blob: 314ce8525aedc76a16bbf46bd635f671d12c44d9 [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
* GPL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2012, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*
* Internal interfaces of LOV layer.
*
* Author: Nikita Danilov <nikita.danilov@sun.com>
* Author: Jinshan Xiong <jinshan.xiong@intel.com>
*/
#ifndef LOV_CL_INTERNAL_H
#define LOV_CL_INTERNAL_H
#include "../../include/linux/libcfs/libcfs.h"
#include "../include/obd.h"
#include "../include/cl_object.h"
#include "lov_internal.h"
/** \defgroup lov lov
* Logical object volume layer. This layer implements data striping (raid0).
*
* At the lov layer top-entity (object, page, lock, io) is connected to one or
* more sub-entities: top-object, representing a file is connected to a set of
* sub-objects, each representing a stripe, file-level top-lock is connected
* to a set of per-stripe sub-locks, top-page is connected to a (single)
* sub-page, and a top-level IO is connected to a set of (potentially
* concurrent) sub-IO's.
*
* Sub-object, sub-page, and sub-io have well-defined top-object and top-page
* respectively, while a single sub-lock can be part of multiple top-locks.
*
* Reference counting models are different for different types of entities:
*
* - top-object keeps a reference to its sub-objects, and destroys them
* when it is destroyed.
*
* - top-page keeps a reference to its sub-page, and destroys it when it
* is destroyed.
*
* - sub-lock keep a reference to its top-locks. Top-lock keeps a
* reference (and a hold, see cl_lock_hold()) on its sub-locks when it
* actively using them (that is, in cl_lock_state::CLS_QUEUING,
* cl_lock_state::CLS_ENQUEUED, cl_lock_state::CLS_HELD states). When
* moving into cl_lock_state::CLS_CACHED state, top-lock releases a
* hold. From this moment top-lock has only a 'weak' reference to its
* sub-locks. This reference is protected by top-lock
* cl_lock::cll_guard, and will be automatically cleared by the sub-lock
* when the latter is destroyed. When a sub-lock is canceled, a
* reference to it is removed from the top-lock array, and top-lock is
* moved into CLS_NEW state. It is guaranteed that all sub-locks exist
* while their top-lock is in CLS_HELD or CLS_CACHED states.
*
* - IO's are not reference counted.
*
* To implement a connection between top and sub entities, lov layer is split
* into two pieces: lov ("upper half"), and lovsub ("bottom half"), both
* implementing full set of cl-interfaces. For example, top-object has vvp and
* lov layers, and it's sub-object has lovsub and osc layers. lovsub layer is
* used to track child-parent relationship.
*
* @{
*/
struct lovsub_device;
struct lovsub_object;
struct lovsub_lock;
enum lov_device_flags {
LOV_DEV_INITIALIZED = 1 << 0
};
/*
* Upper half.
*/
/**
* Resources that are used in memory-cleaning path, and whose allocation
* cannot fail even when memory is tight. They are preallocated in sufficient
* quantities in lov_device::ld_emerg[], and access to them is serialized
* lov_device::ld_mutex.
*/
struct lov_device_emerg {
/**
* Page list used to submit IO when memory is in pressure.
*/
struct cl_page_list emrg_page_list;
/**
* sub-io's shared by all threads accessing this device when memory is
* too low to allocate sub-io's dynamically.
*/
struct cl_io emrg_subio;
/**
* Environments used by sub-io's in
* lov_device_emerg::emrg_subio.
*/
struct lu_env *emrg_env;
/**
* Refchecks for lov_device_emerg::emrg_env.
*
* \see cl_env_get()
*/
int emrg_refcheck;
};
struct lov_device {
/*
* XXX Locking of lov-private data is missing.
*/
struct cl_device ld_cl;
struct lov_obd *ld_lov;
/** size of lov_device::ld_target[] array */
__u32 ld_target_nr;
struct lovsub_device **ld_target;
__u32 ld_flags;
/** Emergency resources used in memory-cleansing paths. */
struct lov_device_emerg **ld_emrg;
/**
* Serializes access to lov_device::ld_emrg in low-memory
* conditions.
*/
struct mutex ld_mutex;
};
/**
* Layout type.
*/
enum lov_layout_type {
LLT_EMPTY, /** empty file without body (mknod + truncate) */
LLT_RAID0, /** striped file */
LLT_RELEASED, /** file with no objects (data in HSM) */
LLT_NR
};
static inline char *llt2str(enum lov_layout_type llt)
{
switch (llt) {
case LLT_EMPTY:
return "EMPTY";
case LLT_RAID0:
return "RAID0";
case LLT_RELEASED:
return "RELEASED";
case LLT_NR:
LBUG();
}
LBUG();
return "";
}
/**
* lov-specific file state.
*
* lov object has particular layout type, determining how top-object is built
* on top of sub-objects. Layout type can change dynamically. When this
* happens, lov_object::lo_type_guard semaphore is taken in exclusive mode,
* all state pertaining to the old layout type is destroyed, and new state is
* constructed. All object methods take said semaphore in the shared mode,
* providing serialization against transition between layout types.
*
* To avoid multiple `if' or `switch' statements, selecting behavior for the
* current layout type, object methods perform double-dispatch, invoking
* function corresponding to the current layout type.
*/
struct lov_object {
struct cl_object lo_cl;
/**
* Serializes object operations with transitions between layout types.
*
* This semaphore is taken in shared mode by all object methods, and
* is taken in exclusive mode when object type is changed.
*
* \see lov_object::lo_type
*/
struct rw_semaphore lo_type_guard;
/**
* Type of an object. Protected by lov_object::lo_type_guard.
*/
enum lov_layout_type lo_type;
/**
* True if layout is invalid. This bit is cleared when layout lock
* is lost.
*/
bool lo_layout_invalid;
/**
* How many IOs are on going on this object. Layout can be changed
* only if there is no active IO.
*/
atomic_t lo_active_ios;
/**
* Waitq - wait for no one else is using lo_lsm
*/
wait_queue_head_t lo_waitq;
/**
* Layout metadata. NULL if empty layout.
*/
struct lov_stripe_md *lo_lsm;
union lov_layout_state {
struct lov_layout_raid0 {
unsigned lo_nr;
/**
* When this is true, lov_object::lo_attr contains
* valid up to date attributes for a top-level
* object. This field is reset to 0 when attributes of
* any sub-object change.
*/
int lo_attr_valid;
/**
* Array of sub-objects. Allocated when top-object is
* created (lov_init_raid0()).
*
* Top-object is a strict master of its sub-objects:
* it is created before them, and outlives its
* children (this later is necessary so that basic
* functions like cl_object_top() always
* work). Top-object keeps a reference on every
* sub-object.
*
* When top-object is destroyed (lov_delete_raid0())
* it releases its reference to a sub-object and waits
* until the latter is finally destroyed.
*/
struct lovsub_object **lo_sub;
/**
* protect lo_sub
*/
spinlock_t lo_sub_lock;
/**
* Cached object attribute, built from sub-object
* attributes.
*/
struct cl_attr lo_attr;
} raid0;
struct lov_layout_state_empty {
} empty;
struct lov_layout_state_released {
} released;
} u;
/**
* Thread that acquired lov_object::lo_type_guard in an exclusive
* mode.
*/
struct task_struct *lo_owner;
};
/**
* Flags that top-lock can set on each of its sub-locks.
*/
enum lov_sub_flags {
/** Top-lock acquired a hold (cl_lock_hold()) on a sub-lock. */
LSF_HELD = 1 << 0
};
/**
* State lov_lock keeps for each sub-lock.
*/
struct lov_lock_sub {
/** sub-lock itself */
struct lovsub_lock *sub_lock;
/** An array of per-sub-lock flags, taken from enum lov_sub_flags */
unsigned sub_flags;
int sub_stripe;
struct cl_lock_descr sub_descr;
struct cl_lock_descr sub_got;
};
/**
* lov-specific lock state.
*/
struct lov_lock {
struct cl_lock_slice lls_cl;
/** Number of sub-locks in this lock */
int lls_nr;
/**
* Number of existing sub-locks.
*/
unsigned lls_nr_filled;
/**
* Set when sub-lock was canceled, while top-lock was being
* used, or unused.
*/
unsigned int lls_cancel_race:1;
/**
* An array of sub-locks
*
* There are two issues with managing sub-locks:
*
* - sub-locks are concurrently canceled, and
*
* - sub-locks are shared with other top-locks.
*
* To manage cancellation, top-lock acquires a hold on a sublock
* (lov_sublock_adopt()) when the latter is inserted into
* lov_lock::lls_sub[]. This hold is released (lov_sublock_release())
* when top-lock is going into CLS_CACHED state or destroyed. Hold
* prevents sub-lock from cancellation.
*
* Sub-lock sharing means, among other things, that top-lock that is
* in the process of creation (i.e., not yet inserted into lock list)
* is already accessible to other threads once at least one of its
* sub-locks is created, see lov_lock_sub_init().
*
* Sub-lock can be in one of the following states:
*
* - doesn't exist, lov_lock::lls_sub[]::sub_lock == NULL. Such
* sub-lock was either never created (top-lock is in CLS_NEW
* state), or it was created, then canceled, then destroyed
* (lov_lock_unlink() cleared sub-lock pointer in the top-lock).
*
* - sub-lock exists and is on
* hold. (lov_lock::lls_sub[]::sub_flags & LSF_HELD). This is a
* normal state of a sub-lock in CLS_HELD and CLS_CACHED states
* of a top-lock.
*
* - sub-lock exists, but is not held by the top-lock. This
* happens after top-lock released a hold on sub-locks before
* going into cache (lov_lock_unuse()).
*
* \todo To support wide-striping, array has to be replaced with a set
* of queues to avoid scanning.
*/
struct lov_lock_sub *lls_sub;
/**
* Original description with which lock was enqueued.
*/
struct cl_lock_descr lls_orig;
};
struct lov_page {
struct cl_page_slice lps_cl;
int lps_invalid;
};
/*
* Bottom half.
*/
struct lovsub_device {
struct cl_device acid_cl;
struct lov_device *acid_super;
int acid_idx;
struct cl_device *acid_next;
};
struct lovsub_object {
struct cl_object_header lso_header;
struct cl_object lso_cl;
struct lov_object *lso_super;
int lso_index;
};
/**
* A link between a top-lock and a sub-lock. Separate data-structure is
* necessary, because top-locks and sub-locks are in M:N relationship.
*
* \todo This can be optimized for a (by far) most frequent case of a single
* top-lock per sub-lock.
*/
struct lov_lock_link {
struct lov_lock *lll_super;
/** An index within parent lock. */
int lll_idx;
/**
* A linkage into per sub-lock list of all corresponding top-locks,
* hanging off lovsub_lock::lss_parents.
*/
struct list_head lll_list;
};
/**
* Lock state at lovsub layer.
*/
struct lovsub_lock {
struct cl_lock_slice lss_cl;
/**
* List of top-locks that have given sub-lock as their part. Protected
* by cl_lock::cll_guard mutex.
*/
struct list_head lss_parents;
/**
* Top-lock that initiated current operation on this sub-lock. This is
* only set during top-to-bottom lock operations like enqueue, and is
* used to optimize state change notification. Protected by
* cl_lock::cll_guard mutex.
*
* \see lovsub_lock_state_one().
*/
struct cl_lock *lss_active;
};
/**
* Describe the environment settings for sublocks.
*/
struct lov_sublock_env {
const struct lu_env *lse_env;
struct cl_io *lse_io;
struct lov_io_sub *lse_sub;
};
struct lovsub_page {
struct cl_page_slice lsb_cl;
};
struct lov_thread_info {
struct cl_object_conf lti_stripe_conf;
struct lu_fid lti_fid;
struct cl_lock_descr lti_ldescr;
struct ost_lvb lti_lvb;
struct cl_2queue lti_cl2q;
struct cl_lock_closure lti_closure;
wait_queue_t lti_waiter;
};
/**
* State that lov_io maintains for every sub-io.
*/
struct lov_io_sub {
int sub_stripe;
/**
* sub-io for a stripe. Ideally sub-io's can be stopped and resumed
* independently, with lov acting as a scheduler to maximize overall
* throughput.
*/
struct cl_io *sub_io;
/**
* Linkage into a list (hanging off lov_io::lis_active) of all
* sub-io's active for the current IO iteration.
*/
struct list_head sub_linkage;
/**
* true, iff cl_io_init() was successfully executed against
* lov_io_sub::sub_io.
*/
int sub_io_initialized;
/**
* True, iff lov_io_sub::sub_io and lov_io_sub::sub_env weren't
* allocated, but borrowed from a per-device emergency pool.
*/
int sub_borrowed;
/**
* environment, in which sub-io executes.
*/
struct lu_env *sub_env;
/**
* environment's refcheck.
*
* \see cl_env_get()
*/
int sub_refcheck;
int sub_refcheck2;
int sub_reenter;
void *sub_cookie;
};
/**
* IO state private for LOV.
*/
struct lov_io {
/** super-class */
struct cl_io_slice lis_cl;
/**
* Pointer to the object slice. This is a duplicate of
* lov_io::lis_cl::cis_object.
*/
struct lov_object *lis_object;
/**
* Original end-of-io position for this IO, set by the upper layer as
* cl_io::u::ci_rw::pos + cl_io::u::ci_rw::count. lov remembers this,
* changes pos and count to fit IO into a single stripe and uses saved
* value to determine when IO iterations have to stop.
*
* This is used only for CIT_READ and CIT_WRITE io's.
*/
loff_t lis_io_endpos;
/**
* starting position within a file, for the current io loop iteration
* (stripe), used by ci_io_loop().
*/
u64 lis_pos;
/**
* end position with in a file, for the current stripe io. This is
* exclusive (i.e., next offset after last byte affected by io).
*/
u64 lis_endpos;
int lis_mem_frozen;
int lis_stripe_count;
int lis_active_subios;
/**
* the index of ls_single_subio in ls_subios array
*/
int lis_single_subio_index;
struct cl_io lis_single_subio;
/**
* size of ls_subios array, actually the highest stripe #
*/
int lis_nr_subios;
struct lov_io_sub *lis_subs;
/**
* List of active sub-io's.
*/
struct list_head lis_active;
};
struct lov_session {
struct lov_io ls_io;
struct lov_sublock_env ls_subenv;
};
/**
* State of transfer for lov.
*/
struct lov_req {
struct cl_req_slice lr_cl;
};
/**
* State of transfer for lovsub.
*/
struct lovsub_req {
struct cl_req_slice lsrq_cl;
};
extern struct lu_device_type lov_device_type;
extern struct lu_device_type lovsub_device_type;
extern struct lu_context_key lov_key;
extern struct lu_context_key lov_session_key;
extern struct kmem_cache *lov_lock_kmem;
extern struct kmem_cache *lov_object_kmem;
extern struct kmem_cache *lov_thread_kmem;
extern struct kmem_cache *lov_session_kmem;
extern struct kmem_cache *lov_req_kmem;
extern struct kmem_cache *lovsub_lock_kmem;
extern struct kmem_cache *lovsub_object_kmem;
extern struct kmem_cache *lovsub_req_kmem;
extern struct kmem_cache *lov_lock_link_kmem;
int lov_object_init(const struct lu_env *env, struct lu_object *obj,
const struct lu_object_conf *conf);
int lovsub_object_init(const struct lu_env *env, struct lu_object *obj,
const struct lu_object_conf *conf);
int lov_lock_init(const struct lu_env *env, struct cl_object *obj,
struct cl_lock *lock, const struct cl_io *io);
int lov_io_init(const struct lu_env *env, struct cl_object *obj,
struct cl_io *io);
int lovsub_lock_init(const struct lu_env *env, struct cl_object *obj,
struct cl_lock *lock, const struct cl_io *io);
int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
struct cl_lock *lock, const struct cl_io *io);
int lov_lock_init_empty(const struct lu_env *env, struct cl_object *obj,
struct cl_lock *lock, const struct cl_io *io);
int lov_io_init_raid0(const struct lu_env *env, struct cl_object *obj,
struct cl_io *io);
int lov_io_init_empty(const struct lu_env *env, struct cl_object *obj,
struct cl_io *io);
int lov_io_init_released(const struct lu_env *env, struct cl_object *obj,
struct cl_io *io);
void lov_lock_unlink(const struct lu_env *env, struct lov_lock_link *link,
struct lovsub_lock *sub);
struct lov_io_sub *lov_sub_get(const struct lu_env *env, struct lov_io *lio,
int stripe);
void lov_sub_put(struct lov_io_sub *sub);
int lov_sublock_modify(const struct lu_env *env, struct lov_lock *lov,
struct lovsub_lock *sublock,
const struct cl_lock_descr *d, int idx);
int lov_page_init(const struct lu_env *env, struct cl_object *ob,
struct cl_page *page, struct page *vmpage);
int lovsub_page_init(const struct lu_env *env, struct cl_object *ob,
struct cl_page *page, struct page *vmpage);
int lov_page_init_empty(const struct lu_env *env,
struct cl_object *obj,
struct cl_page *page, struct page *vmpage);
int lov_page_init_raid0(const struct lu_env *env,
struct cl_object *obj,
struct cl_page *page, struct page *vmpage);
struct lu_object *lov_object_alloc(const struct lu_env *env,
const struct lu_object_header *hdr,
struct lu_device *dev);
struct lu_object *lovsub_object_alloc(const struct lu_env *env,
const struct lu_object_header *hdr,
struct lu_device *dev);
struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
struct lov_lock *lck,
struct lovsub_lock *sub);
struct lov_io_sub *lov_page_subio(const struct lu_env *env,
struct lov_io *lio,
const struct cl_page_slice *slice);
void lov_lsm_decref(struct lov_object *lov, struct lov_stripe_md *lsm);
struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov);
#define lov_foreach_target(lov, var) \
for (var = 0; var < lov_targets_nr(lov); ++var)
/*****************************************************************************
*
* Type conversions.
*
* Accessors.
*
*/
static inline struct lov_session *lov_env_session(const struct lu_env *env)
{
struct lov_session *ses;
ses = lu_context_key_get(env->le_ses, &lov_session_key);
LASSERT(ses != NULL);
return ses;
}
static inline struct lov_io *lov_env_io(const struct lu_env *env)
{
return &lov_env_session(env)->ls_io;
}
static inline int lov_is_object(const struct lu_object *obj)
{
return obj->lo_dev->ld_type == &lov_device_type;
}
static inline int lovsub_is_object(const struct lu_object *obj)
{
return obj->lo_dev->ld_type == &lovsub_device_type;
}
static inline struct lu_device *lov2lu_dev(struct lov_device *lov)
{
return &lov->ld_cl.cd_lu_dev;
}
static inline struct lov_device *lu2lov_dev(const struct lu_device *d)
{
LINVRNT(d->ld_type == &lov_device_type);
return container_of0(d, struct lov_device, ld_cl.cd_lu_dev);
}
static inline struct cl_device *lovsub2cl_dev(struct lovsub_device *lovsub)
{
return &lovsub->acid_cl;
}
static inline struct lu_device *lovsub2lu_dev(struct lovsub_device *lovsub)
{
return &lovsub2cl_dev(lovsub)->cd_lu_dev;
}
static inline struct lovsub_device *lu2lovsub_dev(const struct lu_device *d)
{
LINVRNT(d->ld_type == &lovsub_device_type);
return container_of0(d, struct lovsub_device, acid_cl.cd_lu_dev);
}
static inline struct lovsub_device *cl2lovsub_dev(const struct cl_device *d)
{
LINVRNT(d->cd_lu_dev.ld_type == &lovsub_device_type);
return container_of0(d, struct lovsub_device, acid_cl);
}
static inline struct lu_object *lov2lu(struct lov_object *lov)
{
return &lov->lo_cl.co_lu;
}
static inline struct cl_object *lov2cl(struct lov_object *lov)
{
return &lov->lo_cl;
}
static inline struct lov_object *lu2lov(const struct lu_object *obj)
{
LINVRNT(lov_is_object(obj));
return container_of0(obj, struct lov_object, lo_cl.co_lu);
}
static inline struct lov_object *cl2lov(const struct cl_object *obj)
{
LINVRNT(lov_is_object(&obj->co_lu));
return container_of0(obj, struct lov_object, lo_cl);
}
static inline struct lu_object *lovsub2lu(struct lovsub_object *los)
{
return &los->lso_cl.co_lu;
}
static inline struct cl_object *lovsub2cl(struct lovsub_object *los)
{
return &los->lso_cl;
}
static inline struct lovsub_object *cl2lovsub(const struct cl_object *obj)
{
LINVRNT(lovsub_is_object(&obj->co_lu));
return container_of0(obj, struct lovsub_object, lso_cl);
}
static inline struct lovsub_object *lu2lovsub(const struct lu_object *obj)
{
LINVRNT(lovsub_is_object(obj));
return container_of0(obj, struct lovsub_object, lso_cl.co_lu);
}
static inline struct lovsub_lock *
cl2lovsub_lock(const struct cl_lock_slice *slice)
{
LINVRNT(lovsub_is_object(&slice->cls_obj->co_lu));
return container_of(slice, struct lovsub_lock, lss_cl);
}
static inline struct lovsub_lock *cl2sub_lock(const struct cl_lock *lock)
{
const struct cl_lock_slice *slice;
slice = cl_lock_at(lock, &lovsub_device_type);
LASSERT(slice != NULL);
return cl2lovsub_lock(slice);
}
static inline struct lov_lock *cl2lov_lock(const struct cl_lock_slice *slice)
{
LINVRNT(lov_is_object(&slice->cls_obj->co_lu));
return container_of(slice, struct lov_lock, lls_cl);
}
static inline struct lov_page *cl2lov_page(const struct cl_page_slice *slice)
{
LINVRNT(lov_is_object(&slice->cpl_obj->co_lu));
return container_of0(slice, struct lov_page, lps_cl);
}
static inline struct lov_req *cl2lov_req(const struct cl_req_slice *slice)
{
return container_of0(slice, struct lov_req, lr_cl);
}
static inline struct lovsub_page *
cl2lovsub_page(const struct cl_page_slice *slice)
{
LINVRNT(lovsub_is_object(&slice->cpl_obj->co_lu));
return container_of0(slice, struct lovsub_page, lsb_cl);
}
static inline struct lovsub_req *cl2lovsub_req(const struct cl_req_slice *slice)
{
return container_of0(slice, struct lovsub_req, lsrq_cl);
}
static inline struct cl_page *lov_sub_page(const struct cl_page_slice *slice)
{
return slice->cpl_page->cp_child;
}
static inline struct lov_io *cl2lov_io(const struct lu_env *env,
const struct cl_io_slice *ios)
{
struct lov_io *lio;
lio = container_of(ios, struct lov_io, lis_cl);
LASSERT(lio == lov_env_io(env));
return lio;
}
static inline int lov_targets_nr(const struct lov_device *lov)
{
return lov->ld_lov->desc.ld_tgt_count;
}
static inline struct lov_thread_info *lov_env_info(const struct lu_env *env)
{
struct lov_thread_info *info;
info = lu_context_key_get(&env->le_ctx, &lov_key);
LASSERT(info != NULL);
return info;
}
static inline struct lov_layout_raid0 *lov_r0(struct lov_object *lov)
{
LASSERT(lov->lo_type == LLT_RAID0);
LASSERT(lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC ||
lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC_V3);
return &lov->u.raid0;
}
/** @} lov */
#endif