|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2012 Fusion-io  All rights reserved. | 
|  | * Copyright (C) 2012 Intel Corp. All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/raid/pq.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/raid/xor.h> | 
|  | #include <linux/mm.h> | 
|  | #include "misc.h" | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "async-thread.h" | 
|  |  | 
|  | /* set when additional merges to this rbio are not allowed */ | 
|  | #define RBIO_RMW_LOCKED_BIT	1 | 
|  |  | 
|  | /* | 
|  | * set when this rbio is sitting in the hash, but it is just a cache | 
|  | * of past RMW | 
|  | */ | 
|  | #define RBIO_CACHE_BIT		2 | 
|  |  | 
|  | /* | 
|  | * set when it is safe to trust the stripe_pages for caching | 
|  | */ | 
|  | #define RBIO_CACHE_READY_BIT	3 | 
|  |  | 
|  | #define RBIO_CACHE_SIZE 1024 | 
|  |  | 
|  | #define BTRFS_STRIPE_HASH_TABLE_BITS				11 | 
|  |  | 
|  | /* Used by the raid56 code to lock stripes for read/modify/write */ | 
|  | struct btrfs_stripe_hash { | 
|  | struct list_head hash_list; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | /* Used by the raid56 code to lock stripes for read/modify/write */ | 
|  | struct btrfs_stripe_hash_table { | 
|  | struct list_head stripe_cache; | 
|  | spinlock_t cache_lock; | 
|  | int cache_size; | 
|  | struct btrfs_stripe_hash table[]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A bvec like structure to present a sector inside a page. | 
|  | * | 
|  | * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. | 
|  | */ | 
|  | struct sector_ptr { | 
|  | struct page *page; | 
|  | unsigned int pgoff:24; | 
|  | unsigned int uptodate:8; | 
|  | }; | 
|  |  | 
|  | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | 
|  | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | 
|  | static void rmw_work(struct work_struct *work); | 
|  | static void read_rebuild_work(struct work_struct *work); | 
|  | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); | 
|  | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | 
|  | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | 
|  | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  |  | 
|  | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, | 
|  | int need_check); | 
|  | static void scrub_parity_work(struct work_struct *work); | 
|  |  | 
|  | static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) | 
|  | { | 
|  | INIT_WORK(&rbio->work, work_func); | 
|  | queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the stripe hash table is used for locking, and to collect | 
|  | * bios in hopes of making a full stripe | 
|  | */ | 
|  | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | struct btrfs_stripe_hash_table *x; | 
|  | struct btrfs_stripe_hash *cur; | 
|  | struct btrfs_stripe_hash *h; | 
|  | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | 
|  | int i; | 
|  |  | 
|  | if (info->stripe_hash_table) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The table is large, starting with order 4 and can go as high as | 
|  | * order 7 in case lock debugging is turned on. | 
|  | * | 
|  | * Try harder to allocate and fallback to vmalloc to lower the chance | 
|  | * of a failing mount. | 
|  | */ | 
|  | table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); | 
|  | if (!table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_init(&table->cache_lock); | 
|  | INIT_LIST_HEAD(&table->stripe_cache); | 
|  |  | 
|  | h = table->table; | 
|  |  | 
|  | for (i = 0; i < num_entries; i++) { | 
|  | cur = h + i; | 
|  | INIT_LIST_HEAD(&cur->hash_list); | 
|  | spin_lock_init(&cur->lock); | 
|  | } | 
|  |  | 
|  | x = cmpxchg(&info->stripe_hash_table, NULL, table); | 
|  | kvfree(x); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * caching an rbio means to copy anything from the | 
|  | * bio_sectors array into the stripe_pages array.  We | 
|  | * use the page uptodate bit in the stripe cache array | 
|  | * to indicate if it has valid data | 
|  | * | 
|  | * once the caching is done, we set the cache ready | 
|  | * bit. | 
|  | */ | 
|  | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_sectors; i++) { | 
|  | /* Some range not covered by bio (partial write), skip it */ | 
|  | if (!rbio->bio_sectors[i].page) | 
|  | continue; | 
|  |  | 
|  | ASSERT(rbio->stripe_sectors[i].page); | 
|  | memcpy_page(rbio->stripe_sectors[i].page, | 
|  | rbio->stripe_sectors[i].pgoff, | 
|  | rbio->bio_sectors[i].page, | 
|  | rbio->bio_sectors[i].pgoff, | 
|  | rbio->bioc->fs_info->sectorsize); | 
|  | rbio->stripe_sectors[i].uptodate = 1; | 
|  | } | 
|  | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we hash on the first logical address of the stripe | 
|  | */ | 
|  | static int rbio_bucket(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | u64 num = rbio->bioc->raid_map[0]; | 
|  |  | 
|  | /* | 
|  | * we shift down quite a bit.  We're using byte | 
|  | * addressing, and most of the lower bits are zeros. | 
|  | * This tends to upset hash_64, and it consistently | 
|  | * returns just one or two different values. | 
|  | * | 
|  | * shifting off the lower bits fixes things. | 
|  | */ | 
|  | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | 
|  | } | 
|  |  | 
|  | static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, | 
|  | unsigned int page_nr) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | const u32 sectors_per_page = PAGE_SIZE / sectorsize; | 
|  | int i; | 
|  |  | 
|  | ASSERT(page_nr < rbio->nr_pages); | 
|  |  | 
|  | for (i = sectors_per_page * page_nr; | 
|  | i < sectors_per_page * page_nr + sectors_per_page; | 
|  | i++) { | 
|  | if (!rbio->stripe_sectors[i].uptodate) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the stripe_sectors[] array to use correct page and pgoff | 
|  | * | 
|  | * Should be called every time any page pointer in stripes_pages[] got modified. | 
|  | */ | 
|  | static void index_stripe_sectors(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | u32 offset; | 
|  | int i; | 
|  |  | 
|  | for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { | 
|  | int page_index = offset >> PAGE_SHIFT; | 
|  |  | 
|  | ASSERT(page_index < rbio->nr_pages); | 
|  | rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; | 
|  | rbio->stripe_sectors[i].pgoff = offset_in_page(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void steal_rbio_page(struct btrfs_raid_bio *src, | 
|  | struct btrfs_raid_bio *dest, int page_nr) | 
|  | { | 
|  | const u32 sectorsize = src->bioc->fs_info->sectorsize; | 
|  | const u32 sectors_per_page = PAGE_SIZE / sectorsize; | 
|  | int i; | 
|  |  | 
|  | if (dest->stripe_pages[page_nr]) | 
|  | __free_page(dest->stripe_pages[page_nr]); | 
|  | dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; | 
|  | src->stripe_pages[page_nr] = NULL; | 
|  |  | 
|  | /* Also update the sector->uptodate bits. */ | 
|  | for (i = sectors_per_page * page_nr; | 
|  | i < sectors_per_page * page_nr + sectors_per_page; i++) | 
|  | dest->stripe_sectors[i].uptodate = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stealing an rbio means taking all the uptodate pages from the stripe array | 
|  | * in the source rbio and putting them into the destination rbio. | 
|  | * | 
|  | * This will also update the involved stripe_sectors[] which are referring to | 
|  | * the old pages. | 
|  | */ | 
|  | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | 
|  | { | 
|  | int i; | 
|  | struct page *s; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < dest->nr_pages; i++) { | 
|  | s = src->stripe_pages[i]; | 
|  | if (!s || !full_page_sectors_uptodate(src, i)) | 
|  | continue; | 
|  |  | 
|  | steal_rbio_page(src, dest, i); | 
|  | } | 
|  | index_stripe_sectors(dest); | 
|  | index_stripe_sectors(src); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * merging means we take the bio_list from the victim and | 
|  | * splice it into the destination.  The victim should | 
|  | * be discarded afterwards. | 
|  | * | 
|  | * must be called with dest->rbio_list_lock held | 
|  | */ | 
|  | static void merge_rbio(struct btrfs_raid_bio *dest, | 
|  | struct btrfs_raid_bio *victim) | 
|  | { | 
|  | bio_list_merge(&dest->bio_list, &victim->bio_list); | 
|  | dest->bio_list_bytes += victim->bio_list_bytes; | 
|  | /* Also inherit the bitmaps from @victim. */ | 
|  | bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, | 
|  | dest->stripe_nsectors); | 
|  | bio_list_init(&victim->bio_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used to prune items that are in the cache.  The caller | 
|  | * must hold the hash table lock. | 
|  | */ | 
|  | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bucket = rbio_bucket(rbio); | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | struct btrfs_stripe_hash *h; | 
|  | int freeit = 0; | 
|  |  | 
|  | /* | 
|  | * check the bit again under the hash table lock. | 
|  | */ | 
|  | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->bioc->fs_info->stripe_hash_table; | 
|  | h = table->table + bucket; | 
|  |  | 
|  | /* hold the lock for the bucket because we may be | 
|  | * removing it from the hash table | 
|  | */ | 
|  | spin_lock(&h->lock); | 
|  |  | 
|  | /* | 
|  | * hold the lock for the bio list because we need | 
|  | * to make sure the bio list is empty | 
|  | */ | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | list_del_init(&rbio->stripe_cache); | 
|  | table->cache_size -= 1; | 
|  | freeit = 1; | 
|  |  | 
|  | /* if the bio list isn't empty, this rbio is | 
|  | * still involved in an IO.  We take it out | 
|  | * of the cache list, and drop the ref that | 
|  | * was held for the list. | 
|  | * | 
|  | * If the bio_list was empty, we also remove | 
|  | * the rbio from the hash_table, and drop | 
|  | * the corresponding ref | 
|  | */ | 
|  | if (bio_list_empty(&rbio->bio_list)) { | 
|  | if (!list_empty(&rbio->hash_list)) { | 
|  | list_del_init(&rbio->hash_list); | 
|  | refcount_dec(&rbio->refs); | 
|  | BUG_ON(!list_empty(&rbio->plug_list)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock(&h->lock); | 
|  |  | 
|  | if (freeit) | 
|  | __free_raid_bio(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prune a given rbio from the cache | 
|  | */ | 
|  | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->bioc->fs_info->stripe_hash_table; | 
|  |  | 
|  | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | __remove_rbio_from_cache(rbio); | 
|  | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove everything in the cache | 
|  | */ | 
|  | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | unsigned long flags; | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | table = info->stripe_hash_table; | 
|  |  | 
|  | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | while (!list_empty(&table->stripe_cache)) { | 
|  | rbio = list_entry(table->stripe_cache.next, | 
|  | struct btrfs_raid_bio, | 
|  | stripe_cache); | 
|  | __remove_rbio_from_cache(rbio); | 
|  | } | 
|  | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove all cached entries and free the hash table | 
|  | * used by unmount | 
|  | */ | 
|  | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | { | 
|  | if (!info->stripe_hash_table) | 
|  | return; | 
|  | btrfs_clear_rbio_cache(info); | 
|  | kvfree(info->stripe_hash_table); | 
|  | info->stripe_hash_table = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * insert an rbio into the stripe cache.  It | 
|  | * must have already been prepared by calling | 
|  | * cache_rbio_pages | 
|  | * | 
|  | * If this rbio was already cached, it gets | 
|  | * moved to the front of the lru. | 
|  | * | 
|  | * If the size of the rbio cache is too big, we | 
|  | * prune an item. | 
|  | */ | 
|  | static void cache_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->bioc->fs_info->stripe_hash_table; | 
|  |  | 
|  | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | /* bump our ref if we were not in the list before */ | 
|  | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | refcount_inc(&rbio->refs); | 
|  |  | 
|  | if (!list_empty(&rbio->stripe_cache)){ | 
|  | list_move(&rbio->stripe_cache, &table->stripe_cache); | 
|  | } else { | 
|  | list_add(&rbio->stripe_cache, &table->stripe_cache); | 
|  | table->cache_size += 1; | 
|  | } | 
|  |  | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (table->cache_size > RBIO_CACHE_SIZE) { | 
|  | struct btrfs_raid_bio *found; | 
|  |  | 
|  | found = list_entry(table->stripe_cache.prev, | 
|  | struct btrfs_raid_bio, | 
|  | stripe_cache); | 
|  |  | 
|  | if (found != rbio) | 
|  | __remove_rbio_from_cache(found); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to run the xor_blocks api.  It is only | 
|  | * able to do MAX_XOR_BLOCKS at a time, so we need to | 
|  | * loop through. | 
|  | */ | 
|  | static void run_xor(void **pages, int src_cnt, ssize_t len) | 
|  | { | 
|  | int src_off = 0; | 
|  | int xor_src_cnt = 0; | 
|  | void *dest = pages[src_cnt]; | 
|  |  | 
|  | while(src_cnt > 0) { | 
|  | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | 
|  | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | 
|  |  | 
|  | src_cnt -= xor_src_cnt; | 
|  | src_off += xor_src_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the bio list inside this rbio covers an entire stripe (no | 
|  | * rmw required). | 
|  | */ | 
|  | static int rbio_is_full(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long size = rbio->bio_list_bytes; | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
|  | if (size != rbio->nr_data * BTRFS_STRIPE_LEN) | 
|  | ret = 0; | 
|  | BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); | 
|  | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 1 if it is safe to merge two rbios together. | 
|  | * The merging is safe if the two rbios correspond to | 
|  | * the same stripe and if they are both going in the same | 
|  | * direction (read vs write), and if neither one is | 
|  | * locked for final IO | 
|  | * | 
|  | * The caller is responsible for locking such that | 
|  | * rmw_locked is safe to test | 
|  | */ | 
|  | static int rbio_can_merge(struct btrfs_raid_bio *last, | 
|  | struct btrfs_raid_bio *cur) | 
|  | { | 
|  | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | 
|  | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * we can't merge with cached rbios, since the | 
|  | * idea is that when we merge the destination | 
|  | * rbio is going to run our IO for us.  We can | 
|  | * steal from cached rbios though, other functions | 
|  | * handle that. | 
|  | */ | 
|  | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | 
|  | test_bit(RBIO_CACHE_BIT, &cur->flags)) | 
|  | return 0; | 
|  |  | 
|  | if (last->bioc->raid_map[0] != cur->bioc->raid_map[0]) | 
|  | return 0; | 
|  |  | 
|  | /* we can't merge with different operations */ | 
|  | if (last->operation != cur->operation) | 
|  | return 0; | 
|  | /* | 
|  | * We've need read the full stripe from the drive. | 
|  | * check and repair the parity and write the new results. | 
|  | * | 
|  | * We're not allowed to add any new bios to the | 
|  | * bio list here, anyone else that wants to | 
|  | * change this stripe needs to do their own rmw. | 
|  | */ | 
|  | if (last->operation == BTRFS_RBIO_PARITY_SCRUB) | 
|  | return 0; | 
|  |  | 
|  | if (last->operation == BTRFS_RBIO_REBUILD_MISSING) | 
|  | return 0; | 
|  |  | 
|  | if (last->operation == BTRFS_RBIO_READ_REBUILD) { | 
|  | int fa = last->faila; | 
|  | int fb = last->failb; | 
|  | int cur_fa = cur->faila; | 
|  | int cur_fb = cur->failb; | 
|  |  | 
|  | if (last->faila >= last->failb) { | 
|  | fa = last->failb; | 
|  | fb = last->faila; | 
|  | } | 
|  |  | 
|  | if (cur->faila >= cur->failb) { | 
|  | cur_fa = cur->failb; | 
|  | cur_fb = cur->faila; | 
|  | } | 
|  |  | 
|  | if (fa != cur_fa || fb != cur_fb) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int stripe_nr, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | ASSERT(stripe_nr < rbio->real_stripes); | 
|  | ASSERT(sector_nr < rbio->stripe_nsectors); | 
|  |  | 
|  | return stripe_nr * rbio->stripe_nsectors + sector_nr; | 
|  | } | 
|  |  | 
|  | /* Return a sector from rbio->stripe_sectors, not from the bio list */ | 
|  | static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int stripe_nr, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, | 
|  | sector_nr)]; | 
|  | } | 
|  |  | 
|  | /* Grab a sector inside P stripe */ | 
|  | static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); | 
|  | } | 
|  |  | 
|  | /* Grab a sector inside Q stripe, return NULL if not RAID6 */ | 
|  | static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | if (rbio->nr_data + 1 == rbio->real_stripes) | 
|  | return NULL; | 
|  | return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The first stripe in the table for a logical address | 
|  | * has the lock.  rbios are added in one of three ways: | 
|  | * | 
|  | * 1) Nobody has the stripe locked yet.  The rbio is given | 
|  | * the lock and 0 is returned.  The caller must start the IO | 
|  | * themselves. | 
|  | * | 
|  | * 2) Someone has the stripe locked, but we're able to merge | 
|  | * with the lock owner.  The rbio is freed and the IO will | 
|  | * start automatically along with the existing rbio.  1 is returned. | 
|  | * | 
|  | * 3) Someone has the stripe locked, but we're not able to merge. | 
|  | * The rbio is added to the lock owner's plug list, or merged into | 
|  | * an rbio already on the plug list.  When the lock owner unlocks, | 
|  | * the next rbio on the list is run and the IO is started automatically. | 
|  | * 1 is returned | 
|  | * | 
|  | * If we return 0, the caller still owns the rbio and must continue with | 
|  | * IO submission.  If we return 1, the caller must assume the rbio has | 
|  | * already been freed. | 
|  | */ | 
|  | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash *h; | 
|  | struct btrfs_raid_bio *cur; | 
|  | struct btrfs_raid_bio *pending; | 
|  | unsigned long flags; | 
|  | struct btrfs_raid_bio *freeit = NULL; | 
|  | struct btrfs_raid_bio *cache_drop = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | list_for_each_entry(cur, &h->hash_list, hash_list) { | 
|  | if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0]) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&cur->bio_list_lock); | 
|  |  | 
|  | /* Can we steal this cached rbio's pages? */ | 
|  | if (bio_list_empty(&cur->bio_list) && | 
|  | list_empty(&cur->plug_list) && | 
|  | test_bit(RBIO_CACHE_BIT, &cur->flags) && | 
|  | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | 
|  | list_del_init(&cur->hash_list); | 
|  | refcount_dec(&cur->refs); | 
|  |  | 
|  | steal_rbio(cur, rbio); | 
|  | cache_drop = cur; | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  |  | 
|  | goto lockit; | 
|  | } | 
|  |  | 
|  | /* Can we merge into the lock owner? */ | 
|  | if (rbio_can_merge(cur, rbio)) { | 
|  | merge_rbio(cur, rbio); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | freeit = rbio; | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We couldn't merge with the running rbio, see if we can merge | 
|  | * with the pending ones.  We don't have to check for rmw_locked | 
|  | * because there is no way they are inside finish_rmw right now | 
|  | */ | 
|  | list_for_each_entry(pending, &cur->plug_list, plug_list) { | 
|  | if (rbio_can_merge(pending, rbio)) { | 
|  | merge_rbio(pending, rbio); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | freeit = rbio; | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No merging, put us on the tail of the plug list, our rbio | 
|  | * will be started with the currently running rbio unlocks | 
|  | */ | 
|  | list_add_tail(&rbio->plug_list, &cur->plug_list); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | lockit: | 
|  | refcount_inc(&rbio->refs); | 
|  | list_add(&rbio->hash_list, &h->hash_list); | 
|  | out: | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (cache_drop) | 
|  | remove_rbio_from_cache(cache_drop); | 
|  | if (freeit) | 
|  | __free_raid_bio(freeit); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called as rmw or parity rebuild is completed.  If the plug list has more | 
|  | * rbios waiting for this stripe, the next one on the list will be started | 
|  | */ | 
|  | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bucket; | 
|  | struct btrfs_stripe_hash *h; | 
|  | unsigned long flags; | 
|  | int keep_cache = 0; | 
|  |  | 
|  | bucket = rbio_bucket(rbio); | 
|  | h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; | 
|  |  | 
|  | if (list_empty(&rbio->plug_list)) | 
|  | cache_rbio(rbio); | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (!list_empty(&rbio->hash_list)) { | 
|  | /* | 
|  | * if we're still cached and there is no other IO | 
|  | * to perform, just leave this rbio here for others | 
|  | * to steal from later | 
|  | */ | 
|  | if (list_empty(&rbio->plug_list) && | 
|  | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | keep_cache = 1; | 
|  | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | BUG_ON(!bio_list_empty(&rbio->bio_list)); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | list_del_init(&rbio->hash_list); | 
|  | refcount_dec(&rbio->refs); | 
|  |  | 
|  | /* | 
|  | * we use the plug list to hold all the rbios | 
|  | * waiting for the chance to lock this stripe. | 
|  | * hand the lock over to one of them. | 
|  | */ | 
|  | if (!list_empty(&rbio->plug_list)) { | 
|  | struct btrfs_raid_bio *next; | 
|  | struct list_head *head = rbio->plug_list.next; | 
|  |  | 
|  | next = list_entry(head, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  |  | 
|  | list_del_init(&rbio->plug_list); | 
|  |  | 
|  | list_add(&next->hash_list, &h->hash_list); | 
|  | refcount_inc(&next->refs); | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | if (next->operation == BTRFS_RBIO_READ_REBUILD) | 
|  | start_async_work(next, read_rebuild_work); | 
|  | else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
|  | steal_rbio(rbio, next); | 
|  | start_async_work(next, read_rebuild_work); | 
|  | } else if (next->operation == BTRFS_RBIO_WRITE) { | 
|  | steal_rbio(rbio, next); | 
|  | start_async_work(next, rmw_work); | 
|  | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { | 
|  | steal_rbio(rbio, next); | 
|  | start_async_work(next, scrub_parity_work); | 
|  | } | 
|  |  | 
|  | goto done_nolock; | 
|  | } | 
|  | } | 
|  | done: | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | done_nolock: | 
|  | if (!keep_cache) | 
|  | remove_rbio_from_cache(rbio); | 
|  | } | 
|  |  | 
|  | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!refcount_dec_and_test(&rbio->refs)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!list_empty(&rbio->stripe_cache)); | 
|  | WARN_ON(!list_empty(&rbio->hash_list)); | 
|  | WARN_ON(!bio_list_empty(&rbio->bio_list)); | 
|  |  | 
|  | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | if (rbio->stripe_pages[i]) { | 
|  | __free_page(rbio->stripe_pages[i]); | 
|  | rbio->stripe_pages[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_put_bioc(rbio->bioc); | 
|  | kfree(rbio); | 
|  | } | 
|  |  | 
|  | static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) | 
|  | { | 
|  | struct bio *next; | 
|  |  | 
|  | while (cur) { | 
|  | next = cur->bi_next; | 
|  | cur->bi_next = NULL; | 
|  | cur->bi_status = err; | 
|  | bio_endio(cur); | 
|  | cur = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this frees the rbio and runs through all the bios in the | 
|  | * bio_list and calls end_io on them | 
|  | */ | 
|  | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) | 
|  | { | 
|  | struct bio *cur = bio_list_get(&rbio->bio_list); | 
|  | struct bio *extra; | 
|  |  | 
|  | /* | 
|  | * Clear the data bitmap, as the rbio may be cached for later usage. | 
|  | * do this before before unlock_stripe() so there will be no new bio | 
|  | * for this bio. | 
|  | */ | 
|  | bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); | 
|  |  | 
|  | /* | 
|  | * At this moment, rbio->bio_list is empty, however since rbio does not | 
|  | * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the | 
|  | * hash list, rbio may be merged with others so that rbio->bio_list | 
|  | * becomes non-empty. | 
|  | * Once unlock_stripe() is done, rbio->bio_list will not be updated any | 
|  | * more and we can call bio_endio() on all queued bios. | 
|  | */ | 
|  | unlock_stripe(rbio); | 
|  | extra = bio_list_get(&rbio->bio_list); | 
|  | __free_raid_bio(rbio); | 
|  |  | 
|  | rbio_endio_bio_list(cur, err); | 
|  | if (extra) | 
|  | rbio_endio_bio_list(extra, err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * end io function used by finish_rmw.  When we finally | 
|  | * get here, we've written a full stripe | 
|  | */ | 
|  | static void raid_write_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  | blk_status_t err = bio->bi_status; | 
|  | int max_errors; | 
|  |  | 
|  | if (err) | 
|  | fail_bio_stripe(rbio, bio); | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | return; | 
|  |  | 
|  | err = BLK_STS_OK; | 
|  |  | 
|  | /* OK, we have read all the stripes we need to. */ | 
|  | max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? | 
|  | 0 : rbio->bioc->max_errors; | 
|  | if (atomic_read(&rbio->error) > max_errors) | 
|  | err = BLK_STS_IOERR; | 
|  |  | 
|  | rbio_orig_end_io(rbio, err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get a sector pointer specified by its @stripe_nr and @sector_nr | 
|  | * | 
|  | * @rbio:               The raid bio | 
|  | * @stripe_nr:          Stripe number, valid range [0, real_stripe) | 
|  | * @sector_nr:		Sector number inside the stripe, | 
|  | *			valid range [0, stripe_nsectors) | 
|  | * @bio_list_only:      Whether to use sectors inside the bio list only. | 
|  | * | 
|  | * The read/modify/write code wants to reuse the original bio page as much | 
|  | * as possible, and only use stripe_sectors as fallback. | 
|  | */ | 
|  | static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, | 
|  | int stripe_nr, int sector_nr, | 
|  | bool bio_list_only) | 
|  | { | 
|  | struct sector_ptr *sector; | 
|  | int index; | 
|  |  | 
|  | ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); | 
|  | ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); | 
|  |  | 
|  | index = stripe_nr * rbio->stripe_nsectors + sector_nr; | 
|  | ASSERT(index >= 0 && index < rbio->nr_sectors); | 
|  |  | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | sector = &rbio->bio_sectors[index]; | 
|  | if (sector->page || bio_list_only) { | 
|  | /* Don't return sector without a valid page pointer */ | 
|  | if (!sector->page) | 
|  | sector = NULL; | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | return sector; | 
|  | } | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  |  | 
|  | return &rbio->stripe_sectors[index]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocation and initial setup for the btrfs_raid_bio.  Not | 
|  | * this does not allocate any pages for rbio->pages. | 
|  | */ | 
|  | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_io_context *bioc) | 
|  | { | 
|  | const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs; | 
|  | const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; | 
|  | const unsigned int num_pages = stripe_npages * real_stripes; | 
|  | const unsigned int stripe_nsectors = | 
|  | BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; | 
|  | const unsigned int num_sectors = stripe_nsectors * real_stripes; | 
|  | struct btrfs_raid_bio *rbio; | 
|  | void *p; | 
|  |  | 
|  | /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ | 
|  | ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); | 
|  | /* | 
|  | * Our current stripe len should be fixed to 64k thus stripe_nsectors | 
|  | * (at most 16) should be no larger than BITS_PER_LONG. | 
|  | */ | 
|  | ASSERT(stripe_nsectors <= BITS_PER_LONG); | 
|  |  | 
|  | rbio = kzalloc(sizeof(*rbio) + | 
|  | sizeof(*rbio->stripe_pages) * num_pages + | 
|  | sizeof(*rbio->bio_sectors) * num_sectors + | 
|  | sizeof(*rbio->stripe_sectors) * num_sectors + | 
|  | sizeof(*rbio->finish_pointers) * real_stripes, | 
|  | GFP_NOFS); | 
|  | if (!rbio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | bio_list_init(&rbio->bio_list); | 
|  | INIT_LIST_HEAD(&rbio->plug_list); | 
|  | spin_lock_init(&rbio->bio_list_lock); | 
|  | INIT_LIST_HEAD(&rbio->stripe_cache); | 
|  | INIT_LIST_HEAD(&rbio->hash_list); | 
|  | btrfs_get_bioc(bioc); | 
|  | rbio->bioc = bioc; | 
|  | rbio->nr_pages = num_pages; | 
|  | rbio->nr_sectors = num_sectors; | 
|  | rbio->real_stripes = real_stripes; | 
|  | rbio->stripe_npages = stripe_npages; | 
|  | rbio->stripe_nsectors = stripe_nsectors; | 
|  | rbio->faila = -1; | 
|  | rbio->failb = -1; | 
|  | refcount_set(&rbio->refs, 1); | 
|  | atomic_set(&rbio->error, 0); | 
|  | atomic_set(&rbio->stripes_pending, 0); | 
|  |  | 
|  | /* | 
|  | * The stripe_pages, bio_sectors, etc arrays point to the extra memory | 
|  | * we allocated past the end of the rbio. | 
|  | */ | 
|  | p = rbio + 1; | 
|  | #define CONSUME_ALLOC(ptr, count)	do {				\ | 
|  | ptr = p;						\ | 
|  | p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\ | 
|  | } while (0) | 
|  | CONSUME_ALLOC(rbio->stripe_pages, num_pages); | 
|  | CONSUME_ALLOC(rbio->bio_sectors, num_sectors); | 
|  | CONSUME_ALLOC(rbio->stripe_sectors, num_sectors); | 
|  | CONSUME_ALLOC(rbio->finish_pointers, real_stripes); | 
|  | #undef  CONSUME_ALLOC | 
|  |  | 
|  | ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); | 
|  | rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); | 
|  |  | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | /* allocate pages for all the stripes in the bio, including parity */ | 
|  | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* Mapping all sectors */ | 
|  | index_stripe_sectors(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* only allocate pages for p/q stripes */ | 
|  | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const int data_pages = rbio->nr_data * rbio->stripe_npages; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, | 
|  | rbio->stripe_pages + data_pages); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | index_stripe_sectors(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a single sector @sector into our list of bios for IO. | 
|  | * | 
|  | * Return 0 if everything went well. | 
|  | * Return <0 for error. | 
|  | */ | 
|  | static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, | 
|  | struct bio_list *bio_list, | 
|  | struct sector_ptr *sector, | 
|  | unsigned int stripe_nr, | 
|  | unsigned int sector_nr, | 
|  | enum req_op op) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | struct bio *last = bio_list->tail; | 
|  | int ret; | 
|  | struct bio *bio; | 
|  | struct btrfs_io_stripe *stripe; | 
|  | u64 disk_start; | 
|  |  | 
|  | /* | 
|  | * Note: here stripe_nr has taken device replace into consideration, | 
|  | * thus it can be larger than rbio->real_stripe. | 
|  | * So here we check against bioc->num_stripes, not rbio->real_stripes. | 
|  | */ | 
|  | ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); | 
|  | ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); | 
|  | ASSERT(sector->page); | 
|  |  | 
|  | stripe = &rbio->bioc->stripes[stripe_nr]; | 
|  | disk_start = stripe->physical + sector_nr * sectorsize; | 
|  |  | 
|  | /* if the device is missing, just fail this stripe */ | 
|  | if (!stripe->dev->bdev) | 
|  | return fail_rbio_index(rbio, stripe_nr); | 
|  |  | 
|  | /* see if we can add this page onto our existing bio */ | 
|  | if (last) { | 
|  | u64 last_end = last->bi_iter.bi_sector << 9; | 
|  | last_end += last->bi_iter.bi_size; | 
|  |  | 
|  | /* | 
|  | * we can't merge these if they are from different | 
|  | * devices or if they are not contiguous | 
|  | */ | 
|  | if (last_end == disk_start && !last->bi_status && | 
|  | last->bi_bdev == stripe->dev->bdev) { | 
|  | ret = bio_add_page(last, sector->page, sectorsize, | 
|  | sector->pgoff); | 
|  | if (ret == sectorsize) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* put a new bio on the list */ | 
|  | bio = bio_alloc(stripe->dev->bdev, | 
|  | max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), | 
|  | op, GFP_NOFS); | 
|  | bio->bi_iter.bi_sector = disk_start >> 9; | 
|  | bio->bi_private = rbio; | 
|  |  | 
|  | bio_add_page(bio, sector->page, sectorsize, sector->pgoff); | 
|  | bio_list_add(bio_list, bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * while we're doing the read/modify/write cycle, we could | 
|  | * have errors in reading pages off the disk.  This checks | 
|  | * for errors and if we're not able to read the page it'll | 
|  | * trigger parity reconstruction.  The rmw will be finished | 
|  | * after we've reconstructed the failed stripes | 
|  | */ | 
|  | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (rbio->faila >= 0 || rbio->failb >= 0) { | 
|  | BUG_ON(rbio->faila == rbio->real_stripes - 1); | 
|  | __raid56_parity_recover(rbio); | 
|  | } else { | 
|  | finish_rmw(rbio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | struct bio_vec bvec; | 
|  | struct bvec_iter iter; | 
|  | u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
|  | rbio->bioc->raid_map[0]; | 
|  |  | 
|  | bio_for_each_segment(bvec, bio, iter) { | 
|  | u32 bvec_offset; | 
|  |  | 
|  | for (bvec_offset = 0; bvec_offset < bvec.bv_len; | 
|  | bvec_offset += sectorsize, offset += sectorsize) { | 
|  | int index = offset / sectorsize; | 
|  | struct sector_ptr *sector = &rbio->bio_sectors[index]; | 
|  |  | 
|  | sector->page = bvec.bv_page; | 
|  | sector->pgoff = bvec.bv_offset + bvec_offset; | 
|  | ASSERT(sector->pgoff < PAGE_SIZE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to walk our bio list and populate the bio_pages array with | 
|  | * the result.  This seems expensive, but it is faster than constantly | 
|  | * searching through the bio list as we setup the IO in finish_rmw or stripe | 
|  | * reconstruction. | 
|  | * | 
|  | * This must be called before you trust the answers from page_in_rbio | 
|  | */ | 
|  | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | bio_list_for_each(bio, &rbio->bio_list) | 
|  | index_one_bio(rbio, bio); | 
|  |  | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | } | 
|  |  | 
|  | static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, | 
|  | struct raid56_bio_trace_info *trace_info) | 
|  | { | 
|  | const struct btrfs_io_context *bioc = rbio->bioc; | 
|  | int i; | 
|  |  | 
|  | ASSERT(bioc); | 
|  |  | 
|  | /* We rely on bio->bi_bdev to find the stripe number. */ | 
|  | if (!bio->bi_bdev) | 
|  | goto not_found; | 
|  |  | 
|  | for (i = 0; i < bioc->num_stripes; i++) { | 
|  | if (bio->bi_bdev != bioc->stripes[i].dev->bdev) | 
|  | continue; | 
|  | trace_info->stripe_nr = i; | 
|  | trace_info->devid = bioc->stripes[i].dev->devid; | 
|  | trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
|  | bioc->stripes[i].physical; | 
|  | return; | 
|  | } | 
|  |  | 
|  | not_found: | 
|  | trace_info->devid = -1; | 
|  | trace_info->offset = -1; | 
|  | trace_info->stripe_nr = -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is called from one of two situations.  We either | 
|  | * have a full stripe from the higher layers, or we've read all | 
|  | * the missing bits off disk. | 
|  | * | 
|  | * This will calculate the parity and then send down any | 
|  | * changed blocks. | 
|  | */ | 
|  | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_io_context *bioc = rbio->bioc; | 
|  | const u32 sectorsize = bioc->fs_info->sectorsize; | 
|  | void **pointers = rbio->finish_pointers; | 
|  | int nr_data = rbio->nr_data; | 
|  | /* The total sector number inside the full stripe. */ | 
|  | int total_sector_nr; | 
|  | int stripe; | 
|  | /* Sector number inside a stripe. */ | 
|  | int sectornr; | 
|  | bool has_qstripe; | 
|  | struct bio_list bio_list; | 
|  | struct bio *bio; | 
|  | int ret; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | if (rbio->real_stripes - rbio->nr_data == 1) | 
|  | has_qstripe = false; | 
|  | else if (rbio->real_stripes - rbio->nr_data == 2) | 
|  | has_qstripe = true; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | /* We should have at least one data sector. */ | 
|  | ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); | 
|  |  | 
|  | /* at this point we either have a full stripe, | 
|  | * or we've read the full stripe from the drive. | 
|  | * recalculate the parity and write the new results. | 
|  | * | 
|  | * We're not allowed to add any new bios to the | 
|  | * bio list here, anyone else that wants to | 
|  | * change this stripe needs to do their own rmw. | 
|  | */ | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  |  | 
|  | /* | 
|  | * now that we've set rmw_locked, run through the | 
|  | * bio list one last time and map the page pointers | 
|  | * | 
|  | * We don't cache full rbios because we're assuming | 
|  | * the higher layers are unlikely to use this area of | 
|  | * the disk again soon.  If they do use it again, | 
|  | * hopefully they will send another full bio. | 
|  | */ | 
|  | index_rbio_pages(rbio); | 
|  | if (!rbio_is_full(rbio)) | 
|  | cache_rbio_pages(rbio); | 
|  | else | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | /* First collect one sector from each data stripe */ | 
|  | for (stripe = 0; stripe < nr_data; stripe++) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 0); | 
|  | pointers[stripe] = kmap_local_page(sector->page) + | 
|  | sector->pgoff; | 
|  | } | 
|  |  | 
|  | /* Then add the parity stripe */ | 
|  | sector = rbio_pstripe_sector(rbio, sectornr); | 
|  | sector->uptodate = 1; | 
|  | pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; | 
|  |  | 
|  | if (has_qstripe) { | 
|  | /* | 
|  | * RAID6, add the qstripe and call the library function | 
|  | * to fill in our p/q | 
|  | */ | 
|  | sector = rbio_qstripe_sector(rbio, sectornr); | 
|  | sector->uptodate = 1; | 
|  | pointers[stripe++] = kmap_local_page(sector->page) + | 
|  | sector->pgoff; | 
|  |  | 
|  | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, | 
|  | pointers); | 
|  | } else { | 
|  | /* raid5 */ | 
|  | memcpy(pointers[nr_data], pointers[0], sectorsize); | 
|  | run_xor(pointers + 1, nr_data - 1, sectorsize); | 
|  | } | 
|  | for (stripe = stripe - 1; stripe >= 0; stripe--) | 
|  | kunmap_local(pointers[stripe]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start writing.  Make bios for everything from the higher layers (the | 
|  | * bio_list in our rbio) and our P/Q.  Ignore everything else. | 
|  | */ | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  |  | 
|  | /* This vertical stripe has no data, skip it. */ | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | if (stripe < rbio->nr_data) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
|  | if (!sector) | 
|  | continue; | 
|  | } else { | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | } | 
|  |  | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (likely(!bioc->num_tgtdevs)) | 
|  | goto write_data; | 
|  |  | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  |  | 
|  | if (!bioc->tgtdev_map[stripe]) { | 
|  | /* | 
|  | * We can skip the whole stripe completely, note | 
|  | * total_sector_nr will be increased by one anyway. | 
|  | */ | 
|  | ASSERT(sectornr == 0); | 
|  | total_sector_nr += rbio->stripe_nsectors - 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* This vertical stripe has no data, skip it. */ | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | if (stripe < rbio->nr_data) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
|  | if (!sector) | 
|  | continue; | 
|  | } else { | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | } | 
|  |  | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, | 
|  | rbio->bioc->tgtdev_map[stripe], | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | write_data: | 
|  | atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); | 
|  | BUG_ON(atomic_read(&rbio->stripes_pending) == 0); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_list))) { | 
|  | bio->bi_end_io = raid_write_end_io; | 
|  |  | 
|  | if (trace_raid56_write_stripe_enabled()) { | 
|  | struct raid56_bio_trace_info trace_info = { 0 }; | 
|  |  | 
|  | bio_get_trace_info(rbio, bio, &trace_info); | 
|  | trace_raid56_write_stripe(rbio, bio, &trace_info); | 
|  | } | 
|  | submit_bio(bio); | 
|  | } | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_list))) | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find the stripe number for a given bio.  Used to figure out which | 
|  | * stripe has failed.  This expects the bio to correspond to a physical disk, | 
|  | * so it looks up based on physical sector numbers. | 
|  | */ | 
|  | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | struct bio *bio) | 
|  | { | 
|  | u64 physical = bio->bi_iter.bi_sector; | 
|  | int i; | 
|  | struct btrfs_io_stripe *stripe; | 
|  |  | 
|  | physical <<= 9; | 
|  |  | 
|  | for (i = 0; i < rbio->bioc->num_stripes; i++) { | 
|  | stripe = &rbio->bioc->stripes[i]; | 
|  | if (in_range(physical, stripe->physical, BTRFS_STRIPE_LEN) && | 
|  | stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find the stripe number for a given | 
|  | * bio (before mapping).  Used to figure out which stripe has | 
|  | * failed.  This looks up based on logical block numbers. | 
|  | */ | 
|  | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | struct bio *bio) | 
|  | { | 
|  | u64 logical = bio->bi_iter.bi_sector << 9; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_data; i++) { | 
|  | u64 stripe_start = rbio->bioc->raid_map[i]; | 
|  |  | 
|  | if (in_range(logical, stripe_start, BTRFS_STRIPE_LEN)) | 
|  | return i; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns -EIO if we had too many failures | 
|  | */ | 
|  | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
|  |  | 
|  | /* we already know this stripe is bad, move on */ | 
|  | if (rbio->faila == failed || rbio->failb == failed) | 
|  | goto out; | 
|  |  | 
|  | if (rbio->faila == -1) { | 
|  | /* first failure on this rbio */ | 
|  | rbio->faila = failed; | 
|  | atomic_inc(&rbio->error); | 
|  | } else if (rbio->failb == -1) { | 
|  | /* second failure on this rbio */ | 
|  | rbio->failb = failed; | 
|  | atomic_inc(&rbio->error); | 
|  | } else { | 
|  | ret = -EIO; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to fail a stripe based on a physical disk | 
|  | * bio. | 
|  | */ | 
|  | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | struct bio *bio) | 
|  | { | 
|  | int failed = find_bio_stripe(rbio, bio); | 
|  |  | 
|  | if (failed < 0) | 
|  | return -EIO; | 
|  |  | 
|  | return fail_rbio_index(rbio, failed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For subpage case, we can no longer set page Uptodate directly for | 
|  | * stripe_pages[], thus we need to locate the sector. | 
|  | */ | 
|  | static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, | 
|  | struct page *page, | 
|  | unsigned int pgoff) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_sectors; i++) { | 
|  | struct sector_ptr *sector = &rbio->stripe_sectors[i]; | 
|  |  | 
|  | if (sector->page == page && sector->pgoff == pgoff) | 
|  | return sector; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this sets each page in the bio uptodate.  It should only be used on private | 
|  | * rbio pages, nothing that comes in from the higher layers | 
|  | */ | 
|  | static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | struct bio_vec *bvec; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, iter_all) { | 
|  | struct sector_ptr *sector; | 
|  | int pgoff; | 
|  |  | 
|  | for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; | 
|  | pgoff += sectorsize) { | 
|  | sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); | 
|  | ASSERT(sector); | 
|  | if (sector) | 
|  | sector->uptodate = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid56_bio_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | fail_bio_stripe(rbio, bio); | 
|  | else | 
|  | set_bio_pages_uptodate(rbio, bio); | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | if (atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | queue_work(rbio->bioc->fs_info->endio_raid56_workers, | 
|  | &rbio->end_io_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * End io handler for the read phase of the RMW cycle.  All the bios here are | 
|  | * physical stripe bios we've read from the disk so we can recalculate the | 
|  | * parity of the stripe. | 
|  | * | 
|  | * This will usually kick off finish_rmw once all the bios are read in, but it | 
|  | * may trigger parity reconstruction if we had any errors along the way | 
|  | */ | 
|  | static void raid56_rmw_end_io_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = | 
|  | container_of(work, struct btrfs_raid_bio, end_io_work); | 
|  |  | 
|  | if (atomic_read(&rbio->error) > rbio->bioc->max_errors) { | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will normally call finish_rmw to start our write but if there | 
|  | * are any failed stripes we'll reconstruct from parity first. | 
|  | */ | 
|  | validate_rbio_for_rmw(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the stripe must be locked by the caller.  It will | 
|  | * unlock after all the writes are done | 
|  | */ | 
|  | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bios_to_read = 0; | 
|  | struct bio_list bio_list; | 
|  | const int nr_data_sectors = rbio->stripe_nsectors * rbio->nr_data; | 
|  | int ret; | 
|  | int total_sector_nr; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  | /* Build a list of bios to read all the missing data sectors. */ | 
|  | for (total_sector_nr = 0; total_sector_nr < nr_data_sectors; | 
|  | total_sector_nr++) { | 
|  | struct sector_ptr *sector; | 
|  | int stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  |  | 
|  | /* | 
|  | * We want to find all the sectors missing from the rbio and | 
|  | * read them from the disk.  If sector_in_rbio() finds a page | 
|  | * in the bio list we don't need to read it off the stripe. | 
|  | */ | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
|  | if (sector) | 
|  | continue; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | /* | 
|  | * The bio cache may have handed us an uptodate page.  If so, | 
|  | * use it. | 
|  | */ | 
|  | if (sector->uptodate) | 
|  | continue; | 
|  |  | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, | 
|  | stripe, sectornr, REQ_OP_READ); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | bios_to_read = bio_list_size(&bio_list); | 
|  | if (!bios_to_read) { | 
|  | /* | 
|  | * this can happen if others have merged with | 
|  | * us, it means there is nothing left to read. | 
|  | * But if there are missing devices it may not be | 
|  | * safe to do the full stripe write yet. | 
|  | */ | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bioc may be freed once we submit the last bio. Make sure not to | 
|  | * touch it after that. | 
|  | */ | 
|  | atomic_set(&rbio->stripes_pending, bios_to_read); | 
|  | INIT_WORK(&rbio->end_io_work, raid56_rmw_end_io_work); | 
|  | while ((bio = bio_list_pop(&bio_list))) { | 
|  | bio->bi_end_io = raid56_bio_end_io; | 
|  |  | 
|  | if (trace_raid56_read_partial_enabled()) { | 
|  | struct raid56_bio_trace_info trace_info = { 0 }; | 
|  |  | 
|  | bio_get_trace_info(rbio, bio, &trace_info); | 
|  | trace_raid56_read_partial(rbio, bio, &trace_info); | 
|  | } | 
|  | submit_bio(bio); | 
|  | } | 
|  | /* the actual write will happen once the reads are done */ | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_list))) | 
|  | bio_put(bio); | 
|  |  | 
|  | return -EIO; | 
|  |  | 
|  | finish: | 
|  | validate_rbio_for_rmw(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the upper layers pass in a full stripe, we thank them by only allocating | 
|  | * enough pages to hold the parity, and sending it all down quickly. | 
|  | */ | 
|  | static int full_stripe_write(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = alloc_rbio_parity_pages(rbio); | 
|  | if (ret) { | 
|  | __free_raid_bio(rbio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = lock_stripe_add(rbio); | 
|  | if (ret == 0) | 
|  | finish_rmw(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * partial stripe writes get handed over to async helpers. | 
|  | * We're really hoping to merge a few more writes into this | 
|  | * rbio before calculating new parity | 
|  | */ | 
|  | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = lock_stripe_add(rbio); | 
|  | if (ret == 0) | 
|  | start_async_work(rbio, rmw_work); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sometimes while we were reading from the drive to | 
|  | * recalculate parity, enough new bios come into create | 
|  | * a full stripe.  So we do a check here to see if we can | 
|  | * go directly to finish_rmw | 
|  | */ | 
|  | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | /* head off into rmw land if we don't have a full stripe */ | 
|  | if (!rbio_is_full(rbio)) | 
|  | return partial_stripe_write(rbio); | 
|  | return full_stripe_write(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use plugging call backs to collect full stripes. | 
|  | * Any time we get a partial stripe write while plugged | 
|  | * we collect it into a list.  When the unplug comes down, | 
|  | * we sort the list by logical block number and merge | 
|  | * everything we can into the same rbios | 
|  | */ | 
|  | struct btrfs_plug_cb { | 
|  | struct blk_plug_cb cb; | 
|  | struct btrfs_fs_info *info; | 
|  | struct list_head rbio_list; | 
|  | struct work_struct work; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * rbios on the plug list are sorted for easier merging. | 
|  | */ | 
|  | static int plug_cmp(void *priv, const struct list_head *a, | 
|  | const struct list_head *b) | 
|  | { | 
|  | const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  | const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; | 
|  | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | 
|  |  | 
|  | if (a_sector < b_sector) | 
|  | return -1; | 
|  | if (a_sector > b_sector) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void run_plug(struct btrfs_plug_cb *plug) | 
|  | { | 
|  | struct btrfs_raid_bio *cur; | 
|  | struct btrfs_raid_bio *last = NULL; | 
|  |  | 
|  | /* | 
|  | * sort our plug list then try to merge | 
|  | * everything we can in hopes of creating full | 
|  | * stripes. | 
|  | */ | 
|  | list_sort(NULL, &plug->rbio_list, plug_cmp); | 
|  | while (!list_empty(&plug->rbio_list)) { | 
|  | cur = list_entry(plug->rbio_list.next, | 
|  | struct btrfs_raid_bio, plug_list); | 
|  | list_del_init(&cur->plug_list); | 
|  |  | 
|  | if (rbio_is_full(cur)) { | 
|  | int ret; | 
|  |  | 
|  | /* we have a full stripe, send it down */ | 
|  | ret = full_stripe_write(cur); | 
|  | BUG_ON(ret); | 
|  | continue; | 
|  | } | 
|  | if (last) { | 
|  | if (rbio_can_merge(last, cur)) { | 
|  | merge_rbio(last, cur); | 
|  | __free_raid_bio(cur); | 
|  | continue; | 
|  |  | 
|  | } | 
|  | __raid56_parity_write(last); | 
|  | } | 
|  | last = cur; | 
|  | } | 
|  | if (last) { | 
|  | __raid56_parity_write(last); | 
|  | } | 
|  | kfree(plug); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the unplug comes from schedule, we have to push the | 
|  | * work off to a helper thread | 
|  | */ | 
|  | static void unplug_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_plug_cb *plug; | 
|  | plug = container_of(work, struct btrfs_plug_cb, work); | 
|  | run_plug(plug); | 
|  | } | 
|  |  | 
|  | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
|  | { | 
|  | struct btrfs_plug_cb *plug; | 
|  | plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  |  | 
|  | if (from_schedule) { | 
|  | INIT_WORK(&plug->work, unplug_work); | 
|  | queue_work(plug->info->rmw_workers, &plug->work); | 
|  | return; | 
|  | } | 
|  | run_plug(plug); | 
|  | } | 
|  |  | 
|  | /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ | 
|  | static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) | 
|  | { | 
|  | const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | const u64 full_stripe_start = rbio->bioc->raid_map[0]; | 
|  | const u32 orig_len = orig_bio->bi_iter.bi_size; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | u64 cur_logical; | 
|  |  | 
|  | ASSERT(orig_logical >= full_stripe_start && | 
|  | orig_logical + orig_len <= full_stripe_start + | 
|  | rbio->nr_data * BTRFS_STRIPE_LEN); | 
|  |  | 
|  | bio_list_add(&rbio->bio_list, orig_bio); | 
|  | rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; | 
|  |  | 
|  | /* Update the dbitmap. */ | 
|  | for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; | 
|  | cur_logical += sectorsize) { | 
|  | int bit = ((u32)(cur_logical - full_stripe_start) >> | 
|  | fs_info->sectorsize_bits) % rbio->stripe_nsectors; | 
|  |  | 
|  | set_bit(bit, &rbio->dbitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * our main entry point for writes from the rest of the FS. | 
|  | */ | 
|  | void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bioc->fs_info; | 
|  | struct btrfs_raid_bio *rbio; | 
|  | struct btrfs_plug_cb *plug = NULL; | 
|  | struct blk_plug_cb *cb; | 
|  | int ret = 0; | 
|  |  | 
|  | rbio = alloc_rbio(fs_info, bioc); | 
|  | if (IS_ERR(rbio)) { | 
|  | ret = PTR_ERR(rbio); | 
|  | goto fail; | 
|  | } | 
|  | rbio->operation = BTRFS_RBIO_WRITE; | 
|  | rbio_add_bio(rbio, bio); | 
|  |  | 
|  | /* | 
|  | * don't plug on full rbios, just get them out the door | 
|  | * as quickly as we can | 
|  | */ | 
|  | if (rbio_is_full(rbio)) { | 
|  | ret = full_stripe_write(rbio); | 
|  | if (ret) | 
|  | goto fail; | 
|  | return; | 
|  | } | 
|  |  | 
|  | cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); | 
|  | if (cb) { | 
|  | plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  | if (!plug->info) { | 
|  | plug->info = fs_info; | 
|  | INIT_LIST_HEAD(&plug->rbio_list); | 
|  | } | 
|  | list_add_tail(&rbio->plug_list, &plug->rbio_list); | 
|  | } else { | 
|  | ret = __raid56_parity_write(rbio); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | fail: | 
|  | bio->bi_status = errno_to_blk_status(ret); | 
|  | bio_endio(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * all parity reconstruction happens here.  We've read in everything | 
|  | * we can find from the drives and this does the heavy lifting of | 
|  | * sorting the good from the bad. | 
|  | */ | 
|  | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | int sectornr, stripe; | 
|  | void **pointers; | 
|  | void **unmap_array; | 
|  | int faila = -1, failb = -1; | 
|  | blk_status_t err; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * This array stores the pointer for each sector, thus it has the extra | 
|  | * pgoff value added from each sector | 
|  | */ | 
|  | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
|  | if (!pointers) { | 
|  | err = BLK_STS_RESOURCE; | 
|  | goto cleanup_io; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store copy of pointers that does not get reordered during | 
|  | * reconstruction so that kunmap_local works. | 
|  | */ | 
|  | unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
|  | if (!unmap_array) { | 
|  | err = BLK_STS_RESOURCE; | 
|  | goto cleanup_pointers; | 
|  | } | 
|  |  | 
|  | faila = rbio->faila; | 
|  | failb = rbio->failb; | 
|  |  | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | } | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | /* | 
|  | * Now we just use bitmap to mark the horizontal stripes in | 
|  | * which we have data when doing parity scrub. | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | 
|  | !test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Setup our array of pointers with sectors from each stripe | 
|  | * | 
|  | * NOTE: store a duplicate array of pointers to preserve the | 
|  | * pointer order | 
|  | */ | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
|  | /* | 
|  | * If we're rebuilding a read, we have to use | 
|  | * pages from the bio list | 
|  | */ | 
|  | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | 
|  | (stripe == faila || stripe == failb)) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 0); | 
|  | } else { | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | } | 
|  | ASSERT(sector->page); | 
|  | pointers[stripe] = kmap_local_page(sector->page) + | 
|  | sector->pgoff; | 
|  | unmap_array[stripe] = pointers[stripe]; | 
|  | } | 
|  |  | 
|  | /* All raid6 handling here */ | 
|  | if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { | 
|  | /* Single failure, rebuild from parity raid5 style */ | 
|  | if (failb < 0) { | 
|  | if (faila == rbio->nr_data) { | 
|  | /* | 
|  | * Just the P stripe has failed, without | 
|  | * a bad data or Q stripe. | 
|  | * TODO, we should redo the xor here. | 
|  | */ | 
|  | err = BLK_STS_IOERR; | 
|  | goto cleanup; | 
|  | } | 
|  | /* | 
|  | * a single failure in raid6 is rebuilt | 
|  | * in the pstripe code below | 
|  | */ | 
|  | goto pstripe; | 
|  | } | 
|  |  | 
|  | /* make sure our ps and qs are in order */ | 
|  | if (faila > failb) | 
|  | swap(faila, failb); | 
|  |  | 
|  | /* if the q stripe is failed, do a pstripe reconstruction | 
|  | * from the xors. | 
|  | * If both the q stripe and the P stripe are failed, we're | 
|  | * here due to a crc mismatch and we can't give them the | 
|  | * data they want | 
|  | */ | 
|  | if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) { | 
|  | if (rbio->bioc->raid_map[faila] == | 
|  | RAID5_P_STRIPE) { | 
|  | err = BLK_STS_IOERR; | 
|  | goto cleanup; | 
|  | } | 
|  | /* | 
|  | * otherwise we have one bad data stripe and | 
|  | * a good P stripe.  raid5! | 
|  | */ | 
|  | goto pstripe; | 
|  | } | 
|  |  | 
|  | if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) { | 
|  | raid6_datap_recov(rbio->real_stripes, | 
|  | sectorsize, faila, pointers); | 
|  | } else { | 
|  | raid6_2data_recov(rbio->real_stripes, | 
|  | sectorsize, faila, failb, | 
|  | pointers); | 
|  | } | 
|  | } else { | 
|  | void *p; | 
|  |  | 
|  | /* rebuild from P stripe here (raid5 or raid6) */ | 
|  | BUG_ON(failb != -1); | 
|  | pstripe: | 
|  | /* Copy parity block into failed block to start with */ | 
|  | memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); | 
|  |  | 
|  | /* rearrange the pointer array */ | 
|  | p = pointers[faila]; | 
|  | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | 
|  | pointers[stripe] = pointers[stripe + 1]; | 
|  | pointers[rbio->nr_data - 1] = p; | 
|  |  | 
|  | /* xor in the rest */ | 
|  | run_xor(pointers, rbio->nr_data - 1, sectorsize); | 
|  | } | 
|  | /* if we're doing this rebuild as part of an rmw, go through | 
|  | * and set all of our private rbio pages in the | 
|  | * failed stripes as uptodate.  This way finish_rmw will | 
|  | * know they can be trusted.  If this was a read reconstruction, | 
|  | * other endio functions will fiddle the uptodate bits | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_WRITE) { | 
|  | for (i = 0;  i < rbio->stripe_nsectors; i++) { | 
|  | if (faila != -1) { | 
|  | sector = rbio_stripe_sector(rbio, faila, i); | 
|  | sector->uptodate = 1; | 
|  | } | 
|  | if (failb != -1) { | 
|  | sector = rbio_stripe_sector(rbio, failb, i); | 
|  | sector->uptodate = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--) | 
|  | kunmap_local(unmap_array[stripe]); | 
|  | } | 
|  |  | 
|  | err = BLK_STS_OK; | 
|  | cleanup: | 
|  | kfree(unmap_array); | 
|  | cleanup_pointers: | 
|  | kfree(pointers); | 
|  |  | 
|  | cleanup_io: | 
|  | /* | 
|  | * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a | 
|  | * valid rbio which is consistent with ondisk content, thus such a | 
|  | * valid rbio can be cached to avoid further disk reads. | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
|  | /* | 
|  | * - In case of two failures, where rbio->failb != -1: | 
|  | * | 
|  | *   Do not cache this rbio since the above read reconstruction | 
|  | *   (raid6_datap_recov() or raid6_2data_recov()) may have | 
|  | *   changed some content of stripes which are not identical to | 
|  | *   on-disk content any more, otherwise, a later write/recover | 
|  | *   may steal stripe_pages from this rbio and end up with | 
|  | *   corruptions or rebuild failures. | 
|  | * | 
|  | * - In case of single failure, where rbio->failb == -1: | 
|  | * | 
|  | *   Cache this rbio iff the above read reconstruction is | 
|  | *   executed without problems. | 
|  | */ | 
|  | if (err == BLK_STS_OK && rbio->failb < 0) | 
|  | cache_rbio_pages(rbio); | 
|  | else | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | rbio_orig_end_io(rbio, err); | 
|  | } else if (err == BLK_STS_OK) { | 
|  | rbio->faila = -1; | 
|  | rbio->failb = -1; | 
|  |  | 
|  | if (rbio->operation == BTRFS_RBIO_WRITE) | 
|  | finish_rmw(rbio); | 
|  | else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) | 
|  | finish_parity_scrub(rbio, 0); | 
|  | else | 
|  | BUG(); | 
|  | } else { | 
|  | rbio_orig_end_io(rbio, err); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called only for stripes we've read from disk to reconstruct the | 
|  | * parity. | 
|  | */ | 
|  | static void raid_recover_end_io_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = | 
|  | container_of(work, struct btrfs_raid_bio, end_io_work); | 
|  |  | 
|  | if (atomic_read(&rbio->error) > rbio->bioc->max_errors) | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  | else | 
|  | __raid_recover_end_io(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reads everything we need off the disk to reconstruct | 
|  | * the parity. endio handlers trigger final reconstruction | 
|  | * when the IO is done. | 
|  | * | 
|  | * This is used both for reads from the higher layers and for | 
|  | * parity construction required to finish a rmw cycle. | 
|  | */ | 
|  | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bios_to_read = 0; | 
|  | struct bio_list bio_list; | 
|  | int ret; | 
|  | int total_sector_nr; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  |  | 
|  | /* | 
|  | * Read everything that hasn't failed. However this time we will | 
|  | * not trust any cached sector. | 
|  | * As we may read out some stale data but higher layer is not reading | 
|  | * that stale part. | 
|  | * | 
|  | * So here we always re-read everything in recovery path. | 
|  | */ | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | int stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | if (rbio->faila == stripe || rbio->failb == stripe) { | 
|  | atomic_inc(&rbio->error); | 
|  | /* Skip the current stripe. */ | 
|  | ASSERT(sectornr == 0); | 
|  | total_sector_nr += rbio->stripe_nsectors - 1; | 
|  | continue; | 
|  | } | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, | 
|  | sectornr, REQ_OP_READ); | 
|  | if (ret < 0) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | bios_to_read = bio_list_size(&bio_list); | 
|  | if (!bios_to_read) { | 
|  | /* | 
|  | * we might have no bios to read just because the pages | 
|  | * were up to date, or we might have no bios to read because | 
|  | * the devices were gone. | 
|  | */ | 
|  | if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) { | 
|  | __raid_recover_end_io(rbio); | 
|  | return 0; | 
|  | } else { | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bioc may be freed once we submit the last bio. Make sure not to | 
|  | * touch it after that. | 
|  | */ | 
|  | atomic_set(&rbio->stripes_pending, bios_to_read); | 
|  | INIT_WORK(&rbio->end_io_work, raid_recover_end_io_work); | 
|  | while ((bio = bio_list_pop(&bio_list))) { | 
|  | bio->bi_end_io = raid56_bio_end_io; | 
|  |  | 
|  | if (trace_raid56_scrub_read_recover_enabled()) { | 
|  | struct raid56_bio_trace_info trace_info = { 0 }; | 
|  |  | 
|  | bio_get_trace_info(rbio, bio, &trace_info); | 
|  | trace_raid56_scrub_read_recover(rbio, bio, &trace_info); | 
|  | } | 
|  | submit_bio(bio); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_list))) | 
|  | bio_put(bio); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the main entry point for reads from the higher layers.  This | 
|  | * is really only called when the normal read path had a failure, | 
|  | * so we assume the bio they send down corresponds to a failed part | 
|  | * of the drive. | 
|  | */ | 
|  | void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, | 
|  | int mirror_num) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bioc->fs_info; | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = alloc_rbio(fs_info, bioc); | 
|  | if (IS_ERR(rbio)) { | 
|  | bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); | 
|  | goto out_end_bio; | 
|  | } | 
|  |  | 
|  | rbio->operation = BTRFS_RBIO_READ_REBUILD; | 
|  | rbio_add_bio(rbio, bio); | 
|  |  | 
|  | rbio->faila = find_logical_bio_stripe(rbio, bio); | 
|  | if (rbio->faila == -1) { | 
|  | btrfs_warn(fs_info, | 
|  | "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)", | 
|  | __func__, bio->bi_iter.bi_sector << 9, | 
|  | (u64)bio->bi_iter.bi_size, bioc->map_type); | 
|  | __free_raid_bio(rbio); | 
|  | bio->bi_status = BLK_STS_IOERR; | 
|  | goto out_end_bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loop retry: | 
|  | * for 'mirror == 2', reconstruct from all other stripes. | 
|  | * for 'mirror_num > 2', select a stripe to fail on every retry. | 
|  | */ | 
|  | if (mirror_num > 2) { | 
|  | /* | 
|  | * 'mirror == 3' is to fail the p stripe and | 
|  | * reconstruct from the q stripe.  'mirror > 3' is to | 
|  | * fail a data stripe and reconstruct from p+q stripe. | 
|  | */ | 
|  | rbio->failb = rbio->real_stripes - (mirror_num - 1); | 
|  | ASSERT(rbio->failb > 0); | 
|  | if (rbio->failb <= rbio->faila) | 
|  | rbio->failb--; | 
|  | } | 
|  |  | 
|  | if (lock_stripe_add(rbio)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This adds our rbio to the list of rbios that will be handled after | 
|  | * the current lock owner is done. | 
|  | */ | 
|  | __raid56_parity_recover(rbio); | 
|  | return; | 
|  |  | 
|  | out_end_bio: | 
|  | bio_endio(bio); | 
|  | } | 
|  |  | 
|  | static void rmw_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | raid56_rmw_stripe(rbio); | 
|  | } | 
|  |  | 
|  | static void read_rebuild_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | __raid56_parity_recover(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following code is used to scrub/replace the parity stripe | 
|  | * | 
|  | * Caller must have already increased bio_counter for getting @bioc. | 
|  | * | 
|  | * Note: We need make sure all the pages that add into the scrub/replace | 
|  | * raid bio are correct and not be changed during the scrub/replace. That | 
|  | * is those pages just hold metadata or file data with checksum. | 
|  | */ | 
|  |  | 
|  | struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, | 
|  | struct btrfs_io_context *bioc, | 
|  | struct btrfs_device *scrub_dev, | 
|  | unsigned long *dbitmap, int stripe_nsectors) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bioc->fs_info; | 
|  | struct btrfs_raid_bio *rbio; | 
|  | int i; | 
|  |  | 
|  | rbio = alloc_rbio(fs_info, bioc); | 
|  | if (IS_ERR(rbio)) | 
|  | return NULL; | 
|  | bio_list_add(&rbio->bio_list, bio); | 
|  | /* | 
|  | * This is a special bio which is used to hold the completion handler | 
|  | * and make the scrub rbio is similar to the other types | 
|  | */ | 
|  | ASSERT(!bio->bi_iter.bi_size); | 
|  | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | 
|  |  | 
|  | /* | 
|  | * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted | 
|  | * to the end position, so this search can start from the first parity | 
|  | * stripe. | 
|  | */ | 
|  | for (i = rbio->nr_data; i < rbio->real_stripes; i++) { | 
|  | if (bioc->stripes[i].dev == scrub_dev) { | 
|  | rbio->scrubp = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ASSERT(i < rbio->real_stripes); | 
|  |  | 
|  | bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | /* Used for both parity scrub and missing. */ | 
|  | void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, | 
|  | unsigned int pgoff, u64 logical) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | int stripe_offset; | 
|  | int index; | 
|  |  | 
|  | ASSERT(logical >= rbio->bioc->raid_map[0]); | 
|  | ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] + | 
|  | BTRFS_STRIPE_LEN * rbio->nr_data); | 
|  | stripe_offset = (int)(logical - rbio->bioc->raid_map[0]); | 
|  | index = stripe_offset / sectorsize; | 
|  | rbio->bio_sectors[index].page = page; | 
|  | rbio->bio_sectors[index].pgoff = pgoff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We just scrub the parity that we have correct data on the same horizontal, | 
|  | * so we needn't allocate all pages for all the stripes. | 
|  | */ | 
|  | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | int total_sector_nr; | 
|  |  | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | struct page *page; | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  | int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; | 
|  |  | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  | if (rbio->stripe_pages[index]) | 
|  | continue; | 
|  | page = alloc_page(GFP_NOFS); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | rbio->stripe_pages[index] = page; | 
|  | } | 
|  | index_stripe_sectors(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, | 
|  | int need_check) | 
|  | { | 
|  | struct btrfs_io_context *bioc = rbio->bioc; | 
|  | const u32 sectorsize = bioc->fs_info->sectorsize; | 
|  | void **pointers = rbio->finish_pointers; | 
|  | unsigned long *pbitmap = &rbio->finish_pbitmap; | 
|  | int nr_data = rbio->nr_data; | 
|  | int stripe; | 
|  | int sectornr; | 
|  | bool has_qstripe; | 
|  | struct sector_ptr p_sector = { 0 }; | 
|  | struct sector_ptr q_sector = { 0 }; | 
|  | struct bio_list bio_list; | 
|  | struct bio *bio; | 
|  | int is_replace = 0; | 
|  | int ret; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | if (rbio->real_stripes - rbio->nr_data == 1) | 
|  | has_qstripe = false; | 
|  | else if (rbio->real_stripes - rbio->nr_data == 2) | 
|  | has_qstripe = true; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) { | 
|  | is_replace = 1; | 
|  | bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the higher layers(scrubber) are unlikely to | 
|  | * use this area of the disk again soon, so don't cache | 
|  | * it. | 
|  | */ | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | if (!need_check) | 
|  | goto writeback; | 
|  |  | 
|  | p_sector.page = alloc_page(GFP_NOFS); | 
|  | if (!p_sector.page) | 
|  | goto cleanup; | 
|  | p_sector.pgoff = 0; | 
|  | p_sector.uptodate = 1; | 
|  |  | 
|  | if (has_qstripe) { | 
|  | /* RAID6, allocate and map temp space for the Q stripe */ | 
|  | q_sector.page = alloc_page(GFP_NOFS); | 
|  | if (!q_sector.page) { | 
|  | __free_page(p_sector.page); | 
|  | p_sector.page = NULL; | 
|  | goto cleanup; | 
|  | } | 
|  | q_sector.pgoff = 0; | 
|  | q_sector.uptodate = 1; | 
|  | pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); | 
|  | } | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  |  | 
|  | /* Map the parity stripe just once */ | 
|  | pointers[nr_data] = kmap_local_page(p_sector.page); | 
|  |  | 
|  | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { | 
|  | struct sector_ptr *sector; | 
|  | void *parity; | 
|  |  | 
|  | /* first collect one page from each data stripe */ | 
|  | for (stripe = 0; stripe < nr_data; stripe++) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 0); | 
|  | pointers[stripe] = kmap_local_page(sector->page) + | 
|  | sector->pgoff; | 
|  | } | 
|  |  | 
|  | if (has_qstripe) { | 
|  | /* RAID6, call the library function to fill in our P/Q */ | 
|  | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, | 
|  | pointers); | 
|  | } else { | 
|  | /* raid5 */ | 
|  | memcpy(pointers[nr_data], pointers[0], sectorsize); | 
|  | run_xor(pointers + 1, nr_data - 1, sectorsize); | 
|  | } | 
|  |  | 
|  | /* Check scrubbing parity and repair it */ | 
|  | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
|  | parity = kmap_local_page(sector->page) + sector->pgoff; | 
|  | if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) | 
|  | memcpy(parity, pointers[rbio->scrubp], sectorsize); | 
|  | else | 
|  | /* Parity is right, needn't writeback */ | 
|  | bitmap_clear(&rbio->dbitmap, sectornr, 1); | 
|  | kunmap_local(parity); | 
|  |  | 
|  | for (stripe = nr_data - 1; stripe >= 0; stripe--) | 
|  | kunmap_local(pointers[stripe]); | 
|  | } | 
|  |  | 
|  | kunmap_local(pointers[nr_data]); | 
|  | __free_page(p_sector.page); | 
|  | p_sector.page = NULL; | 
|  | if (q_sector.page) { | 
|  | kunmap_local(pointers[rbio->real_stripes - 1]); | 
|  | __free_page(q_sector.page); | 
|  | q_sector.page = NULL; | 
|  | } | 
|  |  | 
|  | writeback: | 
|  | /* | 
|  | * time to start writing.  Make bios for everything from the | 
|  | * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
|  | * everything else. | 
|  | */ | 
|  | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (!is_replace) | 
|  | goto submit_write; | 
|  |  | 
|  | for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, | 
|  | bioc->tgtdev_map[rbio->scrubp], | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | submit_write: | 
|  | nr_data = bio_list_size(&bio_list); | 
|  | if (!nr_data) { | 
|  | /* Every parity is right */ | 
|  | rbio_orig_end_io(rbio, BLK_STS_OK); | 
|  | return; | 
|  | } | 
|  |  | 
|  | atomic_set(&rbio->stripes_pending, nr_data); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_list))) { | 
|  | bio->bi_end_io = raid_write_end_io; | 
|  |  | 
|  | if (trace_raid56_scrub_write_stripe_enabled()) { | 
|  | struct raid56_bio_trace_info trace_info = { 0 }; | 
|  |  | 
|  | bio_get_trace_info(rbio, bio, &trace_info); | 
|  | trace_raid56_scrub_write_stripe(rbio, bio, &trace_info); | 
|  | } | 
|  | submit_bio(bio); | 
|  | } | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_list))) | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | 
|  | { | 
|  | if (stripe >= 0 && stripe < rbio->nr_data) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While we're doing the parity check and repair, we could have errors | 
|  | * in reading pages off the disk.  This checks for errors and if we're | 
|  | * not able to read the page it'll trigger parity reconstruction.  The | 
|  | * parity scrub will be finished after we've reconstructed the failed | 
|  | * stripes | 
|  | */ | 
|  | static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (atomic_read(&rbio->error) > rbio->bioc->max_errors) | 
|  | goto cleanup; | 
|  |  | 
|  | if (rbio->faila >= 0 || rbio->failb >= 0) { | 
|  | int dfail = 0, failp = -1; | 
|  |  | 
|  | if (is_data_stripe(rbio, rbio->faila)) | 
|  | dfail++; | 
|  | else if (is_parity_stripe(rbio->faila)) | 
|  | failp = rbio->faila; | 
|  |  | 
|  | if (is_data_stripe(rbio, rbio->failb)) | 
|  | dfail++; | 
|  | else if (is_parity_stripe(rbio->failb)) | 
|  | failp = rbio->failb; | 
|  |  | 
|  | /* | 
|  | * Because we can not use a scrubbing parity to repair | 
|  | * the data, so the capability of the repair is declined. | 
|  | * (In the case of RAID5, we can not repair anything) | 
|  | */ | 
|  | if (dfail > rbio->bioc->max_errors - 1) | 
|  | goto cleanup; | 
|  |  | 
|  | /* | 
|  | * If all data is good, only parity is correctly, just | 
|  | * repair the parity. | 
|  | */ | 
|  | if (dfail == 0) { | 
|  | finish_parity_scrub(rbio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here means we got one corrupted data stripe and one | 
|  | * corrupted parity on RAID6, if the corrupted parity | 
|  | * is scrubbing parity, luckily, use the other one to repair | 
|  | * the data, or we can not repair the data stripe. | 
|  | */ | 
|  | if (failp != rbio->scrubp) | 
|  | goto cleanup; | 
|  |  | 
|  | __raid_recover_end_io(rbio); | 
|  | } else { | 
|  | finish_parity_scrub(rbio, 1); | 
|  | } | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * end io for the read phase of the rmw cycle.  All the bios here are physical | 
|  | * stripe bios we've read from the disk so we can recalculate the parity of the | 
|  | * stripe. | 
|  | * | 
|  | * This will usually kick off finish_rmw once all the bios are read in, but it | 
|  | * may trigger parity reconstruction if we had any errors along the way | 
|  | */ | 
|  | static void raid56_parity_scrub_end_io_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = | 
|  | container_of(work, struct btrfs_raid_bio, end_io_work); | 
|  |  | 
|  | /* | 
|  | * This will normally call finish_rmw to start our write, but if there | 
|  | * are any failed stripes we'll reconstruct from parity first | 
|  | */ | 
|  | validate_rbio_for_parity_scrub(rbio); | 
|  | } | 
|  |  | 
|  | static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bios_to_read = 0; | 
|  | struct bio_list bio_list; | 
|  | int ret; | 
|  | int total_sector_nr; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | ret = alloc_rbio_essential_pages(rbio); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  | /* Build a list of bios to read all the missing parts. */ | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  | int stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | /* No data in the vertical stripe, no need to read. */ | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We want to find all the sectors missing from the rbio and | 
|  | * read them from the disk. If sector_in_rbio() finds a sector | 
|  | * in the bio list we don't need to read it off the stripe. | 
|  | */ | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
|  | if (sector) | 
|  | continue; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | /* | 
|  | * The bio cache may have handed us an uptodate sector.  If so, | 
|  | * use it. | 
|  | */ | 
|  | if (sector->uptodate) | 
|  | continue; | 
|  |  | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, | 
|  | sectornr, REQ_OP_READ); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | bios_to_read = bio_list_size(&bio_list); | 
|  | if (!bios_to_read) { | 
|  | /* | 
|  | * this can happen if others have merged with | 
|  | * us, it means there is nothing left to read. | 
|  | * But if there are missing devices it may not be | 
|  | * safe to do the full stripe write yet. | 
|  | */ | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bioc may be freed once we submit the last bio. Make sure not to | 
|  | * touch it after that. | 
|  | */ | 
|  | atomic_set(&rbio->stripes_pending, bios_to_read); | 
|  | INIT_WORK(&rbio->end_io_work, raid56_parity_scrub_end_io_work); | 
|  | while ((bio = bio_list_pop(&bio_list))) { | 
|  | bio->bi_end_io = raid56_bio_end_io; | 
|  |  | 
|  | if (trace_raid56_scrub_read_enabled()) { | 
|  | struct raid56_bio_trace_info trace_info = { 0 }; | 
|  |  | 
|  | bio_get_trace_info(rbio, bio, &trace_info); | 
|  | trace_raid56_scrub_read(rbio, bio, &trace_info); | 
|  | } | 
|  | submit_bio(bio); | 
|  | } | 
|  | /* the actual write will happen once the reads are done */ | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bio_list))) | 
|  | bio_put(bio); | 
|  |  | 
|  | return; | 
|  |  | 
|  | finish: | 
|  | validate_rbio_for_parity_scrub(rbio); | 
|  | } | 
|  |  | 
|  | static void scrub_parity_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | raid56_parity_scrub_stripe(rbio); | 
|  | } | 
|  |  | 
|  | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (!lock_stripe_add(rbio)) | 
|  | start_async_work(rbio, scrub_parity_work); | 
|  | } | 
|  |  | 
|  | /* The following code is used for dev replace of a missing RAID 5/6 device. */ | 
|  |  | 
|  | struct btrfs_raid_bio * | 
|  | raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bioc->fs_info; | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = alloc_rbio(fs_info, bioc); | 
|  | if (IS_ERR(rbio)) | 
|  | return NULL; | 
|  |  | 
|  | rbio->operation = BTRFS_RBIO_REBUILD_MISSING; | 
|  | bio_list_add(&rbio->bio_list, bio); | 
|  | /* | 
|  | * This is a special bio which is used to hold the completion handler | 
|  | * and make the scrub rbio is similar to the other types | 
|  | */ | 
|  | ASSERT(!bio->bi_iter.bi_size); | 
|  |  | 
|  | rbio->faila = find_logical_bio_stripe(rbio, bio); | 
|  | if (rbio->faila == -1) { | 
|  | BUG(); | 
|  | kfree(rbio); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (!lock_stripe_add(rbio)) | 
|  | start_async_work(rbio, read_rebuild_work); | 
|  | } |