched. | 
|  | */ | 
|  | void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, | 
|  | unsigned long start_pfn, unsigned long zone_end_pfn, | 
|  | enum meminit_context context, | 
|  | struct vmem_altmap *altmap, int migratetype) | 
|  | { | 
|  | unsigned long pfn, end_pfn = start_pfn + size; | 
|  | struct page *page; | 
|  |  | 
|  | if (highest_memmap_pfn < end_pfn - 1) | 
|  | highest_memmap_pfn = end_pfn - 1; | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DEVICE | 
|  | /* | 
|  | * Honor reservation requested by the driver for this ZONE_DEVICE | 
|  | * memory. We limit the total number of pages to initialize to just | 
|  | * those that might contain the memory mapping. We will defer the | 
|  | * ZONE_DEVICE page initialization until after we have released | 
|  | * the hotplug lock. | 
|  | */ | 
|  | if (zone == ZONE_DEVICE) { | 
|  | if (!altmap) | 
|  | return; | 
|  |  | 
|  | if (start_pfn == altmap->base_pfn) | 
|  | start_pfn += altmap->reserve; | 
|  | end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; ) { | 
|  | /* | 
|  | * There can be holes in boot-time mem_map[]s handed to this | 
|  | * function.  They do not exist on hotplugged memory. | 
|  | */ | 
|  | if (context == MEMINIT_EARLY) { | 
|  | if (overlap_memmap_init(zone, &pfn)) | 
|  | continue; | 
|  | if (defer_init(nid, pfn, zone_end_pfn)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | __init_single_page(page, pfn, zone, nid); | 
|  | if (context == MEMINIT_HOTPLUG) | 
|  | __SetPageReserved(page); | 
|  |  | 
|  | /* | 
|  | * Usually, we want to mark the pageblock MIGRATE_MOVABLE, | 
|  | * such that unmovable allocations won't be scattered all | 
|  | * over the place during system boot. | 
|  | */ | 
|  | if (pageblock_aligned(pfn)) { | 
|  | set_pageblock_migratetype(page, migratetype); | 
|  | cond_resched(); | 
|  | } | 
|  | pfn++; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DEVICE | 
|  | static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, | 
|  | unsigned long zone_idx, int nid, | 
|  | struct dev_pagemap *pgmap) | 
|  | { | 
|  |  | 
|  | __init_single_page(page, pfn, zone_idx, nid); | 
|  |  | 
|  | /* | 
|  | * Mark page reserved as it will need to wait for onlining | 
|  | * phase for it to be fully associated with a zone. | 
|  | * | 
|  | * We can use the non-atomic __set_bit operation for setting | 
|  | * the flag as we are still initializing the pages. | 
|  | */ | 
|  | __SetPageReserved(page); | 
|  |  | 
|  | /* | 
|  | * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer | 
|  | * and zone_device_data.  It is a bug if a ZONE_DEVICE page is | 
|  | * ever freed or placed on a driver-private list. | 
|  | */ | 
|  | page->pgmap = pgmap; | 
|  | page->zone_device_data = NULL; | 
|  |  | 
|  | /* | 
|  | * Mark the block movable so that blocks are reserved for | 
|  | * movable at startup. This will force kernel allocations | 
|  | * to reserve their blocks rather than leaking throughout | 
|  | * the address space during boot when many long-lived | 
|  | * kernel allocations are made. | 
|  | * | 
|  | * Please note that MEMINIT_HOTPLUG path doesn't clear memmap | 
|  | * because this is done early in section_activate() | 
|  | */ | 
|  | if (pageblock_aligned(pfn)) { | 
|  | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ZONE_DEVICE pages are released directly to the driver page allocator | 
|  | * which will set the page count to 1 when allocating the page. | 
|  | */ | 
|  | if (pgmap->type == MEMORY_DEVICE_PRIVATE || | 
|  | pgmap->type == MEMORY_DEVICE_COHERENT) | 
|  | set_page_count(page, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With compound page geometry and when struct pages are stored in ram most | 
|  | * tail pages are reused. Consequently, the amount of unique struct pages to | 
|  | * initialize is a lot smaller that the total amount of struct pages being | 
|  | * mapped. This is a paired / mild layering violation with explicit knowledge | 
|  | * of how the sparse_vmemmap internals handle compound pages in the lack | 
|  | * of an altmap. See vmemmap_populate_compound_pages(). | 
|  | */ | 
|  | static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | return is_power_of_2(sizeof(struct page)) && | 
|  | !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; | 
|  | } | 
|  |  | 
|  | static void __ref memmap_init_compound(struct page *head, | 
|  | unsigned long head_pfn, | 
|  | unsigned long zone_idx, int nid, | 
|  | struct dev_pagemap *pgmap, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | unsigned long pfn, end_pfn = head_pfn + nr_pages; | 
|  | unsigned int order = pgmap->vmemmap_shift; | 
|  |  | 
|  | __SetPageHead(head); | 
|  | for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | 
|  | prep_compound_tail(head, pfn - head_pfn); | 
|  | set_page_count(page, 0); | 
|  |  | 
|  | /* | 
|  | * The first tail page stores compound_mapcount_ptr() and | 
|  | * compound_order() and the second tail page stores | 
|  | * compound_pincount_ptr(). Call prep_compound_head() after | 
|  | * the first and second tail pages have been initialized to | 
|  | * not have the data overwritten. | 
|  | */ | 
|  | if (pfn == head_pfn + 2) | 
|  | prep_compound_head(head, order); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __ref memmap_init_zone_device(struct zone *zone, | 
|  | unsigned long start_pfn, | 
|  | unsigned long nr_pages, | 
|  | struct dev_pagemap *pgmap) | 
|  | { | 
|  | unsigned long pfn, end_pfn = start_pfn + nr_pages; | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | struct vmem_altmap *altmap = pgmap_altmap(pgmap); | 
|  | unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); | 
|  | unsigned long zone_idx = zone_idx(zone); | 
|  | unsigned long start = jiffies; | 
|  | int nid = pgdat->node_id; | 
|  |  | 
|  | if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The call to memmap_init should have already taken care | 
|  | * of the pages reserved for the memmap, so we can just jump to | 
|  | * the end of that region and start processing the device pages. | 
|  | */ | 
|  | if (altmap) { | 
|  | start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | 
|  | nr_pages = end_pfn - start_pfn; | 
|  | } | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | 
|  |  | 
|  | if (pfns_per_compound == 1) | 
|  | continue; | 
|  |  | 
|  | memmap_init_compound(page, pfn, zone_idx, nid, pgmap, | 
|  | compound_nr_pages(altmap, pfns_per_compound)); | 
|  | } | 
|  |  | 
|  | pr_info("%s initialised %lu pages in %ums\n", __func__, | 
|  | nr_pages, jiffies_to_msecs(jiffies - start)); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | static void __meminit zone_init_free_lists(struct zone *zone) | 
|  | { | 
|  | unsigned int order, t; | 
|  | for_each_migratetype_order(order, t) { | 
|  | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | 
|  | zone->free_area[order].nr_free = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only struct pages that correspond to ranges defined by memblock.memory | 
|  | * are zeroed and initialized by going through __init_single_page() during | 
|  | * memmap_init_zone_range(). | 
|  | * | 
|  | * But, there could be struct pages that correspond to holes in | 
|  | * memblock.memory. This can happen because of the following reasons: | 
|  | * - physical memory bank size is not necessarily the exact multiple of the | 
|  | *   arbitrary section size | 
|  | * - early reserved memory may not be listed in memblock.memory | 
|  | * - memory layouts defined with memmap= kernel parameter may not align | 
|  | *   nicely with memmap sections | 
|  | * | 
|  | * Explicitly initialize those struct pages so that: | 
|  | * - PG_Reserved is set | 
|  | * - zone and node links point to zone and node that span the page if the | 
|  | *   hole is in the middle of a zone | 
|  | * - zone and node links point to adjacent zone/node if the hole falls on | 
|  | *   the zone boundary; the pages in such holes will be prepended to the | 
|  | *   zone/node above the hole except for the trailing pages in the last | 
|  | *   section that will be appended to the zone/node below. | 
|  | */ | 
|  | static void __init init_unavailable_range(unsigned long spfn, | 
|  | unsigned long epfn, | 
|  | int zone, int node) | 
|  | { | 
|  | unsigned long pfn; | 
|  | u64 pgcnt = 0; | 
|  |  | 
|  | for (pfn = spfn; pfn < epfn; pfn++) { | 
|  | if (!pfn_valid(pageblock_start_pfn(pfn))) { | 
|  | pfn = pageblock_end_pfn(pfn) - 1; | 
|  | continue; | 
|  | } | 
|  | __init_single_page(pfn_to_page(pfn), pfn, zone, node); | 
|  | __SetPageReserved(pfn_to_page(pfn)); | 
|  | pgcnt++; | 
|  | } | 
|  |  | 
|  | if (pgcnt) | 
|  | pr_info("On node %d, zone %s: %lld pages in unavailable ranges", | 
|  | node, zone_names[zone], pgcnt); | 
|  | } | 
|  |  | 
|  | static void __init memmap_init_zone_range(struct zone *zone, | 
|  | unsigned long start_pfn, | 
|  | unsigned long end_pfn, | 
|  | unsigned long *hole_pfn) | 
|  | { | 
|  | unsigned long zone_start_pfn = zone->zone_start_pfn; | 
|  | unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; | 
|  | int nid = zone_to_nid(zone), zone_id = zone_idx(zone); | 
|  |  | 
|  | start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); | 
|  | end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); | 
|  |  | 
|  | if (start_pfn >= end_pfn) | 
|  | return; | 
|  |  | 
|  | memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, | 
|  | zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); | 
|  |  | 
|  | if (*hole_pfn < start_pfn) | 
|  | init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); | 
|  |  | 
|  | *hole_pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | static void __init memmap_init(void) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | unsigned long hole_pfn = 0; | 
|  | int i, j, zone_id = 0, nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
|  | struct pglist_data *node = NODE_DATA(nid); | 
|  |  | 
|  | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | struct zone *zone = node->node_zones + j; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | memmap_init_zone_range(zone, start_pfn, end_pfn, | 
|  | &hole_pfn); | 
|  | zone_id = j; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | /* | 
|  | * Initialize the memory map for hole in the range [memory_end, | 
|  | * section_end]. | 
|  | * Append the pages in this hole to the highest zone in the last | 
|  | * node. | 
|  | * The call to init_unavailable_range() is outside the ifdef to | 
|  | * silence the compiler warining about zone_id set but not used; | 
|  | * for FLATMEM it is a nop anyway | 
|  | */ | 
|  | end_pfn = round_up(end_pfn, PAGES_PER_SECTION); | 
|  | if (hole_pfn < end_pfn) | 
|  | #endif | 
|  | init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); | 
|  | } | 
|  |  | 
|  | void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, | 
|  | phys_addr_t min_addr, int nid, bool exact_nid) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | if (exact_nid) | 
|  | ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, | 
|  | MEMBLOCK_ALLOC_ACCESSIBLE, | 
|  | nid); | 
|  | else | 
|  | ptr = memblock_alloc_try_nid_raw(size, align, min_addr, | 
|  | MEMBLOCK_ALLOC_ACCESSIBLE, | 
|  | nid); | 
|  |  | 
|  | if (ptr && size > 0) | 
|  | page_init_poison(ptr, size); | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static int zone_batchsize(struct zone *zone) | 
|  | { | 
|  | #ifdef CONFIG_MMU | 
|  | int batch; | 
|  |  | 
|  | /* | 
|  | * The number of pages to batch allocate is either ~0.1% | 
|  | * of the zone or 1MB, whichever is smaller. The batch | 
|  | * size is striking a balance between allocation latency | 
|  | * and zone lock contention. | 
|  | */ | 
|  | batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); | 
|  | batch /= 4;		/* We effectively *= 4 below */ | 
|  | if (batch < 1) | 
|  | batch = 1; | 
|  |  | 
|  | /* | 
|  | * Clamp the batch to a 2^n - 1 value. Having a power | 
|  | * of 2 value was found to be more likely to have | 
|  | * suboptimal cache aliasing properties in some cases. | 
|  | * | 
|  | * For example if 2 tasks are alternately allocating | 
|  | * batches of pages, one task can end up with a lot | 
|  | * of pages of one half of the possible page colors | 
|  | * and the other with pages of the other colors. | 
|  | */ | 
|  | batch = rounddown_pow_of_two(batch + batch/2) - 1; | 
|  |  | 
|  | return batch; | 
|  |  | 
|  | #else | 
|  | /* The deferral and batching of frees should be suppressed under NOMMU | 
|  | * conditions. | 
|  | * | 
|  | * The problem is that NOMMU needs to be able to allocate large chunks | 
|  | * of contiguous memory as there's no hardware page translation to | 
|  | * assemble apparent contiguous memory from discontiguous pages. | 
|  | * | 
|  | * Queueing large contiguous runs of pages for batching, however, | 
|  | * causes the pages to actually be freed in smaller chunks.  As there | 
|  | * can be a significant delay between the individual batches being | 
|  | * recycled, this leads to the once large chunks of space being | 
|  | * fragmented and becoming unavailable for high-order allocations. | 
|  | */ | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int zone_highsize(struct zone *zone, int batch, int cpu_online) | 
|  | { | 
|  | #ifdef CONFIG_MMU | 
|  | int high; | 
|  | int nr_split_cpus; | 
|  | unsigned long total_pages; | 
|  |  | 
|  | if (!percpu_pagelist_high_fraction) { | 
|  | /* | 
|  | * By default, the high value of the pcp is based on the zone | 
|  | * low watermark so that if they are full then background | 
|  | * reclaim will not be started prematurely. | 
|  | */ | 
|  | total_pages = low_wmark_pages(zone); | 
|  | } else { | 
|  | /* | 
|  | * If percpu_pagelist_high_fraction is configured, the high | 
|  | * value is based on a fraction of the managed pages in the | 
|  | * zone. | 
|  | */ | 
|  | total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split the high value across all online CPUs local to the zone. Note | 
|  | * that early in boot that CPUs may not be online yet and that during | 
|  | * CPU hotplug that the cpumask is not yet updated when a CPU is being | 
|  | * onlined. For memory nodes that have no CPUs, split pcp->high across | 
|  | * all online CPUs to mitigate the risk that reclaim is triggered | 
|  | * prematurely due to pages stored on pcp lists. | 
|  | */ | 
|  | nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; | 
|  | if (!nr_split_cpus) | 
|  | nr_split_cpus = num_online_cpus(); | 
|  | high = total_pages / nr_split_cpus; | 
|  |  | 
|  | /* | 
|  | * Ensure high is at least batch*4. The multiple is based on the | 
|  | * historical relationship between high and batch. | 
|  | */ | 
|  | high = max(high, batch << 2); | 
|  |  | 
|  | return high; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pcp->high and pcp->batch values are related and generally batch is lower | 
|  | * than high. They are also related to pcp->count such that count is lower | 
|  | * than high, and as soon as it reaches high, the pcplist is flushed. | 
|  | * | 
|  | * However, guaranteeing these relations at all times would require e.g. write | 
|  | * barriers here but also careful usage of read barriers at the read side, and | 
|  | * thus be prone to error and bad for performance. Thus the update only prevents | 
|  | * store tearing. Any new users of pcp->batch and pcp->high should ensure they | 
|  | * can cope with those fields changing asynchronously, and fully trust only the | 
|  | * pcp->count field on the local CPU with interrupts disabled. | 
|  | * | 
|  | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | 
|  | * outside of boot time (or some other assurance that no concurrent updaters | 
|  | * exist). | 
|  | */ | 
|  | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | 
|  | unsigned long batch) | 
|  | { | 
|  | WRITE_ONCE(pcp->batch, batch); | 
|  | WRITE_ONCE(pcp->high, high); | 
|  | } | 
|  |  | 
|  | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) | 
|  | { | 
|  | int pindex; | 
|  |  | 
|  | memset(pcp, 0, sizeof(*pcp)); | 
|  | memset(pzstats, 0, sizeof(*pzstats)); | 
|  |  | 
|  | spin_lock_init(&pcp->lock); | 
|  | for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) | 
|  | INIT_LIST_HEAD(&pcp->lists[pindex]); | 
|  |  | 
|  | /* | 
|  | * Set batch and high values safe for a boot pageset. A true percpu | 
|  | * pageset's initialization will update them subsequently. Here we don't | 
|  | * need to be as careful as pageset_update() as nobody can access the | 
|  | * pageset yet. | 
|  | */ | 
|  | pcp->high = BOOT_PAGESET_HIGH; | 
|  | pcp->batch = BOOT_PAGESET_BATCH; | 
|  | pcp->free_factor = 0; | 
|  | } | 
|  |  | 
|  | static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, | 
|  | unsigned long batch) | 
|  | { | 
|  | struct per_cpu_pages *pcp; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | 
|  | pageset_update(pcp, high, batch); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate and set new high and batch values for all per-cpu pagesets of a | 
|  | * zone based on the zone's size. | 
|  | */ | 
|  | static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) | 
|  | { | 
|  | int new_high, new_batch; | 
|  |  | 
|  | new_batch = max(1, zone_batchsize(zone)); | 
|  | new_high = zone_highsize(zone, new_batch, cpu_online); | 
|  |  | 
|  | if (zone->pageset_high == new_high && | 
|  | zone->pageset_batch == new_batch) | 
|  | return; | 
|  |  | 
|  | zone->pageset_high = new_high; | 
|  | zone->pageset_batch = new_batch; | 
|  |  | 
|  | __zone_set_pageset_high_and_batch(zone, new_high, new_batch); | 
|  | } | 
|  |  | 
|  | void __meminit setup_zone_pageset(struct zone *zone) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* Size may be 0 on !SMP && !NUMA */ | 
|  | if (sizeof(struct per_cpu_zonestat) > 0) | 
|  | zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); | 
|  |  | 
|  | zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct per_cpu_pages *pcp; | 
|  | struct per_cpu_zonestat *pzstats; | 
|  |  | 
|  | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | 
|  | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); | 
|  | per_cpu_pages_init(pcp, pzstats); | 
|  | } | 
|  |  | 
|  | zone_set_pageset_high_and_batch(zone, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The zone indicated has a new number of managed_pages; batch sizes and percpu | 
|  | * page high values need to be recalculated. | 
|  | */ | 
|  | static void zone_pcp_update(struct zone *zone, int cpu_online) | 
|  | { | 
|  | mutex_lock(&pcp_batch_high_lock); | 
|  | zone_set_pageset_high_and_batch(zone, cpu_online); | 
|  | mutex_unlock(&pcp_batch_high_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate per cpu pagesets and initialize them. | 
|  | * Before this call only boot pagesets were available. | 
|  | */ | 
|  | void __init setup_per_cpu_pageset(void) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  | struct zone *zone; | 
|  | int __maybe_unused cpu; | 
|  |  | 
|  | for_each_populated_zone(zone) | 
|  | setup_zone_pageset(zone); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Unpopulated zones continue using the boot pagesets. | 
|  | * The numa stats for these pagesets need to be reset. | 
|  | * Otherwise, they will end up skewing the stats of | 
|  | * the nodes these zones are associated with. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); | 
|  | memset(pzstats->vm_numa_event, 0, | 
|  | sizeof(pzstats->vm_numa_event)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for_each_online_pgdat(pgdat) | 
|  | pgdat->per_cpu_nodestats = | 
|  | alloc_percpu(struct per_cpu_nodestat); | 
|  | } | 
|  |  | 
|  | static __meminit void zone_pcp_init(struct zone *zone) | 
|  | { | 
|  | /* | 
|  | * per cpu subsystem is not up at this point. The following code | 
|  | * relies on the ability of the linker to provide the | 
|  | * offset of a (static) per cpu variable into the per cpu area. | 
|  | */ | 
|  | zone->per_cpu_pageset = &boot_pageset; | 
|  | zone->per_cpu_zonestats = &boot_zonestats; | 
|  | zone->pageset_high = BOOT_PAGESET_HIGH; | 
|  | zone->pageset_batch = BOOT_PAGESET_BATCH; | 
|  |  | 
|  | if (populated_zone(zone)) | 
|  | pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name, | 
|  | zone->present_pages, zone_batchsize(zone)); | 
|  | } | 
|  |  | 
|  | void __meminit init_currently_empty_zone(struct zone *zone, | 
|  | unsigned long zone_start_pfn, | 
|  | unsigned long size) | 
|  | { | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | int zone_idx = zone_idx(zone) + 1; | 
|  |  | 
|  | if (zone_idx > pgdat->nr_zones) | 
|  | pgdat->nr_zones = zone_idx; | 
|  |  | 
|  | zone->zone_start_pfn = zone_start_pfn; | 
|  |  | 
|  | mminit_dprintk(MMINIT_TRACE, "memmap_init", | 
|  | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | 
|  | pgdat->node_id, | 
|  | (unsigned long)zone_idx(zone), | 
|  | zone_start_pfn, (zone_start_pfn + size)); | 
|  |  | 
|  | zone_init_free_lists(zone); | 
|  | zone->initialized = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_pfn_range_for_nid - Return the start and end page frames for a node | 
|  | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | 
|  | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | 
|  | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | 
|  | * | 
|  | * It returns the start and end page frame of a node based on information | 
|  | * provided by memblock_set_node(). If called for a node | 
|  | * with no available memory, a warning is printed and the start and end | 
|  | * PFNs will be 0. | 
|  | */ | 
|  | void __init get_pfn_range_for_nid(unsigned int nid, | 
|  | unsigned long *start_pfn, unsigned long *end_pfn) | 
|  | { | 
|  | unsigned long this_start_pfn, this_end_pfn; | 
|  | int i; | 
|  |  | 
|  | *start_pfn = -1UL; | 
|  | *end_pfn = 0; | 
|  |  | 
|  | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | 
|  | *start_pfn = min(*start_pfn, this_start_pfn); | 
|  | *end_pfn = max(*end_pfn, this_end_pfn); | 
|  | } | 
|  |  | 
|  | if (*start_pfn == -1UL) | 
|  | *start_pfn = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This finds a zone that can be used for ZONE_MOVABLE pages. The | 
|  | * assumption is made that zones within a node are ordered in monotonic | 
|  | * increasing memory addresses so that the "highest" populated zone is used | 
|  | */ | 
|  | static void __init find_usable_zone_for_movable(void) | 
|  | { | 
|  | int zone_index; | 
|  | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 
|  | if (zone_index == ZONE_MOVABLE) | 
|  | continue; | 
|  |  | 
|  | if (arch_zone_highest_possible_pfn[zone_index] > | 
|  | arch_zone_lowest_possible_pfn[zone_index]) | 
|  | break; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(zone_index == -1); | 
|  | movable_zone = zone_index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | 
|  | * because it is sized independent of architecture. Unlike the other zones, | 
|  | * the starting point for ZONE_MOVABLE is not fixed. It may be different | 
|  | * in each node depending on the size of each node and how evenly kernelcore | 
|  | * is distributed. This helper function adjusts the zone ranges | 
|  | * provided by the architecture for a given node by using the end of the | 
|  | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 
|  | * zones within a node are in order of monotonic increases memory addresses | 
|  | */ | 
|  | static void __init adjust_zone_range_for_zone_movable(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long node_start_pfn, | 
|  | unsigned long node_end_pfn, | 
|  | unsigned long *zone_start_pfn, | 
|  | unsigned long *zone_end_pfn) | 
|  | { | 
|  | /* Only adjust if ZONE_MOVABLE is on this node */ | 
|  | if (zone_movable_pfn[nid]) { | 
|  | /* Size ZONE_MOVABLE */ | 
|  | if (zone_type == ZONE_MOVABLE) { | 
|  | *zone_start_pfn = zone_movable_pfn[nid]; | 
|  | *zone_end_pfn = min(node_end_pfn, | 
|  | arch_zone_highest_possible_pfn[movable_zone]); | 
|  |  | 
|  | /* Adjust for ZONE_MOVABLE starting within this range */ | 
|  | } else if (!mirrored_kernelcore && | 
|  | *zone_start_pfn < zone_movable_pfn[nid] && | 
|  | *zone_end_pfn > zone_movable_pfn[nid]) { | 
|  | *zone_end_pfn = zone_movable_pfn[nid]; | 
|  |  | 
|  | /* Check if this whole range is within ZONE_MOVABLE */ | 
|  | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | 
|  | *zone_start_pfn = *zone_end_pfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of pages a zone spans in a node, including holes | 
|  | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | 
|  | */ | 
|  | static unsigned long __init zone_spanned_pages_in_node(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long node_start_pfn, | 
|  | unsigned long node_end_pfn, | 
|  | unsigned long *zone_start_pfn, | 
|  | unsigned long *zone_end_pfn) | 
|  | { | 
|  | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
|  | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
|  | /* When hotadd a new node from cpu_up(), the node should be empty */ | 
|  | if (!node_start_pfn && !node_end_pfn) | 
|  | return 0; | 
|  |  | 
|  | /* Get the start and end of the zone */ | 
|  | *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
|  | *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
|  | adjust_zone_range_for_zone_movable(nid, zone_type, | 
|  | node_start_pfn, node_end_pfn, | 
|  | zone_start_pfn, zone_end_pfn); | 
|  |  | 
|  | /* Check that this node has pages within the zone's required range */ | 
|  | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) | 
|  | return 0; | 
|  |  | 
|  | /* Move the zone boundaries inside the node if necessary */ | 
|  | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); | 
|  | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | 
|  |  | 
|  | /* Return the spanned pages */ | 
|  | return *zone_end_pfn - *zone_start_pfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 
|  | * then all holes in the requested range will be accounted for. | 
|  | */ | 
|  | unsigned long __init __absent_pages_in_range(int nid, | 
|  | unsigned long range_start_pfn, | 
|  | unsigned long range_end_pfn) | 
|  | { | 
|  | unsigned long nr_absent = range_end_pfn - range_start_pfn; | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i; | 
|  |  | 
|  | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
|  | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | 
|  | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | 
|  | nr_absent -= end_pfn - start_pfn; | 
|  | } | 
|  | return nr_absent; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * absent_pages_in_range - Return number of page frames in holes within a range | 
|  | * @start_pfn: The start PFN to start searching for holes | 
|  | * @end_pfn: The end PFN to stop searching for holes | 
|  | * | 
|  | * Return: the number of pages frames in memory holes within a range. | 
|  | */ | 
|  | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | 
|  | } | 
|  |  | 
|  | /* Return the number of page frames in holes in a zone on a node */ | 
|  | static unsigned long __init zone_absent_pages_in_node(int nid, | 
|  | unsigned long zone_type, | 
|  | unsigned long node_start_pfn, | 
|  | unsigned long node_end_pfn) | 
|  | { | 
|  | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
|  | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
|  | unsigned long zone_start_pfn, zone_end_pfn; | 
|  | unsigned long nr_absent; | 
|  |  | 
|  | /* When hotadd a new node from cpu_up(), the node should be empty */ | 
|  | if (!node_start_pfn && !node_end_pfn) | 
|  | return 0; | 
|  |  | 
|  | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
|  | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
|  |  | 
|  | adjust_zone_range_for_zone_movable(nid, zone_type, | 
|  | node_start_pfn, node_end_pfn, | 
|  | &zone_start_pfn, &zone_end_pfn); | 
|  | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); | 
|  |  | 
|  | /* | 
|  | * ZONE_MOVABLE handling. | 
|  | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | 
|  | * and vice versa. | 
|  | */ | 
|  | if (mirrored_kernelcore && zone_movable_pfn[nid]) { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | struct memblock_region *r; | 
|  |  | 
|  | for_each_mem_region(r) { | 
|  | start_pfn = clamp(memblock_region_memory_base_pfn(r), | 
|  | zone_start_pfn, zone_end_pfn); | 
|  | end_pfn = clamp(memblock_region_memory_end_pfn(r), | 
|  | zone_start_pfn, zone_end_pfn); | 
|  |  | 
|  | if (zone_type == ZONE_MOVABLE && | 
|  | memblock_is_mirror(r)) | 
|  | nr_absent += end_pfn - start_pfn; | 
|  |  | 
|  | if (zone_type == ZONE_NORMAL && | 
|  | !memblock_is_mirror(r)) | 
|  | nr_absent += end_pfn - start_pfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nr_absent; | 
|  | } | 
|  |  | 
|  | static void __init calculate_node_totalpages(struct pglist_data *pgdat, | 
|  | unsigned long node_start_pfn, | 
|  | unsigned long node_end_pfn) | 
|  | { | 
|  | unsigned long realtotalpages = 0, totalpages = 0; | 
|  | enum zone_type i; | 
|  |  | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | struct zone *zone = pgdat->node_zones + i; | 
|  | unsigned long zone_start_pfn, zone_end_pfn; | 
|  | unsigned long spanned, absent; | 
|  | unsigned long size, real_size; | 
|  |  | 
|  | spanned = zone_spanned_pages_in_node(pgdat->node_id, i, | 
|  | node_start_pfn, | 
|  | node_end_pfn, | 
|  | &zone_start_pfn, | 
|  | &zone_end_pfn); | 
|  | absent = zone_absent_pages_in_node(pgdat->node_id, i, | 
|  | node_start_pfn, | 
|  | node_end_pfn); | 
|  |  | 
|  | size = spanned; | 
|  | real_size = size - absent; | 
|  |  | 
|  | if (size) | 
|  | zone->zone_start_pfn = zone_start_pfn; | 
|  | else | 
|  | zone->zone_start_pfn = 0; | 
|  | zone->spanned_pages = size; | 
|  | zone->present_pages = real_size; | 
|  | #if defined(CONFIG_MEMORY_HOTPLUG) | 
|  | zone->present_early_pages = real_size; | 
|  | #endif | 
|  |  | 
|  | totalpages += size; | 
|  | realtotalpages += real_size; | 
|  | } | 
|  |  | 
|  | pgdat->node_spanned_pages = totalpages; | 
|  | pgdat->node_present_pages = realtotalpages; | 
|  | pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SPARSEMEM | 
|  | /* | 
|  | * Calculate the size of the zone->blockflags rounded to an unsigned long | 
|  | * Start by making sure zonesize is a multiple of pageblock_order by rounding | 
|  | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | 
|  | * round what is now in bits to nearest long in bits, then return it in | 
|  | * bytes. | 
|  | */ | 
|  | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) | 
|  | { | 
|  | unsigned long usemapsize; | 
|  |  | 
|  | zonesize += zone_start_pfn & (pageblock_nr_pages-1); | 
|  | usemapsize = roundup(zonesize, pageblock_nr_pages); | 
|  | usemapsize = usemapsize >> pageblock_order; | 
|  | usemapsize *= NR_PAGEBLOCK_BITS; | 
|  | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | 
|  |  | 
|  | return usemapsize / 8; | 
|  | } | 
|  |  | 
|  | static void __ref setup_usemap(struct zone *zone) | 
|  | { | 
|  | unsigned long usemapsize = usemap_size(zone->zone_start_pfn, | 
|  | zone->spanned_pages); | 
|  | zone->pageblock_flags = NULL; | 
|  | if (usemapsize) { | 
|  | zone->pageblock_flags = | 
|  | memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, | 
|  | zone_to_nid(zone)); | 
|  | if (!zone->pageblock_flags) | 
|  | panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", | 
|  | usemapsize, zone->name, zone_to_nid(zone)); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void setup_usemap(struct zone *zone) {} | 
|  | #endif /* CONFIG_SPARSEMEM */ | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
|  |  | 
|  | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | 
|  | void __init set_pageblock_order(void) | 
|  | { | 
|  | unsigned int order = MAX_ORDER - 1; | 
|  |  | 
|  | /* Check that pageblock_nr_pages has not already been setup */ | 
|  | if (pageblock_order) | 
|  | return; | 
|  |  | 
|  | /* Don't let pageblocks exceed the maximum allocation granularity. */ | 
|  | if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) | 
|  | order = HUGETLB_PAGE_ORDER; | 
|  |  | 
|  | /* | 
|  | * Assume the largest contiguous order of interest is a huge page. | 
|  | * This value may be variable depending on boot parameters on IA64 and | 
|  | * powerpc. | 
|  | */ | 
|  | pageblock_order = order; | 
|  | } | 
|  | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
|  |  | 
|  | /* | 
|  | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | 
|  | * is unused as pageblock_order is set at compile-time. See | 
|  | * include/linux/pageblock-flags.h for the values of pageblock_order based on | 
|  | * the kernel config | 
|  | */ | 
|  | void __init set_pageblock_order(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
|  |  | 
|  | static unsigned long __init calc_memmap_size(unsigned long spanned_pages, | 
|  | unsigned long present_pages) | 
|  | { | 
|  | unsigned long pages = spanned_pages; | 
|  |  | 
|  | /* | 
|  | * Provide a more accurate estimation if there are holes within | 
|  | * the zone and SPARSEMEM is in use. If there are holes within the | 
|  | * zone, each populated memory region may cost us one or two extra | 
|  | * memmap pages due to alignment because memmap pages for each | 
|  | * populated regions may not be naturally aligned on page boundary. | 
|  | * So the (present_pages >> 4) heuristic is a tradeoff for that. | 
|  | */ | 
|  | if (spanned_pages > present_pages + (present_pages >> 4) && | 
|  | IS_ENABLED(CONFIG_SPARSEMEM)) | 
|  | pages = present_pages; | 
|  |  | 
|  | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static void pgdat_init_split_queue(struct pglist_data *pgdat) | 
|  | { | 
|  | struct deferred_split *ds_queue = &pgdat->deferred_split_queue; | 
|  |  | 
|  | spin_lock_init(&ds_queue->split_queue_lock); | 
|  | INIT_LIST_HEAD(&ds_queue->split_queue); | 
|  | ds_queue->split_queue_len = 0; | 
|  | } | 
|  | #else | 
|  | static void pgdat_init_split_queue(struct pglist_data *pgdat) {} | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | static void pgdat_init_kcompactd(struct pglist_data *pgdat) | 
|  | { | 
|  | init_waitqueue_head(&pgdat->kcompactd_wait); | 
|  | } | 
|  | #else | 
|  | static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} | 
|  | #endif | 
|  |  | 
|  | static void __meminit pgdat_init_internals(struct pglist_data *pgdat) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pgdat_resize_init(pgdat); | 
|  | pgdat_kswapd_lock_init(pgdat); | 
|  |  | 
|  | pgdat_init_split_queue(pgdat); | 
|  | pgdat_init_kcompactd(pgdat); | 
|  |  | 
|  | init_waitqueue_head(&pgdat->kswapd_wait); | 
|  | init_waitqueue_head(&pgdat->pfmemalloc_wait); | 
|  |  | 
|  | for (i = 0; i < NR_VMSCAN_THROTTLE; i++) | 
|  | init_waitqueue_head(&pgdat->reclaim_wait[i]); | 
|  |  | 
|  | pgdat_page_ext_init(pgdat); | 
|  | lruvec_init(&pgdat->__lruvec); | 
|  | } | 
|  |  | 
|  | static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, | 
|  | unsigned long remaining_pages) | 
|  | { | 
|  | atomic_long_set(&zone->managed_pages, remaining_pages); | 
|  | zone_set_nid(zone, nid); | 
|  | zone->name = zone_names[idx]; | 
|  | zone->zone_pgdat = NODE_DATA(nid); | 
|  | spin_lock_init(&zone->lock); | 
|  | zone_seqlock_init(zone); | 
|  | zone_pcp_init(zone); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the zone data structures | 
|  | * - init pgdat internals | 
|  | * - init all zones belonging to this node | 
|  | * | 
|  | * NOTE: this function is only called during memory hotplug | 
|  | */ | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) | 
|  | { | 
|  | int nid = pgdat->node_id; | 
|  | enum zone_type z; | 
|  | int cpu; | 
|  |  | 
|  | pgdat_init_internals(pgdat); | 
|  |  | 
|  | if (pgdat->per_cpu_nodestats == &boot_nodestats) | 
|  | pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); | 
|  |  | 
|  | /* | 
|  | * Reset the nr_zones, order and highest_zoneidx before reuse. | 
|  | * Note that kswapd will init kswapd_highest_zoneidx properly | 
|  | * when it starts in the near future. | 
|  | */ | 
|  | pgdat->nr_zones = 0; | 
|  | pgdat->kswapd_order = 0; | 
|  | pgdat->kswapd_highest_zoneidx = 0; | 
|  | pgdat->node_start_pfn = 0; | 
|  | for_each_online_cpu(cpu) { | 
|  | struct per_cpu_nodestat *p; | 
|  |  | 
|  | p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); | 
|  | memset(p, 0, sizeof(*p)); | 
|  | } | 
|  |  | 
|  | for (z = 0; z < MAX_NR_ZONES; z++) | 
|  | zone_init_internals(&pgdat->node_zones[z], z, nid, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set up the zone data structures: | 
|  | *   - mark all pages reserved | 
|  | *   - mark all memory queues empty | 
|  | *   - clear the memory bitmaps | 
|  | * | 
|  | * NOTE: pgdat should get zeroed by caller. | 
|  | * NOTE: this function is only called during early init. | 
|  | */ | 
|  | static void __init free_area_init_core(struct pglist_data *pgdat) | 
|  | { | 
|  | enum zone_type j; | 
|  | int nid = pgdat->node_id; | 
|  |  | 
|  | pgdat_init_internals(pgdat); | 
|  | pgdat->per_cpu_nodestats = &boot_nodestats; | 
|  |  | 
|  | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | struct zone *zone = pgdat->node_zones + j; | 
|  | unsigned long size, freesize, memmap_pages; | 
|  |  | 
|  | size = zone->spanned_pages; | 
|  | freesize = zone->present_pages; | 
|  |  | 
|  | /* | 
|  | * Adjust freesize so that it accounts for how much memory | 
|  | * is used by this zone for memmap. This affects the watermark | 
|  | * and per-cpu initialisations | 
|  | */ | 
|  | memmap_pages = calc_memmap_size(size, freesize); | 
|  | if (!is_highmem_idx(j)) { | 
|  | if (freesize >= memmap_pages) { | 
|  | freesize -= memmap_pages; | 
|  | if (memmap_pages) | 
|  | pr_debug("  %s zone: %lu pages used for memmap\n", | 
|  | zone_names[j], memmap_pages); | 
|  | } else | 
|  | pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n", | 
|  | zone_names[j], memmap_pages, freesize); | 
|  | } | 
|  |  | 
|  | /* Account for reserved pages */ | 
|  | if (j == 0 && freesize > dma_reserve) { | 
|  | freesize -= dma_reserve; | 
|  | pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); | 
|  | } | 
|  |  | 
|  | if (!is_highmem_idx(j)) | 
|  | nr_kernel_pages += freesize; | 
|  | /* Charge for highmem memmap if there are enough kernel pages */ | 
|  | else if (nr_kernel_pages > memmap_pages * 2) | 
|  | nr_kernel_pages -= memmap_pages; | 
|  | nr_all_pages += freesize; | 
|  |  | 
|  | /* | 
|  | * Set an approximate value for lowmem here, it will be adjusted | 
|  | * when the bootmem allocator frees pages into the buddy system. | 
|  | * And all highmem pages will be managed by the buddy system. | 
|  | */ | 
|  | zone_init_internals(zone, j, nid, freesize); | 
|  |  | 
|  | if (!size) | 
|  | continue; | 
|  |  | 
|  | set_pageblock_order(); | 
|  | setup_usemap(zone); | 
|  | init_currently_empty_zone(zone, zone->zone_start_pfn, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FLATMEM | 
|  | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | 
|  | { | 
|  | unsigned long __maybe_unused start = 0; | 
|  | unsigned long __maybe_unused offset = 0; | 
|  |  | 
|  | /* Skip empty nodes */ | 
|  | if (!pgdat->node_spanned_pages) | 
|  | return; | 
|  |  | 
|  | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 
|  | offset = pgdat->node_start_pfn - start; | 
|  | /* ia64 gets its own node_mem_map, before this, without bootmem */ | 
|  | if (!pgdat->node_mem_map) { | 
|  | unsigned long size, end; | 
|  | struct page *map; | 
|  |  | 
|  | /* | 
|  | * The zone's endpoints aren't required to be MAX_ORDER | 
|  | * aligned but the node_mem_map endpoints must be in order | 
|  | * for the buddy allocator to function correctly. | 
|  | */ | 
|  | end = pgdat_end_pfn(pgdat); | 
|  | end = ALIGN(end, MAX_ORDER_NR_PAGES); | 
|  | size =  (end - start) * sizeof(struct page); | 
|  | map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, | 
|  | pgdat->node_id, false); | 
|  | if (!map) | 
|  | panic("Failed to allocate %ld bytes for node %d memory map\n", | 
|  | size, pgdat->node_id); | 
|  | pgdat->node_mem_map = map + offset; | 
|  | } | 
|  | pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", | 
|  | __func__, pgdat->node_id, (unsigned long)pgdat, | 
|  | (unsigned long)pgdat->node_mem_map); | 
|  | #ifndef CONFIG_NUMA | 
|  | /* | 
|  | * With no DISCONTIG, the global mem_map is just set as node 0's | 
|  | */ | 
|  | if (pgdat == NODE_DATA(0)) { | 
|  | mem_map = NODE_DATA(0)->node_mem_map; | 
|  | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | 
|  | mem_map -= offset; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #else | 
|  | static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } | 
|  | #endif /* CONFIG_FLATMEM */ | 
|  |  | 
|  | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
|  | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) | 
|  | { | 
|  | pgdat->first_deferred_pfn = ULONG_MAX; | 
|  | } | 
|  | #else | 
|  | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} | 
|  | #endif | 
|  |  | 
|  | static void __init free_area_init_node(int nid) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | unsigned long start_pfn = 0; | 
|  | unsigned long end_pfn = 0; | 
|  |  | 
|  | /* pg_data_t should be reset to zero when it's allocated */ | 
|  | WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); | 
|  |  | 
|  | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
|  |  | 
|  | pgdat->node_id = nid; | 
|  | pgdat->node_start_pfn = start_pfn; | 
|  | pgdat->per_cpu_nodestats = NULL; | 
|  |  | 
|  | if (start_pfn != end_pfn) { | 
|  | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, | 
|  | (u64)start_pfn << PAGE_SHIFT, | 
|  | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | 
|  | } else { | 
|  | pr_info("Initmem setup node %d as memoryless\n", nid); | 
|  | } | 
|  |  | 
|  | calculate_node_totalpages(pgdat, start_pfn, end_pfn); | 
|  |  | 
|  | alloc_node_mem_map(pgdat); | 
|  | pgdat_set_deferred_range(pgdat); | 
|  |  | 
|  | free_area_init_core(pgdat); | 
|  | } | 
|  |  | 
|  | static void __init free_area_init_memoryless_node(int nid) | 
|  | { | 
|  | free_area_init_node(nid); | 
|  | } | 
|  |  | 
|  | #if MAX_NUMNODES > 1 | 
|  | /* | 
|  | * Figure out the number of possible node ids. | 
|  | */ | 
|  | void __init setup_nr_node_ids(void) | 
|  | { | 
|  | unsigned int highest; | 
|  |  | 
|  | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); | 
|  | nr_node_ids = highest + 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * node_map_pfn_alignment - determine the maximum internode alignment | 
|  | * | 
|  | * This function should be called after node map is populated and sorted. | 
|  | * It calculates the maximum power of two alignment which can distinguish | 
|  | * all the nodes. | 
|  | * | 
|  | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | 
|  | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the | 
|  | * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is | 
|  | * shifted, 1GiB is enough and this function will indicate so. | 
|  | * | 
|  | * This is used to test whether pfn -> nid mapping of the chosen memory | 
|  | * model has fine enough granularity to avoid incorrect mapping for the | 
|  | * populated node map. | 
|  | * | 
|  | * Return: the determined alignment in pfn's.  0 if there is no alignment | 
|  | * requirement (single node). | 
|  | */ | 
|  | unsigned long __init node_map_pfn_alignment(void) | 
|  | { | 
|  | unsigned long accl_mask = 0, last_end = 0; | 
|  | unsigned long start, end, mask; | 
|  | int last_nid = NUMA_NO_NODE; | 
|  | int i, nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | 
|  | if (!start || last_nid < 0 || last_nid == nid) { | 
|  | last_nid = nid; | 
|  | last_end = end; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start with a mask granular enough to pin-point to the | 
|  | * start pfn and tick off bits one-by-one until it becomes | 
|  | * too coarse to separate the current node from the last. | 
|  | */ | 
|  | mask = ~((1 << __ffs(start)) - 1); | 
|  | while (mask && last_end <= (start & (mask << 1))) | 
|  | mask <<= 1; | 
|  |  | 
|  | /* accumulate all internode masks */ | 
|  | accl_mask |= mask; | 
|  | } | 
|  |  | 
|  | /* convert mask to number of pages */ | 
|  | return ~accl_mask + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * early_calculate_totalpages() | 
|  | * Sum pages in active regions for movable zone. | 
|  | * Populate N_MEMORY for calculating usable_nodes. | 
|  | */ | 
|  | static unsigned long __init early_calculate_totalpages(void) | 
|  | { | 
|  | unsigned long totalpages = 0; | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i, nid; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
|  | unsigned long pages = end_pfn - start_pfn; | 
|  |  | 
|  | totalpages += pages; | 
|  | if (pages) | 
|  | node_set_state(nid, N_MEMORY); | 
|  | } | 
|  | return totalpages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the PFN the Movable zone begins in each node. Kernel memory | 
|  | * is spread evenly between nodes as long as the nodes have enough | 
|  | * memory. When they don't, some nodes will have more kernelcore than | 
|  | * others | 
|  | */ | 
|  | static void __init find_zone_movable_pfns_for_nodes(void) | 
|  | { | 
|  | int i, nid; | 
|  | unsigned long usable_startpfn; | 
|  | unsigned long kernelcore_node, kernelcore_remaining; | 
|  | /* save the state before borrow the nodemask */ | 
|  | nodemask_t saved_node_state = node_states[N_MEMORY]; | 
|  | unsigned long totalpages = early_calculate_totalpages(); | 
|  | int usable_nodes = nodes_weight(node_states[N_MEMORY]); | 
|  | struct memblock_region *r; | 
|  |  | 
|  | /* Need to find movable_zone earlier when movable_node is specified. */ | 
|  | find_usable_zone_for_movable(); | 
|  |  | 
|  | /* | 
|  | * If movable_node is specified, ignore kernelcore and movablecore | 
|  | * options. | 
|  | */ | 
|  | if (movable_node_is_enabled()) { | 
|  | for_each_mem_region(r) { | 
|  | if (!memblock_is_hotpluggable(r)) | 
|  | continue; | 
|  |  | 
|  | nid = memblock_get_region_node(r); | 
|  |  | 
|  | usable_startpfn = PFN_DOWN(r->base); | 
|  | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
|  | min(usable_startpfn, zone_movable_pfn[nid]) : | 
|  | usable_startpfn; | 
|  | } | 
|  |  | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If kernelcore=mirror is specified, ignore movablecore option | 
|  | */ | 
|  | if (mirrored_kernelcore) { | 
|  | bool mem_below_4gb_not_mirrored = false; | 
|  |  | 
|  | for_each_mem_region(r) { | 
|  | if (memblock_is_mirror(r)) | 
|  | continue; | 
|  |  | 
|  | nid = memblock_get_region_node(r); | 
|  |  | 
|  | usable_startpfn = memblock_region_memory_base_pfn(r); | 
|  |  | 
|  | if (usable_startpfn < PHYS_PFN(SZ_4G)) { | 
|  | mem_below_4gb_not_mirrored = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
|  | min(usable_startpfn, zone_movable_pfn[nid]) : | 
|  | usable_startpfn; | 
|  | } | 
|  |  | 
|  | if (mem_below_4gb_not_mirrored) | 
|  | pr_warn("This configuration results in unmirrored kernel memory.\n"); | 
|  |  | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If kernelcore=nn% or movablecore=nn% was specified, calculate the | 
|  | * amount of necessary memory. | 
|  | */ | 
|  | if (required_kernelcore_percent) | 
|  | required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / | 
|  | 10000UL; | 
|  | if (required_movablecore_percent) | 
|  | required_movablecore = (totalpages * 100 * required_movablecore_percent) / | 
|  | 10000UL; | 
|  |  | 
|  | /* | 
|  | * If movablecore= was specified, calculate what size of | 
|  | * kernelcore that corresponds so that memory usable for | 
|  | * any allocation type is evenly spread. If both kernelcore | 
|  | * and movablecore are specified, then the value of kernelcore | 
|  | * will be used for required_kernelcore if it's greater than | 
|  | * what movablecore would have allowed. | 
|  | */ | 
|  | if (required_movablecore) { | 
|  | unsigned long corepages; | 
|  |  | 
|  | /* | 
|  | * Round-up so that ZONE_MOVABLE is at least as large as what | 
|  | * was requested by the user | 
|  | */ | 
|  | required_movablecore = | 
|  | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | 
|  | required_movablecore = min(totalpages, required_movablecore); | 
|  | corepages = totalpages - required_movablecore; | 
|  |  | 
|  | required_kernelcore = max(required_kernelcore, corepages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If kernelcore was not specified or kernelcore size is larger | 
|  | * than totalpages, there is no ZONE_MOVABLE. | 
|  | */ | 
|  | if (!required_kernelcore || required_kernelcore >= totalpages) | 
|  | goto out; | 
|  |  | 
|  | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | 
|  | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | 
|  |  | 
|  | restart: | 
|  | /* Spread kernelcore memory as evenly as possible throughout nodes */ | 
|  | kernelcore_node = required_kernelcore / usable_nodes; | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | unsigned long start_pfn, end_pfn; | 
|  |  | 
|  | /* | 
|  | * Recalculate kernelcore_node if the division per node | 
|  | * now exceeds what is necessary to satisfy the requested | 
|  | * amount of memory for the kernel | 
|  | */ | 
|  | if (required_kernelcore < kernelcore_node) | 
|  | kernelcore_node = required_kernelcore / usable_nodes; | 
|  |  | 
|  | /* | 
|  | * As the map is walked, we track how much memory is usable | 
|  | * by the kernel using kernelcore_remaining. When it is | 
|  | * 0, the rest of the node is usable by ZONE_MOVABLE | 
|  | */ | 
|  | kernelcore_remaining = kernelcore_node; | 
|  |  | 
|  | /* Go through each range of PFNs within this node */ | 
|  | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
|  | unsigned long size_pages; | 
|  |  | 
|  | start_pfn = max(start_pfn, zone_movable_pfn[nid]); | 
|  | if (start_pfn >= end_pfn) | 
|  | continue; | 
|  |  | 
|  | /* Account for what is only usable for kernelcore */ | 
|  | if (start_pfn < usable_startpfn) { | 
|  | unsigned long kernel_pages; | 
|  | kernel_pages = min(end_pfn, usable_startpfn) | 
|  | - start_pfn; | 
|  |  | 
|  | kernelcore_remaining -= min(kernel_pages, | 
|  | kernelcore_remaining); | 
|  | required_kernelcore -= min(kernel_pages, | 
|  | required_kernelcore); | 
|  |  | 
|  | /* Continue if range is now fully accounted */ | 
|  | if (end_pfn <= usable_startpfn) { | 
|  |  | 
|  | /* | 
|  | * Push zone_movable_pfn to the end so | 
|  | * that if we have to rebalance | 
|  | * kernelcore across nodes, we will | 
|  | * not double account here | 
|  | */ | 
|  | zone_movable_pfn[nid] = end_pfn; | 
|  | continue; | 
|  | } | 
|  | start_pfn = usable_startpfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The usable PFN range for ZONE_MOVABLE is from | 
|  | * start_pfn->end_pfn. Calculate size_pages as the | 
|  | * number of pages used as kernelcore | 
|  | */ | 
|  | size_pages = end_pfn - start_pfn; | 
|  | if (size_pages > kernelcore_remaining) | 
|  | size_pages = kernelcore_remaining; | 
|  | zone_movable_pfn[nid] = start_pfn + size_pages; | 
|  |  | 
|  | /* | 
|  | * Some kernelcore has been met, update counts and | 
|  | * break if the kernelcore for this node has been | 
|  | * satisfied | 
|  | */ | 
|  | required_kernelcore -= min(required_kernelcore, | 
|  | size_pages); | 
|  | kernelcore_remaining -= size_pages; | 
|  | if (!kernelcore_remaining) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is still required_kernelcore, we do another pass with one | 
|  | * less node in the count. This will push zone_movable_pfn[nid] further | 
|  | * along on the nodes that still have memory until kernelcore is | 
|  | * satisfied | 
|  | */ | 
|  | usable_nodes--; | 
|  | if (usable_nodes && required_kernelcore > usable_nodes) | 
|  | goto restart; | 
|  |  | 
|  | out2: | 
|  | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | 
|  | for (nid = 0; nid < MAX_NUMNODES; nid++) { | 
|  | unsigned long start_pfn, end_pfn; | 
|  |  | 
|  | zone_movable_pfn[nid] = | 
|  | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | 
|  |  | 
|  | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
|  | if (zone_movable_pfn[nid] >= end_pfn) | 
|  | zone_movable_pfn[nid] = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* restore the node_state */ | 
|  | node_states[N_MEMORY] = saved_node_state; | 
|  | } | 
|  |  | 
|  | /* Any regular or high memory on that node ? */ | 
|  | static void check_for_memory(pg_data_t *pgdat, int nid) | 
|  | { | 
|  | enum zone_type zone_type; | 
|  |  | 
|  | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | 
|  | struct zone *zone = &pgdat->node_zones[zone_type]; | 
|  | if (populated_zone(zone)) { | 
|  | if (IS_ENABLED(CONFIG_HIGHMEM)) | 
|  | node_set_state(nid, N_HIGH_MEMORY); | 
|  | if (zone_type <= ZONE_NORMAL) | 
|  | node_set_state(nid, N_NORMAL_MEMORY); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For | 
|  | * such cases we allow max_zone_pfn sorted in the descending order | 
|  | */ | 
|  | bool __weak arch_has_descending_max_zone_pfns(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_area_init - Initialise all pg_data_t and zone data | 
|  | * @max_zone_pfn: an array of max PFNs for each zone | 
|  | * | 
|  | * This will call free_area_init_node() for each active node in the system. | 
|  | * Using the page ranges provided by memblock_set_node(), the size of each | 
|  | * zone in each node and their holes is calculated. If the maximum PFN | 
|  | * between two adjacent zones match, it is assumed that the zone is empty. | 
|  | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | 
|  | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | 
|  | * starts where the previous one ended. For example, ZONE_DMA32 starts | 
|  | * at arch_max_dma_pfn. | 
|  | */ | 
|  | void __init free_area_init(unsigned long *max_zone_pfn) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | int i, nid, zone; | 
|  | bool descending; | 
|  |  | 
|  | /* Record where the zone boundaries are */ | 
|  | memset(arch_zone_lowest_possible_pfn, 0, | 
|  | sizeof(arch_zone_lowest_possible_pfn)); | 
|  | memset(arch_zone_highest_possible_pfn, 0, | 
|  | sizeof(arch_zone_highest_possible_pfn)); | 
|  |  | 
|  | start_pfn = PHYS_PFN(memblock_start_of_DRAM()); | 
|  | descending = arch_has_descending_max_zone_pfns(); | 
|  |  | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | if (descending) | 
|  | zone = MAX_NR_ZONES - i - 1; | 
|  | else | 
|  | zone = i; | 
|  |  | 
|  | if (zone == ZONE_MOVABLE) | 
|  | continue; | 
|  |  | 
|  | end_pfn = max(max_zone_pfn[zone], start_pfn); | 
|  | arch_zone_lowest_possible_pfn[zone] = start_pfn; | 
|  | arch_zone_highest_possible_pfn[zone] = end_pfn; | 
|  |  | 
|  | start_pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | 
|  | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | 
|  | find_zone_movable_pfns_for_nodes(); | 
|  |  | 
|  | /* Print out the zone ranges */ | 
|  | pr_info("Zone ranges:\n"); | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | if (i == ZONE_MOVABLE) | 
|  | continue; | 
|  | pr_info("  %-8s ", zone_names[i]); | 
|  | if (arch_zone_lowest_possible_pfn[i] == | 
|  | arch_zone_highest_possible_pfn[i]) | 
|  | pr_cont("empty\n"); | 
|  | else | 
|  | pr_cont("[mem %#018Lx-%#018Lx]\n", | 
|  | (u64)arch_zone_lowest_possible_pfn[i] | 
|  | << PAGE_SHIFT, | 
|  | ((u64)arch_zone_highest_possible_pfn[i] | 
|  | << PAGE_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | 
|  | pr_info("Movable zone start for each node\n"); | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | if (zone_movable_pfn[i]) | 
|  | pr_info("  Node %d: %#018Lx\n", i, | 
|  | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print out the early node map, and initialize the | 
|  | * subsection-map relative to active online memory ranges to | 
|  | * enable future "sub-section" extensions of the memory map. | 
|  | */ | 
|  | pr_info("Early memory node ranges\n"); | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
|  | pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid, | 
|  | (u64)start_pfn << PAGE_SHIFT, | 
|  | ((u64)end_pfn << PAGE_SHIFT) - 1); | 
|  | subsection_map_init(start_pfn, end_pfn - start_pfn); | 
|  | } | 
|  |  | 
|  | /* Initialise every node */ | 
|  | mminit_verify_pageflags_layout(); | 
|  | setup_nr_node_ids(); | 
|  | for_each_node(nid) { | 
|  | pg_data_t *pgdat; | 
|  |  | 
|  | if (!node_online(nid)) { | 
|  | pr_info("Initializing node %d as memoryless\n", nid); | 
|  |  | 
|  | /* Allocator not initialized yet */ | 
|  | pgdat = arch_alloc_nodedata(nid); | 
|  | if (!pgdat) { | 
|  | pr_err("Cannot allocate %zuB for node %d.\n", | 
|  | sizeof(*pgdat), nid); | 
|  | continue; | 
|  | } | 
|  | arch_refresh_nodedata(nid, pgdat); | 
|  | free_area_init_memoryless_node(nid); | 
|  |  | 
|  | /* | 
|  | * We do not want to confuse userspace by sysfs | 
|  | * files/directories for node without any memory | 
|  | * attached to it, so this node is not marked as | 
|  | * N_MEMORY and not marked online so that no sysfs | 
|  | * hierarchy will be created via register_one_node for | 
|  | * it. The pgdat will get fully initialized by | 
|  | * hotadd_init_pgdat() when memory is hotplugged into | 
|  | * this node. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pgdat = NODE_DATA(nid); | 
|  | free_area_init_node(nid); | 
|  |  | 
|  | /* Any memory on that node */ | 
|  | if (pgdat->node_present_pages) | 
|  | node_set_state(nid, N_MEMORY); | 
|  | check_for_memory(pgdat, nid); | 
|  | } | 
|  |  | 
|  | memmap_init(); | 
|  | } | 
|  |  | 
|  | static int __init cmdline_parse_core(char *p, unsigned long *core, | 
|  | unsigned long *percent) | 
|  | { | 
|  | unsigned long long coremem; | 
|  | char *endptr; | 
|  |  | 
|  | if (!p) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Value may be a percentage of total memory, otherwise bytes */ | 
|  | coremem = simple_strtoull(p, &endptr, 0); | 
|  | if (*endptr == '%') { | 
|  | /* Paranoid check for percent values greater than 100 */ | 
|  | WARN_ON(coremem > 100); | 
|  |  | 
|  | *percent = coremem; | 
|  | } else { | 
|  | coremem = memparse(p, &p); | 
|  | /* Paranoid check that UL is enough for the coremem value */ | 
|  | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | 
|  |  | 
|  | *core = coremem >> PAGE_SHIFT; | 
|  | *percent = 0UL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kernelcore=size sets the amount of memory for use for allocations that | 
|  | * cannot be reclaimed or migrated. | 
|  | */ | 
|  | static int __init cmdline_parse_kernelcore(char *p) | 
|  | { | 
|  | /* parse kernelcore=mirror */ | 
|  | if (parse_option_str(p, "mirror")) { | 
|  | mirrored_kernelcore = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cmdline_parse_core(p, &required_kernelcore, | 
|  | &required_kernelcore_percent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * movablecore=size sets the amount of memory for use for allocations that | 
|  | * can be reclaimed or migrated. | 
|  | */ | 
|  | static int __init cmdline_parse_movablecore(char *p) | 
|  | { | 
|  | return cmdline_parse_core(p, &required_movablecore, | 
|  | &required_movablecore_percent); | 
|  | } | 
|  |  | 
|  | early_param("kernelcore", cmdline_parse_kernelcore); | 
|  | early_param("movablecore", cmdline_parse_movablecore); | 
|  |  | 
|  | void adjust_managed_page_count(struct page *page, long count) | 
|  | { | 
|  | atomic_long_add(count, &page_zone(page)->managed_pages); | 
|  | totalram_pages_add(count); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (PageHighMem(page)) | 
|  | totalhigh_pages_add(count); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(adjust_managed_page_count); | 
|  |  | 
|  | unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) | 
|  | { | 
|  | void *pos; | 
|  | unsigned long pages = 0; | 
|  |  | 
|  | start = (void *)PAGE_ALIGN((unsigned long)start); | 
|  | end = (void *)((unsigned long)end & PAGE_MASK); | 
|  | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | 
|  | struct page *page = virt_to_page(pos); | 
|  | void *direct_map_addr; | 
|  |  | 
|  | /* | 
|  | * 'direct_map_addr' might be different from 'pos' | 
|  | * because some architectures' virt_to_page() | 
|  | * work with aliases.  Getting the direct map | 
|  | * address ensures that we get a _writeable_ | 
|  | * alias for the memset(). | 
|  | */ | 
|  | direct_map_addr = page_address(page); | 
|  | /* | 
|  | * Perform a kasan-unchecked memset() since this memory | 
|  | * has not been initialized. | 
|  | */ | 
|  | direct_map_addr = kasan_reset_tag(direct_map_addr); | 
|  | if ((unsigned int)poison <= 0xFF) | 
|  | memset(direct_map_addr, poison, PAGE_SIZE); | 
|  |  | 
|  | free_reserved_page(page); | 
|  | } | 
|  |  | 
|  | if (pages && s) | 
|  | pr_info("Freeing %s memory: %ldK\n", s, K(pages)); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | void __init mem_init_print_info(void) | 
|  | { | 
|  | unsigned long physpages, codesize, datasize, rosize, bss_size; | 
|  | unsigned long init_code_size, init_data_size; | 
|  |  | 
|  | physpages = get_num_physpages(); | 
|  | codesize = _etext - _stext; | 
|  | datasize = _edata - _sdata; | 
|  | rosize = __end_rodata - __start_rodata; | 
|  | bss_size = __bss_stop - __bss_start; | 
|  | init_data_size = __init_end - __init_begin; | 
|  | init_code_size = _einittext - _sinittext; | 
|  |  | 
|  | /* | 
|  | * Detect special cases and adjust section sizes accordingly: | 
|  | * 1) .init.* may be embedded into .data sections | 
|  | * 2) .init.text.* may be out of [__init_begin, __init_end], | 
|  | *    please refer to arch/tile/kernel/vmlinux.lds.S. | 
|  | * 3) .rodata.* may be embedded into .text or .data sections. | 
|  | */ | 
|  | #define adj_init_size(start, end, size, pos, adj) \ | 
|  | do { \ | 
|  | if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ | 
|  | size -= adj; \ | 
|  | } while (0) | 
|  |  | 
|  | adj_init_size(__init_begin, __init_end, init_data_size, | 
|  | _sinittext, init_code_size); | 
|  | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | 
|  | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | 
|  | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | 
|  | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | 
|  |  | 
|  | #undef	adj_init_size | 
|  |  | 
|  | pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" | 
|  | #ifdef	CONFIG_HIGHMEM | 
|  | ", %luK highmem" | 
|  | #endif | 
|  | ")\n", | 
|  | K(nr_free_pages()), K(physpages), | 
|  | codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, | 
|  | (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, | 
|  | K(physpages - totalram_pages() - totalcma_pages), | 
|  | K(totalcma_pages) | 
|  | #ifdef	CONFIG_HIGHMEM | 
|  | , K(totalhigh_pages()) | 
|  | #endif | 
|  | ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_dma_reserve - set the specified number of pages reserved in the first zone | 
|  | * @new_dma_reserve: The number of pages to mark reserved | 
|  | * | 
|  | * The per-cpu batchsize and zone watermarks are determined by managed_pages. | 
|  | * In the DMA zone, a significant percentage may be consumed by kernel image | 
|  | * and other unfreeable allocations which can skew the watermarks badly. This | 
|  | * function may optionally be used to account for unfreeable pages in the | 
|  | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | 
|  | * smaller per-cpu batchsize. | 
|  | */ | 
|  | void __init set_dma_reserve(unsigned long new_dma_reserve) | 
|  | { | 
|  | dma_reserve = new_dma_reserve; | 
|  | } | 
|  |  | 
|  | static int page_alloc_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | lru_add_drain_cpu(cpu); | 
|  | mlock_page_drain_remote(cpu); | 
|  | drain_pages(cpu); | 
|  |  | 
|  | /* | 
|  | * Spill the event counters of the dead processor | 
|  | * into the current processors event counters. | 
|  | * This artificially elevates the count of the current | 
|  | * processor. | 
|  | */ | 
|  | vm_events_fold_cpu(cpu); | 
|  |  | 
|  | /* | 
|  | * Zero the differential counters of the dead processor | 
|  | * so that the vm statistics are consistent. | 
|  | * | 
|  | * This is only okay since the processor is dead and cannot | 
|  | * race with what we are doing. | 
|  | */ | 
|  | cpu_vm_stats_fold(cpu); | 
|  |  | 
|  | for_each_populated_zone(zone) | 
|  | zone_pcp_update(zone, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int page_alloc_cpu_online(unsigned int cpu) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_populated_zone(zone) | 
|  | zone_pcp_update(zone, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | int hashdist = HASHDIST_DEFAULT; | 
|  |  | 
|  | static int __init set_hashdist(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | hashdist = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("hashdist=", set_hashdist); | 
|  | #endif | 
|  |  | 
|  | void __init page_alloc_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | if (num_node_state(N_MEMORY) == 1) | 
|  | hashdist = 0; | 
|  | #endif | 
|  |  | 
|  | ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, | 
|  | "mm/page_alloc:pcp", | 
|  | page_alloc_cpu_online, | 
|  | page_alloc_cpu_dead); | 
|  | WARN_ON(ret < 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio | 
|  | *	or min_free_kbytes changes. | 
|  | */ | 
|  | static void calculate_totalreserve_pages(void) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  | unsigned long reserve_pages = 0; | 
|  | enum zone_type i, j; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  |  | 
|  | pgdat->totalreserve_pages = 0; | 
|  |  | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | struct zone *zone = pgdat->node_zones + i; | 
|  | long max = 0; | 
|  | unsigned long managed_pages = zone_managed_pages(zone); | 
|  |  | 
|  | /* Find valid and maximum lowmem_reserve in the zone */ | 
|  | for (j = i; j < MAX_NR_ZONES; j++) { | 
|  | if (zone->lowmem_reserve[j] > max) | 
|  | max = zone->lowmem_reserve[j]; | 
|  | } | 
|  |  | 
|  | /* we treat the high watermark as reserved pages. */ | 
|  | max += high_wmark_pages(zone); | 
|  |  | 
|  | if (max > managed_pages) | 
|  | max = managed_pages; | 
|  |  | 
|  | pgdat->totalreserve_pages += max; | 
|  |  | 
|  | reserve_pages += max; | 
|  | } | 
|  | } | 
|  | totalreserve_pages = reserve_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_per_zone_lowmem_reserve - called whenever | 
|  | *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone | 
|  | *	has a correct pages reserved value, so an adequate number of | 
|  | *	pages are left in the zone after a successful __alloc_pages(). | 
|  | */ | 
|  | static void setup_per_zone_lowmem_reserve(void) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  | enum zone_type i, j; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  | for (i = 0; i < MAX_NR_ZONES - 1; i++) { | 
|  | struct zone *zone = &pgdat->node_zones[i]; | 
|  | int ratio = sysctl_lowmem_reserve_ratio[i]; | 
|  | bool clear = !ratio || !zone_managed_pages(zone); | 
|  | unsigned long managed_pages = 0; | 
|  |  | 
|  | for (j = i + 1; j < MAX_NR_ZONES; j++) { | 
|  | struct zone *upper_zone = &pgdat->node_zones[j]; | 
|  |  | 
|  | managed_pages += zone_managed_pages(upper_zone); | 
|  |  | 
|  | if (clear) | 
|  | zone->lowmem_reserve[j] = 0; | 
|  | else | 
|  | zone->lowmem_reserve[j] = managed_pages / ratio; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update totalreserve_pages */ | 
|  | calculate_totalreserve_pages(); | 
|  | } | 
|  |  | 
|  | static void __setup_per_zone_wmarks(void) | 
|  | { | 
|  | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
|  | unsigned long lowmem_pages = 0; | 
|  | struct zone *zone; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Calculate total number of !ZONE_HIGHMEM pages */ | 
|  | for_each_zone(zone) { | 
|  | if (!is_highmem(zone)) | 
|  | lowmem_pages += zone_managed_pages(zone); | 
|  | } | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | u64 tmp; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | tmp = (u64)pages_min * zone_managed_pages(zone); | 
|  | do_div(tmp, lowmem_pages); | 
|  | if (is_highmem(zone)) { | 
|  | /* | 
|  | * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 
|  | * need highmem pages, so cap pages_min to a small | 
|  | * value here. | 
|  | * | 
|  | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) | 
|  | * deltas control async page reclaim, and so should | 
|  | * not be capped for highmem. | 
|  | */ | 
|  | unsigned long min_pages; | 
|  |  | 
|  | min_pages = zone_managed_pages(zone) / 1024; | 
|  | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); | 
|  | zone->_watermark[WMARK_MIN] = min_pages; | 
|  | } else { | 
|  | /* | 
|  | * If it's a lowmem zone, reserve a number of pages | 
|  | * proportionate to the zone's size. | 
|  | */ | 
|  | zone->_watermark[WMARK_MIN] = tmp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the kswapd watermarks distance according to the | 
|  | * scale factor in proportion to available memory, but | 
|  | * ensure a minimum size on small systems. | 
|  | */ | 
|  | tmp = max_t(u64, tmp >> 2, | 
|  | mult_frac(zone_managed_pages(zone), | 
|  | watermark_scale_factor, 10000)); | 
|  |  | 
|  | zone->watermark_boost = 0; | 
|  | zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp; | 
|  | zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; | 
|  | zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; | 
|  |  | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  |  | 
|  | /* update totalreserve_pages */ | 
|  | calculate_totalreserve_pages(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * setup_per_zone_wmarks - called when min_free_kbytes changes | 
|  | * or when memory is hot-{added|removed} | 
|  | * | 
|  | * Ensures that the watermark[min,low,high] values for each zone are set | 
|  | * correctly with respect to min_free_kbytes. | 
|  | */ | 
|  | void setup_per_zone_wmarks(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | static DEFINE_SPINLOCK(lock); | 
|  |  | 
|  | spin_lock(&lock); | 
|  | __setup_per_zone_wmarks(); | 
|  | spin_unlock(&lock); | 
|  |  | 
|  | /* | 
|  | * The watermark size have changed so update the pcpu batch | 
|  | * and high limits or the limits may be inappropriate. | 
|  | */ | 
|  | for_each_zone(zone) | 
|  | zone_pcp_update(zone, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise min_free_kbytes. | 
|  | * | 
|  | * For small machines we want it small (128k min).  For large machines | 
|  | * we want it large (256MB max).  But it is not linear, because network | 
|  | * bandwidth does not increase linearly with machine size.  We use | 
|  | * | 
|  | *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
|  | *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
|  | * | 
|  | * which yields | 
|  | * | 
|  | * 16MB:	512k | 
|  | * 32MB:	724k | 
|  | * 64MB:	1024k | 
|  | * 128MB:	1448k | 
|  | * 256MB:	2048k | 
|  | * 512MB:	2896k | 
|  | * 1024MB:	4096k | 
|  | * 2048MB:	5792k | 
|  | * 4096MB:	8192k | 
|  | * 8192MB:	11584k | 
|  | * 16384MB:	16384k | 
|  | */ | 
|  | void calculate_min_free_kbytes(void) | 
|  | { | 
|  | unsigned long lowmem_kbytes; | 
|  | int new_min_free_kbytes; | 
|  |  | 
|  | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
|  | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
|  |  | 
|  | if (new_min_free_kbytes > user_min_free_kbytes) | 
|  | min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); | 
|  | else | 
|  | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | 
|  | new_min_free_kbytes, user_min_free_kbytes); | 
|  |  | 
|  | } | 
|  |  | 
|  | int __meminit init_per_zone_wmark_min(void) | 
|  | { | 
|  | calculate_min_free_kbytes(); | 
|  | setup_per_zone_wmarks(); | 
|  | refresh_zone_stat_thresholds(); | 
|  | setup_per_zone_lowmem_reserve(); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | setup_min_unmapped_ratio(); | 
|  | setup_min_slab_ratio(); | 
|  | #endif | 
|  |  | 
|  | khugepaged_min_free_kbytes_update(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | postcore_initcall(init_per_zone_wmark_min) | 
|  |  | 
|  | /* | 
|  | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | 
|  | *	that we can call two helper functions whenever min_free_kbytes | 
|  | *	changes. | 
|  | */ | 
|  | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (write) { | 
|  | user_min_free_kbytes = min_free_kbytes; | 
|  | setup_per_zone_wmarks(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (write) | 
|  | setup_per_zone_wmarks(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static void setup_min_unmapped_ratio(void) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) | 
|  | pgdat->min_unmapped_pages = 0; | 
|  |  | 
|  | for_each_zone(zone) | 
|  | zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * | 
|  | sysctl_min_unmapped_ratio) / 100; | 
|  | } | 
|  |  | 
|  |  | 
|  | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | setup_min_unmapped_ratio(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void setup_min_slab_ratio(void) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) | 
|  | pgdat->min_slab_pages = 0; | 
|  |  | 
|  | for_each_zone(zone) | 
|  | zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * | 
|  | sysctl_min_slab_ratio) / 100; | 
|  | } | 
|  |  | 
|  | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | setup_min_slab_ratio(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
|  | *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
|  | *	whenever sysctl_lowmem_reserve_ratio changes. | 
|  | * | 
|  | * The reserve ratio obviously has absolutely no relation with the | 
|  | * minimum watermarks. The lowmem reserve ratio can only make sense | 
|  | * if in function of the boot time zone sizes. | 
|  | */ | 
|  | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, | 
|  | void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  |  | 
|  | for (i = 0; i < MAX_NR_ZONES; i++) { | 
|  | if (sysctl_lowmem_reserve_ratio[i] < 1) | 
|  | sysctl_lowmem_reserve_ratio[i] = 0; | 
|  | } | 
|  |  | 
|  | setup_per_zone_lowmem_reserve(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each | 
|  | * cpu. It is the fraction of total pages in each zone that a hot per cpu | 
|  | * pagelist can have before it gets flushed back to buddy allocator. | 
|  | */ | 
|  | int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, | 
|  | int write, void *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct zone *zone; | 
|  | int old_percpu_pagelist_high_fraction; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&pcp_batch_high_lock); | 
|  | old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; | 
|  |  | 
|  | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  | if (!write || ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Sanity checking to avoid pcp imbalance */ | 
|  | if (percpu_pagelist_high_fraction && | 
|  | percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { | 
|  | percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* No change? */ | 
|  | if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) | 
|  | goto out; | 
|  |  | 
|  | for_each_populated_zone(zone) | 
|  | zone_set_pageset_high_and_batch(zone, 0); | 
|  | out: | 
|  | mutex_unlock(&pcp_batch_high_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES | 
|  | /* | 
|  | * Returns the number of pages that arch has reserved but | 
|  | * is not known to alloc_large_system_hash(). | 
|  | */ | 
|  | static unsigned long __init arch_reserved_kernel_pages(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Adaptive scale is meant to reduce sizes of hash tables on large memory | 
|  | * machines. As memory size is increased the scale is also increased but at | 
|  | * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory | 
|  | * quadruples the scale is increased by one, which means the size of hash table | 
|  | * only doubles, instead of quadrupling as well. | 
|  | * Because 32-bit systems cannot have large physical memory, where this scaling | 
|  | * makes sense, it is disabled on such platforms. | 
|  | */ | 
|  | #if __BITS_PER_LONG > 32 | 
|  | #define ADAPT_SCALE_BASE	(64ul << 30) | 
|  | #define ADAPT_SCALE_SHIFT	2 | 
|  | #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * allocate a large system hash table from bootmem | 
|  | * - it is assumed that the hash table must contain an exact power-of-2 | 
|  | *   quantity of entries | 
|  | * - limit is the number of hash buckets, not the total allocation size | 
|  | */ | 
|  | void *__init alloc_large_system_hash(const char *tablename, | 
|  | unsigned long bucketsize, | 
|  | unsigned long numentries, | 
|  | int scale, | 
|  | int flags, | 
|  | unsigned int *_hash_shift, | 
|  | unsigned int *_hash_mask, | 
|  | unsigned long low_limit, | 
|  | unsigned long high_limit) | 
|  | { | 
|  | unsigned long long max = high_limit; | 
|  | unsigned long log2qty, size; | 
|  | void *table; | 
|  | gfp_t gfp_flags; | 
|  | bool virt; | 
|  | bool huge; | 
|  |  | 
|  | /* allow the kernel cmdline to have a say */ | 
|  | if (!numentries) { | 
|  | /* round applicable memory size up to nearest megabyte */ | 
|  | numentries = nr_kernel_pages; | 
|  | numentries -= arch_reserved_kernel_pages(); | 
|  |  | 
|  | /* It isn't necessary when PAGE_SIZE >= 1MB */ | 
|  | if (PAGE_SIZE < SZ_1M) | 
|  | numentries = round_up(numentries, SZ_1M / PAGE_SIZE); | 
|  |  | 
|  | #if __BITS_PER_LONG > 32 | 
|  | if (!high_limit) { | 
|  | unsigned long adapt; | 
|  |  | 
|  | for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | 
|  | adapt <<= ADAPT_SCALE_SHIFT) | 
|  | scale++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* limit to 1 bucket per 2^scale bytes of low memory */ | 
|  | if (scale > PAGE_SHIFT) | 
|  | numentries >>= (scale - PAGE_SHIFT); | 
|  | else | 
|  | numentries <<= (PAGE_SHIFT - scale); | 
|  |  | 
|  | /* Make sure we've got at least a 0-order allocation.. */ | 
|  | if (unlikely(flags & HASH_SMALL)) { | 
|  | /* Makes no sense without HASH_EARLY */ | 
|  | WARN_ON(!(flags & HASH_EARLY)); | 
|  | if (!(numentries >> *_hash_shift)) { | 
|  | numentries = 1UL << *_hash_shift; | 
|  | BUG_ON(!numentries); | 
|  | } | 
|  | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | 
|  | numentries = PAGE_SIZE / bucketsize; | 
|  | } | 
|  | numentries = roundup_pow_of_two(numentries); | 
|  |  | 
|  | /* limit allocation size to 1/16 total memory by default */ | 
|  | if (max == 0) { | 
|  | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
|  | do_div(max, bucketsize); | 
|  | } | 
|  | max = min(max, 0x80000000ULL); | 
|  |  | 
|  | if (numentries < low_limit) | 
|  | numentries = low_limit; | 
|  | if (numentries > max) | 
|  | numentries = max; | 
|  |  | 
|  | log2qty = ilog2(numentries); | 
|  |  | 
|  | gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; | 
|  | do { | 
|  | virt = false; | 
|  | size = bucketsize << log2qty; | 
|  | if (flags & HASH_EARLY) { | 
|  | if (flags & HASH_ZERO) | 
|  | table = memblock_alloc(size, SMP_CACHE_BYTES); | 
|  | else | 
|  | table = memblock_alloc_raw(size, | 
|  | SMP_CACHE_BYTES); | 
|  | } else if (get_order(size) >= MAX_ORDER || hashdist) { | 
|  | table = vmalloc_huge(size, gfp_flags); | 
|  | virt = true; | 
|  | if (table) | 
|  | huge = is_vm_area_hugepages(table); | 
|  | } else { | 
|  | /* | 
|  | * If bucketsize is not a power-of-two, we may free | 
|  | * some pages at the end of hash table which | 
|  | * alloc_pages_exact() automatically does | 
|  | */ | 
|  | table = alloc_pages_exact(size, gfp_flags); | 
|  | kmemleak_alloc(table, size, 1, gfp_flags); | 
|  | } | 
|  | } while (!table && size > PAGE_SIZE && --log2qty); | 
|  |  | 
|  | if (!table) | 
|  | panic("Failed to allocate %s hash table\n", tablename); | 
|  |  | 
|  | pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", | 
|  | tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, | 
|  | virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); | 
|  |  | 
|  | if (_hash_shift) | 
|  | *_hash_shift = log2qty; | 
|  | if (_hash_mask) | 
|  | *_hash_mask = (1 << log2qty) - 1; | 
|  |  | 
|  | return table; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CONTIG_ALLOC | 
|  | #if defined(CONFIG_DYNAMIC_DEBUG) || \ | 
|  | (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) | 
|  | /* Usage: See admin-guide/dynamic-debug-howto.rst */ | 
|  | static void alloc_contig_dump_pages(struct list_head *page_list) | 
|  | { | 
|  | DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); | 
|  |  | 
|  | if (DYNAMIC_DEBUG_BRANCH(descriptor)) { | 
|  | struct page *page; | 
|  |  | 
|  | dump_stack(); | 
|  | list_for_each_entry(page, page_list, lru) | 
|  | dump_page(page, "migration failure"); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void alloc_contig_dump_pages(struct list_head *page_list) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* [start, end) must belong to a single zone. */ | 
|  | int __alloc_contig_migrate_range(struct compact_control *cc, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | /* This function is based on compact_zone() from compaction.c. */ | 
|  | unsigned int nr_reclaimed; | 
|  | unsigned long pfn = start; | 
|  | unsigned int tries = 0; | 
|  | int ret = 0; | 
|  | struct migration_target_control mtc = { | 
|  | .nid = zone_to_nid(cc->zone), | 
|  | .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, | 
|  | }; | 
|  |  | 
|  | lru_cache_disable(); | 
|  |  | 
|  | while (pfn < end || !list_empty(&cc->migratepages)) { | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (list_empty(&cc->migratepages)) { | 
|  | cc->nr_migratepages = 0; | 
|  | ret = isolate_migratepages_range(cc, pfn, end); | 
|  | if (ret && ret != -EAGAIN) | 
|  | break; | 
|  | pfn = cc->migrate_pfn; | 
|  | tries = 0; | 
|  | } else if (++tries == 5) { | 
|  | ret = -EBUSY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, | 
|  | &cc->migratepages); | 
|  | cc->nr_migratepages -= nr_reclaimed; | 
|  |  | 
|  | ret = migrate_pages(&cc->migratepages, alloc_migration_target, | 
|  | NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); | 
|  |  | 
|  | /* | 
|  | * On -ENOMEM, migrate_pages() bails out right away. It is pointless | 
|  | * to retry again over this error, so do the same here. | 
|  | */ | 
|  | if (ret == -ENOMEM) | 
|  | break; | 
|  | } | 
|  |  | 
|  | lru_cache_enable(); | 
|  | if (ret < 0) { | 
|  | if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) | 
|  | alloc_contig_dump_pages(&cc->migratepages); | 
|  | putback_movable_pages(&cc->migratepages); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_contig_range() -- tries to allocate given range of pages | 
|  | * @start:	start PFN to allocate | 
|  | * @end:	one-past-the-last PFN to allocate | 
|  | * @migratetype:	migratetype of the underlying pageblocks (either | 
|  | *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks | 
|  | *			in range must have the same migratetype and it must | 
|  | *			be either of the two. | 
|  | * @gfp_mask:	GFP mask to use during compaction | 
|  | * | 
|  | * The PFN range does not have to be pageblock aligned. The PFN range must | 
|  | * belong to a single zone. | 
|  | * | 
|  | * The first thing this routine does is attempt to MIGRATE_ISOLATE all | 
|  | * pageblocks in the range.  Once isolated, the pageblocks should not | 
|  | * be modified by others. | 
|  | * | 
|  | * Return: zero on success or negative error code.  On success all | 
|  | * pages which PFN is in [start, end) are allocated for the caller and | 
|  | * need to be freed with free_contig_range(). | 
|  | */ | 
|  | int alloc_contig_range(unsigned long start, unsigned long end, | 
|  | unsigned migratetype, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long outer_start, outer_end; | 
|  | int order; | 
|  | int ret = 0; | 
|  |  | 
|  | struct compact_control cc = { | 
|  | .nr_migratepages = 0, | 
|  | .order = -1, | 
|  | .zone = page_zone(pfn_to_page(start)), | 
|  | .mode = MIGRATE_SYNC, | 
|  | .ignore_skip_hint = true, | 
|  | .no_set_skip_hint = true, | 
|  | .gfp_mask = current_gfp_context(gfp_mask), | 
|  | .alloc_contig = true, | 
|  | }; | 
|  | INIT_LIST_HEAD(&cc.migratepages); | 
|  |  | 
|  | /* | 
|  | * What we do here is we mark all pageblocks in range as | 
|  | * MIGRATE_ISOLATE.  Because pageblock and max order pages may | 
|  | * have different sizes, and due to the way page allocator | 
|  | * work, start_isolate_page_range() has special handlings for this. | 
|  | * | 
|  | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | 
|  | * migrate the pages from an unaligned range (ie. pages that | 
|  | * we are interested in). This will put all the pages in | 
|  | * range back to page allocator as MIGRATE_ISOLATE. | 
|  | * | 
|  | * When this is done, we take the pages in range from page | 
|  | * allocator removing them from the buddy system.  This way | 
|  | * page allocator will never consider using them. | 
|  | * | 
|  | * This lets us mark the pageblocks back as | 
|  | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | 
|  | * aligned range but not in the unaligned, original range are | 
|  | * put back to page allocator so that buddy can use them. | 
|  | */ | 
|  |  | 
|  | ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); | 
|  | if (ret) | 
|  | goto done; | 
|  |  | 
|  | drain_all_pages(cc.zone); | 
|  |  | 
|  | /* | 
|  | * In case of -EBUSY, we'd like to know which page causes problem. | 
|  | * So, just fall through. test_pages_isolated() has a tracepoint | 
|  | * which will report the busy page. | 
|  | * | 
|  | * It is possible that busy pages could become available before | 
|  | * the call to test_pages_isolated, and the range will actually be | 
|  | * allocated.  So, if we fall through be sure to clear ret so that | 
|  | * -EBUSY is not accidentally used or returned to caller. | 
|  | */ | 
|  | ret = __alloc_contig_migrate_range(&cc, start, end); | 
|  | if (ret && ret != -EBUSY) | 
|  | goto done; | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * Pages from [start, end) are within a pageblock_nr_pages | 
|  | * aligned blocks that are marked as MIGRATE_ISOLATE.  What's | 
|  | * more, all pages in [start, end) are free in page allocator. | 
|  | * What we are going to do is to allocate all pages from | 
|  | * [start, end) (that is remove them from page allocator). | 
|  | * | 
|  | * The only problem is that pages at the beginning and at the | 
|  | * end of interesting range may be not aligned with pages that | 
|  | * page allocator holds, ie. they can be part of higher order | 
|  | * pages.  Because of this, we reserve the bigger range and | 
|  | * once this is done free the pages we are not interested in. | 
|  | * | 
|  | * We don't have to hold zone->lock here because the pages are | 
|  | * isolated thus they won't get removed from buddy. | 
|  | */ | 
|  |  | 
|  | order = 0; | 
|  | outer_start = start; | 
|  | while (!PageBuddy(pfn_to_page(outer_start))) { | 
|  | if (++order >= MAX_ORDER) { | 
|  | outer_start = start; | 
|  | break; | 
|  | } | 
|  | outer_start &= ~0UL << order; | 
|  | } | 
|  |  | 
|  | if (outer_start != start) { | 
|  | order = buddy_order(pfn_to_page(outer_start)); | 
|  |  | 
|  | /* | 
|  | * outer_start page could be small order buddy page and | 
|  | * it doesn't include start page. Adjust outer_start | 
|  | * in this case to report failed page properly | 
|  | * on tracepoint in test_pages_isolated() | 
|  | */ | 
|  | if (outer_start + (1UL << order) <= start) | 
|  | outer_start = start; | 
|  | } | 
|  |  | 
|  | /* Make sure the range is really isolated. */ | 
|  | if (test_pages_isolated(outer_start, end, 0)) { | 
|  | ret = -EBUSY; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Grab isolated pages from freelists. */ | 
|  | outer_end = isolate_freepages_range(&cc, outer_start, end); | 
|  | if (!outer_end) { | 
|  | ret = -EBUSY; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Free head and tail (if any) */ | 
|  | if (start != outer_start) | 
|  | free_contig_range(outer_start, start - outer_start); | 
|  | if (end != outer_end) | 
|  | free_contig_range(end, outer_end - end); | 
|  |  | 
|  | done: | 
|  | undo_isolate_page_range(start, end, migratetype); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_contig_range); | 
|  |  | 
|  | static int __alloc_contig_pages(unsigned long start_pfn, | 
|  | unsigned long nr_pages, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long end_pfn = start_pfn + nr_pages; | 
|  |  | 
|  | return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, | 
|  | gfp_mask); | 
|  | } | 
|  |  | 
|  | static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | unsigned long i, end_pfn = start_pfn + nr_pages; | 
|  | struct page *page; | 
|  |  | 
|  | for (i = start_pfn; i < end_pfn; i++) { | 
|  | page = pfn_to_online_page(i); | 
|  | if (!page) | 
|  | return false; | 
|  |  | 
|  | if (page_zone(page) != z) | 
|  | return false; | 
|  |  | 
|  | if (PageReserved(page)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool zone_spans_last_pfn(const struct zone *zone, | 
|  | unsigned long start_pfn, unsigned long nr_pages) | 
|  | { | 
|  | unsigned long last_pfn = start_pfn + nr_pages - 1; | 
|  |  | 
|  | return zone_spans_pfn(zone, last_pfn); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_contig_pages() -- tries to find and allocate contiguous range of pages | 
|  | * @nr_pages:	Number of contiguous pages to allocate | 
|  | * @gfp_mask:	GFP mask to limit search and used during compaction | 
|  | * @nid:	Target node | 
|  | * @nodemask:	Mask for other possible nodes | 
|  | * | 
|  | * This routine is a wrapper around alloc_contig_range(). It scans over zones | 
|  | * on an applicable zonelist to find a contiguous pfn range which can then be | 
|  | * tried for allocation with alloc_contig_range(). This routine is intended | 
|  | * for allocation requests which can not be fulfilled with the buddy allocator. | 
|  | * | 
|  | * The allocated memory is always aligned to a page boundary. If nr_pages is a | 
|  | * power of two, then allocated range is also guaranteed to be aligned to same | 
|  | * nr_pages (e.g. 1GB request would be aligned to 1GB). | 
|  | * | 
|  | * Allocated pages can be freed with free_contig_range() or by manually calling | 
|  | * __free_page() on each allocated page. | 
|  | * | 
|  | * Return: pointer to contiguous pages on success, or NULL if not successful. | 
|  | */ | 
|  | struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nodemask) | 
|  | { | 
|  | unsigned long ret, pfn, flags; | 
|  | struct zonelist *zonelist; | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  |  | 
|  | zonelist = node_zonelist(nid, gfp_mask); | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
|  | gfp_zone(gfp_mask), nodemask) { | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  |  | 
|  | pfn = ALIGN(zone->zone_start_pfn, nr_pages); | 
|  | while (zone_spans_last_pfn(zone, pfn, nr_pages)) { | 
|  | if (pfn_range_valid_contig(zone, pfn, nr_pages)) { | 
|  | /* | 
|  | * We release the zone lock here because | 
|  | * alloc_contig_range() will also lock the zone | 
|  | * at some point. If there's an allocation | 
|  | * spinning on this lock, it may win the race | 
|  | * and cause alloc_contig_range() to fail... | 
|  | */ | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | ret = __alloc_contig_pages(pfn, nr_pages, | 
|  | gfp_mask); | 
|  | if (!ret) | 
|  | return pfn_to_page(pfn); | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | } | 
|  | pfn += nr_pages; | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | #endif /* CONFIG_CONTIG_ALLOC */ | 
|  |  | 
|  | void free_contig_range(unsigned long pfn, unsigned long nr_pages) | 
|  | { | 
|  | unsigned long count = 0; | 
|  |  | 
|  | for (; nr_pages--; pfn++) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | count += page_count(page) != 1; | 
|  | __free_page(page); | 
|  | } | 
|  | WARN(count != 0, "%lu pages are still in use!\n", count); | 
|  | } | 
|  | EXPORT_SYMBOL(free_contig_range); | 
|  |  | 
|  | /* | 
|  | * Effectively disable pcplists for the zone by setting the high limit to 0 | 
|  | * and draining all cpus. A concurrent page freeing on another CPU that's about | 
|  | * to put the page on pcplist will either finish before the drain and the page | 
|  | * will be drained, or observe the new high limit and skip the pcplist. | 
|  | * | 
|  | * Must be paired with a call to zone_pcp_enable(). | 
|  | */ | 
|  | void zone_pcp_disable(struct zone *zone) | 
|  | { | 
|  | mutex_lock(&pcp_batch_high_lock); | 
|  | __zone_set_pageset_high_and_batch(zone, 0, 1); | 
|  | __drain_all_pages(zone, true); | 
|  | } | 
|  |  | 
|  | void zone_pcp_enable(struct zone *zone) | 
|  | { | 
|  | __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); | 
|  | mutex_unlock(&pcp_batch_high_lock); | 
|  | } | 
|  |  | 
|  | void zone_pcp_reset(struct zone *zone) | 
|  | { | 
|  | int cpu; | 
|  | struct per_cpu_zonestat *pzstats; | 
|  |  | 
|  | if (zone->per_cpu_pageset != &boot_pageset) { | 
|  | for_each_online_cpu(cpu) { | 
|  | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); | 
|  | drain_zonestat(zone, pzstats); | 
|  | } | 
|  | free_percpu(zone->per_cpu_pageset); | 
|  | zone->per_cpu_pageset = &boot_pageset; | 
|  | if (zone->per_cpu_zonestats != &boot_zonestats) { | 
|  | free_percpu(zone->per_cpu_zonestats); | 
|  | zone->per_cpu_zonestats = &boot_zonestats; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | /* | 
|  | * All pages in the range must be in a single zone, must not contain holes, | 
|  | * must span full sections, and must be isolated before calling this function. | 
|  | */ | 
|  | void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn = start_pfn; | 
|  | struct page *page; | 
|  | struct zone *zone; | 
|  | unsigned int order; | 
|  | unsigned long flags; | 
|  |  | 
|  | offline_mem_sections(pfn, end_pfn); | 
|  | zone = page_zone(pfn_to_page(pfn)); | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | while (pfn < end_pfn) { | 
|  | page = pfn_to_page(pfn); | 
|  | /* | 
|  | * The HWPoisoned page may be not in buddy system, and | 
|  | * page_count() is not 0. | 
|  | */ | 
|  | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | 
|  | pfn++; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * At this point all remaining PageOffline() pages have a | 
|  | * reference count of 0 and can simply be skipped. | 
|  | */ | 
|  | if (PageOffline(page)) { | 
|  | BUG_ON(page_count(page)); | 
|  | BUG_ON(PageBuddy(page)); | 
|  | pfn++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BUG_ON(page_count(page)); | 
|  | BUG_ON(!PageBuddy(page)); | 
|  | order = buddy_order(page); | 
|  | del_page_from_free_list(page, zone, order); | 
|  | pfn += (1 << order); | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This function returns a stable result only if called under zone lock. | 
|  | */ | 
|  | bool is_free_buddy_page(struct page *page) | 
|  | { | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | unsigned int order; | 
|  |  | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
|  |  | 
|  | if (PageBuddy(page_head) && | 
|  | buddy_order_unsafe(page_head) >= order) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return order < MAX_ORDER; | 
|  | } | 
|  | EXPORT_SYMBOL(is_free_buddy_page); | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  | /* | 
|  | * Break down a higher-order page in sub-pages, and keep our target out of | 
|  | * buddy allocator. | 
|  | */ | 
|  | static void break_down_buddy_pages(struct zone *zone, struct page *page, | 
|  | struct page *target, int low, int high, | 
|  | int migratetype) | 
|  | { | 
|  | unsigned long size = 1 << high; | 
|  | struct page *current_buddy, *next_page; | 
|  |  | 
|  | while (high > low) { | 
|  | high--; | 
|  | size >>= 1; | 
|  |  | 
|  | if (target >= &page[size]) { | 
|  | next_page = page + size; | 
|  | current_buddy = page; | 
|  | } else { | 
|  | next_page = page; | 
|  | current_buddy = page + size; | 
|  | } | 
|  |  | 
|  | if (set_page_guard(zone, current_buddy, high, migratetype)) | 
|  | continue; | 
|  |  | 
|  | if (current_buddy != target) { | 
|  | add_to_free_list(current_buddy, zone, high, migratetype); | 
|  | set_buddy_order(current_buddy, high); | 
|  | page = next_page; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take a page that will be marked as poisoned off the buddy allocator. | 
|  | */ | 
|  | bool take_page_off_buddy(struct page *page) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | unsigned long flags; | 
|  | unsigned int order; | 
|  | bool ret = false; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
|  | int page_order = buddy_order(page_head); | 
|  |  | 
|  | if (PageBuddy(page_head) && page_order >= order) { | 
|  | unsigned long pfn_head = page_to_pfn(page_head); | 
|  | int migratetype = get_pfnblock_migratetype(page_head, | 
|  | pfn_head); | 
|  |  | 
|  | del_page_from_free_list(page_head, zone, page_order); | 
|  | break_down_buddy_pages(zone, page_head, page, 0, | 
|  | page_order, migratetype); | 
|  | SetPageHWPoisonTakenOff(page); | 
|  | if (!is_migrate_isolate(migratetype)) | 
|  | __mod_zone_freepage_state(zone, -1, migratetype); | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  | if (page_count(page_head) > 0) | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cancel takeoff done by take_page_off_buddy(). | 
|  | */ | 
|  | bool put_page_back_buddy(struct page *page) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | unsigned long flags; | 
|  | int migratetype = get_pfnblock_migratetype(page, pfn); | 
|  | bool ret = false; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | if (put_page_testzero(page)) { | 
|  | ClearPageHWPoisonTakenOff(page); | 
|  | __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); | 
|  | if (TestClearPageHWPoison(page)) { | 
|  | ret = true; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | bool has_managed_dma(void) | 
|  | { | 
|  | struct pglist_data *pgdat; | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  | struct zone *zone = &pgdat->node_zones[ZONE_DMA]; | 
|  |  | 
|  | if (managed_zone(zone)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_ZONE_DMA */ |