| // SPDX-License-Identifier: GPL-2.0-or-later | 
 |  | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/pagewalk.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/swap_cgroup.h> | 
 | #include <linux/eventfd.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/file.h> | 
 | #include <linux/seq_buf.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "swap.h" | 
 | #include "memcontrol-v1.h" | 
 |  | 
 | /* | 
 |  * Cgroups above their limits are maintained in a RB-Tree, independent of | 
 |  * their hierarchy representation | 
 |  */ | 
 |  | 
 | struct mem_cgroup_tree_per_node { | 
 | 	struct rb_root rb_root; | 
 | 	struct rb_node *rb_rightmost; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | struct mem_cgroup_tree { | 
 | 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
 | }; | 
 |  | 
 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
 |  | 
 | /* | 
 |  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft | 
 |  * limit reclaim to prevent infinite loops, if they ever occur. | 
 |  */ | 
 | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100 | 
 | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2 | 
 |  | 
 | /* for OOM */ | 
 | struct mem_cgroup_eventfd_list { | 
 | 	struct list_head list; | 
 | 	struct eventfd_ctx *eventfd; | 
 | }; | 
 |  | 
 | /* | 
 |  * cgroup_event represents events which userspace want to receive. | 
 |  */ | 
 | struct mem_cgroup_event { | 
 | 	/* | 
 | 	 * memcg which the event belongs to. | 
 | 	 */ | 
 | 	struct mem_cgroup *memcg; | 
 | 	/* | 
 | 	 * eventfd to signal userspace about the event. | 
 | 	 */ | 
 | 	struct eventfd_ctx *eventfd; | 
 | 	/* | 
 | 	 * Each of these stored in a list by the cgroup. | 
 | 	 */ | 
 | 	struct list_head list; | 
 | 	/* | 
 | 	 * register_event() callback will be used to add new userspace | 
 | 	 * waiter for changes related to this event.  Use eventfd_signal() | 
 | 	 * on eventfd to send notification to userspace. | 
 | 	 */ | 
 | 	int (*register_event)(struct mem_cgroup *memcg, | 
 | 			      struct eventfd_ctx *eventfd, const char *args); | 
 | 	/* | 
 | 	 * unregister_event() callback will be called when userspace closes | 
 | 	 * the eventfd or on cgroup removing.  This callback must be set, | 
 | 	 * if you want provide notification functionality. | 
 | 	 */ | 
 | 	void (*unregister_event)(struct mem_cgroup *memcg, | 
 | 				 struct eventfd_ctx *eventfd); | 
 | 	/* | 
 | 	 * All fields below needed to unregister event when | 
 | 	 * userspace closes eventfd. | 
 | 	 */ | 
 | 	poll_table pt; | 
 | 	wait_queue_head_t *wqh; | 
 | 	wait_queue_entry_t wait; | 
 | 	struct work_struct remove; | 
 | }; | 
 |  | 
 | #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val)) | 
 | #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff) | 
 | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
 |  | 
 | enum { | 
 | 	RES_USAGE, | 
 | 	RES_LIMIT, | 
 | 	RES_MAX_USAGE, | 
 | 	RES_FAILCNT, | 
 | 	RES_SOFT_LIMIT, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_LOCKDEP | 
 | static struct lockdep_map memcg_oom_lock_dep_map = { | 
 | 	.name = "memcg_oom_lock", | 
 | }; | 
 | #endif | 
 |  | 
 | DEFINE_SPINLOCK(memcg_oom_lock); | 
 |  | 
 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, | 
 | 					 struct mem_cgroup_tree_per_node *mctz, | 
 | 					 unsigned long new_usage_in_excess) | 
 | { | 
 | 	struct rb_node **p = &mctz->rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct mem_cgroup_per_node *mz_node; | 
 | 	bool rightmost = true; | 
 |  | 
 | 	if (mz->on_tree) | 
 | 		return; | 
 |  | 
 | 	mz->usage_in_excess = new_usage_in_excess; | 
 | 	if (!mz->usage_in_excess) | 
 | 		return; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		mz_node = rb_entry(parent, struct mem_cgroup_per_node, | 
 | 					tree_node); | 
 | 		if (mz->usage_in_excess < mz_node->usage_in_excess) { | 
 | 			p = &(*p)->rb_left; | 
 | 			rightmost = false; | 
 | 		} else { | 
 | 			p = &(*p)->rb_right; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rightmost) | 
 | 		mctz->rb_rightmost = &mz->tree_node; | 
 |  | 
 | 	rb_link_node(&mz->tree_node, parent, p); | 
 | 	rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = true; | 
 | } | 
 |  | 
 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
 | 					 struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	if (!mz->on_tree) | 
 | 		return; | 
 |  | 
 | 	if (&mz->tree_node == mctz->rb_rightmost) | 
 | 		mctz->rb_rightmost = rb_prev(&mz->tree_node); | 
 |  | 
 | 	rb_erase(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = false; | 
 | } | 
 |  | 
 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
 | 				       struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&mctz->lock, flags); | 
 | 	__mem_cgroup_remove_exceeded(mz, mctz); | 
 | 	spin_unlock_irqrestore(&mctz->lock, flags); | 
 | } | 
 |  | 
 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long nr_pages = page_counter_read(&memcg->memory); | 
 | 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit); | 
 | 	unsigned long excess = 0; | 
 |  | 
 | 	if (nr_pages > soft_limit) | 
 | 		excess = nr_pages - soft_limit; | 
 |  | 
 | 	return excess; | 
 | } | 
 |  | 
 | static void memcg1_update_tree(struct mem_cgroup *memcg, int nid) | 
 | { | 
 | 	unsigned long excess; | 
 | 	struct mem_cgroup_per_node *mz; | 
 | 	struct mem_cgroup_tree_per_node *mctz; | 
 |  | 
 | 	if (lru_gen_enabled()) { | 
 | 		if (soft_limit_excess(memcg)) | 
 | 			lru_gen_soft_reclaim(memcg, nid); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mctz = soft_limit_tree.rb_tree_per_node[nid]; | 
 | 	if (!mctz) | 
 | 		return; | 
 | 	/* | 
 | 	 * Necessary to update all ancestors when hierarchy is used. | 
 | 	 * because their event counter is not touched. | 
 | 	 */ | 
 | 	for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
 | 		mz = memcg->nodeinfo[nid]; | 
 | 		excess = soft_limit_excess(memcg); | 
 | 		/* | 
 | 		 * We have to update the tree if mz is on RB-tree or | 
 | 		 * mem is over its softlimit. | 
 | 		 */ | 
 | 		if (excess || mz->on_tree) { | 
 | 			unsigned long flags; | 
 |  | 
 | 			spin_lock_irqsave(&mctz->lock, flags); | 
 | 			/* if on-tree, remove it */ | 
 | 			if (mz->on_tree) | 
 | 				__mem_cgroup_remove_exceeded(mz, mctz); | 
 | 			/* | 
 | 			 * Insert again. mz->usage_in_excess will be updated. | 
 | 			 * If excess is 0, no tree ops. | 
 | 			 */ | 
 | 			__mem_cgroup_insert_exceeded(mz, mctz, excess); | 
 | 			spin_unlock_irqrestore(&mctz->lock, flags); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void memcg1_remove_from_trees(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_tree_per_node *mctz; | 
 | 	struct mem_cgroup_per_node *mz; | 
 | 	int nid; | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		mz = memcg->nodeinfo[nid]; | 
 | 		mctz = soft_limit_tree.rb_tree_per_node[nid]; | 
 | 		if (mctz) | 
 | 			mem_cgroup_remove_exceeded(mz, mctz); | 
 | 	} | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_node * | 
 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	struct mem_cgroup_per_node *mz; | 
 |  | 
 | retry: | 
 | 	mz = NULL; | 
 | 	if (!mctz->rb_rightmost) | 
 | 		goto done;		/* Nothing to reclaim from */ | 
 |  | 
 | 	mz = rb_entry(mctz->rb_rightmost, | 
 | 		      struct mem_cgroup_per_node, tree_node); | 
 | 	/* | 
 | 	 * Remove the node now but someone else can add it back, | 
 | 	 * we will to add it back at the end of reclaim to its correct | 
 | 	 * position in the tree. | 
 | 	 */ | 
 | 	__mem_cgroup_remove_exceeded(mz, mctz); | 
 | 	if (!soft_limit_excess(mz->memcg) || | 
 | 	    !css_tryget(&mz->memcg->css)) | 
 | 		goto retry; | 
 | done: | 
 | 	return mz; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_node * | 
 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	struct mem_cgroup_per_node *mz; | 
 |  | 
 | 	spin_lock_irq(&mctz->lock); | 
 | 	mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
 | 	spin_unlock_irq(&mctz->lock); | 
 | 	return mz; | 
 | } | 
 |  | 
 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | 
 | 				   pg_data_t *pgdat, | 
 | 				   gfp_t gfp_mask, | 
 | 				   unsigned long *total_scanned) | 
 | { | 
 | 	struct mem_cgroup *victim = NULL; | 
 | 	int total = 0; | 
 | 	int loop = 0; | 
 | 	unsigned long excess; | 
 | 	unsigned long nr_scanned; | 
 | 	struct mem_cgroup_reclaim_cookie reclaim = { | 
 | 		.pgdat = pgdat, | 
 | 	}; | 
 |  | 
 | 	excess = soft_limit_excess(root_memcg); | 
 |  | 
 | 	while (1) { | 
 | 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | 
 | 		if (!victim) { | 
 | 			loop++; | 
 | 			if (loop >= 2) { | 
 | 				/* | 
 | 				 * If we have not been able to reclaim | 
 | 				 * anything, it might because there are | 
 | 				 * no reclaimable pages under this hierarchy | 
 | 				 */ | 
 | 				if (!total) | 
 | 					break; | 
 | 				/* | 
 | 				 * We want to do more targeted reclaim. | 
 | 				 * excess >> 2 is not to excessive so as to | 
 | 				 * reclaim too much, nor too less that we keep | 
 | 				 * coming back to reclaim from this cgroup | 
 | 				 */ | 
 | 				if (total >= (excess >> 2) || | 
 | 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | 
 | 					break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		total += mem_cgroup_shrink_node(victim, gfp_mask, false, | 
 | 					pgdat, &nr_scanned); | 
 | 		*total_scanned += nr_scanned; | 
 | 		if (!soft_limit_excess(root_memcg)) | 
 | 			break; | 
 | 	} | 
 | 	mem_cgroup_iter_break(root_memcg, victim); | 
 | 	return total; | 
 | } | 
 |  | 
 | unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, | 
 | 					    gfp_t gfp_mask, | 
 | 					    unsigned long *total_scanned) | 
 | { | 
 | 	unsigned long nr_reclaimed = 0; | 
 | 	struct mem_cgroup_per_node *mz, *next_mz = NULL; | 
 | 	unsigned long reclaimed; | 
 | 	int loop = 0; | 
 | 	struct mem_cgroup_tree_per_node *mctz; | 
 | 	unsigned long excess; | 
 |  | 
 | 	if (lru_gen_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	if (order > 0) | 
 | 		return 0; | 
 |  | 
 | 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; | 
 |  | 
 | 	/* | 
 | 	 * Do not even bother to check the largest node if the root | 
 | 	 * is empty. Do it lockless to prevent lock bouncing. Races | 
 | 	 * are acceptable as soft limit is best effort anyway. | 
 | 	 */ | 
 | 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * This loop can run a while, specially if mem_cgroup's continuously | 
 | 	 * keep exceeding their soft limit and putting the system under | 
 | 	 * pressure | 
 | 	 */ | 
 | 	do { | 
 | 		if (next_mz) | 
 | 			mz = next_mz; | 
 | 		else | 
 | 			mz = mem_cgroup_largest_soft_limit_node(mctz); | 
 | 		if (!mz) | 
 | 			break; | 
 |  | 
 | 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, | 
 | 						    gfp_mask, total_scanned); | 
 | 		nr_reclaimed += reclaimed; | 
 | 		spin_lock_irq(&mctz->lock); | 
 |  | 
 | 		/* | 
 | 		 * If we failed to reclaim anything from this memory cgroup | 
 | 		 * it is time to move on to the next cgroup | 
 | 		 */ | 
 | 		next_mz = NULL; | 
 | 		if (!reclaimed) | 
 | 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
 |  | 
 | 		excess = soft_limit_excess(mz->memcg); | 
 | 		/* | 
 | 		 * One school of thought says that we should not add | 
 | 		 * back the node to the tree if reclaim returns 0. | 
 | 		 * But our reclaim could return 0, simply because due | 
 | 		 * to priority we are exposing a smaller subset of | 
 | 		 * memory to reclaim from. Consider this as a longer | 
 | 		 * term TODO. | 
 | 		 */ | 
 | 		/* If excess == 0, no tree ops */ | 
 | 		__mem_cgroup_insert_exceeded(mz, mctz, excess); | 
 | 		spin_unlock_irq(&mctz->lock); | 
 | 		css_put(&mz->memcg->css); | 
 | 		loop++; | 
 | 		/* | 
 | 		 * Could not reclaim anything and there are no more | 
 | 		 * mem cgroups to try or we seem to be looping without | 
 | 		 * reclaiming anything. | 
 | 		 */ | 
 | 		if (!nr_reclaimed && | 
 | 			(next_mz == NULL || | 
 | 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
 | 			break; | 
 | 	} while (!nr_reclaimed); | 
 | 	if (next_mz) | 
 | 		css_put(&next_mz->memcg->css); | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | 
 | 				struct cftype *cft) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
 | 				 struct cftype *cft, u64 val) | 
 | { | 
 | 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " | 
 | 		     "Please report your usecase to linux-mm@kvack.org if you " | 
 | 		     "depend on this functionality.\n"); | 
 |  | 
 | 	if (val != 0) | 
 | 		return -EINVAL; | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
 | 				 struct cftype *cft, u64 val) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | #endif | 
 |  | 
 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 
 | { | 
 | 	struct mem_cgroup_threshold_ary *t; | 
 | 	unsigned long usage; | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!swap) | 
 | 		t = rcu_dereference(memcg->thresholds.primary); | 
 | 	else | 
 | 		t = rcu_dereference(memcg->memsw_thresholds.primary); | 
 |  | 
 | 	if (!t) | 
 | 		goto unlock; | 
 |  | 
 | 	usage = mem_cgroup_usage(memcg, swap); | 
 |  | 
 | 	/* | 
 | 	 * current_threshold points to threshold just below or equal to usage. | 
 | 	 * If it's not true, a threshold was crossed after last | 
 | 	 * call of __mem_cgroup_threshold(). | 
 | 	 */ | 
 | 	i = t->current_threshold; | 
 |  | 
 | 	/* | 
 | 	 * Iterate backward over array of thresholds starting from | 
 | 	 * current_threshold and check if a threshold is crossed. | 
 | 	 * If none of thresholds below usage is crossed, we read | 
 | 	 * only one element of the array here. | 
 | 	 */ | 
 | 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 
 | 		eventfd_signal(t->entries[i].eventfd); | 
 |  | 
 | 	/* i = current_threshold + 1 */ | 
 | 	i++; | 
 |  | 
 | 	/* | 
 | 	 * Iterate forward over array of thresholds starting from | 
 | 	 * current_threshold+1 and check if a threshold is crossed. | 
 | 	 * If none of thresholds above usage is crossed, we read | 
 | 	 * only one element of the array here. | 
 | 	 */ | 
 | 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 
 | 		eventfd_signal(t->entries[i].eventfd); | 
 |  | 
 | 	/* Update current_threshold */ | 
 | 	t->current_threshold = i - 1; | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 
 | { | 
 | 	while (memcg) { | 
 | 		__mem_cgroup_threshold(memcg, false); | 
 | 		if (do_memsw_account()) | 
 | 			__mem_cgroup_threshold(memcg, true); | 
 |  | 
 | 		memcg = parent_mem_cgroup(memcg); | 
 | 	} | 
 | } | 
 |  | 
 | /* Cgroup1: threshold notifications & softlimit tree updates */ | 
 |  | 
 | /* | 
 |  * Per memcg event counter is incremented at every pagein/pageout. With THP, | 
 |  * it will be incremented by the number of pages. This counter is used | 
 |  * to trigger some periodic events. This is straightforward and better | 
 |  * than using jiffies etc. to handle periodic memcg event. | 
 |  */ | 
 | enum mem_cgroup_events_target { | 
 | 	MEM_CGROUP_TARGET_THRESH, | 
 | 	MEM_CGROUP_TARGET_SOFTLIMIT, | 
 | 	MEM_CGROUP_NTARGETS, | 
 | }; | 
 |  | 
 | struct memcg1_events_percpu { | 
 | 	unsigned long nr_page_events; | 
 | 	unsigned long targets[MEM_CGROUP_NTARGETS]; | 
 | }; | 
 |  | 
 | static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages) | 
 | { | 
 | 	/* pagein of a big page is an event. So, ignore page size */ | 
 | 	if (nr_pages > 0) | 
 | 		count_memcg_events(memcg, PGPGIN, 1); | 
 | 	else { | 
 | 		count_memcg_events(memcg, PGPGOUT, 1); | 
 | 		nr_pages = -nr_pages; /* for event */ | 
 | 	} | 
 |  | 
 | 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages); | 
 | } | 
 |  | 
 | #define THRESHOLDS_EVENTS_TARGET 128 | 
 | #define SOFTLIMIT_EVENTS_TARGET 1024 | 
 |  | 
 | static bool memcg1_event_ratelimit(struct mem_cgroup *memcg, | 
 | 				enum mem_cgroup_events_target target) | 
 | { | 
 | 	unsigned long val, next; | 
 |  | 
 | 	val = __this_cpu_read(memcg->events_percpu->nr_page_events); | 
 | 	next = __this_cpu_read(memcg->events_percpu->targets[target]); | 
 | 	/* from time_after() in jiffies.h */ | 
 | 	if ((long)(next - val) < 0) { | 
 | 		switch (target) { | 
 | 		case MEM_CGROUP_TARGET_THRESH: | 
 | 			next = val + THRESHOLDS_EVENTS_TARGET; | 
 | 			break; | 
 | 		case MEM_CGROUP_TARGET_SOFTLIMIT: | 
 | 			next = val + SOFTLIMIT_EVENTS_TARGET; | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		__this_cpu_write(memcg->events_percpu->targets[target], next); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Check events in order. | 
 |  * | 
 |  */ | 
 | static void memcg1_check_events(struct mem_cgroup *memcg, int nid) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) | 
 | 		return; | 
 |  | 
 | 	/* threshold event is triggered in finer grain than soft limit */ | 
 | 	if (unlikely(memcg1_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_THRESH))) { | 
 | 		bool do_softlimit; | 
 |  | 
 | 		do_softlimit = memcg1_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_SOFTLIMIT); | 
 | 		mem_cgroup_threshold(memcg); | 
 | 		if (unlikely(do_softlimit)) | 
 | 			memcg1_update_tree(memcg, nid); | 
 | 	} | 
 | } | 
 |  | 
 | void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	memcg1_charge_statistics(memcg, folio_nr_pages(folio)); | 
 | 	memcg1_check_events(memcg, folio_nid(folio)); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /** | 
 |  * memcg1_swapout - transfer a memsw charge to swap | 
 |  * @folio: folio whose memsw charge to transfer | 
 |  * @entry: swap entry to move the charge to | 
 |  * | 
 |  * Transfer the memsw charge of @folio to @entry. | 
 |  */ | 
 | void memcg1_swapout(struct folio *folio, swp_entry_t entry) | 
 | { | 
 | 	struct mem_cgroup *memcg, *swap_memcg; | 
 | 	unsigned int nr_entries; | 
 |  | 
 | 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); | 
 | 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	if (!do_memsw_account()) | 
 | 		return; | 
 |  | 
 | 	memcg = folio_memcg(folio); | 
 |  | 
 | 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio); | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * In case the memcg owning these pages has been offlined and doesn't | 
 | 	 * have an ID allocated to it anymore, charge the closest online | 
 | 	 * ancestor for the swap instead and transfer the memory+swap charge. | 
 | 	 */ | 
 | 	swap_memcg = mem_cgroup_id_get_online(memcg); | 
 | 	nr_entries = folio_nr_pages(folio); | 
 | 	/* Get references for the tail pages, too */ | 
 | 	if (nr_entries > 1) | 
 | 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); | 
 | 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); | 
 |  | 
 | 	swap_cgroup_record(folio, mem_cgroup_id(swap_memcg), entry); | 
 |  | 
 | 	folio_unqueue_deferred_split(folio); | 
 | 	folio->memcg_data = 0; | 
 |  | 
 | 	if (!mem_cgroup_is_root(memcg)) | 
 | 		page_counter_uncharge(&memcg->memory, nr_entries); | 
 |  | 
 | 	if (memcg != swap_memcg) { | 
 | 		if (!mem_cgroup_is_root(swap_memcg)) | 
 | 			page_counter_charge(&swap_memcg->memsw, nr_entries); | 
 | 		page_counter_uncharge(&memcg->memsw, nr_entries); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Interrupts should be disabled here because the caller holds the | 
 | 	 * i_pages lock which is taken with interrupts-off. It is | 
 | 	 * important here to have the interrupts disabled because it is the | 
 | 	 * only synchronisation we have for updating the per-CPU variables. | 
 | 	 */ | 
 | 	preempt_disable_nested(); | 
 | 	VM_WARN_ON_IRQS_ENABLED(); | 
 | 	memcg1_charge_statistics(memcg, -folio_nr_pages(folio)); | 
 | 	preempt_enable_nested(); | 
 | 	memcg1_check_events(memcg, folio_nid(folio)); | 
 |  | 
 | 	css_put(&memcg->css); | 
 | } | 
 |  | 
 | /* | 
 |  * memcg1_swapin - uncharge swap slot | 
 |  * @entry: the first swap entry for which the pages are charged | 
 |  * @nr_pages: number of pages which will be uncharged | 
 |  * | 
 |  * Call this function after successfully adding the charged page to swapcache. | 
 |  * | 
 |  * Note: This function assumes the page for which swap slot is being uncharged | 
 |  * is order 0 page. | 
 |  */ | 
 | void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages) | 
 | { | 
 | 	/* | 
 | 	 * Cgroup1's unified memory+swap counter has been charged with the | 
 | 	 * new swapcache page, finish the transfer by uncharging the swap | 
 | 	 * slot. The swap slot would also get uncharged when it dies, but | 
 | 	 * it can stick around indefinitely and we'd count the page twice | 
 | 	 * the entire time. | 
 | 	 * | 
 | 	 * Cgroup2 has separate resource counters for memory and swap, | 
 | 	 * so this is a non-issue here. Memory and swap charge lifetimes | 
 | 	 * correspond 1:1 to page and swap slot lifetimes: we charge the | 
 | 	 * page to memory here, and uncharge swap when the slot is freed. | 
 | 	 */ | 
 | 	if (do_memsw_account()) { | 
 | 		/* | 
 | 		 * The swap entry might not get freed for a long time, | 
 | 		 * let's not wait for it.  The page already received a | 
 | 		 * memory+swap charge, drop the swap entry duplicate. | 
 | 		 */ | 
 | 		mem_cgroup_uncharge_swap(entry, nr_pages); | 
 | 	} | 
 | } | 
 |  | 
 | void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, | 
 | 			   unsigned long nr_memory, int nid) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	count_memcg_events(memcg, PGPGOUT, pgpgout); | 
 | 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory); | 
 | 	memcg1_check_events(memcg, nid); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static int compare_thresholds(const void *a, const void *b) | 
 | { | 
 | 	const struct mem_cgroup_threshold *_a = a; | 
 | 	const struct mem_cgroup_threshold *_b = b; | 
 |  | 
 | 	if (_a->threshold > _b->threshold) | 
 | 		return 1; | 
 |  | 
 | 	if (_a->threshold < _b->threshold) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_eventfd_list *ev; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	list_for_each_entry(ev, &memcg->oom_notify, list) | 
 | 		eventfd_signal(ev->eventfd); | 
 |  | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		mem_cgroup_oom_notify_cb(iter); | 
 | } | 
 |  | 
 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args, enum res_type type) | 
 | { | 
 | 	struct mem_cgroup_thresholds *thresholds; | 
 | 	struct mem_cgroup_threshold_ary *new; | 
 | 	unsigned long threshold; | 
 | 	unsigned long usage; | 
 | 	int i, size, ret; | 
 |  | 
 | 	ret = page_counter_memparse(args, "-1", &threshold); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	mutex_lock(&memcg->thresholds_lock); | 
 |  | 
 | 	if (type == _MEM) { | 
 | 		thresholds = &memcg->thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, false); | 
 | 	} else if (type == _MEMSWAP) { | 
 | 		thresholds = &memcg->memsw_thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, true); | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	/* Check if a threshold crossed before adding a new one */ | 
 | 	if (thresholds->primary) | 
 | 		__mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
 |  | 
 | 	size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 
 |  | 
 | 	/* Allocate memory for new array of thresholds */ | 
 | 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); | 
 | 	if (!new) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unlock; | 
 | 	} | 
 | 	new->size = size; | 
 |  | 
 | 	/* Copy thresholds (if any) to new array */ | 
 | 	if (thresholds->primary) | 
 | 		memcpy(new->entries, thresholds->primary->entries, | 
 | 		       flex_array_size(new, entries, size - 1)); | 
 |  | 
 | 	/* Add new threshold */ | 
 | 	new->entries[size - 1].eventfd = eventfd; | 
 | 	new->entries[size - 1].threshold = threshold; | 
 |  | 
 | 	/* Sort thresholds. Registering of new threshold isn't time-critical */ | 
 | 	sort(new->entries, size, sizeof(*new->entries), | 
 | 			compare_thresholds, NULL); | 
 |  | 
 | 	/* Find current threshold */ | 
 | 	new->current_threshold = -1; | 
 | 	for (i = 0; i < size; i++) { | 
 | 		if (new->entries[i].threshold <= usage) { | 
 | 			/* | 
 | 			 * new->current_threshold will not be used until | 
 | 			 * rcu_assign_pointer(), so it's safe to increment | 
 | 			 * it here. | 
 | 			 */ | 
 | 			++new->current_threshold; | 
 | 		} else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Free old spare buffer and save old primary buffer as spare */ | 
 | 	kfree(thresholds->spare); | 
 | 	thresholds->spare = thresholds->primary; | 
 |  | 
 | 	rcu_assign_pointer(thresholds->primary, new); | 
 |  | 
 | 	/* To be sure that nobody uses thresholds */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&memcg->thresholds_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | 
 | } | 
 |  | 
 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | 
 | } | 
 |  | 
 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, enum res_type type) | 
 | { | 
 | 	struct mem_cgroup_thresholds *thresholds; | 
 | 	struct mem_cgroup_threshold_ary *new; | 
 | 	unsigned long usage; | 
 | 	int i, j, size, entries; | 
 |  | 
 | 	mutex_lock(&memcg->thresholds_lock); | 
 |  | 
 | 	if (type == _MEM) { | 
 | 		thresholds = &memcg->thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, false); | 
 | 	} else if (type == _MEMSWAP) { | 
 | 		thresholds = &memcg->memsw_thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, true); | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	if (!thresholds->primary) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Check if a threshold crossed before removing */ | 
 | 	__mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
 |  | 
 | 	/* Calculate new number of threshold */ | 
 | 	size = entries = 0; | 
 | 	for (i = 0; i < thresholds->primary->size; i++) { | 
 | 		if (thresholds->primary->entries[i].eventfd != eventfd) | 
 | 			size++; | 
 | 		else | 
 | 			entries++; | 
 | 	} | 
 |  | 
 | 	new = thresholds->spare; | 
 |  | 
 | 	/* If no items related to eventfd have been cleared, nothing to do */ | 
 | 	if (!entries) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Set thresholds array to NULL if we don't have thresholds */ | 
 | 	if (!size) { | 
 | 		kfree(new); | 
 | 		new = NULL; | 
 | 		goto swap_buffers; | 
 | 	} | 
 |  | 
 | 	new->size = size; | 
 |  | 
 | 	/* Copy thresholds and find current threshold */ | 
 | 	new->current_threshold = -1; | 
 | 	for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 
 | 		if (thresholds->primary->entries[i].eventfd == eventfd) | 
 | 			continue; | 
 |  | 
 | 		new->entries[j] = thresholds->primary->entries[i]; | 
 | 		if (new->entries[j].threshold <= usage) { | 
 | 			/* | 
 | 			 * new->current_threshold will not be used | 
 | 			 * until rcu_assign_pointer(), so it's safe to increment | 
 | 			 * it here. | 
 | 			 */ | 
 | 			++new->current_threshold; | 
 | 		} | 
 | 		j++; | 
 | 	} | 
 |  | 
 | swap_buffers: | 
 | 	/* Swap primary and spare array */ | 
 | 	thresholds->spare = thresholds->primary; | 
 |  | 
 | 	rcu_assign_pointer(thresholds->primary, new); | 
 |  | 
 | 	/* To be sure that nobody uses thresholds */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	/* If all events are unregistered, free the spare array */ | 
 | 	if (!new) { | 
 | 		kfree(thresholds->spare); | 
 | 		thresholds->spare = NULL; | 
 | 	} | 
 | unlock: | 
 | 	mutex_unlock(&memcg->thresholds_lock); | 
 | } | 
 |  | 
 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd) | 
 | { | 
 | 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | 
 | } | 
 |  | 
 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd) | 
 | { | 
 | 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	struct mem_cgroup_eventfd_list *event; | 
 |  | 
 | 	event = kmalloc(sizeof(*event),	GFP_KERNEL); | 
 | 	if (!event) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	event->eventfd = eventfd; | 
 | 	list_add(&event->list, &memcg->oom_notify); | 
 |  | 
 | 	/* already in OOM ? */ | 
 | 	if (memcg->under_oom) | 
 | 		eventfd_signal(eventfd); | 
 | 	spin_unlock(&memcg_oom_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd) | 
 | { | 
 | 	struct mem_cgroup_eventfd_list *ev, *tmp; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | 
 | 		if (ev->eventfd == eventfd) { | 
 | 			list_del(&ev->list); | 
 | 			kfree(ev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * DO NOT USE IN NEW FILES. | 
 |  * | 
 |  * "cgroup.event_control" implementation. | 
 |  * | 
 |  * This is way over-engineered.  It tries to support fully configurable | 
 |  * events for each user.  Such level of flexibility is completely | 
 |  * unnecessary especially in the light of the planned unified hierarchy. | 
 |  * | 
 |  * Please deprecate this and replace with something simpler if at all | 
 |  * possible. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Unregister event and free resources. | 
 |  * | 
 |  * Gets called from workqueue. | 
 |  */ | 
 | static void memcg_event_remove(struct work_struct *work) | 
 | { | 
 | 	struct mem_cgroup_event *event = | 
 | 		container_of(work, struct mem_cgroup_event, remove); | 
 | 	struct mem_cgroup *memcg = event->memcg; | 
 |  | 
 | 	remove_wait_queue(event->wqh, &event->wait); | 
 |  | 
 | 	event->unregister_event(memcg, event->eventfd); | 
 |  | 
 | 	/* Notify userspace the event is going away. */ | 
 | 	eventfd_signal(event->eventfd); | 
 |  | 
 | 	eventfd_ctx_put(event->eventfd); | 
 | 	kfree(event); | 
 | 	css_put(&memcg->css); | 
 | } | 
 |  | 
 | /* | 
 |  * Gets called on EPOLLHUP on eventfd when user closes it. | 
 |  * | 
 |  * Called with wqh->lock held and interrupts disabled. | 
 |  */ | 
 | static int memcg_event_wake(wait_queue_entry_t *wait, unsigned int mode, | 
 | 			    int sync, void *key) | 
 | { | 
 | 	struct mem_cgroup_event *event = | 
 | 		container_of(wait, struct mem_cgroup_event, wait); | 
 | 	struct mem_cgroup *memcg = event->memcg; | 
 | 	__poll_t flags = key_to_poll(key); | 
 |  | 
 | 	if (flags & EPOLLHUP) { | 
 | 		/* | 
 | 		 * If the event has been detached at cgroup removal, we | 
 | 		 * can simply return knowing the other side will cleanup | 
 | 		 * for us. | 
 | 		 * | 
 | 		 * We can't race against event freeing since the other | 
 | 		 * side will require wqh->lock via remove_wait_queue(), | 
 | 		 * which we hold. | 
 | 		 */ | 
 | 		spin_lock(&memcg->event_list_lock); | 
 | 		if (!list_empty(&event->list)) { | 
 | 			list_del_init(&event->list); | 
 | 			/* | 
 | 			 * We are in atomic context, but cgroup_event_remove() | 
 | 			 * may sleep, so we have to call it in workqueue. | 
 | 			 */ | 
 | 			schedule_work(&event->remove); | 
 | 		} | 
 | 		spin_unlock(&memcg->event_list_lock); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void memcg_event_ptable_queue_proc(struct file *file, | 
 | 		wait_queue_head_t *wqh, poll_table *pt) | 
 | { | 
 | 	struct mem_cgroup_event *event = | 
 | 		container_of(pt, struct mem_cgroup_event, pt); | 
 |  | 
 | 	event->wqh = wqh; | 
 | 	add_wait_queue(wqh, &event->wait); | 
 | } | 
 |  | 
 | /* | 
 |  * DO NOT USE IN NEW FILES. | 
 |  * | 
 |  * Parse input and register new cgroup event handler. | 
 |  * | 
 |  * Input must be in format '<event_fd> <control_fd> <args>'. | 
 |  * Interpretation of args is defined by control file implementation. | 
 |  */ | 
 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | 
 | 					 char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct cgroup_subsys_state *css = of_css(of); | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 | 	struct mem_cgroup_event *event; | 
 | 	struct cgroup_subsys_state *cfile_css; | 
 | 	unsigned int efd, cfd; | 
 | 	struct dentry *cdentry; | 
 | 	const char *name; | 
 | 	char *endp; | 
 | 	int ret; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	buf = strstrip(buf); | 
 |  | 
 | 	efd = simple_strtoul(buf, &endp, 10); | 
 | 	if (*endp != ' ') | 
 | 		return -EINVAL; | 
 | 	buf = endp + 1; | 
 |  | 
 | 	cfd = simple_strtoul(buf, &endp, 10); | 
 | 	if (*endp == '\0') | 
 | 		buf = endp; | 
 | 	else if (*endp == ' ') | 
 | 		buf = endp + 1; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	CLASS(fd, efile)(efd); | 
 | 	if (fd_empty(efile)) | 
 | 		return -EBADF; | 
 |  | 
 | 	CLASS(fd, cfile)(cfd); | 
 |  | 
 | 	event = kzalloc(sizeof(*event), GFP_KERNEL); | 
 | 	if (!event) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	event->memcg = memcg; | 
 | 	INIT_LIST_HEAD(&event->list); | 
 | 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | 
 | 	init_waitqueue_func_entry(&event->wait, memcg_event_wake); | 
 | 	INIT_WORK(&event->remove, memcg_event_remove); | 
 |  | 
 | 	event->eventfd = eventfd_ctx_fileget(fd_file(efile)); | 
 | 	if (IS_ERR(event->eventfd)) { | 
 | 		ret = PTR_ERR(event->eventfd); | 
 | 		goto out_kfree; | 
 | 	} | 
 |  | 
 | 	if (fd_empty(cfile)) { | 
 | 		ret = -EBADF; | 
 | 		goto out_put_eventfd; | 
 | 	} | 
 |  | 
 | 	/* the process need read permission on control file */ | 
 | 	/* AV: shouldn't we check that it's been opened for read instead? */ | 
 | 	ret = file_permission(fd_file(cfile), MAY_READ); | 
 | 	if (ret < 0) | 
 | 		goto out_put_eventfd; | 
 |  | 
 | 	/* | 
 | 	 * The control file must be a regular cgroup1 file. As a regular cgroup | 
 | 	 * file can't be renamed, it's safe to access its name afterwards. | 
 | 	 */ | 
 | 	cdentry = fd_file(cfile)->f_path.dentry; | 
 | 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_put_eventfd; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Determine the event callbacks and set them in @event.  This used | 
 | 	 * to be done via struct cftype but cgroup core no longer knows | 
 | 	 * about these events.  The following is crude but the whole thing | 
 | 	 * is for compatibility anyway. | 
 | 	 * | 
 | 	 * DO NOT ADD NEW FILES. | 
 | 	 */ | 
 | 	name = cdentry->d_name.name; | 
 |  | 
 | 	if (!strcmp(name, "memory.usage_in_bytes")) { | 
 | 		event->register_event = mem_cgroup_usage_register_event; | 
 | 		event->unregister_event = mem_cgroup_usage_unregister_event; | 
 | 	} else if (!strcmp(name, "memory.oom_control")) { | 
 | 		pr_warn_once("oom_control is deprecated and will be removed. " | 
 | 			     "Please report your usecase to linux-mm-@kvack.org" | 
 | 			     " if you depend on this functionality.\n"); | 
 | 		event->register_event = mem_cgroup_oom_register_event; | 
 | 		event->unregister_event = mem_cgroup_oom_unregister_event; | 
 | 	} else if (!strcmp(name, "memory.pressure_level")) { | 
 | 		pr_warn_once("pressure_level is deprecated and will be removed. " | 
 | 			     "Please report your usecase to linux-mm-@kvack.org " | 
 | 			     "if you depend on this functionality.\n"); | 
 | 		event->register_event = vmpressure_register_event; | 
 | 		event->unregister_event = vmpressure_unregister_event; | 
 | 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | 
 | 		event->register_event = memsw_cgroup_usage_register_event; | 
 | 		event->unregister_event = memsw_cgroup_usage_unregister_event; | 
 | 	} else { | 
 | 		ret = -EINVAL; | 
 | 		goto out_put_eventfd; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Verify @cfile should belong to @css.  Also, remaining events are | 
 | 	 * automatically removed on cgroup destruction but the removal is | 
 | 	 * asynchronous, so take an extra ref on @css. | 
 | 	 */ | 
 | 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent, | 
 | 					       &memory_cgrp_subsys); | 
 | 	ret = -EINVAL; | 
 | 	if (IS_ERR(cfile_css)) | 
 | 		goto out_put_eventfd; | 
 | 	if (cfile_css != css) | 
 | 		goto out_put_css; | 
 |  | 
 | 	ret = event->register_event(memcg, event->eventfd, buf); | 
 | 	if (ret) | 
 | 		goto out_put_css; | 
 |  | 
 | 	vfs_poll(fd_file(efile), &event->pt); | 
 |  | 
 | 	spin_lock_irq(&memcg->event_list_lock); | 
 | 	list_add(&event->list, &memcg->event_list); | 
 | 	spin_unlock_irq(&memcg->event_list_lock); | 
 | 	return nbytes; | 
 |  | 
 | out_put_css: | 
 | 	css_put(cfile_css); | 
 | out_put_eventfd: | 
 | 	eventfd_ctx_put(event->eventfd); | 
 | out_kfree: | 
 | 	kfree(event); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void memcg1_memcg_init(struct mem_cgroup *memcg) | 
 | { | 
 | 	INIT_LIST_HEAD(&memcg->oom_notify); | 
 | 	mutex_init(&memcg->thresholds_lock); | 
 | 	INIT_LIST_HEAD(&memcg->event_list); | 
 | 	spin_lock_init(&memcg->event_list_lock); | 
 | } | 
 |  | 
 | void memcg1_css_offline(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_event *event, *tmp; | 
 |  | 
 | 	/* | 
 | 	 * Unregister events and notify userspace. | 
 | 	 * Notify userspace about cgroup removing only after rmdir of cgroup | 
 | 	 * directory to avoid race between userspace and kernelspace. | 
 | 	 */ | 
 | 	spin_lock_irq(&memcg->event_list_lock); | 
 | 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | 
 | 		list_del_init(&event->list); | 
 | 		schedule_work(&event->remove); | 
 | 	} | 
 | 	spin_unlock_irq(&memcg->event_list_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Check OOM-Killer is already running under our hierarchy. | 
 |  * If someone is running, return false. | 
 |  */ | 
 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter, *failed = NULL; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) { | 
 | 		if (iter->oom_lock) { | 
 | 			/* | 
 | 			 * this subtree of our hierarchy is already locked | 
 | 			 * so we cannot give a lock. | 
 | 			 */ | 
 | 			failed = iter; | 
 | 			mem_cgroup_iter_break(memcg, iter); | 
 | 			break; | 
 | 		} | 
 | 		iter->oom_lock = true; | 
 | 	} | 
 |  | 
 | 	if (failed) { | 
 | 		/* | 
 | 		 * OK, we failed to lock the whole subtree so we have | 
 | 		 * to clean up what we set up to the failing subtree | 
 | 		 */ | 
 | 		for_each_mem_cgroup_tree(iter, memcg) { | 
 | 			if (iter == failed) { | 
 | 				mem_cgroup_iter_break(memcg, iter); | 
 | 				break; | 
 | 			} | 
 | 			iter->oom_lock = false; | 
 | 		} | 
 | 	} else | 
 | 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | 
 |  | 
 | 	spin_unlock(&memcg_oom_lock); | 
 |  | 
 | 	return !failed; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		iter->oom_lock = false; | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		iter->under_oom++; | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	/* | 
 | 	 * Be careful about under_oom underflows because a child memcg | 
 | 	 * could have been added after mem_cgroup_mark_under_oom. | 
 | 	 */ | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		if (iter->under_oom > 0) | 
 | 			iter->under_oom--; | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 
 |  | 
 | struct oom_wait_info { | 
 | 	struct mem_cgroup *memcg; | 
 | 	wait_queue_entry_t	wait; | 
 | }; | 
 |  | 
 | static int memcg_oom_wake_function(wait_queue_entry_t *wait, | 
 | 	unsigned int mode, int sync, void *arg) | 
 | { | 
 | 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | 
 | 	struct mem_cgroup *oom_wait_memcg; | 
 | 	struct oom_wait_info *oom_wait_info; | 
 |  | 
 | 	oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 
 | 	oom_wait_memcg = oom_wait_info->memcg; | 
 |  | 
 | 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | 
 | 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | 
 | 		return 0; | 
 | 	return autoremove_wake_function(wait, mode, sync, arg); | 
 | } | 
 |  | 
 | void memcg1_oom_recover(struct mem_cgroup *memcg) | 
 | { | 
 | 	/* | 
 | 	 * For the following lockless ->under_oom test, the only required | 
 | 	 * guarantee is that it must see the state asserted by an OOM when | 
 | 	 * this function is called as a result of userland actions | 
 | 	 * triggered by the notification of the OOM.  This is trivially | 
 | 	 * achieved by invoking mem_cgroup_mark_under_oom() before | 
 | 	 * triggering notification. | 
 | 	 */ | 
 | 	if (memcg && memcg->under_oom) | 
 | 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_oom_synchronize - complete memcg OOM handling | 
 |  * @handle: actually kill/wait or just clean up the OOM state | 
 |  * | 
 |  * This has to be called at the end of a page fault if the memcg OOM | 
 |  * handler was enabled. | 
 |  * | 
 |  * Memcg supports userspace OOM handling where failed allocations must | 
 |  * sleep on a waitqueue until the userspace task resolves the | 
 |  * situation.  Sleeping directly in the charge context with all kinds | 
 |  * of locks held is not a good idea, instead we remember an OOM state | 
 |  * in the task and mem_cgroup_oom_synchronize() has to be called at | 
 |  * the end of the page fault to complete the OOM handling. | 
 |  * | 
 |  * Returns %true if an ongoing memcg OOM situation was detected and | 
 |  * completed, %false otherwise. | 
 |  */ | 
 | bool mem_cgroup_oom_synchronize(bool handle) | 
 | { | 
 | 	struct mem_cgroup *memcg = current->memcg_in_oom; | 
 | 	struct oom_wait_info owait; | 
 | 	bool locked; | 
 |  | 
 | 	/* OOM is global, do not handle */ | 
 | 	if (!memcg) | 
 | 		return false; | 
 |  | 
 | 	if (!handle) | 
 | 		goto cleanup; | 
 |  | 
 | 	owait.memcg = memcg; | 
 | 	owait.wait.flags = 0; | 
 | 	owait.wait.func = memcg_oom_wake_function; | 
 | 	owait.wait.private = current; | 
 | 	INIT_LIST_HEAD(&owait.wait.entry); | 
 |  | 
 | 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 
 | 	mem_cgroup_mark_under_oom(memcg); | 
 |  | 
 | 	locked = mem_cgroup_oom_trylock(memcg); | 
 |  | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_notify(memcg); | 
 |  | 
 | 	schedule(); | 
 | 	mem_cgroup_unmark_under_oom(memcg); | 
 | 	finish_wait(&memcg_oom_waitq, &owait.wait); | 
 |  | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_unlock(memcg); | 
 | cleanup: | 
 | 	current->memcg_in_oom = NULL; | 
 | 	css_put(&memcg->css); | 
 | 	return true; | 
 | } | 
 |  | 
 |  | 
 | bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked) | 
 | { | 
 | 	/* | 
 | 	 * We are in the middle of the charge context here, so we | 
 | 	 * don't want to block when potentially sitting on a callstack | 
 | 	 * that holds all kinds of filesystem and mm locks. | 
 | 	 * | 
 | 	 * cgroup1 allows disabling the OOM killer and waiting for outside | 
 | 	 * handling until the charge can succeed; remember the context and put | 
 | 	 * the task to sleep at the end of the page fault when all locks are | 
 | 	 * released. | 
 | 	 * | 
 | 	 * On the other hand, in-kernel OOM killer allows for an async victim | 
 | 	 * memory reclaim (oom_reaper) and that means that we are not solely | 
 | 	 * relying on the oom victim to make a forward progress and we can | 
 | 	 * invoke the oom killer here. | 
 | 	 * | 
 | 	 * Please note that mem_cgroup_out_of_memory might fail to find a | 
 | 	 * victim and then we have to bail out from the charge path. | 
 | 	 */ | 
 | 	if (READ_ONCE(memcg->oom_kill_disable)) { | 
 | 		if (current->in_user_fault) { | 
 | 			css_get(&memcg->css); | 
 | 			current->memcg_in_oom = memcg; | 
 | 		} | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	mem_cgroup_mark_under_oom(memcg); | 
 |  | 
 | 	*locked = mem_cgroup_oom_trylock(memcg); | 
 |  | 
 | 	if (*locked) | 
 | 		mem_cgroup_oom_notify(memcg); | 
 |  | 
 | 	mem_cgroup_unmark_under_oom(memcg); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked) | 
 | { | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_unlock(memcg); | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(memcg_max_mutex); | 
 |  | 
 | static int mem_cgroup_resize_max(struct mem_cgroup *memcg, | 
 | 				 unsigned long max, bool memsw) | 
 | { | 
 | 	bool enlarge = false; | 
 | 	bool drained = false; | 
 | 	int ret; | 
 | 	bool limits_invariant; | 
 | 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; | 
 |  | 
 | 	do { | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		mutex_lock(&memcg_max_mutex); | 
 | 		/* | 
 | 		 * Make sure that the new limit (memsw or memory limit) doesn't | 
 | 		 * break our basic invariant rule memory.max <= memsw.max. | 
 | 		 */ | 
 | 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : | 
 | 					   max <= memcg->memsw.max; | 
 | 		if (!limits_invariant) { | 
 | 			mutex_unlock(&memcg_max_mutex); | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		if (max > counter->max) | 
 | 			enlarge = true; | 
 | 		ret = page_counter_set_max(counter, max); | 
 | 		mutex_unlock(&memcg_max_mutex); | 
 |  | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		if (!drained) { | 
 | 			drain_all_stock(memcg); | 
 | 			drained = true; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, | 
 | 				memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) { | 
 | 			ret = -EBUSY; | 
 | 			break; | 
 | 		} | 
 | 	} while (true); | 
 |  | 
 | 	if (!ret && enlarge) | 
 | 		memcg1_oom_recover(memcg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaims as many pages from the given memcg as possible. | 
 |  * | 
 |  * Caller is responsible for holding css reference for memcg. | 
 |  */ | 
 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | 
 | { | 
 | 	int nr_retries = MAX_RECLAIM_RETRIES; | 
 |  | 
 | 	/* we call try-to-free pages for make this cgroup empty */ | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	drain_all_stock(memcg); | 
 |  | 
 | 	/* try to free all pages in this cgroup */ | 
 | 	while (nr_retries && page_counter_read(&memcg->memory)) { | 
 | 		if (signal_pending(current)) | 
 | 			return -EINTR; | 
 |  | 
 | 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, | 
 | 						  MEMCG_RECLAIM_MAY_SWAP, NULL)) | 
 | 			nr_retries--; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | 
 | 					    char *buf, size_t nbytes, | 
 | 					    loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return -EINVAL; | 
 | 	return mem_cgroup_force_empty(memcg) ?: nbytes; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | 
 | 				     struct cftype *cft) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | 
 | 				      struct cftype *cft, u64 val) | 
 | { | 
 | 	if (val == 1) | 
 | 		return 0; | 
 |  | 
 | 	pr_warn_once("Non-hierarchical mode is deprecated. " | 
 | 		     "Please report your usecase to linux-mm@kvack.org if you " | 
 | 		     "depend on this functionality.\n"); | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | 
 | 			       struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 | 	struct page_counter *counter; | 
 |  | 
 | 	switch (MEMFILE_TYPE(cft->private)) { | 
 | 	case _MEM: | 
 | 		counter = &memcg->memory; | 
 | 		break; | 
 | 	case _MEMSWAP: | 
 | 		counter = &memcg->memsw; | 
 | 		break; | 
 | 	case _KMEM: | 
 | 		counter = &memcg->kmem; | 
 | 		break; | 
 | 	case _TCP: | 
 | 		counter = &memcg->tcpmem; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	switch (MEMFILE_ATTR(cft->private)) { | 
 | 	case RES_USAGE: | 
 | 		if (counter == &memcg->memory) | 
 | 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; | 
 | 		if (counter == &memcg->memsw) | 
 | 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; | 
 | 		return (u64)page_counter_read(counter) * PAGE_SIZE; | 
 | 	case RES_LIMIT: | 
 | 		return (u64)counter->max * PAGE_SIZE; | 
 | 	case RES_MAX_USAGE: | 
 | 		return (u64)counter->watermark * PAGE_SIZE; | 
 | 	case RES_FAILCNT: | 
 | 		return counter->failcnt; | 
 | 	case RES_SOFT_LIMIT: | 
 | 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function doesn't do anything useful. Its only job is to provide a read | 
 |  * handler for a file so that cgroup_file_mode() will add read permissions. | 
 |  */ | 
 | static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, | 
 | 				     __always_unused void *v) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&memcg_max_mutex); | 
 |  | 
 | 	ret = page_counter_set_max(&memcg->tcpmem, max); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (!memcg->tcpmem_active) { | 
 | 		/* | 
 | 		 * The active flag needs to be written after the static_key | 
 | 		 * update. This is what guarantees that the socket activation | 
 | 		 * function is the last one to run. See mem_cgroup_sk_alloc() | 
 | 		 * for details, and note that we don't mark any socket as | 
 | 		 * belonging to this memcg until that flag is up. | 
 | 		 * | 
 | 		 * We need to do this, because static_keys will span multiple | 
 | 		 * sites, but we can't control their order. If we mark a socket | 
 | 		 * as accounted, but the accounting functions are not patched in | 
 | 		 * yet, we'll lose accounting. | 
 | 		 * | 
 | 		 * We never race with the readers in mem_cgroup_sk_alloc(), | 
 | 		 * because when this value change, the code to process it is not | 
 | 		 * patched in yet. | 
 | 		 */ | 
 | 		static_branch_inc(&memcg_sockets_enabled_key); | 
 | 		memcg->tcpmem_active = true; | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&memcg_max_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * The user of this function is... | 
 |  * RES_LIMIT. | 
 |  */ | 
 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | 
 | 				char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	unsigned long nr_pages; | 
 | 	int ret; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	ret = page_counter_memparse(buf, "-1", &nr_pages); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
 | 	case RES_LIMIT: | 
 | 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
 | 		case _MEM: | 
 | 			ret = mem_cgroup_resize_max(memcg, nr_pages, false); | 
 | 			break; | 
 | 		case _MEMSWAP: | 
 | 			ret = mem_cgroup_resize_max(memcg, nr_pages, true); | 
 | 			break; | 
 | 		case _KMEM: | 
 | 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " | 
 | 				     "Writing any value to this file has no effect. " | 
 | 				     "Please report your usecase to linux-mm@kvack.org if you " | 
 | 				     "depend on this functionality.\n"); | 
 | 			ret = 0; | 
 | 			break; | 
 | 		case _TCP: | 
 | 			pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. " | 
 | 				     "Please report your usecase to linux-mm@kvack.org if you " | 
 | 				     "depend on this functionality.\n"); | 
 | 			ret = memcg_update_tcp_max(memcg, nr_pages); | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case RES_SOFT_LIMIT: | 
 | 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) { | 
 | 			ret = -EOPNOTSUPP; | 
 | 		} else { | 
 | 			pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. " | 
 | 				     "Please report your usecase to linux-mm@kvack.org if you " | 
 | 				     "depend on this functionality.\n"); | 
 | 			WRITE_ONCE(memcg->soft_limit, nr_pages); | 
 | 			ret = 0; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	return ret ?: nbytes; | 
 | } | 
 |  | 
 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | 
 | 				size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	struct page_counter *counter; | 
 |  | 
 | 	switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
 | 	case _MEM: | 
 | 		counter = &memcg->memory; | 
 | 		break; | 
 | 	case _MEMSWAP: | 
 | 		counter = &memcg->memsw; | 
 | 		break; | 
 | 	case _KMEM: | 
 | 		counter = &memcg->kmem; | 
 | 		break; | 
 | 	case _TCP: | 
 | 		counter = &memcg->tcpmem; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
 | 	case RES_MAX_USAGE: | 
 | 		page_counter_reset_watermark(counter); | 
 | 		break; | 
 | 	case RES_FAILCNT: | 
 | 		counter->failcnt = 0; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) | 
 | #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) | 
 | #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1) | 
 |  | 
 | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | 
 | 				int nid, unsigned int lru_mask, bool tree) | 
 | { | 
 | 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); | 
 | 	unsigned long nr = 0; | 
 | 	enum lru_list lru; | 
 |  | 
 | 	VM_BUG_ON((unsigned int)nid >= nr_node_ids); | 
 |  | 
 | 	for_each_lru(lru) { | 
 | 		if (!(BIT(lru) & lru_mask)) | 
 | 			continue; | 
 | 		if (tree) | 
 | 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); | 
 | 		else | 
 | 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); | 
 | 	} | 
 | 	return nr; | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | 
 | 					     unsigned int lru_mask, | 
 | 					     bool tree) | 
 | { | 
 | 	unsigned long nr = 0; | 
 | 	enum lru_list lru; | 
 |  | 
 | 	for_each_lru(lru) { | 
 | 		if (!(BIT(lru) & lru_mask)) | 
 | 			continue; | 
 | 		if (tree) | 
 | 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru); | 
 | 		else | 
 | 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); | 
 | 	} | 
 | 	return nr; | 
 | } | 
 |  | 
 | static int memcg_numa_stat_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct numa_stat { | 
 | 		const char *name; | 
 | 		unsigned int lru_mask; | 
 | 	}; | 
 |  | 
 | 	static const struct numa_stat stats[] = { | 
 | 		{ "total", LRU_ALL }, | 
 | 		{ "file", LRU_ALL_FILE }, | 
 | 		{ "anon", LRU_ALL_ANON }, | 
 | 		{ "unevictable", BIT(LRU_UNEVICTABLE) }, | 
 | 	}; | 
 | 	const struct numa_stat *stat; | 
 | 	int nid; | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 |  | 
 | 	mem_cgroup_flush_stats(memcg); | 
 |  | 
 | 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
 | 		seq_printf(m, "%s=%lu", stat->name, | 
 | 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, | 
 | 						   false)); | 
 | 		for_each_node_state(nid, N_MEMORY) | 
 | 			seq_printf(m, " N%d=%lu", nid, | 
 | 				   mem_cgroup_node_nr_lru_pages(memcg, nid, | 
 | 							stat->lru_mask, false)); | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 |  | 
 | 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
 |  | 
 | 		seq_printf(m, "hierarchical_%s=%lu", stat->name, | 
 | 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, | 
 | 						   true)); | 
 | 		for_each_node_state(nid, N_MEMORY) | 
 | 			seq_printf(m, " N%d=%lu", nid, | 
 | 				   mem_cgroup_node_nr_lru_pages(memcg, nid, | 
 | 							stat->lru_mask, true)); | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | static const unsigned int memcg1_stats[] = { | 
 | 	NR_FILE_PAGES, | 
 | 	NR_ANON_MAPPED, | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	NR_ANON_THPS, | 
 | #endif | 
 | 	NR_SHMEM, | 
 | 	NR_FILE_MAPPED, | 
 | 	NR_FILE_DIRTY, | 
 | 	NR_WRITEBACK, | 
 | 	WORKINGSET_REFAULT_ANON, | 
 | 	WORKINGSET_REFAULT_FILE, | 
 | #ifdef CONFIG_SWAP | 
 | 	MEMCG_SWAP, | 
 | 	NR_SWAPCACHE, | 
 | #endif | 
 | }; | 
 |  | 
 | static const char *const memcg1_stat_names[] = { | 
 | 	"cache", | 
 | 	"rss", | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	"rss_huge", | 
 | #endif | 
 | 	"shmem", | 
 | 	"mapped_file", | 
 | 	"dirty", | 
 | 	"writeback", | 
 | 	"workingset_refault_anon", | 
 | 	"workingset_refault_file", | 
 | #ifdef CONFIG_SWAP | 
 | 	"swap", | 
 | 	"swapcached", | 
 | #endif | 
 | }; | 
 |  | 
 | /* Universal VM events cgroup1 shows, original sort order */ | 
 | static const unsigned int memcg1_events[] = { | 
 | 	PGPGIN, | 
 | 	PGPGOUT, | 
 | 	PGFAULT, | 
 | 	PGMAJFAULT, | 
 | }; | 
 |  | 
 | void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) | 
 | { | 
 | 	unsigned long memory, memsw; | 
 | 	struct mem_cgroup *mi; | 
 | 	unsigned int i; | 
 |  | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); | 
 |  | 
 | 	mem_cgroup_flush_stats(memcg); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
 | 		unsigned long nr; | 
 |  | 
 | 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); | 
 | 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
 | 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), | 
 | 			       memcg_events_local(memcg, memcg1_events[i])); | 
 |  | 
 | 	for (i = 0; i < NR_LRU_LISTS; i++) | 
 | 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i), | 
 | 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) * | 
 | 			       PAGE_SIZE); | 
 |  | 
 | 	/* Hierarchical information */ | 
 | 	memory = memsw = PAGE_COUNTER_MAX; | 
 | 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | 
 | 		memory = min(memory, READ_ONCE(mi->memory.max)); | 
 | 		memsw = min(memsw, READ_ONCE(mi->memsw.max)); | 
 | 	} | 
 | 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n", | 
 | 		       (u64)memory * PAGE_SIZE); | 
 | 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", | 
 | 		       (u64)memsw * PAGE_SIZE); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
 | 		unsigned long nr; | 
 |  | 
 | 		nr = memcg_page_state_output(memcg, memcg1_stats[i]); | 
 | 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], | 
 | 			       (u64)nr); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
 | 		seq_buf_printf(s, "total_%s %llu\n", | 
 | 			       vm_event_name(memcg1_events[i]), | 
 | 			       (u64)memcg_events(memcg, memcg1_events[i])); | 
 |  | 
 | 	for (i = 0; i < NR_LRU_LISTS; i++) | 
 | 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), | 
 | 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * | 
 | 			       PAGE_SIZE); | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	{ | 
 | 		pg_data_t *pgdat; | 
 | 		struct mem_cgroup_per_node *mz; | 
 | 		unsigned long anon_cost = 0; | 
 | 		unsigned long file_cost = 0; | 
 |  | 
 | 		for_each_online_pgdat(pgdat) { | 
 | 			mz = memcg->nodeinfo[pgdat->node_id]; | 
 |  | 
 | 			anon_cost += mz->lruvec.anon_cost; | 
 | 			file_cost += mz->lruvec.file_cost; | 
 | 		} | 
 | 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost); | 
 | 		seq_buf_printf(s, "file_cost %lu\n", file_cost); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | 
 | 				      struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	return mem_cgroup_swappiness(memcg); | 
 | } | 
 |  | 
 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | 
 | 				       struct cftype *cft, u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	if (val > MAX_SWAPPINESS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!mem_cgroup_is_root(memcg)) { | 
 | 		pr_info_once("Per memcg swappiness does not exist in cgroup v2. " | 
 | 			     "See memory.reclaim or memory.swap.max there\n "); | 
 | 		WRITE_ONCE(memcg->swappiness, val); | 
 | 	} else | 
 | 		WRITE_ONCE(vm_swappiness, val); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); | 
 |  | 
 | 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); | 
 | 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); | 
 | 	seq_printf(sf, "oom_kill %lu\n", | 
 | 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | 
 | 	struct cftype *cft, u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	pr_warn_once("oom_control is deprecated and will be removed. " | 
 | 		     "Please report your usecase to linux-mm-@kvack.org if you " | 
 | 		     "depend on this functionality.\n"); | 
 |  | 
 | 	/* cannot set to root cgroup and only 0 and 1 are allowed */ | 
 | 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	WRITE_ONCE(memcg->oom_kill_disable, val); | 
 | 	if (!val) | 
 | 		memcg1_oom_recover(memcg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static int mem_cgroup_slab_show(struct seq_file *m, void *p) | 
 | { | 
 | 	/* | 
 | 	 * Deprecated. | 
 | 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py . | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | struct cftype mem_cgroup_legacy_files[] = { | 
 | 	{ | 
 | 		.name = "usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "soft_limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.seq_show = memory_stat_show, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "force_empty", | 
 | 		.write = mem_cgroup_force_empty_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "use_hierarchy", | 
 | 		.write_u64 = mem_cgroup_hierarchy_write, | 
 | 		.read_u64 = mem_cgroup_hierarchy_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "cgroup.event_control",		/* XXX: for compat */ | 
 | 		.write = memcg_write_event_control, | 
 | 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "swappiness", | 
 | 		.read_u64 = mem_cgroup_swappiness_read, | 
 | 		.write_u64 = mem_cgroup_swappiness_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "move_charge_at_immigrate", | 
 | 		.read_u64 = mem_cgroup_move_charge_read, | 
 | 		.write_u64 = mem_cgroup_move_charge_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "oom_control", | 
 | 		.seq_show = mem_cgroup_oom_control_read, | 
 | 		.write_u64 = mem_cgroup_oom_control_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "pressure_level", | 
 | 		.seq_show = mem_cgroup_dummy_seq_show, | 
 | 	}, | 
 | #ifdef CONFIG_NUMA | 
 | 	{ | 
 | 		.name = "numa_stat", | 
 | 		.seq_show = memcg_numa_stat_show, | 
 | 	}, | 
 | #endif | 
 | 	{ | 
 | 		.name = "kmem.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	{ | 
 | 		.name = "kmem.slabinfo", | 
 | 		.seq_show = mem_cgroup_slab_show, | 
 | 	}, | 
 | #endif | 
 | 	{ | 
 | 		.name = "kmem.tcp.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.tcp.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.tcp.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.tcp.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ },	/* terminate */ | 
 | }; | 
 |  | 
 | struct cftype memsw_files[] = { | 
 | 	{ | 
 | 		.name = "memsw.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ },	/* terminate */ | 
 | }; | 
 |  | 
 | void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages) | 
 | { | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
 | 		if (nr_pages > 0) | 
 | 			page_counter_charge(&memcg->kmem, nr_pages); | 
 | 		else | 
 | 			page_counter_uncharge(&memcg->kmem, -nr_pages); | 
 | 	} | 
 | } | 
 |  | 
 | bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, | 
 | 			 gfp_t gfp_mask) | 
 | { | 
 | 	struct page_counter *fail; | 
 |  | 
 | 	if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { | 
 | 		memcg->tcpmem_pressure = 0; | 
 | 		return true; | 
 | 	} | 
 | 	memcg->tcpmem_pressure = 1; | 
 | 	if (gfp_mask & __GFP_NOFAIL) { | 
 | 		page_counter_charge(&memcg->tcpmem, nr_pages); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | bool memcg1_alloc_events(struct mem_cgroup *memcg) | 
 | { | 
 | 	memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu, | 
 | 						GFP_KERNEL_ACCOUNT); | 
 | 	return !!memcg->events_percpu; | 
 | } | 
 |  | 
 | void memcg1_free_events(struct mem_cgroup *memcg) | 
 | { | 
 | 	free_percpu(memcg->events_percpu); | 
 | } | 
 |  | 
 | static int __init memcg1_init(void) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_node(node) { | 
 | 		struct mem_cgroup_tree_per_node *rtpn; | 
 |  | 
 | 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); | 
 |  | 
 | 		rtpn->rb_root = RB_ROOT; | 
 | 		rtpn->rb_rightmost = NULL; | 
 | 		spin_lock_init(&rtpn->lock); | 
 | 		soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(memcg1_init); |