blob: 8d8efdf1297a7f7a6adb7fa71f175aeffe5f2984 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _MM_SWAP_H
#define _MM_SWAP_H
#include <linux/atomic.h> /* for atomic_long_t */
struct mempolicy;
struct swap_iocb;
extern int page_cluster;
#ifdef CONFIG_THP_SWAP
#define SWAPFILE_CLUSTER HPAGE_PMD_NR
#define swap_entry_order(order) (order)
#else
#define SWAPFILE_CLUSTER 256
#define swap_entry_order(order) 0
#endif
extern struct swap_info_struct *swap_info[];
/*
* We use this to track usage of a cluster. A cluster is a block of swap disk
* space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All
* free clusters are organized into a list. We fetch an entry from the list to
* get a free cluster.
*
* The flags field determines if a cluster is free. This is
* protected by cluster lock.
*/
struct swap_cluster_info {
spinlock_t lock; /*
* Protect swap_cluster_info fields
* other than list, and swap_info_struct->swap_map
* elements corresponding to the swap cluster.
*/
u16 count;
u8 flags;
u8 order;
atomic_long_t __rcu *table; /* Swap table entries, see mm/swap_table.h */
struct list_head list;
};
/* All on-list cluster must have a non-zero flag. */
enum swap_cluster_flags {
CLUSTER_FLAG_NONE = 0, /* For temporary off-list cluster */
CLUSTER_FLAG_FREE,
CLUSTER_FLAG_NONFULL,
CLUSTER_FLAG_FRAG,
/* Clusters with flags above are allocatable */
CLUSTER_FLAG_USABLE = CLUSTER_FLAG_FRAG,
CLUSTER_FLAG_FULL,
CLUSTER_FLAG_DISCARD,
CLUSTER_FLAG_MAX,
};
#ifdef CONFIG_SWAP
#include <linux/swapops.h> /* for swp_offset */
#include <linux/blk_types.h> /* for bio_end_io_t */
static inline unsigned int swp_cluster_offset(swp_entry_t entry)
{
return swp_offset(entry) % SWAPFILE_CLUSTER;
}
/*
* Callers of all helpers below must ensure the entry, type, or offset is
* valid, and protect the swap device with reference count or locks.
*/
static inline struct swap_info_struct *__swap_type_to_info(int type)
{
struct swap_info_struct *si;
si = READ_ONCE(swap_info[type]); /* rcu_dereference() */
VM_WARN_ON_ONCE(percpu_ref_is_zero(&si->users)); /* race with swapoff */
return si;
}
static inline struct swap_info_struct *__swap_entry_to_info(swp_entry_t entry)
{
return __swap_type_to_info(swp_type(entry));
}
static inline struct swap_cluster_info *__swap_offset_to_cluster(
struct swap_info_struct *si, pgoff_t offset)
{
VM_WARN_ON_ONCE(percpu_ref_is_zero(&si->users)); /* race with swapoff */
VM_WARN_ON_ONCE(offset >= si->max);
return &si->cluster_info[offset / SWAPFILE_CLUSTER];
}
static inline struct swap_cluster_info *__swap_entry_to_cluster(swp_entry_t entry)
{
return __swap_offset_to_cluster(__swap_entry_to_info(entry),
swp_offset(entry));
}
static __always_inline struct swap_cluster_info *__swap_cluster_lock(
struct swap_info_struct *si, unsigned long offset, bool irq)
{
struct swap_cluster_info *ci = __swap_offset_to_cluster(si, offset);
/*
* Nothing modifies swap cache in an IRQ context. All access to
* swap cache is wrapped by swap_cache_* helpers, and swap cache
* writeback is handled outside of IRQs. Swapin or swapout never
* occurs in IRQ, and neither does in-place split or replace.
*
* Besides, modifying swap cache requires synchronization with
* swap_map, which was never IRQ safe.
*/
VM_WARN_ON_ONCE(!in_task());
VM_WARN_ON_ONCE(percpu_ref_is_zero(&si->users)); /* race with swapoff */
if (irq)
spin_lock_irq(&ci->lock);
else
spin_lock(&ci->lock);
return ci;
}
/**
* swap_cluster_lock - Lock and return the swap cluster of given offset.
* @si: swap device the cluster belongs to.
* @offset: the swap entry offset, pointing to a valid slot.
*
* Context: The caller must ensure the offset is in the valid range and
* protect the swap device with reference count or locks.
*/
static inline struct swap_cluster_info *swap_cluster_lock(
struct swap_info_struct *si, unsigned long offset)
{
return __swap_cluster_lock(si, offset, false);
}
static inline struct swap_cluster_info *__swap_cluster_get_and_lock(
const struct folio *folio, bool irq)
{
VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
VM_WARN_ON_ONCE_FOLIO(!folio_test_swapcache(folio), folio);
return __swap_cluster_lock(__swap_entry_to_info(folio->swap),
swp_offset(folio->swap), irq);
}
/*
* swap_cluster_get_and_lock - Locks the cluster that holds a folio's entries.
* @folio: The folio.
*
* This locks and returns the swap cluster that contains a folio's swap
* entries. The swap entries of a folio are always in one single cluster.
* The folio has to be locked so its swap entries won't change and the
* cluster won't be freed.
*
* Context: Caller must ensure the folio is locked and in the swap cache.
* Return: Pointer to the swap cluster.
*/
static inline struct swap_cluster_info *swap_cluster_get_and_lock(
const struct folio *folio)
{
return __swap_cluster_get_and_lock(folio, false);
}
/*
* swap_cluster_get_and_lock_irq - Locks the cluster that holds a folio's entries.
* @folio: The folio.
*
* Same as swap_cluster_get_and_lock but also disable IRQ.
*
* Context: Caller must ensure the folio is locked and in the swap cache.
* Return: Pointer to the swap cluster.
*/
static inline struct swap_cluster_info *swap_cluster_get_and_lock_irq(
const struct folio *folio)
{
return __swap_cluster_get_and_lock(folio, true);
}
static inline void swap_cluster_unlock(struct swap_cluster_info *ci)
{
spin_unlock(&ci->lock);
}
static inline void swap_cluster_unlock_irq(struct swap_cluster_info *ci)
{
spin_unlock_irq(&ci->lock);
}
/* linux/mm/page_io.c */
int sio_pool_init(void);
struct swap_iocb;
void swap_read_folio(struct folio *folio, struct swap_iocb **plug);
void __swap_read_unplug(struct swap_iocb *plug);
static inline void swap_read_unplug(struct swap_iocb *plug)
{
if (unlikely(plug))
__swap_read_unplug(plug);
}
void swap_write_unplug(struct swap_iocb *sio);
int swap_writeout(struct folio *folio, struct swap_iocb **swap_plug);
void __swap_writepage(struct folio *folio, struct swap_iocb **swap_plug);
/* linux/mm/swap_state.c */
extern struct address_space swap_space __ro_after_init;
static inline struct address_space *swap_address_space(swp_entry_t entry)
{
return &swap_space;
}
/*
* Return the swap device position of the swap entry.
*/
static inline loff_t swap_dev_pos(swp_entry_t entry)
{
return ((loff_t)swp_offset(entry)) << PAGE_SHIFT;
}
/**
* folio_matches_swap_entry - Check if a folio matches a given swap entry.
* @folio: The folio.
* @entry: The swap entry to check against.
*
* Context: The caller should have the folio locked to ensure it's stable
* and nothing will move it in or out of the swap cache.
* Return: true or false.
*/
static inline bool folio_matches_swap_entry(const struct folio *folio,
swp_entry_t entry)
{
swp_entry_t folio_entry = folio->swap;
long nr_pages = folio_nr_pages(folio);
VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
if (!folio_test_swapcache(folio))
return false;
VM_WARN_ON_ONCE_FOLIO(!IS_ALIGNED(folio_entry.val, nr_pages), folio);
return folio_entry.val == round_down(entry.val, nr_pages);
}
/*
* All swap cache helpers below require the caller to ensure the swap entries
* used are valid and stablize the device by any of the following ways:
* - Hold a reference by get_swap_device(): this ensures a single entry is
* valid and increases the swap device's refcount.
* - Locking a folio in the swap cache: this ensures the folio's swap entries
* are valid and pinned, also implies reference to the device.
* - Locking anything referencing the swap entry: e.g. PTL that protects
* swap entries in the page table, similar to locking swap cache folio.
* - See the comment of get_swap_device() for more complex usage.
*/
struct folio *swap_cache_get_folio(swp_entry_t entry);
void *swap_cache_get_shadow(swp_entry_t entry);
void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadow);
void swap_cache_del_folio(struct folio *folio);
/* Below helpers require the caller to lock and pass in the swap cluster. */
void __swap_cache_del_folio(struct swap_cluster_info *ci,
struct folio *folio, swp_entry_t entry, void *shadow);
void __swap_cache_replace_folio(struct swap_cluster_info *ci,
struct folio *old, struct folio *new);
void __swap_cache_clear_shadow(swp_entry_t entry, int nr_ents);
void show_swap_cache_info(void);
void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr);
struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr,
struct swap_iocb **plug);
struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_flags,
struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
bool skip_if_exists);
struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t flag,
struct mempolicy *mpol, pgoff_t ilx);
struct folio *swapin_readahead(swp_entry_t entry, gfp_t flag,
struct vm_fault *vmf);
void swap_update_readahead(struct folio *folio, struct vm_area_struct *vma,
unsigned long addr);
static inline unsigned int folio_swap_flags(struct folio *folio)
{
return __swap_entry_to_info(folio->swap)->flags;
}
/*
* Return the count of contiguous swap entries that share the same
* zeromap status as the starting entry. If is_zeromap is not NULL,
* it will return the zeromap status of the starting entry.
*/
static inline int swap_zeromap_batch(swp_entry_t entry, int max_nr,
bool *is_zeromap)
{
struct swap_info_struct *sis = __swap_entry_to_info(entry);
unsigned long start = swp_offset(entry);
unsigned long end = start + max_nr;
bool first_bit;
first_bit = test_bit(start, sis->zeromap);
if (is_zeromap)
*is_zeromap = first_bit;
if (max_nr <= 1)
return max_nr;
if (first_bit)
return find_next_zero_bit(sis->zeromap, end, start) - start;
else
return find_next_bit(sis->zeromap, end, start) - start;
}
static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
{
struct swap_info_struct *si = __swap_entry_to_info(entry);
pgoff_t offset = swp_offset(entry);
int i;
/*
* While allocating a large folio and doing mTHP swapin, we need to
* ensure all entries are not cached, otherwise, the mTHP folio will
* be in conflict with the folio in swap cache.
*/
for (i = 0; i < max_nr; i++) {
if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
return i;
}
return i;
}
#else /* CONFIG_SWAP */
struct swap_iocb;
static inline struct swap_cluster_info *swap_cluster_lock(
struct swap_info_struct *si, pgoff_t offset, bool irq)
{
return NULL;
}
static inline struct swap_cluster_info *swap_cluster_get_and_lock(
struct folio *folio)
{
return NULL;
}
static inline struct swap_cluster_info *swap_cluster_get_and_lock_irq(
struct folio *folio)
{
return NULL;
}
static inline void swap_cluster_unlock(struct swap_cluster_info *ci)
{
}
static inline void swap_cluster_unlock_irq(struct swap_cluster_info *ci)
{
}
static inline struct swap_info_struct *__swap_entry_to_info(swp_entry_t entry)
{
return NULL;
}
static inline void swap_read_folio(struct folio *folio, struct swap_iocb **plug)
{
}
static inline void swap_write_unplug(struct swap_iocb *sio)
{
}
static inline struct address_space *swap_address_space(swp_entry_t entry)
{
return NULL;
}
static inline bool folio_matches_swap_entry(const struct folio *folio, swp_entry_t entry)
{
return false;
}
static inline void show_swap_cache_info(void)
{
}
static inline struct folio *swap_cluster_readahead(swp_entry_t entry,
gfp_t gfp_mask, struct mempolicy *mpol, pgoff_t ilx)
{
return NULL;
}
static inline struct folio *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask,
struct vm_fault *vmf)
{
return NULL;
}
static inline void swap_update_readahead(struct folio *folio,
struct vm_area_struct *vma, unsigned long addr)
{
}
static inline int swap_writeout(struct folio *folio,
struct swap_iocb **swap_plug)
{
return 0;
}
static inline void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
{
}
static inline struct folio *swap_cache_get_folio(swp_entry_t entry)
{
return NULL;
}
static inline void *swap_cache_get_shadow(swp_entry_t entry)
{
return NULL;
}
static inline void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadow)
{
}
static inline void swap_cache_del_folio(struct folio *folio)
{
}
static inline void __swap_cache_del_folio(struct swap_cluster_info *ci,
struct folio *folio, swp_entry_t entry, void *shadow)
{
}
static inline void __swap_cache_replace_folio(struct swap_cluster_info *ci,
struct folio *old, struct folio *new)
{
}
static inline unsigned int folio_swap_flags(struct folio *folio)
{
return 0;
}
static inline int swap_zeromap_batch(swp_entry_t entry, int max_nr,
bool *has_zeromap)
{
return 0;
}
static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
{
return 0;
}
#endif /* CONFIG_SWAP */
/**
* folio_index - File index of a folio.
* @folio: The folio.
*
* For a folio which is either in the page cache or the swap cache,
* return its index within the address_space it belongs to. If you know
* the folio is definitely in the page cache, you can look at the folio's
* index directly.
*
* Return: The index (offset in units of pages) of a folio in its file.
*/
static inline pgoff_t folio_index(struct folio *folio)
{
#ifdef CONFIG_SWAP
if (unlikely(folio_test_swapcache(folio)))
return swp_offset(folio->swap);
#endif
return folio->index;
}
#endif /* _MM_SWAP_H */