| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Memory Migration functionality - linux/mm/migrate.c | 
 |  * | 
 |  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | 
 |  * | 
 |  * Page migration was first developed in the context of the memory hotplug | 
 |  * project. The main authors of the migration code are: | 
 |  * | 
 |  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 
 |  * Hirokazu Takahashi <taka@valinux.co.jp> | 
 |  * Dave Hansen <haveblue@us.ibm.com> | 
 |  * Christoph Lameter | 
 |  */ | 
 |  | 
 | #include <linux/migrate.h> | 
 | #include <linux/export.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/nsproxy.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/security.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/compaction.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/hugetlb_cgroup.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/pfn_t.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/userfaultfd_k.h> | 
 | #include <linux/balloon_compaction.h> | 
 | #include <linux/page_idle.h> | 
 | #include <linux/page_owner.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/random.h> | 
 | #include <linux/sched/sysctl.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include <trace/events/migrate.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | int isolate_movable_page(struct page *page, isolate_mode_t mode) | 
 | { | 
 | 	const struct movable_operations *mops; | 
 |  | 
 | 	/* | 
 | 	 * Avoid burning cycles with pages that are yet under __free_pages(), | 
 | 	 * or just got freed under us. | 
 | 	 * | 
 | 	 * In case we 'win' a race for a movable page being freed under us and | 
 | 	 * raise its refcount preventing __free_pages() from doing its job | 
 | 	 * the put_page() at the end of this block will take care of | 
 | 	 * release this page, thus avoiding a nasty leakage. | 
 | 	 */ | 
 | 	if (unlikely(!get_page_unless_zero(page))) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Check PageMovable before holding a PG_lock because page's owner | 
 | 	 * assumes anybody doesn't touch PG_lock of newly allocated page | 
 | 	 * so unconditionally grabbing the lock ruins page's owner side. | 
 | 	 */ | 
 | 	if (unlikely(!__PageMovable(page))) | 
 | 		goto out_putpage; | 
 | 	/* | 
 | 	 * As movable pages are not isolated from LRU lists, concurrent | 
 | 	 * compaction threads can race against page migration functions | 
 | 	 * as well as race against the releasing a page. | 
 | 	 * | 
 | 	 * In order to avoid having an already isolated movable page | 
 | 	 * being (wrongly) re-isolated while it is under migration, | 
 | 	 * or to avoid attempting to isolate pages being released, | 
 | 	 * lets be sure we have the page lock | 
 | 	 * before proceeding with the movable page isolation steps. | 
 | 	 */ | 
 | 	if (unlikely(!trylock_page(page))) | 
 | 		goto out_putpage; | 
 |  | 
 | 	if (!PageMovable(page) || PageIsolated(page)) | 
 | 		goto out_no_isolated; | 
 |  | 
 | 	mops = page_movable_ops(page); | 
 | 	VM_BUG_ON_PAGE(!mops, page); | 
 |  | 
 | 	if (!mops->isolate_page(page, mode)) | 
 | 		goto out_no_isolated; | 
 |  | 
 | 	/* Driver shouldn't use PG_isolated bit of page->flags */ | 
 | 	WARN_ON_ONCE(PageIsolated(page)); | 
 | 	SetPageIsolated(page); | 
 | 	unlock_page(page); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_no_isolated: | 
 | 	unlock_page(page); | 
 | out_putpage: | 
 | 	put_page(page); | 
 | out: | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | static void putback_movable_page(struct page *page) | 
 | { | 
 | 	const struct movable_operations *mops = page_movable_ops(page); | 
 |  | 
 | 	mops->putback_page(page); | 
 | 	ClearPageIsolated(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Put previously isolated pages back onto the appropriate lists | 
 |  * from where they were once taken off for compaction/migration. | 
 |  * | 
 |  * This function shall be used whenever the isolated pageset has been | 
 |  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() | 
 |  * and isolate_hugetlb(). | 
 |  */ | 
 | void putback_movable_pages(struct list_head *l) | 
 | { | 
 | 	struct page *page; | 
 | 	struct page *page2; | 
 |  | 
 | 	list_for_each_entry_safe(page, page2, l, lru) { | 
 | 		if (unlikely(PageHuge(page))) { | 
 | 			putback_active_hugepage(page); | 
 | 			continue; | 
 | 		} | 
 | 		list_del(&page->lru); | 
 | 		/* | 
 | 		 * We isolated non-lru movable page so here we can use | 
 | 		 * __PageMovable because LRU page's mapping cannot have | 
 | 		 * PAGE_MAPPING_MOVABLE. | 
 | 		 */ | 
 | 		if (unlikely(__PageMovable(page))) { | 
 | 			VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
 | 			lock_page(page); | 
 | 			if (PageMovable(page)) | 
 | 				putback_movable_page(page); | 
 | 			else | 
 | 				ClearPageIsolated(page); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 		} else { | 
 | 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + | 
 | 					page_is_file_lru(page), -thp_nr_pages(page)); | 
 | 			putback_lru_page(page); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Restore a potential migration pte to a working pte entry | 
 |  */ | 
 | static bool remove_migration_pte(struct folio *folio, | 
 | 		struct vm_area_struct *vma, unsigned long addr, void *old) | 
 | { | 
 | 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); | 
 |  | 
 | 	while (page_vma_mapped_walk(&pvmw)) { | 
 | 		rmap_t rmap_flags = RMAP_NONE; | 
 | 		pte_t pte; | 
 | 		swp_entry_t entry; | 
 | 		struct page *new; | 
 | 		unsigned long idx = 0; | 
 |  | 
 | 		/* pgoff is invalid for ksm pages, but they are never large */ | 
 | 		if (folio_test_large(folio) && !folio_test_hugetlb(folio)) | 
 | 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; | 
 | 		new = folio_page(folio, idx); | 
 |  | 
 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
 | 		/* PMD-mapped THP migration entry */ | 
 | 		if (!pvmw.pte) { | 
 | 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | 
 | 					!folio_test_pmd_mappable(folio), folio); | 
 | 			remove_migration_pmd(&pvmw, new); | 
 | 			continue; | 
 | 		} | 
 | #endif | 
 |  | 
 | 		folio_get(folio); | 
 | 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); | 
 | 		if (pte_swp_soft_dirty(*pvmw.pte)) | 
 | 			pte = pte_mksoft_dirty(pte); | 
 |  | 
 | 		/* | 
 | 		 * Recheck VMA as permissions can change since migration started | 
 | 		 */ | 
 | 		entry = pte_to_swp_entry(*pvmw.pte); | 
 | 		if (is_writable_migration_entry(entry)) | 
 | 			pte = maybe_mkwrite(pte, vma); | 
 | 		else if (pte_swp_uffd_wp(*pvmw.pte)) | 
 | 			pte = pte_mkuffd_wp(pte); | 
 |  | 
 | 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) | 
 | 			rmap_flags |= RMAP_EXCLUSIVE; | 
 |  | 
 | 		if (unlikely(is_device_private_page(new))) { | 
 | 			if (pte_write(pte)) | 
 | 				entry = make_writable_device_private_entry( | 
 | 							page_to_pfn(new)); | 
 | 			else | 
 | 				entry = make_readable_device_private_entry( | 
 | 							page_to_pfn(new)); | 
 | 			pte = swp_entry_to_pte(entry); | 
 | 			if (pte_swp_soft_dirty(*pvmw.pte)) | 
 | 				pte = pte_swp_mksoft_dirty(pte); | 
 | 			if (pte_swp_uffd_wp(*pvmw.pte)) | 
 | 				pte = pte_swp_mkuffd_wp(pte); | 
 | 		} | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 		if (folio_test_hugetlb(folio)) { | 
 | 			unsigned int shift = huge_page_shift(hstate_vma(vma)); | 
 |  | 
 | 			pte = pte_mkhuge(pte); | 
 | 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags); | 
 | 			if (folio_test_anon(folio)) | 
 | 				hugepage_add_anon_rmap(new, vma, pvmw.address, | 
 | 						       rmap_flags); | 
 | 			else | 
 | 				page_dup_file_rmap(new, true); | 
 | 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); | 
 | 		} else | 
 | #endif | 
 | 		{ | 
 | 			if (folio_test_anon(folio)) | 
 | 				page_add_anon_rmap(new, vma, pvmw.address, | 
 | 						   rmap_flags); | 
 | 			else | 
 | 				page_add_file_rmap(new, vma, false); | 
 | 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); | 
 | 		} | 
 | 		if (vma->vm_flags & VM_LOCKED) | 
 | 			mlock_page_drain_local(); | 
 |  | 
 | 		trace_remove_migration_pte(pvmw.address, pte_val(pte), | 
 | 					   compound_order(new)); | 
 |  | 
 | 		/* No need to invalidate - it was non-present before */ | 
 | 		update_mmu_cache(vma, pvmw.address, pvmw.pte); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Get rid of all migration entries and replace them by | 
 |  * references to the indicated page. | 
 |  */ | 
 | void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) | 
 | { | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.rmap_one = remove_migration_pte, | 
 | 		.arg = src, | 
 | 	}; | 
 |  | 
 | 	if (locked) | 
 | 		rmap_walk_locked(dst, &rwc); | 
 | 	else | 
 | 		rmap_walk(dst, &rwc); | 
 | } | 
 |  | 
 | /* | 
 |  * Something used the pte of a page under migration. We need to | 
 |  * get to the page and wait until migration is finished. | 
 |  * When we return from this function the fault will be retried. | 
 |  */ | 
 | void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, | 
 | 				spinlock_t *ptl) | 
 | { | 
 | 	pte_t pte; | 
 | 	swp_entry_t entry; | 
 |  | 
 | 	spin_lock(ptl); | 
 | 	pte = *ptep; | 
 | 	if (!is_swap_pte(pte)) | 
 | 		goto out; | 
 |  | 
 | 	entry = pte_to_swp_entry(pte); | 
 | 	if (!is_migration_entry(entry)) | 
 | 		goto out; | 
 |  | 
 | 	migration_entry_wait_on_locked(entry, ptep, ptl); | 
 | 	return; | 
 | out: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | } | 
 |  | 
 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | 
 | 				unsigned long address) | 
 | { | 
 | 	spinlock_t *ptl = pte_lockptr(mm, pmd); | 
 | 	pte_t *ptep = pte_offset_map(pmd, address); | 
 | 	__migration_entry_wait(mm, ptep, ptl); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 | 	spin_lock(ptl); | 
 | 	pte = huge_ptep_get(ptep); | 
 |  | 
 | 	if (unlikely(!is_hugetlb_entry_migration(pte))) | 
 | 		spin_unlock(ptl); | 
 | 	else | 
 | 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); | 
 | } | 
 |  | 
 | void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) | 
 | { | 
 | 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); | 
 |  | 
 | 	__migration_entry_wait_huge(pte, ptl); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
 | void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) | 
 | { | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	ptl = pmd_lock(mm, pmd); | 
 | 	if (!is_pmd_migration_entry(*pmd)) | 
 | 		goto unlock; | 
 | 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); | 
 | 	return; | 
 | unlock: | 
 | 	spin_unlock(ptl); | 
 | } | 
 | #endif | 
 |  | 
 | static int folio_expected_refs(struct address_space *mapping, | 
 | 		struct folio *folio) | 
 | { | 
 | 	int refs = 1; | 
 | 	if (!mapping) | 
 | 		return refs; | 
 |  | 
 | 	refs += folio_nr_pages(folio); | 
 | 	if (folio_test_private(folio)) | 
 | 		refs++; | 
 |  | 
 | 	return refs; | 
 | } | 
 |  | 
 | /* | 
 |  * Replace the page in the mapping. | 
 |  * | 
 |  * The number of remaining references must be: | 
 |  * 1 for anonymous pages without a mapping | 
 |  * 2 for pages with a mapping | 
 |  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. | 
 |  */ | 
 | int folio_migrate_mapping(struct address_space *mapping, | 
 | 		struct folio *newfolio, struct folio *folio, int extra_count) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, folio_index(folio)); | 
 | 	struct zone *oldzone, *newzone; | 
 | 	int dirty; | 
 | 	int expected_count = folio_expected_refs(mapping, folio) + extra_count; | 
 | 	long nr = folio_nr_pages(folio); | 
 |  | 
 | 	if (!mapping) { | 
 | 		/* Anonymous page without mapping */ | 
 | 		if (folio_ref_count(folio) != expected_count) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		/* No turning back from here */ | 
 | 		newfolio->index = folio->index; | 
 | 		newfolio->mapping = folio->mapping; | 
 | 		if (folio_test_swapbacked(folio)) | 
 | 			__folio_set_swapbacked(newfolio); | 
 |  | 
 | 		return MIGRATEPAGE_SUCCESS; | 
 | 	} | 
 |  | 
 | 	oldzone = folio_zone(folio); | 
 | 	newzone = folio_zone(newfolio); | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	if (!folio_ref_freeze(folio, expected_count)) { | 
 | 		xas_unlock_irq(&xas); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we know that no one else is looking at the folio: | 
 | 	 * no turning back from here. | 
 | 	 */ | 
 | 	newfolio->index = folio->index; | 
 | 	newfolio->mapping = folio->mapping; | 
 | 	folio_ref_add(newfolio, nr); /* add cache reference */ | 
 | 	if (folio_test_swapbacked(folio)) { | 
 | 		__folio_set_swapbacked(newfolio); | 
 | 		if (folio_test_swapcache(folio)) { | 
 | 			folio_set_swapcache(newfolio); | 
 | 			newfolio->private = folio_get_private(folio); | 
 | 		} | 
 | 	} else { | 
 | 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); | 
 | 	} | 
 |  | 
 | 	/* Move dirty while page refs frozen and newpage not yet exposed */ | 
 | 	dirty = folio_test_dirty(folio); | 
 | 	if (dirty) { | 
 | 		folio_clear_dirty(folio); | 
 | 		folio_set_dirty(newfolio); | 
 | 	} | 
 |  | 
 | 	xas_store(&xas, newfolio); | 
 |  | 
 | 	/* | 
 | 	 * Drop cache reference from old page by unfreezing | 
 | 	 * to one less reference. | 
 | 	 * We know this isn't the last reference. | 
 | 	 */ | 
 | 	folio_ref_unfreeze(folio, expected_count - nr); | 
 |  | 
 | 	xas_unlock(&xas); | 
 | 	/* Leave irq disabled to prevent preemption while updating stats */ | 
 |  | 
 | 	/* | 
 | 	 * If moved to a different zone then also account | 
 | 	 * the page for that zone. Other VM counters will be | 
 | 	 * taken care of when we establish references to the | 
 | 	 * new page and drop references to the old page. | 
 | 	 * | 
 | 	 * Note that anonymous pages are accounted for | 
 | 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they | 
 | 	 * are mapped to swap space. | 
 | 	 */ | 
 | 	if (newzone != oldzone) { | 
 | 		struct lruvec *old_lruvec, *new_lruvec; | 
 | 		struct mem_cgroup *memcg; | 
 |  | 
 | 		memcg = folio_memcg(folio); | 
 | 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); | 
 | 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); | 
 |  | 
 | 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); | 
 | 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); | 
 | 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { | 
 | 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); | 
 | 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr); | 
 | 		} | 
 | #ifdef CONFIG_SWAP | 
 | 		if (folio_test_swapcache(folio)) { | 
 | 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); | 
 | 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); | 
 | 		} | 
 | #endif | 
 | 		if (dirty && mapping_can_writeback(mapping)) { | 
 | 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); | 
 | 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); | 
 | 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); | 
 | 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); | 
 | 		} | 
 | 	} | 
 | 	local_irq_enable(); | 
 |  | 
 | 	return MIGRATEPAGE_SUCCESS; | 
 | } | 
 | EXPORT_SYMBOL(folio_migrate_mapping); | 
 |  | 
 | /* | 
 |  * The expected number of remaining references is the same as that | 
 |  * of folio_migrate_mapping(). | 
 |  */ | 
 | int migrate_huge_page_move_mapping(struct address_space *mapping, | 
 | 				   struct folio *dst, struct folio *src) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, folio_index(src)); | 
 | 	int expected_count; | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	expected_count = 2 + folio_has_private(src); | 
 | 	if (!folio_ref_freeze(src, expected_count)) { | 
 | 		xas_unlock_irq(&xas); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	dst->index = src->index; | 
 | 	dst->mapping = src->mapping; | 
 |  | 
 | 	folio_get(dst); | 
 |  | 
 | 	xas_store(&xas, dst); | 
 |  | 
 | 	folio_ref_unfreeze(src, expected_count - 1); | 
 |  | 
 | 	xas_unlock_irq(&xas); | 
 |  | 
 | 	return MIGRATEPAGE_SUCCESS; | 
 | } | 
 |  | 
 | /* | 
 |  * Copy the flags and some other ancillary information | 
 |  */ | 
 | void folio_migrate_flags(struct folio *newfolio, struct folio *folio) | 
 | { | 
 | 	int cpupid; | 
 |  | 
 | 	if (folio_test_error(folio)) | 
 | 		folio_set_error(newfolio); | 
 | 	if (folio_test_referenced(folio)) | 
 | 		folio_set_referenced(newfolio); | 
 | 	if (folio_test_uptodate(folio)) | 
 | 		folio_mark_uptodate(newfolio); | 
 | 	if (folio_test_clear_active(folio)) { | 
 | 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); | 
 | 		folio_set_active(newfolio); | 
 | 	} else if (folio_test_clear_unevictable(folio)) | 
 | 		folio_set_unevictable(newfolio); | 
 | 	if (folio_test_workingset(folio)) | 
 | 		folio_set_workingset(newfolio); | 
 | 	if (folio_test_checked(folio)) | 
 | 		folio_set_checked(newfolio); | 
 | 	/* | 
 | 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via | 
 | 	 * migration entries. We can still have PG_anon_exclusive set on an | 
 | 	 * effectively unmapped and unreferenced first sub-pages of an | 
 | 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk. | 
 | 	 */ | 
 | 	if (folio_test_mappedtodisk(folio)) | 
 | 		folio_set_mappedtodisk(newfolio); | 
 |  | 
 | 	/* Move dirty on pages not done by folio_migrate_mapping() */ | 
 | 	if (folio_test_dirty(folio)) | 
 | 		folio_set_dirty(newfolio); | 
 |  | 
 | 	if (folio_test_young(folio)) | 
 | 		folio_set_young(newfolio); | 
 | 	if (folio_test_idle(folio)) | 
 | 		folio_set_idle(newfolio); | 
 |  | 
 | 	/* | 
 | 	 * Copy NUMA information to the new page, to prevent over-eager | 
 | 	 * future migrations of this same page. | 
 | 	 */ | 
 | 	cpupid = page_cpupid_xchg_last(&folio->page, -1); | 
 | 	page_cpupid_xchg_last(&newfolio->page, cpupid); | 
 |  | 
 | 	folio_migrate_ksm(newfolio, folio); | 
 | 	/* | 
 | 	 * Please do not reorder this without considering how mm/ksm.c's | 
 | 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). | 
 | 	 */ | 
 | 	if (folio_test_swapcache(folio)) | 
 | 		folio_clear_swapcache(folio); | 
 | 	folio_clear_private(folio); | 
 |  | 
 | 	/* page->private contains hugetlb specific flags */ | 
 | 	if (!folio_test_hugetlb(folio)) | 
 | 		folio->private = NULL; | 
 |  | 
 | 	/* | 
 | 	 * If any waiters have accumulated on the new page then | 
 | 	 * wake them up. | 
 | 	 */ | 
 | 	if (folio_test_writeback(newfolio)) | 
 | 		folio_end_writeback(newfolio); | 
 |  | 
 | 	/* | 
 | 	 * PG_readahead shares the same bit with PG_reclaim.  The above | 
 | 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the | 
 | 	 * bit after that. | 
 | 	 */ | 
 | 	if (folio_test_readahead(folio)) | 
 | 		folio_set_readahead(newfolio); | 
 |  | 
 | 	folio_copy_owner(newfolio, folio); | 
 |  | 
 | 	if (!folio_test_hugetlb(folio)) | 
 | 		mem_cgroup_migrate(folio, newfolio); | 
 | } | 
 | EXPORT_SYMBOL(folio_migrate_flags); | 
 |  | 
 | void folio_migrate_copy(struct folio *newfolio, struct folio *folio) | 
 | { | 
 | 	folio_copy(newfolio, folio); | 
 | 	folio_migrate_flags(newfolio, folio); | 
 | } | 
 | EXPORT_SYMBOL(folio_migrate_copy); | 
 |  | 
 | /************************************************************ | 
 |  *                    Migration functions | 
 |  ***********************************************************/ | 
 |  | 
 | /** | 
 |  * migrate_folio() - Simple folio migration. | 
 |  * @mapping: The address_space containing the folio. | 
 |  * @dst: The folio to migrate the data to. | 
 |  * @src: The folio containing the current data. | 
 |  * @mode: How to migrate the page. | 
 |  * | 
 |  * Common logic to directly migrate a single LRU folio suitable for | 
 |  * folios that do not use PagePrivate/PagePrivate2. | 
 |  * | 
 |  * Folios are locked upon entry and exit. | 
 |  */ | 
 | int migrate_folio(struct address_space *mapping, struct folio *dst, | 
 | 		struct folio *src, enum migrate_mode mode) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */ | 
 |  | 
 | 	rc = folio_migrate_mapping(mapping, dst, src, 0); | 
 |  | 
 | 	if (rc != MIGRATEPAGE_SUCCESS) | 
 | 		return rc; | 
 |  | 
 | 	if (mode != MIGRATE_SYNC_NO_COPY) | 
 | 		folio_migrate_copy(dst, src); | 
 | 	else | 
 | 		folio_migrate_flags(dst, src); | 
 | 	return MIGRATEPAGE_SUCCESS; | 
 | } | 
 | EXPORT_SYMBOL(migrate_folio); | 
 |  | 
 | #ifdef CONFIG_BLOCK | 
 | /* Returns true if all buffers are successfully locked */ | 
 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, | 
 | 							enum migrate_mode mode) | 
 | { | 
 | 	struct buffer_head *bh = head; | 
 |  | 
 | 	/* Simple case, sync compaction */ | 
 | 	if (mode != MIGRATE_ASYNC) { | 
 | 		do { | 
 | 			lock_buffer(bh); | 
 | 			bh = bh->b_this_page; | 
 |  | 
 | 		} while (bh != head); | 
 |  | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* async case, we cannot block on lock_buffer so use trylock_buffer */ | 
 | 	do { | 
 | 		if (!trylock_buffer(bh)) { | 
 | 			/* | 
 | 			 * We failed to lock the buffer and cannot stall in | 
 | 			 * async migration. Release the taken locks | 
 | 			 */ | 
 | 			struct buffer_head *failed_bh = bh; | 
 | 			bh = head; | 
 | 			while (bh != failed_bh) { | 
 | 				unlock_buffer(bh); | 
 | 				bh = bh->b_this_page; | 
 | 			} | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 		bh = bh->b_this_page; | 
 | 	} while (bh != head); | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __buffer_migrate_folio(struct address_space *mapping, | 
 | 		struct folio *dst, struct folio *src, enum migrate_mode mode, | 
 | 		bool check_refs) | 
 | { | 
 | 	struct buffer_head *bh, *head; | 
 | 	int rc; | 
 | 	int expected_count; | 
 |  | 
 | 	head = folio_buffers(src); | 
 | 	if (!head) | 
 | 		return migrate_folio(mapping, dst, src, mode); | 
 |  | 
 | 	/* Check whether page does not have extra refs before we do more work */ | 
 | 	expected_count = folio_expected_refs(mapping, src); | 
 | 	if (folio_ref_count(src) != expected_count) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (!buffer_migrate_lock_buffers(head, mode)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (check_refs) { | 
 | 		bool busy; | 
 | 		bool invalidated = false; | 
 |  | 
 | recheck_buffers: | 
 | 		busy = false; | 
 | 		spin_lock(&mapping->private_lock); | 
 | 		bh = head; | 
 | 		do { | 
 | 			if (atomic_read(&bh->b_count)) { | 
 | 				busy = true; | 
 | 				break; | 
 | 			} | 
 | 			bh = bh->b_this_page; | 
 | 		} while (bh != head); | 
 | 		if (busy) { | 
 | 			if (invalidated) { | 
 | 				rc = -EAGAIN; | 
 | 				goto unlock_buffers; | 
 | 			} | 
 | 			spin_unlock(&mapping->private_lock); | 
 | 			invalidate_bh_lrus(); | 
 | 			invalidated = true; | 
 | 			goto recheck_buffers; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = folio_migrate_mapping(mapping, dst, src, 0); | 
 | 	if (rc != MIGRATEPAGE_SUCCESS) | 
 | 		goto unlock_buffers; | 
 |  | 
 | 	folio_attach_private(dst, folio_detach_private(src)); | 
 |  | 
 | 	bh = head; | 
 | 	do { | 
 | 		set_bh_page(bh, &dst->page, bh_offset(bh)); | 
 | 		bh = bh->b_this_page; | 
 | 	} while (bh != head); | 
 |  | 
 | 	if (mode != MIGRATE_SYNC_NO_COPY) | 
 | 		folio_migrate_copy(dst, src); | 
 | 	else | 
 | 		folio_migrate_flags(dst, src); | 
 |  | 
 | 	rc = MIGRATEPAGE_SUCCESS; | 
 | unlock_buffers: | 
 | 	if (check_refs) | 
 | 		spin_unlock(&mapping->private_lock); | 
 | 	bh = head; | 
 | 	do { | 
 | 		unlock_buffer(bh); | 
 | 		bh = bh->b_this_page; | 
 | 	} while (bh != head); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * buffer_migrate_folio() - Migration function for folios with buffers. | 
 |  * @mapping: The address space containing @src. | 
 |  * @dst: The folio to migrate to. | 
 |  * @src: The folio to migrate from. | 
 |  * @mode: How to migrate the folio. | 
 |  * | 
 |  * This function can only be used if the underlying filesystem guarantees | 
 |  * that no other references to @src exist. For example attached buffer | 
 |  * heads are accessed only under the folio lock.  If your filesystem cannot | 
 |  * provide this guarantee, buffer_migrate_folio_norefs() may be more | 
 |  * appropriate. | 
 |  * | 
 |  * Return: 0 on success or a negative errno on failure. | 
 |  */ | 
 | int buffer_migrate_folio(struct address_space *mapping, | 
 | 		struct folio *dst, struct folio *src, enum migrate_mode mode) | 
 | { | 
 | 	return __buffer_migrate_folio(mapping, dst, src, mode, false); | 
 | } | 
 | EXPORT_SYMBOL(buffer_migrate_folio); | 
 |  | 
 | /** | 
 |  * buffer_migrate_folio_norefs() - Migration function for folios with buffers. | 
 |  * @mapping: The address space containing @src. | 
 |  * @dst: The folio to migrate to. | 
 |  * @src: The folio to migrate from. | 
 |  * @mode: How to migrate the folio. | 
 |  * | 
 |  * Like buffer_migrate_folio() except that this variant is more careful | 
 |  * and checks that there are also no buffer head references. This function | 
 |  * is the right one for mappings where buffer heads are directly looked | 
 |  * up and referenced (such as block device mappings). | 
 |  * | 
 |  * Return: 0 on success or a negative errno on failure. | 
 |  */ | 
 | int buffer_migrate_folio_norefs(struct address_space *mapping, | 
 | 		struct folio *dst, struct folio *src, enum migrate_mode mode) | 
 | { | 
 | 	return __buffer_migrate_folio(mapping, dst, src, mode, true); | 
 | } | 
 | #endif | 
 |  | 
 | int filemap_migrate_folio(struct address_space *mapping, | 
 | 		struct folio *dst, struct folio *src, enum migrate_mode mode) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = folio_migrate_mapping(mapping, dst, src, 0); | 
 | 	if (ret != MIGRATEPAGE_SUCCESS) | 
 | 		return ret; | 
 |  | 
 | 	if (folio_get_private(src)) | 
 | 		folio_attach_private(dst, folio_detach_private(src)); | 
 |  | 
 | 	if (mode != MIGRATE_SYNC_NO_COPY) | 
 | 		folio_migrate_copy(dst, src); | 
 | 	else | 
 | 		folio_migrate_flags(dst, src); | 
 | 	return MIGRATEPAGE_SUCCESS; | 
 | } | 
 | EXPORT_SYMBOL_GPL(filemap_migrate_folio); | 
 |  | 
 | /* | 
 |  * Writeback a folio to clean the dirty state | 
 |  */ | 
 | static int writeout(struct address_space *mapping, struct folio *folio) | 
 | { | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = WB_SYNC_NONE, | 
 | 		.nr_to_write = 1, | 
 | 		.range_start = 0, | 
 | 		.range_end = LLONG_MAX, | 
 | 		.for_reclaim = 1 | 
 | 	}; | 
 | 	int rc; | 
 |  | 
 | 	if (!mapping->a_ops->writepage) | 
 | 		/* No write method for the address space */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!folio_clear_dirty_for_io(folio)) | 
 | 		/* Someone else already triggered a write */ | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * A dirty folio may imply that the underlying filesystem has | 
 | 	 * the folio on some queue. So the folio must be clean for | 
 | 	 * migration. Writeout may mean we lose the lock and the | 
 | 	 * folio state is no longer what we checked for earlier. | 
 | 	 * At this point we know that the migration attempt cannot | 
 | 	 * be successful. | 
 | 	 */ | 
 | 	remove_migration_ptes(folio, folio, false); | 
 |  | 
 | 	rc = mapping->a_ops->writepage(&folio->page, &wbc); | 
 |  | 
 | 	if (rc != AOP_WRITEPAGE_ACTIVATE) | 
 | 		/* unlocked. Relock */ | 
 | 		folio_lock(folio); | 
 |  | 
 | 	return (rc < 0) ? -EIO : -EAGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Default handling if a filesystem does not provide a migration function. | 
 |  */ | 
 | static int fallback_migrate_folio(struct address_space *mapping, | 
 | 		struct folio *dst, struct folio *src, enum migrate_mode mode) | 
 | { | 
 | 	if (folio_test_dirty(src)) { | 
 | 		/* Only writeback folios in full synchronous migration */ | 
 | 		switch (mode) { | 
 | 		case MIGRATE_SYNC: | 
 | 		case MIGRATE_SYNC_NO_COPY: | 
 | 			break; | 
 | 		default: | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		return writeout(mapping, src); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Buffers may be managed in a filesystem specific way. | 
 | 	 * We must have no buffers or drop them. | 
 | 	 */ | 
 | 	if (folio_test_private(src) && | 
 | 	    !filemap_release_folio(src, GFP_KERNEL)) | 
 | 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; | 
 |  | 
 | 	return migrate_folio(mapping, dst, src, mode); | 
 | } | 
 |  | 
 | /* | 
 |  * Move a page to a newly allocated page | 
 |  * The page is locked and all ptes have been successfully removed. | 
 |  * | 
 |  * The new page will have replaced the old page if this function | 
 |  * is successful. | 
 |  * | 
 |  * Return value: | 
 |  *   < 0 - error code | 
 |  *  MIGRATEPAGE_SUCCESS - success | 
 |  */ | 
 | static int move_to_new_folio(struct folio *dst, struct folio *src, | 
 | 				enum migrate_mode mode) | 
 | { | 
 | 	int rc = -EAGAIN; | 
 | 	bool is_lru = !__PageMovable(&src->page); | 
 |  | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src); | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); | 
 |  | 
 | 	if (likely(is_lru)) { | 
 | 		struct address_space *mapping = folio_mapping(src); | 
 |  | 
 | 		if (!mapping) | 
 | 			rc = migrate_folio(mapping, dst, src, mode); | 
 | 		else if (mapping->a_ops->migrate_folio) | 
 | 			/* | 
 | 			 * Most folios have a mapping and most filesystems | 
 | 			 * provide a migrate_folio callback. Anonymous folios | 
 | 			 * are part of swap space which also has its own | 
 | 			 * migrate_folio callback. This is the most common path | 
 | 			 * for page migration. | 
 | 			 */ | 
 | 			rc = mapping->a_ops->migrate_folio(mapping, dst, src, | 
 | 								mode); | 
 | 		else | 
 | 			rc = fallback_migrate_folio(mapping, dst, src, mode); | 
 | 	} else { | 
 | 		const struct movable_operations *mops; | 
 |  | 
 | 		/* | 
 | 		 * In case of non-lru page, it could be released after | 
 | 		 * isolation step. In that case, we shouldn't try migration. | 
 | 		 */ | 
 | 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); | 
 | 		if (!folio_test_movable(src)) { | 
 | 			rc = MIGRATEPAGE_SUCCESS; | 
 | 			folio_clear_isolated(src); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		mops = page_movable_ops(&src->page); | 
 | 		rc = mops->migrate_page(&dst->page, &src->page, mode); | 
 | 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && | 
 | 				!folio_test_isolated(src)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When successful, old pagecache src->mapping must be cleared before | 
 | 	 * src is freed; but stats require that PageAnon be left as PageAnon. | 
 | 	 */ | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) { | 
 | 		if (__PageMovable(&src->page)) { | 
 | 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); | 
 |  | 
 | 			/* | 
 | 			 * We clear PG_movable under page_lock so any compactor | 
 | 			 * cannot try to migrate this page. | 
 | 			 */ | 
 | 			folio_clear_isolated(src); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Anonymous and movable src->mapping will be cleared by | 
 | 		 * free_pages_prepare so don't reset it here for keeping | 
 | 		 * the type to work PageAnon, for example. | 
 | 		 */ | 
 | 		if (!folio_mapping_flags(src)) | 
 | 			src->mapping = NULL; | 
 |  | 
 | 		if (likely(!folio_is_zone_device(dst))) | 
 | 			flush_dcache_folio(dst); | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int __unmap_and_move(struct page *page, struct page *newpage, | 
 | 				int force, enum migrate_mode mode) | 
 | { | 
 | 	struct folio *folio = page_folio(page); | 
 | 	struct folio *dst = page_folio(newpage); | 
 | 	int rc = -EAGAIN; | 
 | 	bool page_was_mapped = false; | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	bool is_lru = !__PageMovable(page); | 
 |  | 
 | 	if (!trylock_page(page)) { | 
 | 		if (!force || mode == MIGRATE_ASYNC) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * It's not safe for direct compaction to call lock_page. | 
 | 		 * For example, during page readahead pages are added locked | 
 | 		 * to the LRU. Later, when the IO completes the pages are | 
 | 		 * marked uptodate and unlocked. However, the queueing | 
 | 		 * could be merging multiple pages for one bio (e.g. | 
 | 		 * mpage_readahead). If an allocation happens for the | 
 | 		 * second or third page, the process can end up locking | 
 | 		 * the same page twice and deadlocking. Rather than | 
 | 		 * trying to be clever about what pages can be locked, | 
 | 		 * avoid the use of lock_page for direct compaction | 
 | 		 * altogether. | 
 | 		 */ | 
 | 		if (current->flags & PF_MEMALLOC) | 
 | 			goto out; | 
 |  | 
 | 		lock_page(page); | 
 | 	} | 
 |  | 
 | 	if (PageWriteback(page)) { | 
 | 		/* | 
 | 		 * Only in the case of a full synchronous migration is it | 
 | 		 * necessary to wait for PageWriteback. In the async case, | 
 | 		 * the retry loop is too short and in the sync-light case, | 
 | 		 * the overhead of stalling is too much | 
 | 		 */ | 
 | 		switch (mode) { | 
 | 		case MIGRATE_SYNC: | 
 | 		case MIGRATE_SYNC_NO_COPY: | 
 | 			break; | 
 | 		default: | 
 | 			rc = -EBUSY; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		if (!force) | 
 | 			goto out_unlock; | 
 | 		wait_on_page_writeback(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, | 
 | 	 * we cannot notice that anon_vma is freed while we migrates a page. | 
 | 	 * This get_anon_vma() delays freeing anon_vma pointer until the end | 
 | 	 * of migration. File cache pages are no problem because of page_lock() | 
 | 	 * File Caches may use write_page() or lock_page() in migration, then, | 
 | 	 * just care Anon page here. | 
 | 	 * | 
 | 	 * Only page_get_anon_vma() understands the subtleties of | 
 | 	 * getting a hold on an anon_vma from outside one of its mms. | 
 | 	 * But if we cannot get anon_vma, then we won't need it anyway, | 
 | 	 * because that implies that the anon page is no longer mapped | 
 | 	 * (and cannot be remapped so long as we hold the page lock). | 
 | 	 */ | 
 | 	if (PageAnon(page) && !PageKsm(page)) | 
 | 		anon_vma = page_get_anon_vma(page); | 
 |  | 
 | 	/* | 
 | 	 * Block others from accessing the new page when we get around to | 
 | 	 * establishing additional references. We are usually the only one | 
 | 	 * holding a reference to newpage at this point. We used to have a BUG | 
 | 	 * here if trylock_page(newpage) fails, but would like to allow for | 
 | 	 * cases where there might be a race with the previous use of newpage. | 
 | 	 * This is much like races on refcount of oldpage: just don't BUG(). | 
 | 	 */ | 
 | 	if (unlikely(!trylock_page(newpage))) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (unlikely(!is_lru)) { | 
 | 		rc = move_to_new_folio(dst, folio, mode); | 
 | 		goto out_unlock_both; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Corner case handling: | 
 | 	 * 1. When a new swap-cache page is read into, it is added to the LRU | 
 | 	 * and treated as swapcache but it has no rmap yet. | 
 | 	 * Calling try_to_unmap() against a page->mapping==NULL page will | 
 | 	 * trigger a BUG.  So handle it here. | 
 | 	 * 2. An orphaned page (see truncate_cleanup_page) might have | 
 | 	 * fs-private metadata. The page can be picked up due to memory | 
 | 	 * offlining.  Everywhere else except page reclaim, the page is | 
 | 	 * invisible to the vm, so the page can not be migrated.  So try to | 
 | 	 * free the metadata, so the page can be freed. | 
 | 	 */ | 
 | 	if (!page->mapping) { | 
 | 		VM_BUG_ON_PAGE(PageAnon(page), page); | 
 | 		if (page_has_private(page)) { | 
 | 			try_to_free_buffers(folio); | 
 | 			goto out_unlock_both; | 
 | 		} | 
 | 	} else if (page_mapped(page)) { | 
 | 		/* Establish migration ptes */ | 
 | 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, | 
 | 				page); | 
 | 		try_to_migrate(folio, 0); | 
 | 		page_was_mapped = true; | 
 | 	} | 
 |  | 
 | 	if (!page_mapped(page)) | 
 | 		rc = move_to_new_folio(dst, folio, mode); | 
 |  | 
 | 	/* | 
 | 	 * When successful, push newpage to LRU immediately: so that if it | 
 | 	 * turns out to be an mlocked page, remove_migration_ptes() will | 
 | 	 * automatically build up the correct newpage->mlock_count for it. | 
 | 	 * | 
 | 	 * We would like to do something similar for the old page, when | 
 | 	 * unsuccessful, and other cases when a page has been temporarily | 
 | 	 * isolated from the unevictable LRU: but this case is the easiest. | 
 | 	 */ | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) { | 
 | 		lru_cache_add(newpage); | 
 | 		if (page_was_mapped) | 
 | 			lru_add_drain(); | 
 | 	} | 
 |  | 
 | 	if (page_was_mapped) | 
 | 		remove_migration_ptes(folio, | 
 | 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false); | 
 |  | 
 | out_unlock_both: | 
 | 	unlock_page(newpage); | 
 | out_unlock: | 
 | 	/* Drop an anon_vma reference if we took one */ | 
 | 	if (anon_vma) | 
 | 		put_anon_vma(anon_vma); | 
 | 	unlock_page(page); | 
 | out: | 
 | 	/* | 
 | 	 * If migration is successful, decrease refcount of the newpage, | 
 | 	 * which will not free the page because new page owner increased | 
 | 	 * refcounter. | 
 | 	 */ | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) | 
 | 		put_page(newpage); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Obtain the lock on page, remove all ptes and migrate the page | 
 |  * to the newly allocated page in newpage. | 
 |  */ | 
 | static int unmap_and_move(new_page_t get_new_page, | 
 | 				   free_page_t put_new_page, | 
 | 				   unsigned long private, struct page *page, | 
 | 				   int force, enum migrate_mode mode, | 
 | 				   enum migrate_reason reason, | 
 | 				   struct list_head *ret) | 
 | { | 
 | 	int rc = MIGRATEPAGE_SUCCESS; | 
 | 	struct page *newpage = NULL; | 
 |  | 
 | 	if (!thp_migration_supported() && PageTransHuge(page)) | 
 | 		return -ENOSYS; | 
 |  | 
 | 	if (page_count(page) == 1) { | 
 | 		/* Page was freed from under us. So we are done. */ | 
 | 		ClearPageActive(page); | 
 | 		ClearPageUnevictable(page); | 
 | 		/* free_pages_prepare() will clear PG_isolated. */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	newpage = get_new_page(page, private); | 
 | 	if (!newpage) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	newpage->private = 0; | 
 | 	rc = __unmap_and_move(page, newpage, force, mode); | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) | 
 | 		set_page_owner_migrate_reason(newpage, reason); | 
 |  | 
 | out: | 
 | 	if (rc != -EAGAIN) { | 
 | 		/* | 
 | 		 * A page that has been migrated has all references | 
 | 		 * removed and will be freed. A page that has not been | 
 | 		 * migrated will have kept its references and be restored. | 
 | 		 */ | 
 | 		list_del(&page->lru); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If migration is successful, releases reference grabbed during | 
 | 	 * isolation. Otherwise, restore the page to right list unless | 
 | 	 * we want to retry. | 
 | 	 */ | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) { | 
 | 		/* | 
 | 		 * Compaction can migrate also non-LRU pages which are | 
 | 		 * not accounted to NR_ISOLATED_*. They can be recognized | 
 | 		 * as __PageMovable | 
 | 		 */ | 
 | 		if (likely(!__PageMovable(page))) | 
 | 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + | 
 | 					page_is_file_lru(page), -thp_nr_pages(page)); | 
 |  | 
 | 		if (reason != MR_MEMORY_FAILURE) | 
 | 			/* | 
 | 			 * We release the page in page_handle_poison. | 
 | 			 */ | 
 | 			put_page(page); | 
 | 	} else { | 
 | 		if (rc != -EAGAIN) | 
 | 			list_add_tail(&page->lru, ret); | 
 |  | 
 | 		if (put_new_page) | 
 | 			put_new_page(newpage, private); | 
 | 		else | 
 | 			put_page(newpage); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Counterpart of unmap_and_move_page() for hugepage migration. | 
 |  * | 
 |  * This function doesn't wait the completion of hugepage I/O | 
 |  * because there is no race between I/O and migration for hugepage. | 
 |  * Note that currently hugepage I/O occurs only in direct I/O | 
 |  * where no lock is held and PG_writeback is irrelevant, | 
 |  * and writeback status of all subpages are counted in the reference | 
 |  * count of the head page (i.e. if all subpages of a 2MB hugepage are | 
 |  * under direct I/O, the reference of the head page is 512 and a bit more.) | 
 |  * This means that when we try to migrate hugepage whose subpages are | 
 |  * doing direct I/O, some references remain after try_to_unmap() and | 
 |  * hugepage migration fails without data corruption. | 
 |  * | 
 |  * There is also no race when direct I/O is issued on the page under migration, | 
 |  * because then pte is replaced with migration swap entry and direct I/O code | 
 |  * will wait in the page fault for migration to complete. | 
 |  */ | 
 | static int unmap_and_move_huge_page(new_page_t get_new_page, | 
 | 				free_page_t put_new_page, unsigned long private, | 
 | 				struct page *hpage, int force, | 
 | 				enum migrate_mode mode, int reason, | 
 | 				struct list_head *ret) | 
 | { | 
 | 	struct folio *dst, *src = page_folio(hpage); | 
 | 	int rc = -EAGAIN; | 
 | 	int page_was_mapped = 0; | 
 | 	struct page *new_hpage; | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	struct address_space *mapping = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Migratability of hugepages depends on architectures and their size. | 
 | 	 * This check is necessary because some callers of hugepage migration | 
 | 	 * like soft offline and memory hotremove don't walk through page | 
 | 	 * tables or check whether the hugepage is pmd-based or not before | 
 | 	 * kicking migration. | 
 | 	 */ | 
 | 	if (!hugepage_migration_supported(page_hstate(hpage))) { | 
 | 		list_move_tail(&hpage->lru, ret); | 
 | 		return -ENOSYS; | 
 | 	} | 
 |  | 
 | 	if (page_count(hpage) == 1) { | 
 | 		/* page was freed from under us. So we are done. */ | 
 | 		putback_active_hugepage(hpage); | 
 | 		return MIGRATEPAGE_SUCCESS; | 
 | 	} | 
 |  | 
 | 	new_hpage = get_new_page(hpage, private); | 
 | 	if (!new_hpage) | 
 | 		return -ENOMEM; | 
 | 	dst = page_folio(new_hpage); | 
 |  | 
 | 	if (!trylock_page(hpage)) { | 
 | 		if (!force) | 
 | 			goto out; | 
 | 		switch (mode) { | 
 | 		case MIGRATE_SYNC: | 
 | 		case MIGRATE_SYNC_NO_COPY: | 
 | 			break; | 
 | 		default: | 
 | 			goto out; | 
 | 		} | 
 | 		lock_page(hpage); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check for pages which are in the process of being freed.  Without | 
 | 	 * page_mapping() set, hugetlbfs specific move page routine will not | 
 | 	 * be called and we could leak usage counts for subpools. | 
 | 	 */ | 
 | 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { | 
 | 		rc = -EBUSY; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (PageAnon(hpage)) | 
 | 		anon_vma = page_get_anon_vma(hpage); | 
 |  | 
 | 	if (unlikely(!trylock_page(new_hpage))) | 
 | 		goto put_anon; | 
 |  | 
 | 	if (page_mapped(hpage)) { | 
 | 		enum ttu_flags ttu = 0; | 
 |  | 
 | 		if (!PageAnon(hpage)) { | 
 | 			/* | 
 | 			 * In shared mappings, try_to_unmap could potentially | 
 | 			 * call huge_pmd_unshare.  Because of this, take | 
 | 			 * semaphore in write mode here and set TTU_RMAP_LOCKED | 
 | 			 * to let lower levels know we have taken the lock. | 
 | 			 */ | 
 | 			mapping = hugetlb_page_mapping_lock_write(hpage); | 
 | 			if (unlikely(!mapping)) | 
 | 				goto unlock_put_anon; | 
 |  | 
 | 			ttu = TTU_RMAP_LOCKED; | 
 | 		} | 
 |  | 
 | 		try_to_migrate(src, ttu); | 
 | 		page_was_mapped = 1; | 
 |  | 
 | 		if (ttu & TTU_RMAP_LOCKED) | 
 | 			i_mmap_unlock_write(mapping); | 
 | 	} | 
 |  | 
 | 	if (!page_mapped(hpage)) | 
 | 		rc = move_to_new_folio(dst, src, mode); | 
 |  | 
 | 	if (page_was_mapped) | 
 | 		remove_migration_ptes(src, | 
 | 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false); | 
 |  | 
 | unlock_put_anon: | 
 | 	unlock_page(new_hpage); | 
 |  | 
 | put_anon: | 
 | 	if (anon_vma) | 
 | 		put_anon_vma(anon_vma); | 
 |  | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) { | 
 | 		move_hugetlb_state(hpage, new_hpage, reason); | 
 | 		put_new_page = NULL; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	unlock_page(hpage); | 
 | out: | 
 | 	if (rc == MIGRATEPAGE_SUCCESS) | 
 | 		putback_active_hugepage(hpage); | 
 | 	else if (rc != -EAGAIN) | 
 | 		list_move_tail(&hpage->lru, ret); | 
 |  | 
 | 	/* | 
 | 	 * If migration was not successful and there's a freeing callback, use | 
 | 	 * it.  Otherwise, put_page() will drop the reference grabbed during | 
 | 	 * isolation. | 
 | 	 */ | 
 | 	if (put_new_page) | 
 | 		put_new_page(new_hpage, private); | 
 | 	else | 
 | 		putback_active_hugepage(new_hpage); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static inline int try_split_thp(struct page *page, struct page **page2, | 
 | 				struct list_head *from) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	lock_page(page); | 
 | 	rc = split_huge_page_to_list(page, from); | 
 | 	unlock_page(page); | 
 | 	if (!rc) | 
 | 		list_safe_reset_next(page, *page2, lru); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * migrate_pages - migrate the pages specified in a list, to the free pages | 
 |  *		   supplied as the target for the page migration | 
 |  * | 
 |  * @from:		The list of pages to be migrated. | 
 |  * @get_new_page:	The function used to allocate free pages to be used | 
 |  *			as the target of the page migration. | 
 |  * @put_new_page:	The function used to free target pages if migration | 
 |  *			fails, or NULL if no special handling is necessary. | 
 |  * @private:		Private data to be passed on to get_new_page() | 
 |  * @mode:		The migration mode that specifies the constraints for | 
 |  *			page migration, if any. | 
 |  * @reason:		The reason for page migration. | 
 |  * @ret_succeeded:	Set to the number of normal pages migrated successfully if | 
 |  *			the caller passes a non-NULL pointer. | 
 |  * | 
 |  * The function returns after 10 attempts or if no pages are movable any more | 
 |  * because the list has become empty or no retryable pages exist any more. | 
 |  * It is caller's responsibility to call putback_movable_pages() to return pages | 
 |  * to the LRU or free list only if ret != 0. | 
 |  * | 
 |  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or | 
 |  * an error code. The number of THP splits will be considered as the number of | 
 |  * non-migrated THP, no matter how many subpages of the THP are migrated successfully. | 
 |  */ | 
 | int migrate_pages(struct list_head *from, new_page_t get_new_page, | 
 | 		free_page_t put_new_page, unsigned long private, | 
 | 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded) | 
 | { | 
 | 	int retry = 1; | 
 | 	int thp_retry = 1; | 
 | 	int nr_failed = 0; | 
 | 	int nr_failed_pages = 0; | 
 | 	int nr_succeeded = 0; | 
 | 	int nr_thp_succeeded = 0; | 
 | 	int nr_thp_failed = 0; | 
 | 	int nr_thp_split = 0; | 
 | 	int pass = 0; | 
 | 	bool is_thp = false; | 
 | 	struct page *page; | 
 | 	struct page *page2; | 
 | 	int rc, nr_subpages; | 
 | 	LIST_HEAD(ret_pages); | 
 | 	LIST_HEAD(thp_split_pages); | 
 | 	bool nosplit = (reason == MR_NUMA_MISPLACED); | 
 | 	bool no_subpage_counting = false; | 
 |  | 
 | 	trace_mm_migrate_pages_start(mode, reason); | 
 |  | 
 | thp_subpage_migration: | 
 | 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { | 
 | 		retry = 0; | 
 | 		thp_retry = 0; | 
 |  | 
 | 		list_for_each_entry_safe(page, page2, from, lru) { | 
 | retry: | 
 | 			/* | 
 | 			 * THP statistics is based on the source huge page. | 
 | 			 * Capture required information that might get lost | 
 | 			 * during migration. | 
 | 			 */ | 
 | 			is_thp = PageTransHuge(page) && !PageHuge(page); | 
 | 			nr_subpages = compound_nr(page); | 
 | 			cond_resched(); | 
 |  | 
 | 			if (PageHuge(page)) | 
 | 				rc = unmap_and_move_huge_page(get_new_page, | 
 | 						put_new_page, private, page, | 
 | 						pass > 2, mode, reason, | 
 | 						&ret_pages); | 
 | 			else | 
 | 				rc = unmap_and_move(get_new_page, put_new_page, | 
 | 						private, page, pass > 2, mode, | 
 | 						reason, &ret_pages); | 
 | 			/* | 
 | 			 * The rules are: | 
 | 			 *	Success: non hugetlb page will be freed, hugetlb | 
 | 			 *		 page will be put back | 
 | 			 *	-EAGAIN: stay on the from list | 
 | 			 *	-ENOMEM: stay on the from list | 
 | 			 *	Other errno: put on ret_pages list then splice to | 
 | 			 *		     from list | 
 | 			 */ | 
 | 			switch(rc) { | 
 | 			/* | 
 | 			 * THP migration might be unsupported or the | 
 | 			 * allocation could've failed so we should | 
 | 			 * retry on the same page with the THP split | 
 | 			 * to base pages. | 
 | 			 * | 
 | 			 * Head page is retried immediately and tail | 
 | 			 * pages are added to the tail of the list so | 
 | 			 * we encounter them after the rest of the list | 
 | 			 * is processed. | 
 | 			 */ | 
 | 			case -ENOSYS: | 
 | 				/* THP migration is unsupported */ | 
 | 				if (is_thp) { | 
 | 					nr_thp_failed++; | 
 | 					if (!try_split_thp(page, &page2, &thp_split_pages)) { | 
 | 						nr_thp_split++; | 
 | 						goto retry; | 
 | 					} | 
 | 				/* Hugetlb migration is unsupported */ | 
 | 				} else if (!no_subpage_counting) { | 
 | 					nr_failed++; | 
 | 				} | 
 |  | 
 | 				nr_failed_pages += nr_subpages; | 
 | 				break; | 
 | 			case -ENOMEM: | 
 | 				/* | 
 | 				 * When memory is low, don't bother to try to migrate | 
 | 				 * other pages, just exit. | 
 | 				 * THP NUMA faulting doesn't split THP to retry. | 
 | 				 */ | 
 | 				if (is_thp && !nosplit) { | 
 | 					nr_thp_failed++; | 
 | 					if (!try_split_thp(page, &page2, &thp_split_pages)) { | 
 | 						nr_thp_split++; | 
 | 						goto retry; | 
 | 					} | 
 | 				} else if (!no_subpage_counting) { | 
 | 					nr_failed++; | 
 | 				} | 
 |  | 
 | 				nr_failed_pages += nr_subpages; | 
 | 				/* | 
 | 				 * There might be some subpages of fail-to-migrate THPs | 
 | 				 * left in thp_split_pages list. Move them back to migration | 
 | 				 * list so that they could be put back to the right list by | 
 | 				 * the caller otherwise the page refcnt will be leaked. | 
 | 				 */ | 
 | 				list_splice_init(&thp_split_pages, from); | 
 | 				nr_thp_failed += thp_retry; | 
 | 				goto out; | 
 | 			case -EAGAIN: | 
 | 				if (is_thp) | 
 | 					thp_retry++; | 
 | 				else | 
 | 					retry++; | 
 | 				break; | 
 | 			case MIGRATEPAGE_SUCCESS: | 
 | 				nr_succeeded += nr_subpages; | 
 | 				if (is_thp) | 
 | 					nr_thp_succeeded++; | 
 | 				break; | 
 | 			default: | 
 | 				/* | 
 | 				 * Permanent failure (-EBUSY, etc.): | 
 | 				 * unlike -EAGAIN case, the failed page is | 
 | 				 * removed from migration page list and not | 
 | 				 * retried in the next outer loop. | 
 | 				 */ | 
 | 				if (is_thp) | 
 | 					nr_thp_failed++; | 
 | 				else if (!no_subpage_counting) | 
 | 					nr_failed++; | 
 |  | 
 | 				nr_failed_pages += nr_subpages; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	nr_failed += retry; | 
 | 	nr_thp_failed += thp_retry; | 
 | 	/* | 
 | 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed | 
 | 	 * counting in this round, since all subpages of a THP is counted | 
 | 	 * as 1 failure in the first round. | 
 | 	 */ | 
 | 	if (!list_empty(&thp_split_pages)) { | 
 | 		/* | 
 | 		 * Move non-migrated pages (after 10 retries) to ret_pages | 
 | 		 * to avoid migrating them again. | 
 | 		 */ | 
 | 		list_splice_init(from, &ret_pages); | 
 | 		list_splice_init(&thp_split_pages, from); | 
 | 		no_subpage_counting = true; | 
 | 		retry = 1; | 
 | 		goto thp_subpage_migration; | 
 | 	} | 
 |  | 
 | 	rc = nr_failed + nr_thp_failed; | 
 | out: | 
 | 	/* | 
 | 	 * Put the permanent failure page back to migration list, they | 
 | 	 * will be put back to the right list by the caller. | 
 | 	 */ | 
 | 	list_splice(&ret_pages, from); | 
 |  | 
 | 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); | 
 | 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); | 
 | 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); | 
 | 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); | 
 | 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); | 
 | 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, | 
 | 			       nr_thp_failed, nr_thp_split, mode, reason); | 
 |  | 
 | 	if (ret_succeeded) | 
 | 		*ret_succeeded = nr_succeeded; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | struct page *alloc_migration_target(struct page *page, unsigned long private) | 
 | { | 
 | 	struct folio *folio = page_folio(page); | 
 | 	struct migration_target_control *mtc; | 
 | 	gfp_t gfp_mask; | 
 | 	unsigned int order = 0; | 
 | 	struct folio *new_folio = NULL; | 
 | 	int nid; | 
 | 	int zidx; | 
 |  | 
 | 	mtc = (struct migration_target_control *)private; | 
 | 	gfp_mask = mtc->gfp_mask; | 
 | 	nid = mtc->nid; | 
 | 	if (nid == NUMA_NO_NODE) | 
 | 		nid = folio_nid(folio); | 
 |  | 
 | 	if (folio_test_hugetlb(folio)) { | 
 | 		struct hstate *h = page_hstate(&folio->page); | 
 |  | 
 | 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); | 
 | 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); | 
 | 	} | 
 |  | 
 | 	if (folio_test_large(folio)) { | 
 | 		/* | 
 | 		 * clear __GFP_RECLAIM to make the migration callback | 
 | 		 * consistent with regular THP allocations. | 
 | 		 */ | 
 | 		gfp_mask &= ~__GFP_RECLAIM; | 
 | 		gfp_mask |= GFP_TRANSHUGE; | 
 | 		order = folio_order(folio); | 
 | 	} | 
 | 	zidx = zone_idx(folio_zone(folio)); | 
 | 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) | 
 | 		gfp_mask |= __GFP_HIGHMEM; | 
 |  | 
 | 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); | 
 |  | 
 | 	return &new_folio->page; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | static int store_status(int __user *status, int start, int value, int nr) | 
 | { | 
 | 	while (nr-- > 0) { | 
 | 		if (put_user(value, status + start)) | 
 | 			return -EFAULT; | 
 | 		start++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_move_pages_to_node(struct mm_struct *mm, | 
 | 		struct list_head *pagelist, int node) | 
 | { | 
 | 	int err; | 
 | 	struct migration_target_control mtc = { | 
 | 		.nid = node, | 
 | 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, | 
 | 	}; | 
 |  | 
 | 	err = migrate_pages(pagelist, alloc_migration_target, NULL, | 
 | 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); | 
 | 	if (err) | 
 | 		putback_movable_pages(pagelist); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Resolves the given address to a struct page, isolates it from the LRU and | 
 |  * puts it to the given pagelist. | 
 |  * Returns: | 
 |  *     errno - if the page cannot be found/isolated | 
 |  *     0 - when it doesn't have to be migrated because it is already on the | 
 |  *         target node | 
 |  *     1 - when it has been queued | 
 |  */ | 
 | static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, | 
 | 		int node, struct list_head *pagelist, bool migrate_all) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct page *page; | 
 | 	int err; | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	err = -EFAULT; | 
 | 	vma = vma_lookup(mm, addr); | 
 | 	if (!vma || !vma_migratable(vma)) | 
 | 		goto out; | 
 |  | 
 | 	/* FOLL_DUMP to ignore special (like zero) pages */ | 
 | 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); | 
 |  | 
 | 	err = PTR_ERR(page); | 
 | 	if (IS_ERR(page)) | 
 | 		goto out; | 
 |  | 
 | 	err = -ENOENT; | 
 | 	if (!page || is_zone_device_page(page)) | 
 | 		goto out; | 
 |  | 
 | 	err = 0; | 
 | 	if (page_to_nid(page) == node) | 
 | 		goto out_putpage; | 
 |  | 
 | 	err = -EACCES; | 
 | 	if (page_mapcount(page) > 1 && !migrate_all) | 
 | 		goto out_putpage; | 
 |  | 
 | 	if (PageHuge(page)) { | 
 | 		if (PageHead(page)) { | 
 | 			err = isolate_hugetlb(page, pagelist); | 
 | 			if (!err) | 
 | 				err = 1; | 
 | 		} | 
 | 	} else { | 
 | 		struct page *head; | 
 |  | 
 | 		head = compound_head(page); | 
 | 		err = isolate_lru_page(head); | 
 | 		if (err) | 
 | 			goto out_putpage; | 
 |  | 
 | 		err = 1; | 
 | 		list_add_tail(&head->lru, pagelist); | 
 | 		mod_node_page_state(page_pgdat(head), | 
 | 			NR_ISOLATED_ANON + page_is_file_lru(head), | 
 | 			thp_nr_pages(head)); | 
 | 	} | 
 | out_putpage: | 
 | 	/* | 
 | 	 * Either remove the duplicate refcount from | 
 | 	 * isolate_lru_page() or drop the page ref if it was | 
 | 	 * not isolated. | 
 | 	 */ | 
 | 	put_page(page); | 
 | out: | 
 | 	mmap_read_unlock(mm); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int move_pages_and_store_status(struct mm_struct *mm, int node, | 
 | 		struct list_head *pagelist, int __user *status, | 
 | 		int start, int i, unsigned long nr_pages) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (list_empty(pagelist)) | 
 | 		return 0; | 
 |  | 
 | 	err = do_move_pages_to_node(mm, pagelist, node); | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * Positive err means the number of failed | 
 | 		 * pages to migrate.  Since we are going to | 
 | 		 * abort and return the number of non-migrated | 
 | 		 * pages, so need to include the rest of the | 
 | 		 * nr_pages that have not been attempted as | 
 | 		 * well. | 
 | 		 */ | 
 | 		if (err > 0) | 
 | 			err += nr_pages - i - 1; | 
 | 		return err; | 
 | 	} | 
 | 	return store_status(status, start, node, i - start); | 
 | } | 
 |  | 
 | /* | 
 |  * Migrate an array of page address onto an array of nodes and fill | 
 |  * the corresponding array of status. | 
 |  */ | 
 | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, | 
 | 			 unsigned long nr_pages, | 
 | 			 const void __user * __user *pages, | 
 | 			 const int __user *nodes, | 
 | 			 int __user *status, int flags) | 
 | { | 
 | 	int current_node = NUMA_NO_NODE; | 
 | 	LIST_HEAD(pagelist); | 
 | 	int start, i; | 
 | 	int err = 0, err1; | 
 |  | 
 | 	lru_cache_disable(); | 
 |  | 
 | 	for (i = start = 0; i < nr_pages; i++) { | 
 | 		const void __user *p; | 
 | 		unsigned long addr; | 
 | 		int node; | 
 |  | 
 | 		err = -EFAULT; | 
 | 		if (get_user(p, pages + i)) | 
 | 			goto out_flush; | 
 | 		if (get_user(node, nodes + i)) | 
 | 			goto out_flush; | 
 | 		addr = (unsigned long)untagged_addr(p); | 
 |  | 
 | 		err = -ENODEV; | 
 | 		if (node < 0 || node >= MAX_NUMNODES) | 
 | 			goto out_flush; | 
 | 		if (!node_state(node, N_MEMORY)) | 
 | 			goto out_flush; | 
 |  | 
 | 		err = -EACCES; | 
 | 		if (!node_isset(node, task_nodes)) | 
 | 			goto out_flush; | 
 |  | 
 | 		if (current_node == NUMA_NO_NODE) { | 
 | 			current_node = node; | 
 | 			start = i; | 
 | 		} else if (node != current_node) { | 
 | 			err = move_pages_and_store_status(mm, current_node, | 
 | 					&pagelist, status, start, i, nr_pages); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			start = i; | 
 | 			current_node = node; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Errors in the page lookup or isolation are not fatal and we simply | 
 | 		 * report them via status | 
 | 		 */ | 
 | 		err = add_page_for_migration(mm, addr, current_node, | 
 | 				&pagelist, flags & MPOL_MF_MOVE_ALL); | 
 |  | 
 | 		if (err > 0) { | 
 | 			/* The page is successfully queued for migration */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The move_pages() man page does not have an -EEXIST choice, so | 
 | 		 * use -EFAULT instead. | 
 | 		 */ | 
 | 		if (err == -EEXIST) | 
 | 			err = -EFAULT; | 
 |  | 
 | 		/* | 
 | 		 * If the page is already on the target node (!err), store the | 
 | 		 * node, otherwise, store the err. | 
 | 		 */ | 
 | 		err = store_status(status, i, err ? : current_node, 1); | 
 | 		if (err) | 
 | 			goto out_flush; | 
 |  | 
 | 		err = move_pages_and_store_status(mm, current_node, &pagelist, | 
 | 				status, start, i, nr_pages); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		current_node = NUMA_NO_NODE; | 
 | 	} | 
 | out_flush: | 
 | 	/* Make sure we do not overwrite the existing error */ | 
 | 	err1 = move_pages_and_store_status(mm, current_node, &pagelist, | 
 | 				status, start, i, nr_pages); | 
 | 	if (err >= 0) | 
 | 		err = err1; | 
 | out: | 
 | 	lru_cache_enable(); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the nodes of an array of pages and store it in an array of status. | 
 |  */ | 
 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, | 
 | 				const void __user **pages, int *status) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	mmap_read_lock(mm); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		unsigned long addr = (unsigned long)(*pages); | 
 | 		struct vm_area_struct *vma; | 
 | 		struct page *page; | 
 | 		int err = -EFAULT; | 
 |  | 
 | 		vma = vma_lookup(mm, addr); | 
 | 		if (!vma) | 
 | 			goto set_status; | 
 |  | 
 | 		/* FOLL_DUMP to ignore special (like zero) pages */ | 
 | 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); | 
 |  | 
 | 		err = PTR_ERR(page); | 
 | 		if (IS_ERR(page)) | 
 | 			goto set_status; | 
 |  | 
 | 		if (page && !is_zone_device_page(page)) { | 
 | 			err = page_to_nid(page); | 
 | 			put_page(page); | 
 | 		} else { | 
 | 			err = -ENOENT; | 
 | 		} | 
 | set_status: | 
 | 		*status = err; | 
 |  | 
 | 		pages++; | 
 | 		status++; | 
 | 	} | 
 |  | 
 | 	mmap_read_unlock(mm); | 
 | } | 
 |  | 
 | static int get_compat_pages_array(const void __user *chunk_pages[], | 
 | 				  const void __user * __user *pages, | 
 | 				  unsigned long chunk_nr) | 
 | { | 
 | 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; | 
 | 	compat_uptr_t p; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < chunk_nr; i++) { | 
 | 		if (get_user(p, pages32 + i)) | 
 | 			return -EFAULT; | 
 | 		chunk_pages[i] = compat_ptr(p); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the nodes of a user array of pages and store it in | 
 |  * a user array of status. | 
 |  */ | 
 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | 
 | 			 const void __user * __user *pages, | 
 | 			 int __user *status) | 
 | { | 
 | #define DO_PAGES_STAT_CHUNK_NR 16UL | 
 | 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | 
 | 	int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | 
 |  | 
 | 	while (nr_pages) { | 
 | 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); | 
 |  | 
 | 		if (in_compat_syscall()) { | 
 | 			if (get_compat_pages_array(chunk_pages, pages, | 
 | 						   chunk_nr)) | 
 | 				break; | 
 | 		} else { | 
 | 			if (copy_from_user(chunk_pages, pages, | 
 | 				      chunk_nr * sizeof(*chunk_pages))) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | 
 |  | 
 | 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) | 
 | 			break; | 
 |  | 
 | 		pages += chunk_nr; | 
 | 		status += chunk_nr; | 
 | 		nr_pages -= chunk_nr; | 
 | 	} | 
 | 	return nr_pages ? -EFAULT : 0; | 
 | } | 
 |  | 
 | static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) | 
 | { | 
 | 	struct task_struct *task; | 
 | 	struct mm_struct *mm; | 
 |  | 
 | 	/* | 
 | 	 * There is no need to check if current process has the right to modify | 
 | 	 * the specified process when they are same. | 
 | 	 */ | 
 | 	if (!pid) { | 
 | 		mmget(current->mm); | 
 | 		*mem_nodes = cpuset_mems_allowed(current); | 
 | 		return current->mm; | 
 | 	} | 
 |  | 
 | 	/* Find the mm_struct */ | 
 | 	rcu_read_lock(); | 
 | 	task = find_task_by_vpid(pid); | 
 | 	if (!task) { | 
 | 		rcu_read_unlock(); | 
 | 		return ERR_PTR(-ESRCH); | 
 | 	} | 
 | 	get_task_struct(task); | 
 |  | 
 | 	/* | 
 | 	 * Check if this process has the right to modify the specified | 
 | 	 * process. Use the regular "ptrace_may_access()" checks. | 
 | 	 */ | 
 | 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { | 
 | 		rcu_read_unlock(); | 
 | 		mm = ERR_PTR(-EPERM); | 
 | 		goto out; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	mm = ERR_PTR(security_task_movememory(task)); | 
 | 	if (IS_ERR(mm)) | 
 | 		goto out; | 
 | 	*mem_nodes = cpuset_mems_allowed(task); | 
 | 	mm = get_task_mm(task); | 
 | out: | 
 | 	put_task_struct(task); | 
 | 	if (!mm) | 
 | 		mm = ERR_PTR(-EINVAL); | 
 | 	return mm; | 
 | } | 
 |  | 
 | /* | 
 |  * Move a list of pages in the address space of the currently executing | 
 |  * process. | 
 |  */ | 
 | static int kernel_move_pages(pid_t pid, unsigned long nr_pages, | 
 | 			     const void __user * __user *pages, | 
 | 			     const int __user *nodes, | 
 | 			     int __user *status, int flags) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	int err; | 
 | 	nodemask_t task_nodes; | 
 |  | 
 | 	/* Check flags */ | 
 | 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
 | 		return -EPERM; | 
 |  | 
 | 	mm = find_mm_struct(pid, &task_nodes); | 
 | 	if (IS_ERR(mm)) | 
 | 		return PTR_ERR(mm); | 
 |  | 
 | 	if (nodes) | 
 | 		err = do_pages_move(mm, task_nodes, nr_pages, pages, | 
 | 				    nodes, status, flags); | 
 | 	else | 
 | 		err = do_pages_stat(mm, nr_pages, pages, status); | 
 |  | 
 | 	mmput(mm); | 
 | 	return err; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, | 
 | 		const void __user * __user *, pages, | 
 | 		const int __user *, nodes, | 
 | 		int __user *, status, int, flags) | 
 | { | 
 | 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | /* | 
 |  * Returns true if this is a safe migration target node for misplaced NUMA | 
 |  * pages. Currently it only checks the watermarks which is crude. | 
 |  */ | 
 | static bool migrate_balanced_pgdat(struct pglist_data *pgdat, | 
 | 				   unsigned long nr_migrate_pages) | 
 | { | 
 | 	int z; | 
 |  | 
 | 	for (z = pgdat->nr_zones - 1; z >= 0; z--) { | 
 | 		struct zone *zone = pgdat->node_zones + z; | 
 |  | 
 | 		if (!managed_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */ | 
 | 		if (!zone_watermark_ok(zone, 0, | 
 | 				       high_wmark_pages(zone) + | 
 | 				       nr_migrate_pages, | 
 | 				       ZONE_MOVABLE, 0)) | 
 | 			continue; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static struct page *alloc_misplaced_dst_page(struct page *page, | 
 | 					   unsigned long data) | 
 | { | 
 | 	int nid = (int) data; | 
 | 	int order = compound_order(page); | 
 | 	gfp_t gfp = __GFP_THISNODE; | 
 | 	struct folio *new; | 
 |  | 
 | 	if (order > 0) | 
 | 		gfp |= GFP_TRANSHUGE_LIGHT; | 
 | 	else { | 
 | 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | | 
 | 			__GFP_NOWARN; | 
 | 		gfp &= ~__GFP_RECLAIM; | 
 | 	} | 
 | 	new = __folio_alloc_node(gfp, order, nid); | 
 |  | 
 | 	return &new->page; | 
 | } | 
 |  | 
 | static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) | 
 | { | 
 | 	int nr_pages = thp_nr_pages(page); | 
 | 	int order = compound_order(page); | 
 |  | 
 | 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); | 
 |  | 
 | 	/* Do not migrate THP mapped by multiple processes */ | 
 | 	if (PageTransHuge(page) && total_mapcount(page) > 1) | 
 | 		return 0; | 
 |  | 
 | 	/* Avoid migrating to a node that is nearly full */ | 
 | 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) { | 
 | 		int z; | 
 |  | 
 | 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) | 
 | 			return 0; | 
 | 		for (z = pgdat->nr_zones - 1; z >= 0; z--) { | 
 | 			if (managed_zone(pgdat->node_zones + z)) | 
 | 				break; | 
 | 		} | 
 | 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (isolate_lru_page(page)) | 
 | 		return 0; | 
 |  | 
 | 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), | 
 | 			    nr_pages); | 
 |  | 
 | 	/* | 
 | 	 * Isolating the page has taken another reference, so the | 
 | 	 * caller's reference can be safely dropped without the page | 
 | 	 * disappearing underneath us during migration. | 
 | 	 */ | 
 | 	put_page(page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to migrate a misplaced page to the specified destination | 
 |  * node. Caller is expected to have an elevated reference count on | 
 |  * the page that will be dropped by this function before returning. | 
 |  */ | 
 | int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, | 
 | 			   int node) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(node); | 
 | 	int isolated; | 
 | 	int nr_remaining; | 
 | 	unsigned int nr_succeeded; | 
 | 	LIST_HEAD(migratepages); | 
 | 	int nr_pages = thp_nr_pages(page); | 
 |  | 
 | 	/* | 
 | 	 * Don't migrate file pages that are mapped in multiple processes | 
 | 	 * with execute permissions as they are probably shared libraries. | 
 | 	 */ | 
 | 	if (page_mapcount(page) != 1 && page_is_file_lru(page) && | 
 | 	    (vma->vm_flags & VM_EXEC)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Also do not migrate dirty pages as not all filesystems can move | 
 | 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. | 
 | 	 */ | 
 | 	if (page_is_file_lru(page) && PageDirty(page)) | 
 | 		goto out; | 
 |  | 
 | 	isolated = numamigrate_isolate_page(pgdat, page); | 
 | 	if (!isolated) | 
 | 		goto out; | 
 |  | 
 | 	list_add(&page->lru, &migratepages); | 
 | 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, | 
 | 				     NULL, node, MIGRATE_ASYNC, | 
 | 				     MR_NUMA_MISPLACED, &nr_succeeded); | 
 | 	if (nr_remaining) { | 
 | 		if (!list_empty(&migratepages)) { | 
 | 			list_del(&page->lru); | 
 | 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + | 
 | 					page_is_file_lru(page), -nr_pages); | 
 | 			putback_lru_page(page); | 
 | 		} | 
 | 		isolated = 0; | 
 | 	} | 
 | 	if (nr_succeeded) { | 
 | 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); | 
 | 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) | 
 | 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, | 
 | 					    nr_succeeded); | 
 | 	} | 
 | 	BUG_ON(!list_empty(&migratepages)); | 
 | 	return isolated; | 
 |  | 
 | out: | 
 | 	put_page(page); | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | /* | 
 |  * node_demotion[] example: | 
 |  * | 
 |  * Consider a system with two sockets.  Each socket has | 
 |  * three classes of memory attached: fast, medium and slow. | 
 |  * Each memory class is placed in its own NUMA node.  The | 
 |  * CPUs are placed in the node with the "fast" memory.  The | 
 |  * 6 NUMA nodes (0-5) might be split among the sockets like | 
 |  * this: | 
 |  * | 
 |  *	Socket A: 0, 1, 2 | 
 |  *	Socket B: 3, 4, 5 | 
 |  * | 
 |  * When Node 0 fills up, its memory should be migrated to | 
 |  * Node 1.  When Node 1 fills up, it should be migrated to | 
 |  * Node 2.  The migration path start on the nodes with the | 
 |  * processors (since allocations default to this node) and | 
 |  * fast memory, progress through medium and end with the | 
 |  * slow memory: | 
 |  * | 
 |  *	0 -> 1 -> 2 -> stop | 
 |  *	3 -> 4 -> 5 -> stop | 
 |  * | 
 |  * This is represented in the node_demotion[] like this: | 
 |  * | 
 |  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1 | 
 |  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2 | 
 |  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate | 
 |  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4 | 
 |  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5 | 
 |  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate | 
 |  * | 
 |  * Moreover some systems may have multiple slow memory nodes. | 
 |  * Suppose a system has one socket with 3 memory nodes, node 0 | 
 |  * is fast memory type, and node 1/2 both are slow memory | 
 |  * type, and the distance between fast memory node and slow | 
 |  * memory node is same. So the migration path should be: | 
 |  * | 
 |  *	0 -> 1/2 -> stop | 
 |  * | 
 |  * This is represented in the node_demotion[] like this: | 
 |  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 | 
 |  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate | 
 |  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate | 
 |  */ | 
 |  | 
 | /* | 
 |  * Writes to this array occur without locking.  Cycles are | 
 |  * not allowed: Node X demotes to Y which demotes to X... | 
 |  * | 
 |  * If multiple reads are performed, a single rcu_read_lock() | 
 |  * must be held over all reads to ensure that no cycles are | 
 |  * observed. | 
 |  */ | 
 | #define DEFAULT_DEMOTION_TARGET_NODES 15 | 
 |  | 
 | #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES | 
 | #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1) | 
 | #else | 
 | #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES | 
 | #endif | 
 |  | 
 | struct demotion_nodes { | 
 | 	unsigned short nr; | 
 | 	short nodes[DEMOTION_TARGET_NODES]; | 
 | }; | 
 |  | 
 | static struct demotion_nodes *node_demotion __read_mostly; | 
 |  | 
 | /** | 
 |  * next_demotion_node() - Get the next node in the demotion path | 
 |  * @node: The starting node to lookup the next node | 
 |  * | 
 |  * Return: node id for next memory node in the demotion path hierarchy | 
 |  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep | 
 |  * @node online or guarantee that it *continues* to be the next demotion | 
 |  * target. | 
 |  */ | 
 | int next_demotion_node(int node) | 
 | { | 
 | 	struct demotion_nodes *nd; | 
 | 	unsigned short target_nr, index; | 
 | 	int target; | 
 |  | 
 | 	if (!node_demotion) | 
 | 		return NUMA_NO_NODE; | 
 |  | 
 | 	nd = &node_demotion[node]; | 
 |  | 
 | 	/* | 
 | 	 * node_demotion[] is updated without excluding this | 
 | 	 * function from running.  RCU doesn't provide any | 
 | 	 * compiler barriers, so the READ_ONCE() is required | 
 | 	 * to avoid compiler reordering or read merging. | 
 | 	 * | 
 | 	 * Make sure to use RCU over entire code blocks if | 
 | 	 * node_demotion[] reads need to be consistent. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	target_nr = READ_ONCE(nd->nr); | 
 |  | 
 | 	switch (target_nr) { | 
 | 	case 0: | 
 | 		target = NUMA_NO_NODE; | 
 | 		goto out; | 
 | 	case 1: | 
 | 		index = 0; | 
 | 		break; | 
 | 	default: | 
 | 		/* | 
 | 		 * If there are multiple target nodes, just select one | 
 | 		 * target node randomly. | 
 | 		 * | 
 | 		 * In addition, we can also use round-robin to select | 
 | 		 * target node, but we should introduce another variable | 
 | 		 * for node_demotion[] to record last selected target node, | 
 | 		 * that may cause cache ping-pong due to the changing of | 
 | 		 * last target node. Or introducing per-cpu data to avoid | 
 | 		 * caching issue, which seems more complicated. So selecting | 
 | 		 * target node randomly seems better until now. | 
 | 		 */ | 
 | 		index = get_random_int() % target_nr; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	target = READ_ONCE(nd->nodes[index]); | 
 |  | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return target; | 
 | } | 
 |  | 
 | /* Disable reclaim-based migration. */ | 
 | static void __disable_all_migrate_targets(void) | 
 | { | 
 | 	int node, i; | 
 |  | 
 | 	if (!node_demotion) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		node_demotion[node].nr = 0; | 
 | 		for (i = 0; i < DEMOTION_TARGET_NODES; i++) | 
 | 			node_demotion[node].nodes[i] = NUMA_NO_NODE; | 
 | 	} | 
 | } | 
 |  | 
 | static void disable_all_migrate_targets(void) | 
 | { | 
 | 	__disable_all_migrate_targets(); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that the "disable" is visible across the system. | 
 | 	 * Readers will see either a combination of before+disable | 
 | 	 * state or disable+after.  They will never see before and | 
 | 	 * after state together. | 
 | 	 * | 
 | 	 * The before+after state together might have cycles and | 
 | 	 * could cause readers to do things like loop until this | 
 | 	 * function finishes.  This ensures they can only see a | 
 | 	 * single "bad" read and would, for instance, only loop | 
 | 	 * once. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 | } | 
 |  | 
 | /* | 
 |  * Find an automatic demotion target for 'node'. | 
 |  * Failing here is OK.  It might just indicate | 
 |  * being at the end of a chain. | 
 |  */ | 
 | static int establish_migrate_target(int node, nodemask_t *used, | 
 | 				    int best_distance) | 
 | { | 
 | 	int migration_target, index, val; | 
 | 	struct demotion_nodes *nd; | 
 |  | 
 | 	if (!node_demotion) | 
 | 		return NUMA_NO_NODE; | 
 |  | 
 | 	nd = &node_demotion[node]; | 
 |  | 
 | 	migration_target = find_next_best_node(node, used); | 
 | 	if (migration_target == NUMA_NO_NODE) | 
 | 		return NUMA_NO_NODE; | 
 |  | 
 | 	/* | 
 | 	 * If the node has been set a migration target node before, | 
 | 	 * which means it's the best distance between them. Still | 
 | 	 * check if this node can be demoted to other target nodes | 
 | 	 * if they have a same best distance. | 
 | 	 */ | 
 | 	if (best_distance != -1) { | 
 | 		val = node_distance(node, migration_target); | 
 | 		if (val > best_distance) | 
 | 			goto out_clear; | 
 | 	} | 
 |  | 
 | 	index = nd->nr; | 
 | 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, | 
 | 		      "Exceeds maximum demotion target nodes\n")) | 
 | 		goto out_clear; | 
 |  | 
 | 	nd->nodes[index] = migration_target; | 
 | 	nd->nr++; | 
 |  | 
 | 	return migration_target; | 
 | out_clear: | 
 | 	node_clear(migration_target, *used); | 
 | 	return NUMA_NO_NODE; | 
 | } | 
 |  | 
 | /* | 
 |  * When memory fills up on a node, memory contents can be | 
 |  * automatically migrated to another node instead of | 
 |  * discarded at reclaim. | 
 |  * | 
 |  * Establish a "migration path" which will start at nodes | 
 |  * with CPUs and will follow the priorities used to build the | 
 |  * page allocator zonelists. | 
 |  * | 
 |  * The difference here is that cycles must be avoided.  If | 
 |  * node0 migrates to node1, then neither node1, nor anything | 
 |  * node1 migrates to can migrate to node0. Also one node can | 
 |  * be migrated to multiple nodes if the target nodes all have | 
 |  * a same best-distance against the source node. | 
 |  * | 
 |  * This function can run simultaneously with readers of | 
 |  * node_demotion[].  However, it can not run simultaneously | 
 |  * with itself.  Exclusion is provided by memory hotplug events | 
 |  * being single-threaded. | 
 |  */ | 
 | static void __set_migration_target_nodes(void) | 
 | { | 
 | 	nodemask_t next_pass; | 
 | 	nodemask_t this_pass; | 
 | 	nodemask_t used_targets = NODE_MASK_NONE; | 
 | 	int node, best_distance; | 
 |  | 
 | 	/* | 
 | 	 * Avoid any oddities like cycles that could occur | 
 | 	 * from changes in the topology.  This will leave | 
 | 	 * a momentary gap when migration is disabled. | 
 | 	 */ | 
 | 	disable_all_migrate_targets(); | 
 |  | 
 | 	/* | 
 | 	 * Allocations go close to CPUs, first.  Assume that | 
 | 	 * the migration path starts at the nodes with CPUs. | 
 | 	 */ | 
 | 	next_pass = node_states[N_CPU]; | 
 | again: | 
 | 	this_pass = next_pass; | 
 | 	next_pass = NODE_MASK_NONE; | 
 | 	/* | 
 | 	 * To avoid cycles in the migration "graph", ensure | 
 | 	 * that migration sources are not future targets by | 
 | 	 * setting them in 'used_targets'.  Do this only | 
 | 	 * once per pass so that multiple source nodes can | 
 | 	 * share a target node. | 
 | 	 * | 
 | 	 * 'used_targets' will become unavailable in future | 
 | 	 * passes.  This limits some opportunities for | 
 | 	 * multiple source nodes to share a destination. | 
 | 	 */ | 
 | 	nodes_or(used_targets, used_targets, this_pass); | 
 |  | 
 | 	for_each_node_mask(node, this_pass) { | 
 | 		best_distance = -1; | 
 |  | 
 | 		/* | 
 | 		 * Try to set up the migration path for the node, and the target | 
 | 		 * migration nodes can be multiple, so doing a loop to find all | 
 | 		 * the target nodes if they all have a best node distance. | 
 | 		 */ | 
 | 		do { | 
 | 			int target_node = | 
 | 				establish_migrate_target(node, &used_targets, | 
 | 							 best_distance); | 
 |  | 
 | 			if (target_node == NUMA_NO_NODE) | 
 | 				break; | 
 |  | 
 | 			if (best_distance == -1) | 
 | 				best_distance = node_distance(node, target_node); | 
 |  | 
 | 			/* | 
 | 			 * Visit targets from this pass in the next pass. | 
 | 			 * Eventually, every node will have been part of | 
 | 			 * a pass, and will become set in 'used_targets'. | 
 | 			 */ | 
 | 			node_set(target_node, next_pass); | 
 | 		} while (1); | 
 | 	} | 
 | 	/* | 
 | 	 * 'next_pass' contains nodes which became migration | 
 | 	 * targets in this pass.  Make additional passes until | 
 | 	 * no more migrations targets are available. | 
 | 	 */ | 
 | 	if (!nodes_empty(next_pass)) | 
 | 		goto again; | 
 | } | 
 |  | 
 | /* | 
 |  * For callers that do not hold get_online_mems() already. | 
 |  */ | 
 | void set_migration_target_nodes(void) | 
 | { | 
 | 	get_online_mems(); | 
 | 	__set_migration_target_nodes(); | 
 | 	put_online_mems(); | 
 | } | 
 |  | 
 | /* | 
 |  * This leaves migrate-on-reclaim transiently disabled between | 
 |  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs | 
 |  * whether reclaim-based migration is enabled or not, which | 
 |  * ensures that the user can turn reclaim-based migration at | 
 |  * any time without needing to recalculate migration targets. | 
 |  * | 
 |  * These callbacks already hold get_online_mems().  That is why | 
 |  * __set_migration_target_nodes() can be used as opposed to | 
 |  * set_migration_target_nodes(). | 
 |  */ | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, | 
 | 						 unsigned long action, void *_arg) | 
 | { | 
 | 	struct memory_notify *arg = _arg; | 
 |  | 
 | 	/* | 
 | 	 * Only update the node migration order when a node is | 
 | 	 * changing status, like online->offline.  This avoids | 
 | 	 * the overhead of synchronize_rcu() in most cases. | 
 | 	 */ | 
 | 	if (arg->status_change_nid < 0) | 
 | 		return notifier_from_errno(0); | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_OFFLINE: | 
 | 		/* | 
 | 		 * Make sure there are not transient states where | 
 | 		 * an offline node is a migration target.  This | 
 | 		 * will leave migration disabled until the offline | 
 | 		 * completes and the MEM_OFFLINE case below runs. | 
 | 		 */ | 
 | 		disable_all_migrate_targets(); | 
 | 		break; | 
 | 	case MEM_OFFLINE: | 
 | 	case MEM_ONLINE: | 
 | 		/* | 
 | 		 * Recalculate the target nodes once the node | 
 | 		 * reaches its final state (online or offline). | 
 | 		 */ | 
 | 		__set_migration_target_nodes(); | 
 | 		break; | 
 | 	case MEM_CANCEL_OFFLINE: | 
 | 		/* | 
 | 		 * MEM_GOING_OFFLINE disabled all the migration | 
 | 		 * targets.  Reenable them. | 
 | 		 */ | 
 | 		__set_migration_target_nodes(); | 
 | 		break; | 
 | 	case MEM_GOING_ONLINE: | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return notifier_from_errno(0); | 
 | } | 
 | #endif | 
 |  | 
 | void __init migrate_on_reclaim_init(void) | 
 | { | 
 | 	node_demotion = kcalloc(nr_node_ids, | 
 | 				sizeof(struct demotion_nodes), | 
 | 				GFP_KERNEL); | 
 | 	WARN_ON(!node_demotion); | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100); | 
 | #endif | 
 | 	/* | 
 | 	 * At this point, all numa nodes with memory/CPus have their state | 
 | 	 * properly set, so we can build the demotion order now. | 
 | 	 * Let us hold the cpu_hotplug lock just, as we could possibily have | 
 | 	 * CPU hotplug events during boot. | 
 | 	 */ | 
 | 	cpus_read_lock(); | 
 | 	set_migration_target_nodes(); | 
 | 	cpus_read_unlock(); | 
 | } | 
 |  | 
 | bool numa_demotion_enabled = false; | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static ssize_t numa_demotion_enabled_show(struct kobject *kobj, | 
 | 					  struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%s\n", | 
 | 			  numa_demotion_enabled ? "true" : "false"); | 
 | } | 
 |  | 
 | static ssize_t numa_demotion_enabled_store(struct kobject *kobj, | 
 | 					   struct kobj_attribute *attr, | 
 | 					   const char *buf, size_t count) | 
 | { | 
 | 	ssize_t ret; | 
 |  | 
 | 	ret = kstrtobool(buf, &numa_demotion_enabled); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static struct kobj_attribute numa_demotion_enabled_attr = | 
 | 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, | 
 | 	       numa_demotion_enabled_store); | 
 |  | 
 | static struct attribute *numa_attrs[] = { | 
 | 	&numa_demotion_enabled_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group numa_attr_group = { | 
 | 	.attrs = numa_attrs, | 
 | }; | 
 |  | 
 | static int __init numa_init_sysfs(void) | 
 | { | 
 | 	int err; | 
 | 	struct kobject *numa_kobj; | 
 |  | 
 | 	numa_kobj = kobject_create_and_add("numa", mm_kobj); | 
 | 	if (!numa_kobj) { | 
 | 		pr_err("failed to create numa kobject\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	err = sysfs_create_group(numa_kobj, &numa_attr_group); | 
 | 	if (err) { | 
 | 		pr_err("failed to register numa group\n"); | 
 | 		goto delete_obj; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | delete_obj: | 
 | 	kobject_put(numa_kobj); | 
 | 	return err; | 
 | } | 
 | subsys_initcall(numa_init_sysfs); | 
 | #endif /* CONFIG_SYSFS */ | 
 | #endif /* CONFIG_NUMA */ |