| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * zswap.c - zswap driver file | 
 |  * | 
 |  * zswap is a cache that takes pages that are in the process | 
 |  * of being swapped out and attempts to compress and store them in a | 
 |  * RAM-based memory pool.  This can result in a significant I/O reduction on | 
 |  * the swap device and, in the case where decompressing from RAM is faster | 
 |  * than reading from the swap device, can also improve workload performance. | 
 |  * | 
 |  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com> | 
 | */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/types.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/zpool.h> | 
 | #include <crypto/acompress.h> | 
 | #include <linux/zswap.h> | 
 | #include <linux/mm_types.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/list_lru.h> | 
 |  | 
 | #include "swap.h" | 
 | #include "internal.h" | 
 |  | 
 | /********************************* | 
 | * statistics | 
 | **********************************/ | 
 | /* The number of compressed pages currently stored in zswap */ | 
 | atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0); | 
 |  | 
 | /* | 
 |  * The statistics below are not protected from concurrent access for | 
 |  * performance reasons so they may not be a 100% accurate.  However, | 
 |  * they do provide useful information on roughly how many times a | 
 |  * certain event is occurring. | 
 | */ | 
 |  | 
 | /* Pool limit was hit (see zswap_max_pool_percent) */ | 
 | static u64 zswap_pool_limit_hit; | 
 | /* Pages written back when pool limit was reached */ | 
 | static u64 zswap_written_back_pages; | 
 | /* Store failed due to a reclaim failure after pool limit was reached */ | 
 | static u64 zswap_reject_reclaim_fail; | 
 | /* Store failed due to compression algorithm failure */ | 
 | static u64 zswap_reject_compress_fail; | 
 | /* Compressed page was too big for the allocator to (optimally) store */ | 
 | static u64 zswap_reject_compress_poor; | 
 | /* Load or writeback failed due to decompression failure */ | 
 | static u64 zswap_decompress_fail; | 
 | /* Store failed because underlying allocator could not get memory */ | 
 | static u64 zswap_reject_alloc_fail; | 
 | /* Store failed because the entry metadata could not be allocated (rare) */ | 
 | static u64 zswap_reject_kmemcache_fail; | 
 |  | 
 | /* Shrinker work queue */ | 
 | static struct workqueue_struct *shrink_wq; | 
 | /* Pool limit was hit, we need to calm down */ | 
 | static bool zswap_pool_reached_full; | 
 |  | 
 | /********************************* | 
 | * tunables | 
 | **********************************/ | 
 |  | 
 | #define ZSWAP_PARAM_UNSET "" | 
 |  | 
 | static int zswap_setup(void); | 
 |  | 
 | /* Enable/disable zswap */ | 
 | static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); | 
 | static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); | 
 | static int zswap_enabled_param_set(const char *, | 
 | 				   const struct kernel_param *); | 
 | static const struct kernel_param_ops zswap_enabled_param_ops = { | 
 | 	.set =		zswap_enabled_param_set, | 
 | 	.get =		param_get_bool, | 
 | }; | 
 | module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); | 
 |  | 
 | /* Crypto compressor to use */ | 
 | static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; | 
 | static int zswap_compressor_param_set(const char *, | 
 | 				      const struct kernel_param *); | 
 | static const struct kernel_param_ops zswap_compressor_param_ops = { | 
 | 	.set =		zswap_compressor_param_set, | 
 | 	.get =		param_get_charp, | 
 | 	.free =		param_free_charp, | 
 | }; | 
 | module_param_cb(compressor, &zswap_compressor_param_ops, | 
 | 		&zswap_compressor, 0644); | 
 |  | 
 | /* Compressed storage zpool to use */ | 
 | static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; | 
 | static int zswap_zpool_param_set(const char *, const struct kernel_param *); | 
 | static const struct kernel_param_ops zswap_zpool_param_ops = { | 
 | 	.set =		zswap_zpool_param_set, | 
 | 	.get =		param_get_charp, | 
 | 	.free =		param_free_charp, | 
 | }; | 
 | module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); | 
 |  | 
 | /* The maximum percentage of memory that the compressed pool can occupy */ | 
 | static unsigned int zswap_max_pool_percent = 20; | 
 | module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); | 
 |  | 
 | /* The threshold for accepting new pages after the max_pool_percent was hit */ | 
 | static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ | 
 | module_param_named(accept_threshold_percent, zswap_accept_thr_percent, | 
 | 		   uint, 0644); | 
 |  | 
 | /* Enable/disable memory pressure-based shrinker. */ | 
 | static bool zswap_shrinker_enabled = IS_ENABLED( | 
 | 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); | 
 | module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); | 
 |  | 
 | bool zswap_is_enabled(void) | 
 | { | 
 | 	return zswap_enabled; | 
 | } | 
 |  | 
 | bool zswap_never_enabled(void) | 
 | { | 
 | 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); | 
 | } | 
 |  | 
 | /********************************* | 
 | * data structures | 
 | **********************************/ | 
 |  | 
 | struct crypto_acomp_ctx { | 
 | 	struct crypto_acomp *acomp; | 
 | 	struct acomp_req *req; | 
 | 	struct crypto_wait wait; | 
 | 	u8 *buffer; | 
 | 	struct mutex mutex; | 
 | 	bool is_sleepable; | 
 | }; | 
 |  | 
 | /* | 
 |  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. | 
 |  * The only case where lru_lock is not acquired while holding tree.lock is | 
 |  * when a zswap_entry is taken off the lru for writeback, in that case it | 
 |  * needs to be verified that it's still valid in the tree. | 
 |  */ | 
 | struct zswap_pool { | 
 | 	struct zpool *zpool; | 
 | 	struct crypto_acomp_ctx __percpu *acomp_ctx; | 
 | 	struct percpu_ref ref; | 
 | 	struct list_head list; | 
 | 	struct work_struct release_work; | 
 | 	struct hlist_node node; | 
 | 	char tfm_name[CRYPTO_MAX_ALG_NAME]; | 
 | }; | 
 |  | 
 | /* Global LRU lists shared by all zswap pools. */ | 
 | static struct list_lru zswap_list_lru; | 
 |  | 
 | /* The lock protects zswap_next_shrink updates. */ | 
 | static DEFINE_SPINLOCK(zswap_shrink_lock); | 
 | static struct mem_cgroup *zswap_next_shrink; | 
 | static struct work_struct zswap_shrink_work; | 
 | static struct shrinker *zswap_shrinker; | 
 |  | 
 | /* | 
 |  * struct zswap_entry | 
 |  * | 
 |  * This structure contains the metadata for tracking a single compressed | 
 |  * page within zswap. | 
 |  * | 
 |  * swpentry - associated swap entry, the offset indexes into the red-black tree | 
 |  * length - the length in bytes of the compressed page data.  Needed during | 
 |  *          decompression. | 
 |  * referenced - true if the entry recently entered the zswap pool. Unset by the | 
 |  *              writeback logic. The entry is only reclaimed by the writeback | 
 |  *              logic if referenced is unset. See comments in the shrinker | 
 |  *              section for context. | 
 |  * pool - the zswap_pool the entry's data is in | 
 |  * handle - zpool allocation handle that stores the compressed page data | 
 |  * objcg - the obj_cgroup that the compressed memory is charged to | 
 |  * lru - handle to the pool's lru used to evict pages. | 
 |  */ | 
 | struct zswap_entry { | 
 | 	swp_entry_t swpentry; | 
 | 	unsigned int length; | 
 | 	bool referenced; | 
 | 	struct zswap_pool *pool; | 
 | 	unsigned long handle; | 
 | 	struct obj_cgroup *objcg; | 
 | 	struct list_head lru; | 
 | }; | 
 |  | 
 | static struct xarray *zswap_trees[MAX_SWAPFILES]; | 
 | static unsigned int nr_zswap_trees[MAX_SWAPFILES]; | 
 |  | 
 | /* RCU-protected iteration */ | 
 | static LIST_HEAD(zswap_pools); | 
 | /* protects zswap_pools list modification */ | 
 | static DEFINE_SPINLOCK(zswap_pools_lock); | 
 | /* pool counter to provide unique names to zpool */ | 
 | static atomic_t zswap_pools_count = ATOMIC_INIT(0); | 
 |  | 
 | enum zswap_init_type { | 
 | 	ZSWAP_UNINIT, | 
 | 	ZSWAP_INIT_SUCCEED, | 
 | 	ZSWAP_INIT_FAILED | 
 | }; | 
 |  | 
 | static enum zswap_init_type zswap_init_state; | 
 |  | 
 | /* used to ensure the integrity of initialization */ | 
 | static DEFINE_MUTEX(zswap_init_lock); | 
 |  | 
 | /* init completed, but couldn't create the initial pool */ | 
 | static bool zswap_has_pool; | 
 |  | 
 | /********************************* | 
 | * helpers and fwd declarations | 
 | **********************************/ | 
 |  | 
 | static inline struct xarray *swap_zswap_tree(swp_entry_t swp) | 
 | { | 
 | 	return &zswap_trees[swp_type(swp)][swp_offset(swp) | 
 | 		>> SWAP_ADDRESS_SPACE_SHIFT]; | 
 | } | 
 |  | 
 | #define zswap_pool_debug(msg, p)				\ | 
 | 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\ | 
 | 		 zpool_get_type((p)->zpool)) | 
 |  | 
 | /********************************* | 
 | * pool functions | 
 | **********************************/ | 
 | static void __zswap_pool_empty(struct percpu_ref *ref); | 
 |  | 
 | static struct zswap_pool *zswap_pool_create(char *type, char *compressor) | 
 | { | 
 | 	struct zswap_pool *pool; | 
 | 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */ | 
 | 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; | 
 | 	int ret, cpu; | 
 |  | 
 | 	if (!zswap_has_pool) { | 
 | 		/* if either are unset, pool initialization failed, and we | 
 | 		 * need both params to be set correctly before trying to | 
 | 		 * create a pool. | 
 | 		 */ | 
 | 		if (!strcmp(type, ZSWAP_PARAM_UNSET)) | 
 | 			return NULL; | 
 | 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
 | 	if (!pool) | 
 | 		return NULL; | 
 |  | 
 | 	/* unique name for each pool specifically required by zsmalloc */ | 
 | 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); | 
 | 	pool->zpool = zpool_create_pool(type, name, gfp); | 
 | 	if (!pool->zpool) { | 
 | 		pr_err("%s zpool not available\n", type); | 
 | 		goto error; | 
 | 	} | 
 | 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); | 
 |  | 
 | 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); | 
 |  | 
 | 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); | 
 | 	if (!pool->acomp_ctx) { | 
 | 		pr_err("percpu alloc failed\n"); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex); | 
 |  | 
 | 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, | 
 | 				       &pool->node); | 
 | 	if (ret) | 
 | 		goto error; | 
 |  | 
 | 	/* being the current pool takes 1 ref; this func expects the | 
 | 	 * caller to always add the new pool as the current pool | 
 | 	 */ | 
 | 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, | 
 | 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); | 
 | 	if (ret) | 
 | 		goto ref_fail; | 
 | 	INIT_LIST_HEAD(&pool->list); | 
 |  | 
 | 	zswap_pool_debug("created", pool); | 
 |  | 
 | 	return pool; | 
 |  | 
 | ref_fail: | 
 | 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); | 
 | error: | 
 | 	if (pool->acomp_ctx) | 
 | 		free_percpu(pool->acomp_ctx); | 
 | 	if (pool->zpool) | 
 | 		zpool_destroy_pool(pool->zpool); | 
 | 	kfree(pool); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct zswap_pool *__zswap_pool_create_fallback(void) | 
 | { | 
 | 	bool has_comp, has_zpool; | 
 |  | 
 | 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0); | 
 | 	if (!has_comp && strcmp(zswap_compressor, | 
 | 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { | 
 | 		pr_err("compressor %s not available, using default %s\n", | 
 | 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); | 
 | 		param_free_charp(&zswap_compressor); | 
 | 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; | 
 | 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0); | 
 | 	} | 
 | 	if (!has_comp) { | 
 | 		pr_err("default compressor %s not available\n", | 
 | 		       zswap_compressor); | 
 | 		param_free_charp(&zswap_compressor); | 
 | 		zswap_compressor = ZSWAP_PARAM_UNSET; | 
 | 	} | 
 |  | 
 | 	has_zpool = zpool_has_pool(zswap_zpool_type); | 
 | 	if (!has_zpool && strcmp(zswap_zpool_type, | 
 | 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) { | 
 | 		pr_err("zpool %s not available, using default %s\n", | 
 | 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT); | 
 | 		param_free_charp(&zswap_zpool_type); | 
 | 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; | 
 | 		has_zpool = zpool_has_pool(zswap_zpool_type); | 
 | 	} | 
 | 	if (!has_zpool) { | 
 | 		pr_err("default zpool %s not available\n", | 
 | 		       zswap_zpool_type); | 
 | 		param_free_charp(&zswap_zpool_type); | 
 | 		zswap_zpool_type = ZSWAP_PARAM_UNSET; | 
 | 	} | 
 |  | 
 | 	if (!has_comp || !has_zpool) | 
 | 		return NULL; | 
 |  | 
 | 	return zswap_pool_create(zswap_zpool_type, zswap_compressor); | 
 | } | 
 |  | 
 | static void zswap_pool_destroy(struct zswap_pool *pool) | 
 | { | 
 | 	zswap_pool_debug("destroying", pool); | 
 |  | 
 | 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); | 
 | 	free_percpu(pool->acomp_ctx); | 
 |  | 
 | 	zpool_destroy_pool(pool->zpool); | 
 | 	kfree(pool); | 
 | } | 
 |  | 
 | static void __zswap_pool_release(struct work_struct *work) | 
 | { | 
 | 	struct zswap_pool *pool = container_of(work, typeof(*pool), | 
 | 						release_work); | 
 |  | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	/* nobody should have been able to get a ref... */ | 
 | 	WARN_ON(!percpu_ref_is_zero(&pool->ref)); | 
 | 	percpu_ref_exit(&pool->ref); | 
 |  | 
 | 	/* pool is now off zswap_pools list and has no references. */ | 
 | 	zswap_pool_destroy(pool); | 
 | } | 
 |  | 
 | static struct zswap_pool *zswap_pool_current(void); | 
 |  | 
 | static void __zswap_pool_empty(struct percpu_ref *ref) | 
 | { | 
 | 	struct zswap_pool *pool; | 
 |  | 
 | 	pool = container_of(ref, typeof(*pool), ref); | 
 |  | 
 | 	spin_lock_bh(&zswap_pools_lock); | 
 |  | 
 | 	WARN_ON(pool == zswap_pool_current()); | 
 |  | 
 | 	list_del_rcu(&pool->list); | 
 |  | 
 | 	INIT_WORK(&pool->release_work, __zswap_pool_release); | 
 | 	schedule_work(&pool->release_work); | 
 |  | 
 | 	spin_unlock_bh(&zswap_pools_lock); | 
 | } | 
 |  | 
 | static int __must_check zswap_pool_tryget(struct zswap_pool *pool) | 
 | { | 
 | 	if (!pool) | 
 | 		return 0; | 
 |  | 
 | 	return percpu_ref_tryget(&pool->ref); | 
 | } | 
 |  | 
 | /* The caller must already have a reference. */ | 
 | static void zswap_pool_get(struct zswap_pool *pool) | 
 | { | 
 | 	percpu_ref_get(&pool->ref); | 
 | } | 
 |  | 
 | static void zswap_pool_put(struct zswap_pool *pool) | 
 | { | 
 | 	percpu_ref_put(&pool->ref); | 
 | } | 
 |  | 
 | static struct zswap_pool *__zswap_pool_current(void) | 
 | { | 
 | 	struct zswap_pool *pool; | 
 |  | 
 | 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); | 
 | 	WARN_ONCE(!pool && zswap_has_pool, | 
 | 		  "%s: no page storage pool!\n", __func__); | 
 |  | 
 | 	return pool; | 
 | } | 
 |  | 
 | static struct zswap_pool *zswap_pool_current(void) | 
 | { | 
 | 	assert_spin_locked(&zswap_pools_lock); | 
 |  | 
 | 	return __zswap_pool_current(); | 
 | } | 
 |  | 
 | static struct zswap_pool *zswap_pool_current_get(void) | 
 | { | 
 | 	struct zswap_pool *pool; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	pool = __zswap_pool_current(); | 
 | 	if (!zswap_pool_tryget(pool)) | 
 | 		pool = NULL; | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return pool; | 
 | } | 
 |  | 
 | /* type and compressor must be null-terminated */ | 
 | static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) | 
 | { | 
 | 	struct zswap_pool *pool; | 
 |  | 
 | 	assert_spin_locked(&zswap_pools_lock); | 
 |  | 
 | 	list_for_each_entry_rcu(pool, &zswap_pools, list) { | 
 | 		if (strcmp(pool->tfm_name, compressor)) | 
 | 			continue; | 
 | 		if (strcmp(zpool_get_type(pool->zpool), type)) | 
 | 			continue; | 
 | 		/* if we can't get it, it's about to be destroyed */ | 
 | 		if (!zswap_pool_tryget(pool)) | 
 | 			continue; | 
 | 		return pool; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static unsigned long zswap_max_pages(void) | 
 | { | 
 | 	return totalram_pages() * zswap_max_pool_percent / 100; | 
 | } | 
 |  | 
 | static unsigned long zswap_accept_thr_pages(void) | 
 | { | 
 | 	return zswap_max_pages() * zswap_accept_thr_percent / 100; | 
 | } | 
 |  | 
 | unsigned long zswap_total_pages(void) | 
 | { | 
 | 	struct zswap_pool *pool; | 
 | 	unsigned long total = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(pool, &zswap_pools, list) | 
 | 		total += zpool_get_total_pages(pool->zpool); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return total; | 
 | } | 
 |  | 
 | static bool zswap_check_limits(void) | 
 | { | 
 | 	unsigned long cur_pages = zswap_total_pages(); | 
 | 	unsigned long max_pages = zswap_max_pages(); | 
 |  | 
 | 	if (cur_pages >= max_pages) { | 
 | 		zswap_pool_limit_hit++; | 
 | 		zswap_pool_reached_full = true; | 
 | 	} else if (zswap_pool_reached_full && | 
 | 		   cur_pages <= zswap_accept_thr_pages()) { | 
 | 			zswap_pool_reached_full = false; | 
 | 	} | 
 | 	return zswap_pool_reached_full; | 
 | } | 
 |  | 
 | /********************************* | 
 | * param callbacks | 
 | **********************************/ | 
 |  | 
 | static bool zswap_pool_changed(const char *s, const struct kernel_param *kp) | 
 | { | 
 | 	/* no change required */ | 
 | 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* val must be a null-terminated string */ | 
 | static int __zswap_param_set(const char *val, const struct kernel_param *kp, | 
 | 			     char *type, char *compressor) | 
 | { | 
 | 	struct zswap_pool *pool, *put_pool = NULL; | 
 | 	char *s = strstrip((char *)val); | 
 | 	int ret = 0; | 
 | 	bool new_pool = false; | 
 |  | 
 | 	mutex_lock(&zswap_init_lock); | 
 | 	switch (zswap_init_state) { | 
 | 	case ZSWAP_UNINIT: | 
 | 		/* if this is load-time (pre-init) param setting, | 
 | 		 * don't create a pool; that's done during init. | 
 | 		 */ | 
 | 		ret = param_set_charp(s, kp); | 
 | 		break; | 
 | 	case ZSWAP_INIT_SUCCEED: | 
 | 		new_pool = zswap_pool_changed(s, kp); | 
 | 		break; | 
 | 	case ZSWAP_INIT_FAILED: | 
 | 		pr_err("can't set param, initialization failed\n"); | 
 | 		ret = -ENODEV; | 
 | 	} | 
 | 	mutex_unlock(&zswap_init_lock); | 
 |  | 
 | 	/* no need to create a new pool, return directly */ | 
 | 	if (!new_pool) | 
 | 		return ret; | 
 |  | 
 | 	if (!type) { | 
 | 		if (!zpool_has_pool(s)) { | 
 | 			pr_err("zpool %s not available\n", s); | 
 | 			return -ENOENT; | 
 | 		} | 
 | 		type = s; | 
 | 	} else if (!compressor) { | 
 | 		if (!crypto_has_acomp(s, 0, 0)) { | 
 | 			pr_err("compressor %s not available\n", s); | 
 | 			return -ENOENT; | 
 | 		} | 
 | 		compressor = s; | 
 | 	} else { | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_lock_bh(&zswap_pools_lock); | 
 |  | 
 | 	pool = zswap_pool_find_get(type, compressor); | 
 | 	if (pool) { | 
 | 		zswap_pool_debug("using existing", pool); | 
 | 		WARN_ON(pool == zswap_pool_current()); | 
 | 		list_del_rcu(&pool->list); | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&zswap_pools_lock); | 
 |  | 
 | 	if (!pool) | 
 | 		pool = zswap_pool_create(type, compressor); | 
 | 	else { | 
 | 		/* | 
 | 		 * Restore the initial ref dropped by percpu_ref_kill() | 
 | 		 * when the pool was decommissioned and switch it again | 
 | 		 * to percpu mode. | 
 | 		 */ | 
 | 		percpu_ref_resurrect(&pool->ref); | 
 |  | 
 | 		/* Drop the ref from zswap_pool_find_get(). */ | 
 | 		zswap_pool_put(pool); | 
 | 	} | 
 |  | 
 | 	if (pool) | 
 | 		ret = param_set_charp(s, kp); | 
 | 	else | 
 | 		ret = -EINVAL; | 
 |  | 
 | 	spin_lock_bh(&zswap_pools_lock); | 
 |  | 
 | 	if (!ret) { | 
 | 		put_pool = zswap_pool_current(); | 
 | 		list_add_rcu(&pool->list, &zswap_pools); | 
 | 		zswap_has_pool = true; | 
 | 	} else if (pool) { | 
 | 		/* add the possibly pre-existing pool to the end of the pools | 
 | 		 * list; if it's new (and empty) then it'll be removed and | 
 | 		 * destroyed by the put after we drop the lock | 
 | 		 */ | 
 | 		list_add_tail_rcu(&pool->list, &zswap_pools); | 
 | 		put_pool = pool; | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&zswap_pools_lock); | 
 |  | 
 | 	if (!zswap_has_pool && !pool) { | 
 | 		/* if initial pool creation failed, and this pool creation also | 
 | 		 * failed, maybe both compressor and zpool params were bad. | 
 | 		 * Allow changing this param, so pool creation will succeed | 
 | 		 * when the other param is changed. We already verified this | 
 | 		 * param is ok in the zpool_has_pool() or crypto_has_acomp() | 
 | 		 * checks above. | 
 | 		 */ | 
 | 		ret = param_set_charp(s, kp); | 
 | 	} | 
 |  | 
 | 	/* drop the ref from either the old current pool, | 
 | 	 * or the new pool we failed to add | 
 | 	 */ | 
 | 	if (put_pool) | 
 | 		percpu_ref_kill(&put_pool->ref); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int zswap_compressor_param_set(const char *val, | 
 | 				      const struct kernel_param *kp) | 
 | { | 
 | 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL); | 
 | } | 
 |  | 
 | static int zswap_zpool_param_set(const char *val, | 
 | 				 const struct kernel_param *kp) | 
 | { | 
 | 	return __zswap_param_set(val, kp, NULL, zswap_compressor); | 
 | } | 
 |  | 
 | static int zswap_enabled_param_set(const char *val, | 
 | 				   const struct kernel_param *kp) | 
 | { | 
 | 	int ret = -ENODEV; | 
 |  | 
 | 	/* if this is load-time (pre-init) param setting, only set param. */ | 
 | 	if (system_state != SYSTEM_RUNNING) | 
 | 		return param_set_bool(val, kp); | 
 |  | 
 | 	mutex_lock(&zswap_init_lock); | 
 | 	switch (zswap_init_state) { | 
 | 	case ZSWAP_UNINIT: | 
 | 		if (zswap_setup()) | 
 | 			break; | 
 | 		fallthrough; | 
 | 	case ZSWAP_INIT_SUCCEED: | 
 | 		if (!zswap_has_pool) | 
 | 			pr_err("can't enable, no pool configured\n"); | 
 | 		else | 
 | 			ret = param_set_bool(val, kp); | 
 | 		break; | 
 | 	case ZSWAP_INIT_FAILED: | 
 | 		pr_err("can't enable, initialization failed\n"); | 
 | 	} | 
 | 	mutex_unlock(&zswap_init_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /********************************* | 
 | * lru functions | 
 | **********************************/ | 
 |  | 
 | /* should be called under RCU */ | 
 | #ifdef CONFIG_MEMCG | 
 | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | 
 | { | 
 | 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; | 
 | } | 
 | #else | 
 | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | static inline int entry_to_nid(struct zswap_entry *entry) | 
 | { | 
 | 	return page_to_nid(virt_to_page(entry)); | 
 | } | 
 |  | 
 | static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) | 
 | { | 
 | 	int nid = entry_to_nid(entry); | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	/* | 
 | 	 * Note that it is safe to use rcu_read_lock() here, even in the face of | 
 | 	 * concurrent memcg offlining: | 
 | 	 * | 
 | 	 * 1. list_lru_add() is called before list_lru_one is dead. The | 
 | 	 *    new entry will be reparented to memcg's parent's list_lru. | 
 | 	 * 2. list_lru_add() is called after list_lru_one is dead. The | 
 | 	 *    new entry will be added directly to memcg's parent's list_lru. | 
 | 	 * | 
 | 	 * Similar reasoning holds for list_lru_del(). | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_entry(entry); | 
 | 	/* will always succeed */ | 
 | 	list_lru_add(list_lru, &entry->lru, nid, memcg); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) | 
 | { | 
 | 	int nid = entry_to_nid(entry); | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_entry(entry); | 
 | 	/* will always succeed */ | 
 | 	list_lru_del(list_lru, &entry->lru, nid, memcg); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void zswap_lruvec_state_init(struct lruvec *lruvec) | 
 | { | 
 | 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0); | 
 | } | 
 |  | 
 | void zswap_folio_swapin(struct folio *folio) | 
 | { | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	if (folio) { | 
 | 		lruvec = folio_lruvec(folio); | 
 | 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function should be called when a memcg is being offlined. | 
 |  * | 
 |  * Since the global shrinker shrink_worker() may hold a reference | 
 |  * of the memcg, we must check and release the reference in | 
 |  * zswap_next_shrink. | 
 |  * | 
 |  * shrink_worker() must handle the case where this function releases | 
 |  * the reference of memcg being shrunk. | 
 |  */ | 
 | void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) | 
 | { | 
 | 	/* lock out zswap shrinker walking memcg tree */ | 
 | 	spin_lock(&zswap_shrink_lock); | 
 | 	if (zswap_next_shrink == memcg) { | 
 | 		do { | 
 | 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); | 
 | 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink)); | 
 | 	} | 
 | 	spin_unlock(&zswap_shrink_lock); | 
 | } | 
 |  | 
 | /********************************* | 
 | * zswap entry functions | 
 | **********************************/ | 
 | static struct kmem_cache *zswap_entry_cache; | 
 |  | 
 | static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) | 
 | { | 
 | 	struct zswap_entry *entry; | 
 | 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); | 
 | 	if (!entry) | 
 | 		return NULL; | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void zswap_entry_cache_free(struct zswap_entry *entry) | 
 | { | 
 | 	kmem_cache_free(zswap_entry_cache, entry); | 
 | } | 
 |  | 
 | /* | 
 |  * Carries out the common pattern of freeing and entry's zpool allocation, | 
 |  * freeing the entry itself, and decrementing the number of stored pages. | 
 |  */ | 
 | static void zswap_entry_free(struct zswap_entry *entry) | 
 | { | 
 | 	zswap_lru_del(&zswap_list_lru, entry); | 
 | 	zpool_free(entry->pool->zpool, entry->handle); | 
 | 	zswap_pool_put(entry->pool); | 
 | 	if (entry->objcg) { | 
 | 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length); | 
 | 		obj_cgroup_put(entry->objcg); | 
 | 	} | 
 | 	zswap_entry_cache_free(entry); | 
 | 	atomic_long_dec(&zswap_stored_pages); | 
 | } | 
 |  | 
 | /********************************* | 
 | * compressed storage functions | 
 | **********************************/ | 
 | static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) | 
 | { | 
 | 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | 
 | 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | 
 | 	struct crypto_acomp *acomp = NULL; | 
 | 	struct acomp_req *req = NULL; | 
 | 	u8 *buffer = NULL; | 
 | 	int ret; | 
 |  | 
 | 	buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); | 
 | 	if (!buffer) { | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); | 
 | 	if (IS_ERR(acomp)) { | 
 | 		pr_err("could not alloc crypto acomp %s : %ld\n", | 
 | 				pool->tfm_name, PTR_ERR(acomp)); | 
 | 		ret = PTR_ERR(acomp); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	req = acomp_request_alloc(acomp); | 
 | 	if (!req) { | 
 | 		pr_err("could not alloc crypto acomp_request %s\n", | 
 | 		       pool->tfm_name); | 
 | 		ret = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only hold the mutex after completing allocations, otherwise we may | 
 | 	 * recurse into zswap through reclaim and attempt to hold the mutex | 
 | 	 * again resulting in a deadlock. | 
 | 	 */ | 
 | 	mutex_lock(&acomp_ctx->mutex); | 
 | 	crypto_init_wait(&acomp_ctx->wait); | 
 |  | 
 | 	/* | 
 | 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup | 
 | 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback | 
 | 	 * won't be called, crypto_wait_req() will return without blocking. | 
 | 	 */ | 
 | 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 				   crypto_req_done, &acomp_ctx->wait); | 
 |  | 
 | 	acomp_ctx->buffer = buffer; | 
 | 	acomp_ctx->acomp = acomp; | 
 | 	acomp_ctx->is_sleepable = acomp_is_async(acomp); | 
 | 	acomp_ctx->req = req; | 
 | 	mutex_unlock(&acomp_ctx->mutex); | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	if (acomp) | 
 | 		crypto_free_acomp(acomp); | 
 | 	kfree(buffer); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) | 
 | { | 
 | 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | 
 | 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | 
 | 	struct acomp_req *req; | 
 | 	struct crypto_acomp *acomp; | 
 | 	u8 *buffer; | 
 |  | 
 | 	if (IS_ERR_OR_NULL(acomp_ctx)) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&acomp_ctx->mutex); | 
 | 	req = acomp_ctx->req; | 
 | 	acomp = acomp_ctx->acomp; | 
 | 	buffer = acomp_ctx->buffer; | 
 | 	acomp_ctx->req = NULL; | 
 | 	acomp_ctx->acomp = NULL; | 
 | 	acomp_ctx->buffer = NULL; | 
 | 	mutex_unlock(&acomp_ctx->mutex); | 
 |  | 
 | 	/* | 
 | 	 * Do the actual freeing after releasing the mutex to avoid subtle | 
 | 	 * locking dependencies causing deadlocks. | 
 | 	 */ | 
 | 	if (!IS_ERR_OR_NULL(req)) | 
 | 		acomp_request_free(req); | 
 | 	if (!IS_ERR_OR_NULL(acomp)) | 
 | 		crypto_free_acomp(acomp); | 
 | 	kfree(buffer); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool) | 
 | { | 
 | 	struct crypto_acomp_ctx *acomp_ctx; | 
 |  | 
 | 	for (;;) { | 
 | 		acomp_ctx = raw_cpu_ptr(pool->acomp_ctx); | 
 | 		mutex_lock(&acomp_ctx->mutex); | 
 | 		if (likely(acomp_ctx->req)) | 
 | 			return acomp_ctx; | 
 | 		/* | 
 | 		 * It is possible that we were migrated to a different CPU after | 
 | 		 * getting the per-CPU ctx but before the mutex was acquired. If | 
 | 		 * the old CPU got offlined, zswap_cpu_comp_dead() could have | 
 | 		 * already freed ctx->req (among other things) and set it to | 
 | 		 * NULL. Just try again on the new CPU that we ended up on. | 
 | 		 */ | 
 | 		mutex_unlock(&acomp_ctx->mutex); | 
 | 	} | 
 | } | 
 |  | 
 | static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx) | 
 | { | 
 | 	mutex_unlock(&acomp_ctx->mutex); | 
 | } | 
 |  | 
 | static bool zswap_compress(struct page *page, struct zswap_entry *entry, | 
 | 			   struct zswap_pool *pool) | 
 | { | 
 | 	struct crypto_acomp_ctx *acomp_ctx; | 
 | 	struct scatterlist input, output; | 
 | 	int comp_ret = 0, alloc_ret = 0; | 
 | 	unsigned int dlen = PAGE_SIZE; | 
 | 	unsigned long handle; | 
 | 	struct zpool *zpool; | 
 | 	gfp_t gfp; | 
 | 	u8 *dst; | 
 |  | 
 | 	acomp_ctx = acomp_ctx_get_cpu_lock(pool); | 
 | 	dst = acomp_ctx->buffer; | 
 | 	sg_init_table(&input, 1); | 
 | 	sg_set_page(&input, page, PAGE_SIZE, 0); | 
 |  | 
 | 	/* | 
 | 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case, | 
 | 	 * and hardware-accelerators may won't check the dst buffer size, so | 
 | 	 * giving the dst buffer with enough length to avoid buffer overflow. | 
 | 	 */ | 
 | 	sg_init_one(&output, dst, PAGE_SIZE * 2); | 
 | 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); | 
 |  | 
 | 	/* | 
 | 	 * it maybe looks a little bit silly that we send an asynchronous request, | 
 | 	 * then wait for its completion synchronously. This makes the process look | 
 | 	 * synchronous in fact. | 
 | 	 * Theoretically, acomp supports users send multiple acomp requests in one | 
 | 	 * acomp instance, then get those requests done simultaneously. but in this | 
 | 	 * case, zswap actually does store and load page by page, there is no | 
 | 	 * existing method to send the second page before the first page is done | 
 | 	 * in one thread doing zwap. | 
 | 	 * but in different threads running on different cpu, we have different | 
 | 	 * acomp instance, so multiple threads can do (de)compression in parallel. | 
 | 	 */ | 
 | 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); | 
 | 	dlen = acomp_ctx->req->dlen; | 
 | 	if (comp_ret) | 
 | 		goto unlock; | 
 |  | 
 | 	zpool = pool->zpool; | 
 | 	gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE; | 
 | 	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle); | 
 | 	if (alloc_ret) | 
 | 		goto unlock; | 
 |  | 
 | 	zpool_obj_write(zpool, handle, dst, dlen); | 
 | 	entry->handle = handle; | 
 | 	entry->length = dlen; | 
 |  | 
 | unlock: | 
 | 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) | 
 | 		zswap_reject_compress_poor++; | 
 | 	else if (comp_ret) | 
 | 		zswap_reject_compress_fail++; | 
 | 	else if (alloc_ret) | 
 | 		zswap_reject_alloc_fail++; | 
 |  | 
 | 	acomp_ctx_put_unlock(acomp_ctx); | 
 | 	return comp_ret == 0 && alloc_ret == 0; | 
 | } | 
 |  | 
 | static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio) | 
 | { | 
 | 	struct zpool *zpool = entry->pool->zpool; | 
 | 	struct scatterlist input, output; | 
 | 	struct crypto_acomp_ctx *acomp_ctx; | 
 | 	int decomp_ret, dlen; | 
 | 	u8 *src, *obj; | 
 |  | 
 | 	acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool); | 
 | 	obj = zpool_obj_read_begin(zpool, entry->handle, acomp_ctx->buffer); | 
 |  | 
 | 	/* | 
 | 	 * zpool_obj_read_begin() might return a kmap address of highmem when | 
 | 	 * acomp_ctx->buffer is not used.  However, sg_init_one() does not | 
 | 	 * handle highmem addresses, so copy the object to acomp_ctx->buffer. | 
 | 	 */ | 
 | 	if (virt_addr_valid(obj)) { | 
 | 		src = obj; | 
 | 	} else { | 
 | 		WARN_ON_ONCE(obj == acomp_ctx->buffer); | 
 | 		memcpy(acomp_ctx->buffer, obj, entry->length); | 
 | 		src = acomp_ctx->buffer; | 
 | 	} | 
 |  | 
 | 	sg_init_one(&input, src, entry->length); | 
 | 	sg_init_table(&output, 1); | 
 | 	sg_set_folio(&output, folio, PAGE_SIZE, 0); | 
 | 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); | 
 | 	decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); | 
 | 	dlen = acomp_ctx->req->dlen; | 
 |  | 
 | 	zpool_obj_read_end(zpool, entry->handle, obj); | 
 | 	acomp_ctx_put_unlock(acomp_ctx); | 
 |  | 
 | 	if (!decomp_ret && dlen == PAGE_SIZE) | 
 | 		return true; | 
 |  | 
 | 	zswap_decompress_fail++; | 
 | 	pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n", | 
 | 						swp_type(entry->swpentry), | 
 | 						swp_offset(entry->swpentry), | 
 | 						entry->pool->tfm_name, entry->length, dlen); | 
 | 	return false; | 
 | } | 
 |  | 
 | /********************************* | 
 | * writeback code | 
 | **********************************/ | 
 | /* | 
 |  * Attempts to free an entry by adding a folio to the swap cache, | 
 |  * decompressing the entry data into the folio, and issuing a | 
 |  * bio write to write the folio back to the swap device. | 
 |  * | 
 |  * This can be thought of as a "resumed writeback" of the folio | 
 |  * to the swap device.  We are basically resuming the same swap | 
 |  * writeback path that was intercepted with the zswap_store() | 
 |  * in the first place.  After the folio has been decompressed into | 
 |  * the swap cache, the compressed version stored by zswap can be | 
 |  * freed. | 
 |  */ | 
 | static int zswap_writeback_entry(struct zswap_entry *entry, | 
 | 				 swp_entry_t swpentry) | 
 | { | 
 | 	struct xarray *tree; | 
 | 	pgoff_t offset = swp_offset(swpentry); | 
 | 	struct folio *folio; | 
 | 	struct mempolicy *mpol; | 
 | 	bool folio_was_allocated; | 
 | 	struct swap_info_struct *si; | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = WB_SYNC_NONE, | 
 | 	}; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* try to allocate swap cache folio */ | 
 | 	si = get_swap_device(swpentry); | 
 | 	if (!si) | 
 | 		return -EEXIST; | 
 |  | 
 | 	mpol = get_task_policy(current); | 
 | 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, | 
 | 			NO_INTERLEAVE_INDEX, &folio_was_allocated, true); | 
 | 	put_swap_device(si); | 
 | 	if (!folio) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Found an existing folio, we raced with swapin or concurrent | 
 | 	 * shrinker. We generally writeback cold folios from zswap, and | 
 | 	 * swapin means the folio just became hot, so skip this folio. | 
 | 	 * For unlikely concurrent shrinker case, it will be unlinked | 
 | 	 * and freed when invalidated by the concurrent shrinker anyway. | 
 | 	 */ | 
 | 	if (!folio_was_allocated) { | 
 | 		ret = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * folio is locked, and the swapcache is now secured against | 
 | 	 * concurrent swapping to and from the slot, and concurrent | 
 | 	 * swapoff so we can safely dereference the zswap tree here. | 
 | 	 * Verify that the swap entry hasn't been invalidated and recycled | 
 | 	 * behind our backs, to avoid overwriting a new swap folio with | 
 | 	 * old compressed data. Only when this is successful can the entry | 
 | 	 * be dereferenced. | 
 | 	 */ | 
 | 	tree = swap_zswap_tree(swpentry); | 
 | 	if (entry != xa_load(tree, offset)) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!zswap_decompress(entry, folio)) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	xa_erase(tree, offset); | 
 |  | 
 | 	count_vm_event(ZSWPWB); | 
 | 	if (entry->objcg) | 
 | 		count_objcg_events(entry->objcg, ZSWPWB, 1); | 
 |  | 
 | 	zswap_entry_free(entry); | 
 |  | 
 | 	/* folio is up to date */ | 
 | 	folio_mark_uptodate(folio); | 
 |  | 
 | 	/* move it to the tail of the inactive list after end_writeback */ | 
 | 	folio_set_reclaim(folio); | 
 |  | 
 | 	/* start writeback */ | 
 | 	__swap_writepage(folio, &wbc); | 
 |  | 
 | out: | 
 | 	if (ret && ret != -EEXIST) { | 
 | 		delete_from_swap_cache(folio); | 
 | 		folio_unlock(folio); | 
 | 	} | 
 | 	folio_put(folio); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /********************************* | 
 | * shrinker functions | 
 | **********************************/ | 
 | /* | 
 |  * The dynamic shrinker is modulated by the following factors: | 
 |  * | 
 |  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving | 
 |  *    the entry a second chance) before rotating it in the LRU list. If the | 
 |  *    entry is considered again by the shrinker, with its referenced bit unset, | 
 |  *    it is written back. The writeback rate as a result is dynamically | 
 |  *    adjusted by the pool activities - if the pool is dominated by new entries | 
 |  *    (i.e lots of recent zswapouts), these entries will be protected and | 
 |  *    the writeback rate will slow down. On the other hand, if the pool has a | 
 |  *    lot of stagnant entries, these entries will be reclaimed immediately, | 
 |  *    effectively increasing the writeback rate. | 
 |  * | 
 |  * 2. Swapins counter: If we observe swapins, it is a sign that we are | 
 |  *    overshrinking and should slow down. We maintain a swapins counter, which | 
 |  *    is consumed and subtract from the number of eligible objects on the LRU | 
 |  *    in zswap_shrinker_count(). | 
 |  * | 
 |  * 3. Compression ratio. The better the workload compresses, the less gains we | 
 |  *    can expect from writeback. We scale down the number of objects available | 
 |  *    for reclaim by this ratio. | 
 |  */ | 
 | static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, | 
 | 				       void *arg) | 
 | { | 
 | 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); | 
 | 	bool *encountered_page_in_swapcache = (bool *)arg; | 
 | 	swp_entry_t swpentry; | 
 | 	enum lru_status ret = LRU_REMOVED_RETRY; | 
 | 	int writeback_result; | 
 |  | 
 | 	/* | 
 | 	 * Second chance algorithm: if the entry has its referenced bit set, give it | 
 | 	 * a second chance. Only clear the referenced bit and rotate it in the | 
 | 	 * zswap's LRU list. | 
 | 	 */ | 
 | 	if (entry->referenced) { | 
 | 		entry->referenced = false; | 
 | 		return LRU_ROTATE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * As soon as we drop the LRU lock, the entry can be freed by | 
 | 	 * a concurrent invalidation. This means the following: | 
 | 	 * | 
 | 	 * 1. We extract the swp_entry_t to the stack, allowing | 
 | 	 *    zswap_writeback_entry() to pin the swap entry and | 
 | 	 *    then validate the zwap entry against that swap entry's | 
 | 	 *    tree using pointer value comparison. Only when that | 
 | 	 *    is successful can the entry be dereferenced. | 
 | 	 * | 
 | 	 * 2. Usually, objects are taken off the LRU for reclaim. In | 
 | 	 *    this case this isn't possible, because if reclaim fails | 
 | 	 *    for whatever reason, we have no means of knowing if the | 
 | 	 *    entry is alive to put it back on the LRU. | 
 | 	 * | 
 | 	 *    So rotate it before dropping the lock. If the entry is | 
 | 	 *    written back or invalidated, the free path will unlink | 
 | 	 *    it. For failures, rotation is the right thing as well. | 
 | 	 * | 
 | 	 *    Temporary failures, where the same entry should be tried | 
 | 	 *    again immediately, almost never happen for this shrinker. | 
 | 	 *    We don't do any trylocking; -ENOMEM comes closest, | 
 | 	 *    but that's extremely rare and doesn't happen spuriously | 
 | 	 *    either. Don't bother distinguishing this case. | 
 | 	 */ | 
 | 	list_move_tail(item, &l->list); | 
 |  | 
 | 	/* | 
 | 	 * Once the lru lock is dropped, the entry might get freed. The | 
 | 	 * swpentry is copied to the stack, and entry isn't deref'd again | 
 | 	 * until the entry is verified to still be alive in the tree. | 
 | 	 */ | 
 | 	swpentry = entry->swpentry; | 
 |  | 
 | 	/* | 
 | 	 * It's safe to drop the lock here because we return either | 
 | 	 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP. | 
 | 	 */ | 
 | 	spin_unlock(&l->lock); | 
 |  | 
 | 	writeback_result = zswap_writeback_entry(entry, swpentry); | 
 |  | 
 | 	if (writeback_result) { | 
 | 		zswap_reject_reclaim_fail++; | 
 | 		ret = LRU_RETRY; | 
 |  | 
 | 		/* | 
 | 		 * Encountering a page already in swap cache is a sign that we are shrinking | 
 | 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic | 
 | 		 * shrinker context). | 
 | 		 */ | 
 | 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) { | 
 | 			ret = LRU_STOP; | 
 | 			*encountered_page_in_swapcache = true; | 
 | 		} | 
 | 	} else { | 
 | 		zswap_written_back_pages++; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, | 
 | 		struct shrink_control *sc) | 
 | { | 
 | 	unsigned long shrink_ret; | 
 | 	bool encountered_page_in_swapcache = false; | 
 |  | 
 | 	if (!zswap_shrinker_enabled || | 
 | 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) { | 
 | 		sc->nr_scanned = 0; | 
 | 		return SHRINK_STOP; | 
 | 	} | 
 |  | 
 | 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, | 
 | 		&encountered_page_in_swapcache); | 
 |  | 
 | 	if (encountered_page_in_swapcache) | 
 | 		return SHRINK_STOP; | 
 |  | 
 | 	return shrink_ret ? shrink_ret : SHRINK_STOP; | 
 | } | 
 |  | 
 | static unsigned long zswap_shrinker_count(struct shrinker *shrinker, | 
 | 		struct shrink_control *sc) | 
 | { | 
 | 	struct mem_cgroup *memcg = sc->memcg; | 
 | 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); | 
 | 	atomic_long_t *nr_disk_swapins = | 
 | 		&lruvec->zswap_lruvec_state.nr_disk_swapins; | 
 | 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur, | 
 | 		nr_remain; | 
 |  | 
 | 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The shrinker resumes swap writeback, which will enter block | 
 | 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS | 
 | 	 * rules (may_enter_fs()), which apply on a per-folio basis. | 
 | 	 */ | 
 | 	if (!gfp_has_io_fs(sc->gfp_mask)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't | 
 | 	 * have them per-node and thus per-lruvec. Careful if memcg is | 
 | 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok | 
 | 	 * for the lruvec, but not for memcg_page_state(). | 
 | 	 * | 
 | 	 * Without memcg, use the zswap pool-wide metrics. | 
 | 	 */ | 
 | 	if (!mem_cgroup_disabled()) { | 
 | 		mem_cgroup_flush_stats(memcg); | 
 | 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; | 
 | 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); | 
 | 	} else { | 
 | 		nr_backing = zswap_total_pages(); | 
 | 		nr_stored = atomic_long_read(&zswap_stored_pages); | 
 | 	} | 
 |  | 
 | 	if (!nr_stored) | 
 | 		return 0; | 
 |  | 
 | 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); | 
 | 	if (!nr_freeable) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Subtract from the lru size the number of pages that are recently swapped | 
 | 	 * in from disk. The idea is that had we protect the zswap's LRU by this | 
 | 	 * amount of pages, these disk swapins would not have happened. | 
 | 	 */ | 
 | 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins); | 
 | 	do { | 
 | 		if (nr_freeable >= nr_disk_swapins_cur) | 
 | 			nr_remain = 0; | 
 | 		else | 
 | 			nr_remain = nr_disk_swapins_cur - nr_freeable; | 
 | 	} while (!atomic_long_try_cmpxchg( | 
 | 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain)); | 
 |  | 
 | 	nr_freeable -= nr_disk_swapins_cur - nr_remain; | 
 | 	if (!nr_freeable) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Scale the number of freeable pages by the memory saving factor. | 
 | 	 * This ensures that the better zswap compresses memory, the fewer | 
 | 	 * pages we will evict to swap (as it will otherwise incur IO for | 
 | 	 * relatively small memory saving). | 
 | 	 */ | 
 | 	return mult_frac(nr_freeable, nr_backing, nr_stored); | 
 | } | 
 |  | 
 | static struct shrinker *zswap_alloc_shrinker(void) | 
 | { | 
 | 	struct shrinker *shrinker; | 
 |  | 
 | 	shrinker = | 
 | 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); | 
 | 	if (!shrinker) | 
 | 		return NULL; | 
 |  | 
 | 	shrinker->scan_objects = zswap_shrinker_scan; | 
 | 	shrinker->count_objects = zswap_shrinker_count; | 
 | 	shrinker->batch = 0; | 
 | 	shrinker->seeks = DEFAULT_SEEKS; | 
 | 	return shrinker; | 
 | } | 
 |  | 
 | static int shrink_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | 	int nid, shrunk = 0, scanned = 0; | 
 |  | 
 | 	if (!mem_cgroup_zswap_writeback_enabled(memcg)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * Skip zombies because their LRUs are reparented and we would be | 
 | 	 * reclaiming from the parent instead of the dead memcg. | 
 | 	 */ | 
 | 	if (memcg && !mem_cgroup_online(memcg)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	for_each_node_state(nid, N_NORMAL_MEMORY) { | 
 | 		unsigned long nr_to_walk = 1; | 
 |  | 
 | 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, | 
 | 					    &shrink_memcg_cb, NULL, &nr_to_walk); | 
 | 		scanned += 1 - nr_to_walk; | 
 | 	} | 
 |  | 
 | 	if (!scanned) | 
 | 		return -ENOENT; | 
 |  | 
 | 	return shrunk ? 0 : -EAGAIN; | 
 | } | 
 |  | 
 | static void shrink_worker(struct work_struct *w) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	int ret, failures = 0, attempts = 0; | 
 | 	unsigned long thr; | 
 |  | 
 | 	/* Reclaim down to the accept threshold */ | 
 | 	thr = zswap_accept_thr_pages(); | 
 |  | 
 | 	/* | 
 | 	 * Global reclaim will select cgroup in a round-robin fashion from all | 
 | 	 * online memcgs, but memcgs that have no pages in zswap and | 
 | 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not | 
 | 	 * candidates for shrinking. | 
 | 	 * | 
 | 	 * Shrinking will be aborted if we encounter the following | 
 | 	 * MAX_RECLAIM_RETRIES times: | 
 | 	 * - No writeback-candidate memcgs found in a memcg tree walk. | 
 | 	 * - Shrinking a writeback-candidate memcg failed. | 
 | 	 * | 
 | 	 * We save iteration cursor memcg into zswap_next_shrink, | 
 | 	 * which can be modified by the offline memcg cleaner | 
 | 	 * zswap_memcg_offline_cleanup(). | 
 | 	 * | 
 | 	 * Since the offline cleaner is called only once, we cannot leave an | 
 | 	 * offline memcg reference in zswap_next_shrink. | 
 | 	 * We can rely on the cleaner only if we get online memcg under lock. | 
 | 	 * | 
 | 	 * If we get an offline memcg, we cannot determine if the cleaner has | 
 | 	 * already been called or will be called later. We must put back the | 
 | 	 * reference before returning from this function. Otherwise, the | 
 | 	 * offline memcg left in zswap_next_shrink will hold the reference | 
 | 	 * until the next run of shrink_worker(). | 
 | 	 */ | 
 | 	do { | 
 | 		/* | 
 | 		 * Start shrinking from the next memcg after zswap_next_shrink. | 
 | 		 * When the offline cleaner has already advanced the cursor, | 
 | 		 * advancing the cursor here overlooks one memcg, but this | 
 | 		 * should be negligibly rare. | 
 | 		 * | 
 | 		 * If we get an online memcg, keep the extra reference in case | 
 | 		 * the original one obtained by mem_cgroup_iter() is dropped by | 
 | 		 * zswap_memcg_offline_cleanup() while we are shrinking the | 
 | 		 * memcg. | 
 | 		 */ | 
 | 		spin_lock(&zswap_shrink_lock); | 
 | 		do { | 
 | 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); | 
 | 			zswap_next_shrink = memcg; | 
 | 		} while (memcg && !mem_cgroup_tryget_online(memcg)); | 
 | 		spin_unlock(&zswap_shrink_lock); | 
 |  | 
 | 		if (!memcg) { | 
 | 			/* | 
 | 			 * Continue shrinking without incrementing failures if | 
 | 			 * we found candidate memcgs in the last tree walk. | 
 | 			 */ | 
 | 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES) | 
 | 				break; | 
 |  | 
 | 			attempts = 0; | 
 | 			goto resched; | 
 | 		} | 
 |  | 
 | 		ret = shrink_memcg(memcg); | 
 | 		/* drop the extra reference */ | 
 | 		mem_cgroup_put(memcg); | 
 |  | 
 | 		/* | 
 | 		 * There are no writeback-candidate pages in the memcg. | 
 | 		 * This is not an issue as long as we can find another memcg | 
 | 		 * with pages in zswap. Skip this without incrementing attempts | 
 | 		 * and failures. | 
 | 		 */ | 
 | 		if (ret == -ENOENT) | 
 | 			continue; | 
 | 		++attempts; | 
 |  | 
 | 		if (ret && ++failures == MAX_RECLAIM_RETRIES) | 
 | 			break; | 
 | resched: | 
 | 		cond_resched(); | 
 | 	} while (zswap_total_pages() > thr); | 
 | } | 
 |  | 
 | /********************************* | 
 | * main API | 
 | **********************************/ | 
 |  | 
 | static bool zswap_store_page(struct page *page, | 
 | 			     struct obj_cgroup *objcg, | 
 | 			     struct zswap_pool *pool) | 
 | { | 
 | 	swp_entry_t page_swpentry = page_swap_entry(page); | 
 | 	struct zswap_entry *entry, *old; | 
 |  | 
 | 	/* allocate entry */ | 
 | 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page)); | 
 | 	if (!entry) { | 
 | 		zswap_reject_kmemcache_fail++; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (!zswap_compress(page, entry, pool)) | 
 | 		goto compress_failed; | 
 |  | 
 | 	old = xa_store(swap_zswap_tree(page_swpentry), | 
 | 		       swp_offset(page_swpentry), | 
 | 		       entry, GFP_KERNEL); | 
 | 	if (xa_is_err(old)) { | 
 | 		int err = xa_err(old); | 
 |  | 
 | 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); | 
 | 		zswap_reject_alloc_fail++; | 
 | 		goto store_failed; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We may have had an existing entry that became stale when | 
 | 	 * the folio was redirtied and now the new version is being | 
 | 	 * swapped out. Get rid of the old. | 
 | 	 */ | 
 | 	if (old) | 
 | 		zswap_entry_free(old); | 
 |  | 
 | 	/* | 
 | 	 * The entry is successfully compressed and stored in the tree, there is | 
 | 	 * no further possibility of failure. Grab refs to the pool and objcg, | 
 | 	 * charge zswap memory, and increment zswap_stored_pages. | 
 | 	 * The opposite actions will be performed by zswap_entry_free() | 
 | 	 * when the entry is removed from the tree. | 
 | 	 */ | 
 | 	zswap_pool_get(pool); | 
 | 	if (objcg) { | 
 | 		obj_cgroup_get(objcg); | 
 | 		obj_cgroup_charge_zswap(objcg, entry->length); | 
 | 	} | 
 | 	atomic_long_inc(&zswap_stored_pages); | 
 |  | 
 | 	/* | 
 | 	 * We finish initializing the entry while it's already in xarray. | 
 | 	 * This is safe because: | 
 | 	 * | 
 | 	 * 1. Concurrent stores and invalidations are excluded by folio lock. | 
 | 	 * | 
 | 	 * 2. Writeback is excluded by the entry not being on the LRU yet. | 
 | 	 *    The publishing order matters to prevent writeback from seeing | 
 | 	 *    an incoherent entry. | 
 | 	 */ | 
 | 	entry->pool = pool; | 
 | 	entry->swpentry = page_swpentry; | 
 | 	entry->objcg = objcg; | 
 | 	entry->referenced = true; | 
 | 	if (entry->length) { | 
 | 		INIT_LIST_HEAD(&entry->lru); | 
 | 		zswap_lru_add(&zswap_list_lru, entry); | 
 | 	} | 
 |  | 
 | 	return true; | 
 |  | 
 | store_failed: | 
 | 	zpool_free(pool->zpool, entry->handle); | 
 | compress_failed: | 
 | 	zswap_entry_cache_free(entry); | 
 | 	return false; | 
 | } | 
 |  | 
 | bool zswap_store(struct folio *folio) | 
 | { | 
 | 	long nr_pages = folio_nr_pages(folio); | 
 | 	swp_entry_t swp = folio->swap; | 
 | 	struct obj_cgroup *objcg = NULL; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	struct zswap_pool *pool; | 
 | 	bool ret = false; | 
 | 	long index; | 
 |  | 
 | 	VM_WARN_ON_ONCE(!folio_test_locked(folio)); | 
 | 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); | 
 |  | 
 | 	if (!zswap_enabled) | 
 | 		goto check_old; | 
 |  | 
 | 	objcg = get_obj_cgroup_from_folio(folio); | 
 | 	if (objcg && !obj_cgroup_may_zswap(objcg)) { | 
 | 		memcg = get_mem_cgroup_from_objcg(objcg); | 
 | 		if (shrink_memcg(memcg)) { | 
 | 			mem_cgroup_put(memcg); | 
 | 			goto put_objcg; | 
 | 		} | 
 | 		mem_cgroup_put(memcg); | 
 | 	} | 
 |  | 
 | 	if (zswap_check_limits()) | 
 | 		goto put_objcg; | 
 |  | 
 | 	pool = zswap_pool_current_get(); | 
 | 	if (!pool) | 
 | 		goto put_objcg; | 
 |  | 
 | 	if (objcg) { | 
 | 		memcg = get_mem_cgroup_from_objcg(objcg); | 
 | 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { | 
 | 			mem_cgroup_put(memcg); | 
 | 			goto put_pool; | 
 | 		} | 
 | 		mem_cgroup_put(memcg); | 
 | 	} | 
 |  | 
 | 	for (index = 0; index < nr_pages; ++index) { | 
 | 		struct page *page = folio_page(folio, index); | 
 |  | 
 | 		if (!zswap_store_page(page, objcg, pool)) | 
 | 			goto put_pool; | 
 | 	} | 
 |  | 
 | 	if (objcg) | 
 | 		count_objcg_events(objcg, ZSWPOUT, nr_pages); | 
 |  | 
 | 	count_vm_events(ZSWPOUT, nr_pages); | 
 |  | 
 | 	ret = true; | 
 |  | 
 | put_pool: | 
 | 	zswap_pool_put(pool); | 
 | put_objcg: | 
 | 	obj_cgroup_put(objcg); | 
 | 	if (!ret && zswap_pool_reached_full) | 
 | 		queue_work(shrink_wq, &zswap_shrink_work); | 
 | check_old: | 
 | 	/* | 
 | 	 * If the zswap store fails or zswap is disabled, we must invalidate | 
 | 	 * the possibly stale entries which were previously stored at the | 
 | 	 * offsets corresponding to each page of the folio. Otherwise, | 
 | 	 * writeback could overwrite the new data in the swapfile. | 
 | 	 */ | 
 | 	if (!ret) { | 
 | 		unsigned type = swp_type(swp); | 
 | 		pgoff_t offset = swp_offset(swp); | 
 | 		struct zswap_entry *entry; | 
 | 		struct xarray *tree; | 
 |  | 
 | 		for (index = 0; index < nr_pages; ++index) { | 
 | 			tree = swap_zswap_tree(swp_entry(type, offset + index)); | 
 | 			entry = xa_erase(tree, offset + index); | 
 | 			if (entry) | 
 | 				zswap_entry_free(entry); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * zswap_load() - load a folio from zswap | 
 |  * @folio: folio to load | 
 |  * | 
 |  * Return: 0 on success, with the folio unlocked and marked up-to-date, or one | 
 |  * of the following error codes: | 
 |  * | 
 |  *  -EIO: if the swapped out content was in zswap, but could not be loaded | 
 |  *  into the page due to a decompression failure. The folio is unlocked, but | 
 |  *  NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page() | 
 |  *  will SIGBUS). | 
 |  * | 
 |  *  -EINVAL: if the swapped out content was in zswap, but the page belongs | 
 |  *  to a large folio, which is not supported by zswap. The folio is unlocked, | 
 |  *  but NOT marked up-to-date, so that an IO error is emitted (e.g. | 
 |  *  do_swap_page() will SIGBUS). | 
 |  * | 
 |  *  -ENOENT: if the swapped out content was not in zswap. The folio remains | 
 |  *  locked on return. | 
 |  */ | 
 | int zswap_load(struct folio *folio) | 
 | { | 
 | 	swp_entry_t swp = folio->swap; | 
 | 	pgoff_t offset = swp_offset(swp); | 
 | 	bool swapcache = folio_test_swapcache(folio); | 
 | 	struct xarray *tree = swap_zswap_tree(swp); | 
 | 	struct zswap_entry *entry; | 
 |  | 
 | 	VM_WARN_ON_ONCE(!folio_test_locked(folio)); | 
 |  | 
 | 	if (zswap_never_enabled()) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * Large folios should not be swapped in while zswap is being used, as | 
 | 	 * they are not properly handled. Zswap does not properly load large | 
 | 	 * folios, and a large folio may only be partially in zswap. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(folio_test_large(folio))) { | 
 | 		folio_unlock(folio); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	entry = xa_load(tree, offset); | 
 | 	if (!entry) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (!zswap_decompress(entry, folio)) { | 
 | 		folio_unlock(folio); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	folio_mark_uptodate(folio); | 
 |  | 
 | 	count_vm_event(ZSWPIN); | 
 | 	if (entry->objcg) | 
 | 		count_objcg_events(entry->objcg, ZSWPIN, 1); | 
 |  | 
 | 	/* | 
 | 	 * When reading into the swapcache, invalidate our entry. The | 
 | 	 * swapcache can be the authoritative owner of the page and | 
 | 	 * its mappings, and the pressure that results from having two | 
 | 	 * in-memory copies outweighs any benefits of caching the | 
 | 	 * compression work. | 
 | 	 * | 
 | 	 * (Most swapins go through the swapcache. The notable | 
 | 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO | 
 | 	 * files, which reads into a private page and may free it if | 
 | 	 * the fault fails. We remain the primary owner of the entry.) | 
 | 	 */ | 
 | 	if (swapcache) { | 
 | 		folio_mark_dirty(folio); | 
 | 		xa_erase(tree, offset); | 
 | 		zswap_entry_free(entry); | 
 | 	} | 
 |  | 
 | 	folio_unlock(folio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void zswap_invalidate(swp_entry_t swp) | 
 | { | 
 | 	pgoff_t offset = swp_offset(swp); | 
 | 	struct xarray *tree = swap_zswap_tree(swp); | 
 | 	struct zswap_entry *entry; | 
 |  | 
 | 	if (xa_empty(tree)) | 
 | 		return; | 
 |  | 
 | 	entry = xa_erase(tree, offset); | 
 | 	if (entry) | 
 | 		zswap_entry_free(entry); | 
 | } | 
 |  | 
 | int zswap_swapon(int type, unsigned long nr_pages) | 
 | { | 
 | 	struct xarray *trees, *tree; | 
 | 	unsigned int nr, i; | 
 |  | 
 | 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | 
 | 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); | 
 | 	if (!trees) { | 
 | 		pr_err("alloc failed, zswap disabled for swap type %d\n", type); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr; i++) | 
 | 		xa_init(trees + i); | 
 |  | 
 | 	nr_zswap_trees[type] = nr; | 
 | 	zswap_trees[type] = trees; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void zswap_swapoff(int type) | 
 | { | 
 | 	struct xarray *trees = zswap_trees[type]; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (!trees) | 
 | 		return; | 
 |  | 
 | 	/* try_to_unuse() invalidated all the entries already */ | 
 | 	for (i = 0; i < nr_zswap_trees[type]; i++) | 
 | 		WARN_ON_ONCE(!xa_empty(trees + i)); | 
 |  | 
 | 	kvfree(trees); | 
 | 	nr_zswap_trees[type] = 0; | 
 | 	zswap_trees[type] = NULL; | 
 | } | 
 |  | 
 | /********************************* | 
 | * debugfs functions | 
 | **********************************/ | 
 | #ifdef CONFIG_DEBUG_FS | 
 | #include <linux/debugfs.h> | 
 |  | 
 | static struct dentry *zswap_debugfs_root; | 
 |  | 
 | static int debugfs_get_total_size(void *data, u64 *val) | 
 | { | 
 | 	*val = zswap_total_pages() * PAGE_SIZE; | 
 | 	return 0; | 
 | } | 
 | DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); | 
 |  | 
 | static int debugfs_get_stored_pages(void *data, u64 *val) | 
 | { | 
 | 	*val = atomic_long_read(&zswap_stored_pages); | 
 | 	return 0; | 
 | } | 
 | DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n"); | 
 |  | 
 | static int zswap_debugfs_init(void) | 
 | { | 
 | 	if (!debugfs_initialized()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL); | 
 |  | 
 | 	debugfs_create_u64("pool_limit_hit", 0444, | 
 | 			   zswap_debugfs_root, &zswap_pool_limit_hit); | 
 | 	debugfs_create_u64("reject_reclaim_fail", 0444, | 
 | 			   zswap_debugfs_root, &zswap_reject_reclaim_fail); | 
 | 	debugfs_create_u64("reject_alloc_fail", 0444, | 
 | 			   zswap_debugfs_root, &zswap_reject_alloc_fail); | 
 | 	debugfs_create_u64("reject_kmemcache_fail", 0444, | 
 | 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail); | 
 | 	debugfs_create_u64("reject_compress_fail", 0444, | 
 | 			   zswap_debugfs_root, &zswap_reject_compress_fail); | 
 | 	debugfs_create_u64("reject_compress_poor", 0444, | 
 | 			   zswap_debugfs_root, &zswap_reject_compress_poor); | 
 | 	debugfs_create_u64("decompress_fail", 0444, | 
 | 			   zswap_debugfs_root, &zswap_decompress_fail); | 
 | 	debugfs_create_u64("written_back_pages", 0444, | 
 | 			   zswap_debugfs_root, &zswap_written_back_pages); | 
 | 	debugfs_create_file("pool_total_size", 0444, | 
 | 			    zswap_debugfs_root, NULL, &total_size_fops); | 
 | 	debugfs_create_file("stored_pages", 0444, | 
 | 			    zswap_debugfs_root, NULL, &stored_pages_fops); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int zswap_debugfs_init(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /********************************* | 
 | * module init and exit | 
 | **********************************/ | 
 | static int zswap_setup(void) | 
 | { | 
 | 	struct zswap_pool *pool; | 
 | 	int ret; | 
 |  | 
 | 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); | 
 | 	if (!zswap_entry_cache) { | 
 | 		pr_err("entry cache creation failed\n"); | 
 | 		goto cache_fail; | 
 | 	} | 
 |  | 
 | 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, | 
 | 				      "mm/zswap_pool:prepare", | 
 | 				      zswap_cpu_comp_prepare, | 
 | 				      zswap_cpu_comp_dead); | 
 | 	if (ret) | 
 | 		goto hp_fail; | 
 |  | 
 | 	shrink_wq = alloc_workqueue("zswap-shrink", | 
 | 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1); | 
 | 	if (!shrink_wq) | 
 | 		goto shrink_wq_fail; | 
 |  | 
 | 	zswap_shrinker = zswap_alloc_shrinker(); | 
 | 	if (!zswap_shrinker) | 
 | 		goto shrinker_fail; | 
 | 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) | 
 | 		goto lru_fail; | 
 | 	shrinker_register(zswap_shrinker); | 
 |  | 
 | 	INIT_WORK(&zswap_shrink_work, shrink_worker); | 
 |  | 
 | 	pool = __zswap_pool_create_fallback(); | 
 | 	if (pool) { | 
 | 		pr_info("loaded using pool %s/%s\n", pool->tfm_name, | 
 | 			zpool_get_type(pool->zpool)); | 
 | 		list_add(&pool->list, &zswap_pools); | 
 | 		zswap_has_pool = true; | 
 | 		static_branch_enable(&zswap_ever_enabled); | 
 | 	} else { | 
 | 		pr_err("pool creation failed\n"); | 
 | 		zswap_enabled = false; | 
 | 	} | 
 |  | 
 | 	if (zswap_debugfs_init()) | 
 | 		pr_warn("debugfs initialization failed\n"); | 
 | 	zswap_init_state = ZSWAP_INIT_SUCCEED; | 
 | 	return 0; | 
 |  | 
 | lru_fail: | 
 | 	shrinker_free(zswap_shrinker); | 
 | shrinker_fail: | 
 | 	destroy_workqueue(shrink_wq); | 
 | shrink_wq_fail: | 
 | 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); | 
 | hp_fail: | 
 | 	kmem_cache_destroy(zswap_entry_cache); | 
 | cache_fail: | 
 | 	/* if built-in, we aren't unloaded on failure; don't allow use */ | 
 | 	zswap_init_state = ZSWAP_INIT_FAILED; | 
 | 	zswap_enabled = false; | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int __init zswap_init(void) | 
 | { | 
 | 	if (!zswap_enabled) | 
 | 		return 0; | 
 | 	return zswap_setup(); | 
 | } | 
 | /* must be late so crypto has time to come up */ | 
 | late_initcall(zswap_init); | 
 |  | 
 | MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); | 
 | MODULE_DESCRIPTION("Compressed cache for swap pages"); |