|  | /* | 
|  | *  fs/partitions/msdos.c | 
|  | * | 
|  | *  Code extracted from drivers/block/genhd.c | 
|  | *  Copyright (C) 1991-1998  Linus Torvalds | 
|  | * | 
|  | *  Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug | 
|  | *  in the early extended-partition checks and added DM partitions | 
|  | * | 
|  | *  Support for DiskManager v6.0x added by Mark Lord, | 
|  | *  with information provided by OnTrack.  This now works for linux fdisk | 
|  | *  and LILO, as well as loadlin and bootln.  Note that disks other than | 
|  | *  /dev/hda *must* have a "DOS" type 0x51 partition in the first slot (hda1). | 
|  | * | 
|  | *  More flexible handling of extended partitions - aeb, 950831 | 
|  | * | 
|  | *  Check partition table on IDE disks for common CHS translations | 
|  | * | 
|  | *  Re-organised Feb 1998 Russell King | 
|  | */ | 
|  | #include <linux/msdos_fs.h> | 
|  |  | 
|  | #include "check.h" | 
|  | #include "msdos.h" | 
|  | #include "efi.h" | 
|  |  | 
|  | /* | 
|  | * Many architectures don't like unaligned accesses, while | 
|  | * the nr_sects and start_sect partition table entries are | 
|  | * at a 2 (mod 4) address. | 
|  | */ | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | #define SYS_IND(p)	get_unaligned(&p->sys_ind) | 
|  |  | 
|  | static inline sector_t nr_sects(struct partition *p) | 
|  | { | 
|  | return (sector_t)get_unaligned_le32(&p->nr_sects); | 
|  | } | 
|  |  | 
|  | static inline sector_t start_sect(struct partition *p) | 
|  | { | 
|  | return (sector_t)get_unaligned_le32(&p->start_sect); | 
|  | } | 
|  |  | 
|  | static inline int is_extended_partition(struct partition *p) | 
|  | { | 
|  | return (SYS_IND(p) == DOS_EXTENDED_PARTITION || | 
|  | SYS_IND(p) == WIN98_EXTENDED_PARTITION || | 
|  | SYS_IND(p) == LINUX_EXTENDED_PARTITION); | 
|  | } | 
|  |  | 
|  | #define MSDOS_LABEL_MAGIC1	0x55 | 
|  | #define MSDOS_LABEL_MAGIC2	0xAA | 
|  |  | 
|  | static inline int | 
|  | msdos_magic_present(unsigned char *p) | 
|  | { | 
|  | return (p[0] == MSDOS_LABEL_MAGIC1 && p[1] == MSDOS_LABEL_MAGIC2); | 
|  | } | 
|  |  | 
|  | /* Value is EBCDIC 'IBMA' */ | 
|  | #define AIX_LABEL_MAGIC1	0xC9 | 
|  | #define AIX_LABEL_MAGIC2	0xC2 | 
|  | #define AIX_LABEL_MAGIC3	0xD4 | 
|  | #define AIX_LABEL_MAGIC4	0xC1 | 
|  | static int aix_magic_present(struct parsed_partitions *state, unsigned char *p) | 
|  | { | 
|  | struct partition *pt = (struct partition *) (p + 0x1be); | 
|  | Sector sect; | 
|  | unsigned char *d; | 
|  | int slot, ret = 0; | 
|  |  | 
|  | if (!(p[0] == AIX_LABEL_MAGIC1 && | 
|  | p[1] == AIX_LABEL_MAGIC2 && | 
|  | p[2] == AIX_LABEL_MAGIC3 && | 
|  | p[3] == AIX_LABEL_MAGIC4)) | 
|  | return 0; | 
|  | /* Assume the partition table is valid if Linux partitions exists */ | 
|  | for (slot = 1; slot <= 4; slot++, pt++) { | 
|  | if (pt->sys_ind == LINUX_SWAP_PARTITION || | 
|  | pt->sys_ind == LINUX_RAID_PARTITION || | 
|  | pt->sys_ind == LINUX_DATA_PARTITION || | 
|  | pt->sys_ind == LINUX_LVM_PARTITION || | 
|  | is_extended_partition(pt)) | 
|  | return 0; | 
|  | } | 
|  | d = read_part_sector(state, 7, §); | 
|  | if (d) { | 
|  | if (d[0] == '_' && d[1] == 'L' && d[2] == 'V' && d[3] == 'M') | 
|  | ret = 1; | 
|  | put_dev_sector(sect); | 
|  | }; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create devices for each logical partition in an extended partition. | 
|  | * The logical partitions form a linked list, with each entry being | 
|  | * a partition table with two entries.  The first entry | 
|  | * is the real data partition (with a start relative to the partition | 
|  | * table start).  The second is a pointer to the next logical partition | 
|  | * (with a start relative to the entire extended partition). | 
|  | * We do not create a Linux partition for the partition tables, but | 
|  | * only for the actual data partitions. | 
|  | */ | 
|  |  | 
|  | static void parse_extended(struct parsed_partitions *state, | 
|  | sector_t first_sector, sector_t first_size) | 
|  | { | 
|  | struct partition *p; | 
|  | Sector sect; | 
|  | unsigned char *data; | 
|  | sector_t this_sector, this_size; | 
|  | sector_t sector_size = bdev_logical_block_size(state->bdev) / 512; | 
|  | int loopct = 0;		/* number of links followed | 
|  | without finding a data partition */ | 
|  | int i; | 
|  |  | 
|  | this_sector = first_sector; | 
|  | this_size = first_size; | 
|  |  | 
|  | while (1) { | 
|  | if (++loopct > 100) | 
|  | return; | 
|  | if (state->next == state->limit) | 
|  | return; | 
|  | data = read_part_sector(state, this_sector, §); | 
|  | if (!data) | 
|  | return; | 
|  |  | 
|  | if (!msdos_magic_present(data + 510)) | 
|  | goto done; | 
|  |  | 
|  | p = (struct partition *) (data + 0x1be); | 
|  |  | 
|  | /* | 
|  | * Usually, the first entry is the real data partition, | 
|  | * the 2nd entry is the next extended partition, or empty, | 
|  | * and the 3rd and 4th entries are unused. | 
|  | * However, DRDOS sometimes has the extended partition as | 
|  | * the first entry (when the data partition is empty), | 
|  | * and OS/2 seems to use all four entries. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * First process the data partition(s) | 
|  | */ | 
|  | for (i=0; i<4; i++, p++) { | 
|  | sector_t offs, size, next; | 
|  | if (!nr_sects(p) || is_extended_partition(p)) | 
|  | continue; | 
|  |  | 
|  | /* Check the 3rd and 4th entries - | 
|  | these sometimes contain random garbage */ | 
|  | offs = start_sect(p)*sector_size; | 
|  | size = nr_sects(p)*sector_size; | 
|  | next = this_sector + offs; | 
|  | if (i >= 2) { | 
|  | if (offs + size > this_size) | 
|  | continue; | 
|  | if (next < first_sector) | 
|  | continue; | 
|  | if (next + size > first_sector + first_size) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | put_partition(state, state->next, next, size); | 
|  | if (SYS_IND(p) == LINUX_RAID_PARTITION) | 
|  | state->parts[state->next].flags = ADDPART_FLAG_RAID; | 
|  | loopct = 0; | 
|  | if (++state->next == state->limit) | 
|  | goto done; | 
|  | } | 
|  | /* | 
|  | * Next, process the (first) extended partition, if present. | 
|  | * (So far, there seems to be no reason to make | 
|  | *  parse_extended()  recursive and allow a tree | 
|  | *  of extended partitions.) | 
|  | * It should be a link to the next logical partition. | 
|  | */ | 
|  | p -= 4; | 
|  | for (i=0; i<4; i++, p++) | 
|  | if (nr_sects(p) && is_extended_partition(p)) | 
|  | break; | 
|  | if (i == 4) | 
|  | goto done;	 /* nothing left to do */ | 
|  |  | 
|  | this_sector = first_sector + start_sect(p) * sector_size; | 
|  | this_size = nr_sects(p) * sector_size; | 
|  | put_dev_sector(sect); | 
|  | } | 
|  | done: | 
|  | put_dev_sector(sect); | 
|  | } | 
|  |  | 
|  | /* james@bpgc.com: Solaris has a nasty indicator: 0x82 which also | 
|  | indicates linux swap.  Be careful before believing this is Solaris. */ | 
|  |  | 
|  | static void parse_solaris_x86(struct parsed_partitions *state, | 
|  | sector_t offset, sector_t size, int origin) | 
|  | { | 
|  | #ifdef CONFIG_SOLARIS_X86_PARTITION | 
|  | Sector sect; | 
|  | struct solaris_x86_vtoc *v; | 
|  | int i; | 
|  | short max_nparts; | 
|  |  | 
|  | v = read_part_sector(state, offset + 1, §); | 
|  | if (!v) | 
|  | return; | 
|  | if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) { | 
|  | put_dev_sector(sect); | 
|  | return; | 
|  | } | 
|  | printk(" %s%d: <solaris:", state->name, origin); | 
|  | if (le32_to_cpu(v->v_version) != 1) { | 
|  | printk("  cannot handle version %d vtoc>\n", | 
|  | le32_to_cpu(v->v_version)); | 
|  | put_dev_sector(sect); | 
|  | return; | 
|  | } | 
|  | /* Ensure we can handle previous case of VTOC with 8 entries gracefully */ | 
|  | max_nparts = le16_to_cpu (v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8; | 
|  | for (i=0; i<max_nparts && state->next<state->limit; i++) { | 
|  | struct solaris_x86_slice *s = &v->v_slice[i]; | 
|  | if (s->s_size == 0) | 
|  | continue; | 
|  | printk(" [s%d]", i); | 
|  | /* solaris partitions are relative to current MS-DOS | 
|  | * one; must add the offset of the current partition */ | 
|  | put_partition(state, state->next++, | 
|  | le32_to_cpu(s->s_start)+offset, | 
|  | le32_to_cpu(s->s_size)); | 
|  | } | 
|  | put_dev_sector(sect); | 
|  | printk(" >\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_BSD_DISKLABEL) | 
|  | /* | 
|  | * Create devices for BSD partitions listed in a disklabel, under a | 
|  | * dos-like partition. See parse_extended() for more information. | 
|  | */ | 
|  | static void parse_bsd(struct parsed_partitions *state, | 
|  | sector_t offset, sector_t size, int origin, char *flavour, | 
|  | int max_partitions) | 
|  | { | 
|  | Sector sect; | 
|  | struct bsd_disklabel *l; | 
|  | struct bsd_partition *p; | 
|  |  | 
|  | l = read_part_sector(state, offset + 1, §); | 
|  | if (!l) | 
|  | return; | 
|  | if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) { | 
|  | put_dev_sector(sect); | 
|  | return; | 
|  | } | 
|  | printk(" %s%d: <%s:", state->name, origin, flavour); | 
|  |  | 
|  | if (le16_to_cpu(l->d_npartitions) < max_partitions) | 
|  | max_partitions = le16_to_cpu(l->d_npartitions); | 
|  | for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) { | 
|  | sector_t bsd_start, bsd_size; | 
|  |  | 
|  | if (state->next == state->limit) | 
|  | break; | 
|  | if (p->p_fstype == BSD_FS_UNUSED) | 
|  | continue; | 
|  | bsd_start = le32_to_cpu(p->p_offset); | 
|  | bsd_size = le32_to_cpu(p->p_size); | 
|  | if (offset == bsd_start && size == bsd_size) | 
|  | /* full parent partition, we have it already */ | 
|  | continue; | 
|  | if (offset > bsd_start || offset+size < bsd_start+bsd_size) { | 
|  | printk("bad subpartition - ignored\n"); | 
|  | continue; | 
|  | } | 
|  | put_partition(state, state->next++, bsd_start, bsd_size); | 
|  | } | 
|  | put_dev_sector(sect); | 
|  | if (le16_to_cpu(l->d_npartitions) > max_partitions) | 
|  | printk(" (ignored %d more)", | 
|  | le16_to_cpu(l->d_npartitions) - max_partitions); | 
|  | printk(" >\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void parse_freebsd(struct parsed_partitions *state, | 
|  | sector_t offset, sector_t size, int origin) | 
|  | { | 
|  | #ifdef CONFIG_BSD_DISKLABEL | 
|  | parse_bsd(state, offset, size, origin, "bsd", BSD_MAXPARTITIONS); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void parse_netbsd(struct parsed_partitions *state, | 
|  | sector_t offset, sector_t size, int origin) | 
|  | { | 
|  | #ifdef CONFIG_BSD_DISKLABEL | 
|  | parse_bsd(state, offset, size, origin, "netbsd", BSD_MAXPARTITIONS); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void parse_openbsd(struct parsed_partitions *state, | 
|  | sector_t offset, sector_t size, int origin) | 
|  | { | 
|  | #ifdef CONFIG_BSD_DISKLABEL | 
|  | parse_bsd(state, offset, size, origin, "openbsd", | 
|  | OPENBSD_MAXPARTITIONS); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create devices for Unixware partitions listed in a disklabel, under a | 
|  | * dos-like partition. See parse_extended() for more information. | 
|  | */ | 
|  | static void parse_unixware(struct parsed_partitions *state, | 
|  | sector_t offset, sector_t size, int origin) | 
|  | { | 
|  | #ifdef CONFIG_UNIXWARE_DISKLABEL | 
|  | Sector sect; | 
|  | struct unixware_disklabel *l; | 
|  | struct unixware_slice *p; | 
|  |  | 
|  | l = read_part_sector(state, offset + 29, §); | 
|  | if (!l) | 
|  | return; | 
|  | if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC || | 
|  | le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) { | 
|  | put_dev_sector(sect); | 
|  | return; | 
|  | } | 
|  | printk(" %s%d: <unixware:", state->name, origin); | 
|  | p = &l->vtoc.v_slice[1]; | 
|  | /* I omit the 0th slice as it is the same as whole disk. */ | 
|  | while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) { | 
|  | if (state->next == state->limit) | 
|  | break; | 
|  |  | 
|  | if (p->s_label != UNIXWARE_FS_UNUSED) | 
|  | put_partition(state, state->next++, | 
|  | le32_to_cpu(p->start_sect), | 
|  | le32_to_cpu(p->nr_sects)); | 
|  | p++; | 
|  | } | 
|  | put_dev_sector(sect); | 
|  | printk(" >\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Minix 2.0.0/2.0.2 subpartition support. | 
|  | * Anand Krishnamurthy <anandk@wiproge.med.ge.com> | 
|  | * Rajeev V. Pillai    <rajeevvp@yahoo.com> | 
|  | */ | 
|  | static void parse_minix(struct parsed_partitions *state, | 
|  | sector_t offset, sector_t size, int origin) | 
|  | { | 
|  | #ifdef CONFIG_MINIX_SUBPARTITION | 
|  | Sector sect; | 
|  | unsigned char *data; | 
|  | struct partition *p; | 
|  | int i; | 
|  |  | 
|  | data = read_part_sector(state, offset, §); | 
|  | if (!data) | 
|  | return; | 
|  |  | 
|  | p = (struct partition *)(data + 0x1be); | 
|  |  | 
|  | /* The first sector of a Minix partition can have either | 
|  | * a secondary MBR describing its subpartitions, or | 
|  | * the normal boot sector. */ | 
|  | if (msdos_magic_present (data + 510) && | 
|  | SYS_IND(p) == MINIX_PARTITION) { /* subpartition table present */ | 
|  |  | 
|  | printk(" %s%d: <minix:", state->name, origin); | 
|  | for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) { | 
|  | if (state->next == state->limit) | 
|  | break; | 
|  | /* add each partition in use */ | 
|  | if (SYS_IND(p) == MINIX_PARTITION) | 
|  | put_partition(state, state->next++, | 
|  | start_sect(p), nr_sects(p)); | 
|  | } | 
|  | printk(" >\n"); | 
|  | } | 
|  | put_dev_sector(sect); | 
|  | #endif /* CONFIG_MINIX_SUBPARTITION */ | 
|  | } | 
|  |  | 
|  | static struct { | 
|  | unsigned char id; | 
|  | void (*parse)(struct parsed_partitions *, sector_t, sector_t, int); | 
|  | } subtypes[] = { | 
|  | {FREEBSD_PARTITION, parse_freebsd}, | 
|  | {NETBSD_PARTITION, parse_netbsd}, | 
|  | {OPENBSD_PARTITION, parse_openbsd}, | 
|  | {MINIX_PARTITION, parse_minix}, | 
|  | {UNIXWARE_PARTITION, parse_unixware}, | 
|  | {SOLARIS_X86_PARTITION, parse_solaris_x86}, | 
|  | {NEW_SOLARIS_X86_PARTITION, parse_solaris_x86}, | 
|  | {0, NULL}, | 
|  | }; | 
|  |  | 
|  | int msdos_partition(struct parsed_partitions *state) | 
|  | { | 
|  | sector_t sector_size = bdev_logical_block_size(state->bdev) / 512; | 
|  | Sector sect; | 
|  | unsigned char *data; | 
|  | struct partition *p; | 
|  | struct fat_boot_sector *fb; | 
|  | int slot; | 
|  |  | 
|  | data = read_part_sector(state, 0, §); | 
|  | if (!data) | 
|  | return -1; | 
|  | if (!msdos_magic_present(data + 510)) { | 
|  | put_dev_sector(sect); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (aix_magic_present(state, data)) { | 
|  | put_dev_sector(sect); | 
|  | printk( " [AIX]"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that the 55aa signature is present, this is probably | 
|  | * either the boot sector of a FAT filesystem or a DOS-type | 
|  | * partition table. Reject this in case the boot indicator | 
|  | * is not 0 or 0x80. | 
|  | */ | 
|  | p = (struct partition *) (data + 0x1be); | 
|  | for (slot = 1; slot <= 4; slot++, p++) { | 
|  | if (p->boot_ind != 0 && p->boot_ind != 0x80) { | 
|  | /* | 
|  | * Even without a valid boot inidicator value | 
|  | * its still possible this is valid FAT filesystem | 
|  | * without a partition table. | 
|  | */ | 
|  | fb = (struct fat_boot_sector *) data; | 
|  | if (slot == 1 && fb->reserved && fb->fats | 
|  | && fat_valid_media(fb->media)) { | 
|  | printk("\n"); | 
|  | put_dev_sector(sect); | 
|  | return 1; | 
|  | } else { | 
|  | put_dev_sector(sect); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_EFI_PARTITION | 
|  | p = (struct partition *) (data + 0x1be); | 
|  | for (slot = 1 ; slot <= 4 ; slot++, p++) { | 
|  | /* If this is an EFI GPT disk, msdos should ignore it. */ | 
|  | if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) { | 
|  | put_dev_sector(sect); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | p = (struct partition *) (data + 0x1be); | 
|  |  | 
|  | /* | 
|  | * Look for partitions in two passes: | 
|  | * First find the primary and DOS-type extended partitions. | 
|  | * On the second pass look inside *BSD, Unixware and Solaris partitions. | 
|  | */ | 
|  |  | 
|  | state->next = 5; | 
|  | for (slot = 1 ; slot <= 4 ; slot++, p++) { | 
|  | sector_t start = start_sect(p)*sector_size; | 
|  | sector_t size = nr_sects(p)*sector_size; | 
|  | if (!size) | 
|  | continue; | 
|  | if (is_extended_partition(p)) { | 
|  | /* | 
|  | * prevent someone doing mkfs or mkswap on an | 
|  | * extended partition, but leave room for LILO | 
|  | * FIXME: this uses one logical sector for > 512b | 
|  | * sector, although it may not be enough/proper. | 
|  | */ | 
|  | sector_t n = 2; | 
|  | n = min(size, max(sector_size, n)); | 
|  | put_partition(state, slot, start, n); | 
|  |  | 
|  | printk(" <"); | 
|  | parse_extended(state, start, size); | 
|  | printk(" >"); | 
|  | continue; | 
|  | } | 
|  | put_partition(state, slot, start, size); | 
|  | if (SYS_IND(p) == LINUX_RAID_PARTITION) | 
|  | state->parts[slot].flags = ADDPART_FLAG_RAID; | 
|  | if (SYS_IND(p) == DM6_PARTITION) | 
|  | printk("[DM]"); | 
|  | if (SYS_IND(p) == EZD_PARTITION) | 
|  | printk("[EZD]"); | 
|  | } | 
|  |  | 
|  | printk("\n"); | 
|  |  | 
|  | /* second pass - output for each on a separate line */ | 
|  | p = (struct partition *) (0x1be + data); | 
|  | for (slot = 1 ; slot <= 4 ; slot++, p++) { | 
|  | unsigned char id = SYS_IND(p); | 
|  | int n; | 
|  |  | 
|  | if (!nr_sects(p)) | 
|  | continue; | 
|  |  | 
|  | for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++) | 
|  | ; | 
|  |  | 
|  | if (!subtypes[n].parse) | 
|  | continue; | 
|  | subtypes[n].parse(state, start_sect(p) * sector_size, | 
|  | nr_sects(p) * sector_size, slot); | 
|  | } | 
|  | put_dev_sector(sect); | 
|  | return 1; | 
|  | } |