blob: c99632114283d9e242615249c17fcdaa2a73122d [file] [log] [blame]
/*
* tda80xx.c
*
* Philips TDA8044 / TDA8083 QPSK demodulator driver
*
* Copyright (C) 2001 Felix Domke <tmbinc@elitedvb.net>
* Copyright (C) 2002-2004 Andreas Oberritter <obi@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/interrupt.h>
#include <asm/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "tda80xx.h"
enum {
ID_TDA8044 = 0x04,
ID_TDA8083 = 0x05,
};
struct tda80xx_state {
struct i2c_adapter* i2c;
struct dvb_frontend_ops ops;
/* configuration settings */
const struct tda80xx_config* config;
struct dvb_frontend frontend;
u32 clk;
int afc_loop;
struct work_struct worklet;
fe_code_rate_t code_rate;
fe_spectral_inversion_t spectral_inversion;
fe_status_t status;
u8 id;
};
static int debug = 1;
#define dprintk if (debug) printk
static u8 tda8044_inittab_pre[] = {
0x02, 0x00, 0x6f, 0xb5, 0x86, 0x22, 0x00, 0xea,
0x30, 0x42, 0x98, 0x68, 0x70, 0x42, 0x99, 0x58,
0x95, 0x10, 0xf5, 0xe7, 0x93, 0x0b, 0x15, 0x68,
0x9a, 0x90, 0x61, 0x80, 0x00, 0xe0, 0x40, 0x00,
0x0f, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00
};
static u8 tda8044_inittab_post[] = {
0x04, 0x00, 0x6f, 0xb5, 0x86, 0x22, 0x00, 0xea,
0x30, 0x42, 0x98, 0x68, 0x70, 0x42, 0x99, 0x50,
0x95, 0x10, 0xf5, 0xe7, 0x93, 0x0b, 0x15, 0x68,
0x9a, 0x90, 0x61, 0x80, 0x00, 0xe0, 0x40, 0x6c,
0x0f, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00
};
static u8 tda8083_inittab[] = {
0x04, 0x00, 0x4a, 0x79, 0x04, 0x00, 0xff, 0xea,
0x48, 0x42, 0x79, 0x60, 0x70, 0x52, 0x9a, 0x10,
0x0e, 0x10, 0xf2, 0xa7, 0x93, 0x0b, 0x05, 0xc8,
0x9d, 0x00, 0x42, 0x80, 0x00, 0x60, 0x40, 0x00,
0x00, 0x75, 0x00, 0xe0, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
static __inline__ u32 tda80xx_div(u32 a, u32 b)
{
return (a + (b / 2)) / b;
}
static __inline__ u32 tda80xx_gcd(u32 a, u32 b)
{
u32 r;
while ((r = a % b)) {
a = b;
b = r;
}
return b;
}
static int tda80xx_read(struct tda80xx_state* state, u8 reg, u8 *buf, u8 len)
{
int ret;
struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = buf, .len = len } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2)
dprintk("%s: readreg error (reg %02x, ret == %i)\n",
__FUNCTION__, reg, ret);
mdelay(10);
return (ret == 2) ? 0 : -EREMOTEIO;
}
static int tda80xx_write(struct tda80xx_state* state, u8 reg, const u8 *buf, u8 len)
{
int ret;
u8 wbuf[len + 1];
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = wbuf, .len = len + 1 };
wbuf[0] = reg;
memcpy(&wbuf[1], buf, len);
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: i2c xfer error (ret == %i)\n", __FUNCTION__, ret);
mdelay(10);
return (ret == 1) ? 0 : -EREMOTEIO;
}
static __inline__ u8 tda80xx_readreg(struct tda80xx_state* state, u8 reg)
{
u8 val;
tda80xx_read(state, reg, &val, 1);
return val;
}
static __inline__ int tda80xx_writereg(struct tda80xx_state* state, u8 reg, u8 data)
{
return tda80xx_write(state, reg, &data, 1);
}
static int tda80xx_set_parameters(struct tda80xx_state* state,
fe_spectral_inversion_t inversion,
u32 symbol_rate,
fe_code_rate_t fec_inner)
{
u8 buf[15];
u64 ratio;
u32 clk;
u32 k;
u32 sr = symbol_rate;
u32 gcd;
u8 scd;
if (symbol_rate > (state->clk * 3) / 16)
scd = 0;
else if (symbol_rate > (state->clk * 3) / 32)
scd = 1;
else if (symbol_rate > (state->clk * 3) / 64)
scd = 2;
else
scd = 3;
clk = scd ? (state->clk / (scd * 2)) : state->clk;
/*
* Viterbi decoder:
* Differential decoding off
* Spectral inversion unknown
* QPSK modulation
*/
if (inversion == INVERSION_ON)
buf[0] = 0x60;
else if (inversion == INVERSION_OFF)
buf[0] = 0x20;
else
buf[0] = 0x00;
/*
* CLK ratio:
* system clock frequency is up to 64 or 96 MHz
*
* formula:
* r = k * clk / symbol_rate
*
* k: 2^21 for caa 0..3,
* 2^20 for caa 4..5,
* 2^19 for caa 6..7
*/
if (symbol_rate <= (clk * 3) / 32)
k = (1 << 19);
else if (symbol_rate <= (clk * 3) / 16)
k = (1 << 20);
else
k = (1 << 21);
gcd = tda80xx_gcd(clk, sr);
clk /= gcd;
sr /= gcd;
gcd = tda80xx_gcd(k, sr);
k /= gcd;
sr /= gcd;
ratio = (u64)k * (u64)clk;
do_div(ratio, sr);
buf[1] = ratio >> 16;
buf[2] = ratio >> 8;
buf[3] = ratio;
/* nyquist filter roll-off factor 35% */
buf[4] = 0x20;
clk = scd ? (state->clk / (scd * 2)) : state->clk;
/* Anti Alias Filter */
if (symbol_rate < (clk * 3) / 64)
printk("tda80xx: unsupported symbol rate: %u\n", symbol_rate);
else if (symbol_rate <= clk / 16)
buf[4] |= 0x07;
else if (symbol_rate <= (clk * 3) / 32)
buf[4] |= 0x06;
else if (symbol_rate <= clk / 8)
buf[4] |= 0x05;
else if (symbol_rate <= (clk * 3) / 16)
buf[4] |= 0x04;
else if (symbol_rate <= clk / 4)
buf[4] |= 0x03;
else if (symbol_rate <= (clk * 3) / 8)
buf[4] |= 0x02;
else if (symbol_rate <= clk / 2)
buf[4] |= 0x01;
else
buf[4] |= 0x00;
/* Sigma Delta converter */
buf[5] = 0x00;
/* FEC: Possible puncturing rates */
if (fec_inner == FEC_NONE)
buf[6] = 0x00;
else if ((fec_inner >= FEC_1_2) && (fec_inner <= FEC_8_9))
buf[6] = (1 << (8 - fec_inner));
else if (fec_inner == FEC_AUTO)
buf[6] = 0xff;
else
return -EINVAL;
/* carrier lock detector threshold value */
buf[7] = 0x30;
/* AFC1: proportional part settings */
buf[8] = 0x42;
/* AFC1: integral part settings */
buf[9] = 0x98;
/* PD: Leaky integrator SCPC mode */
buf[10] = 0x28;
/* AFC2, AFC1 controls */
buf[11] = 0x30;
/* PD: proportional part settings */
buf[12] = 0x42;
/* PD: integral part settings */
buf[13] = 0x99;
/* AGC */
buf[14] = 0x50 | scd;
printk("symbol_rate=%u clk=%u\n", symbol_rate, clk);
return tda80xx_write(state, 0x01, buf, sizeof(buf));
}
static int tda80xx_set_clk(struct tda80xx_state* state)
{
u8 buf[2];
/* CLK proportional part */
buf[0] = (0x06 << 5) | 0x08; /* CMP[2:0], CSP[4:0] */
/* CLK integral part */
buf[1] = (0x04 << 5) | 0x1a; /* CMI[2:0], CSI[4:0] */
return tda80xx_write(state, 0x17, buf, sizeof(buf));
}
#if 0
static int tda80xx_set_scpc_freq_offset(struct tda80xx_state* state)
{
/* a constant value is nonsense here imho */
return tda80xx_writereg(state, 0x22, 0xf9);
}
#endif
static int tda80xx_close_loop(struct tda80xx_state* state)
{
u8 buf[2];
/* PD: Loop closed, LD: lock detect enable, SCPC: Sweep mode - AFC1 loop closed */
buf[0] = 0x68;
/* AFC1: Loop closed, CAR Feedback: 8192 */
buf[1] = 0x70;
return tda80xx_write(state, 0x0b, buf, sizeof(buf));
}
static irqreturn_t tda80xx_irq(int irq, void *priv, struct pt_regs *pt)
{
schedule_work(priv);
return IRQ_HANDLED;
}
static void tda80xx_read_status_int(struct tda80xx_state* state)
{
u8 val;
static const fe_spectral_inversion_t inv_tab[] = {
INVERSION_OFF, INVERSION_ON
};
static const fe_code_rate_t fec_tab[] = {
FEC_8_9, FEC_1_2, FEC_2_3, FEC_3_4,
FEC_4_5, FEC_5_6, FEC_6_7, FEC_7_8,
};
val = tda80xx_readreg(state, 0x02);
state->status = 0;
if (val & 0x01) /* demodulator lock */
state->status |= FE_HAS_SIGNAL;
if (val & 0x02) /* clock recovery lock */
state->status |= FE_HAS_CARRIER;
if (val & 0x04) /* viterbi lock */
state->status |= FE_HAS_VITERBI;
if (val & 0x08) /* deinterleaver lock (packet sync) */
state->status |= FE_HAS_SYNC;
if (val & 0x10) /* derandomizer lock (frame sync) */
state->status |= FE_HAS_LOCK;
if (val & 0x20) /* frontend can not lock */
state->status |= FE_TIMEDOUT;
if ((state->status & (FE_HAS_CARRIER)) && (state->afc_loop)) {
printk("tda80xx: closing loop\n");
tda80xx_close_loop(state);
state->afc_loop = 0;
}
if (state->status & (FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK)) {
val = tda80xx_readreg(state, 0x0e);
state->code_rate = fec_tab[val & 0x07];
if (state->status & (FE_HAS_SYNC | FE_HAS_LOCK))
state->spectral_inversion = inv_tab[(val >> 7) & 0x01];
else
state->spectral_inversion = INVERSION_AUTO;
}
else {
state->code_rate = FEC_AUTO;
}
}
static void tda80xx_worklet(void *priv)
{
struct tda80xx_state *state = priv;
tda80xx_writereg(state, 0x00, 0x04);
enable_irq(state->config->irq);
tda80xx_read_status_int(state);
}
static void tda80xx_wait_diseqc_fifo(struct tda80xx_state* state)
{
size_t i;
for (i = 0; i < 100; i++) {
if (tda80xx_readreg(state, 0x02) & 0x80)
break;
msleep(10);
}
}
static int tda8044_init(struct dvb_frontend* fe)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
int ret;
/*
* this function is a mess...
*/
if ((ret = tda80xx_write(state, 0x00, tda8044_inittab_pre, sizeof(tda8044_inittab_pre))))
return ret;
tda80xx_writereg(state, 0x0f, 0x50);
#if 1
tda80xx_writereg(state, 0x20, 0x8F); /* FIXME */
tda80xx_writereg(state, 0x20, state->config->volt18setting); /* FIXME */
//tda80xx_writereg(state, 0x00, 0x04);
tda80xx_writereg(state, 0x00, 0x0C);
#endif
//tda80xx_writereg(state, 0x00, 0x08); /* Reset AFC1 loop filter */
tda80xx_write(state, 0x00, tda8044_inittab_post, sizeof(tda8044_inittab_post));
if (state->config->pll_init) {
tda80xx_writereg(state, 0x1c, 0x80);
state->config->pll_init(fe);
tda80xx_writereg(state, 0x1c, 0x00);
}
return 0;
}
static int tda8083_init(struct dvb_frontend* fe)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
tda80xx_write(state, 0x00, tda8083_inittab, sizeof(tda8083_inittab));
if (state->config->pll_init) {
tda80xx_writereg(state, 0x1c, 0x80);
state->config->pll_init(fe);
tda80xx_writereg(state, 0x1c, 0x00);
}
return 0;
}
static int tda80xx_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
switch (voltage) {
case SEC_VOLTAGE_13:
return tda80xx_writereg(state, 0x20, state->config->volt13setting);
case SEC_VOLTAGE_18:
return tda80xx_writereg(state, 0x20, state->config->volt18setting);
case SEC_VOLTAGE_OFF:
return tda80xx_writereg(state, 0x20, 0);
default:
return -EINVAL;
}
}
static int tda80xx_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
switch (tone) {
case SEC_TONE_OFF:
return tda80xx_writereg(state, 0x29, 0x00);
case SEC_TONE_ON:
return tda80xx_writereg(state, 0x29, 0x80);
default:
return -EINVAL;
}
}
static int tda80xx_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
if (cmd->msg_len > 6)
return -EINVAL;
tda80xx_writereg(state, 0x29, 0x08 | (cmd->msg_len - 3));
tda80xx_write(state, 0x23, cmd->msg, cmd->msg_len);
tda80xx_writereg(state, 0x29, 0x0c | (cmd->msg_len - 3));
tda80xx_wait_diseqc_fifo(state);
return 0;
}
static int tda80xx_send_diseqc_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t cmd)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
switch (cmd) {
case SEC_MINI_A:
tda80xx_writereg(state, 0x29, 0x14);
break;
case SEC_MINI_B:
tda80xx_writereg(state, 0x29, 0x1c);
break;
default:
return -EINVAL;
}
tda80xx_wait_diseqc_fifo(state);
return 0;
}
static int tda80xx_sleep(struct dvb_frontend* fe)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
tda80xx_writereg(state, 0x00, 0x02); /* enter standby */
return 0;
}
static int tda80xx_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
tda80xx_writereg(state, 0x1c, 0x80);
state->config->pll_set(fe, p);
tda80xx_writereg(state, 0x1c, 0x00);
tda80xx_set_parameters(state, p->inversion, p->u.qpsk.symbol_rate, p->u.qpsk.fec_inner);
tda80xx_set_clk(state);
//tda80xx_set_scpc_freq_offset(state);
state->afc_loop = 1;
return 0;
}
static int tda80xx_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
if (!state->config->irq)
tda80xx_read_status_int(state);
p->inversion = state->spectral_inversion;
p->u.qpsk.fec_inner = state->code_rate;
return 0;
}
static int tda80xx_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
if (!state->config->irq)
tda80xx_read_status_int(state);
*status = state->status;
return 0;
}
static int tda80xx_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
int ret;
u8 buf[3];
if ((ret = tda80xx_read(state, 0x0b, buf, sizeof(buf))))
return ret;
*ber = ((buf[0] & 0x1f) << 16) | (buf[1] << 8) | buf[2];
return 0;
}
static int tda80xx_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
u8 gain = ~tda80xx_readreg(state, 0x01);
*strength = (gain << 8) | gain;
return 0;
}
static int tda80xx_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
u8 quality = tda80xx_readreg(state, 0x08);
*snr = (quality << 8) | quality;
return 0;
}
static int tda80xx_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
*ucblocks = tda80xx_readreg(state, 0x0f);
if (*ucblocks == 0xff)
*ucblocks = 0xffffffff;
return 0;
}
static int tda80xx_init(struct dvb_frontend* fe)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
switch(state->id) {
case ID_TDA8044:
return tda8044_init(fe);
case ID_TDA8083:
return tda8083_init(fe);
}
return 0;
}
static void tda80xx_release(struct dvb_frontend* fe)
{
struct tda80xx_state* state = (struct tda80xx_state*) fe->demodulator_priv;
if (state->config->irq)
free_irq(state->config->irq, &state->worklet);
kfree(state);
}
static struct dvb_frontend_ops tda80xx_ops;
struct dvb_frontend* tda80xx_attach(const struct tda80xx_config* config,
struct i2c_adapter* i2c)
{
struct tda80xx_state* state = NULL;
int ret;
/* allocate memory for the internal state */
state = (struct tda80xx_state*) kmalloc(sizeof(struct tda80xx_state), GFP_KERNEL);
if (state == NULL) goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &tda80xx_ops, sizeof(struct dvb_frontend_ops));
state->spectral_inversion = INVERSION_AUTO;
state->code_rate = FEC_AUTO;
state->status = 0;
state->afc_loop = 0;
/* check if the demod is there */
if (tda80xx_writereg(state, 0x89, 0x00) < 0) goto error;
state->id = tda80xx_readreg(state, 0x00);
switch (state->id) {
case ID_TDA8044:
state->clk = 96000000;
printk("tda80xx: Detected tda8044\n");
break;
case ID_TDA8083:
state->clk = 64000000;
printk("tda80xx: Detected tda8083\n");
break;
default:
goto error;
}
/* setup IRQ */
if (state->config->irq) {
INIT_WORK(&state->worklet, tda80xx_worklet, state);
if ((ret = request_irq(state->config->irq, tda80xx_irq, SA_ONESHOT, "tda80xx", &state->worklet)) < 0) {
printk(KERN_ERR "tda80xx: request_irq failed (%d)\n", ret);
goto error;
}
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops tda80xx_ops = {
.info = {
.name = "Philips TDA80xx DVB-S",
.type = FE_QPSK,
.frequency_min = 500000,
.frequency_max = 2700000,
.frequency_stepsize = 125,
.symbol_rate_min = 4500000,
.symbol_rate_max = 45000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_MUTE_TS
},
.release = tda80xx_release,
.init = tda80xx_init,
.sleep = tda80xx_sleep,
.set_frontend = tda80xx_set_frontend,
.get_frontend = tda80xx_get_frontend,
.read_status = tda80xx_read_status,
.read_ber = tda80xx_read_ber,
.read_signal_strength = tda80xx_read_signal_strength,
.read_snr = tda80xx_read_snr,
.read_ucblocks = tda80xx_read_ucblocks,
.diseqc_send_master_cmd = tda80xx_send_diseqc_msg,
.diseqc_send_burst = tda80xx_send_diseqc_burst,
.set_tone = tda80xx_set_tone,
.set_voltage = tda80xx_set_voltage,
};
module_param(debug, int, 0644);
MODULE_DESCRIPTION("Philips TDA8044 / TDA8083 DVB-S Demodulator driver");
MODULE_AUTHOR("Felix Domke, Andreas Oberritter");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(tda80xx_attach);