|  | /* | 
|  | * Slab allocator functions that are independent of the allocator strategy | 
|  | * | 
|  | * (C) 2012 Christoph Lameter <cl@linux.com> | 
|  | */ | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/page.h> | 
|  | #include <linux/memcontrol.h> | 
|  |  | 
|  | #include "slab.h" | 
|  |  | 
|  | enum slab_state slab_state; | 
|  | LIST_HEAD(slab_caches); | 
|  | DEFINE_MUTEX(slab_mutex); | 
|  | struct kmem_cache *kmem_cache; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name, | 
|  | size_t size) | 
|  | { | 
|  | struct kmem_cache *s = NULL; | 
|  |  | 
|  | if (!name || in_interrupt() || size < sizeof(void *) || | 
|  | size > KMALLOC_MAX_SIZE) { | 
|  | pr_err("kmem_cache_create(%s) integrity check failed\n", name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | char tmp; | 
|  | int res; | 
|  |  | 
|  | /* | 
|  | * This happens when the module gets unloaded and doesn't | 
|  | * destroy its slab cache and no-one else reuses the vmalloc | 
|  | * area of the module.  Print a warning. | 
|  | */ | 
|  | res = probe_kernel_address(s->name, tmp); | 
|  | if (res) { | 
|  | pr_err("Slab cache with size %d has lost its name\n", | 
|  | s->object_size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For simplicity, we won't check this in the list of memcg | 
|  | * caches. We have control over memcg naming, and if there | 
|  | * aren't duplicates in the global list, there won't be any | 
|  | * duplicates in the memcg lists as well. | 
|  | */ | 
|  | if (!memcg && !strcmp(s->name, name)) { | 
|  | pr_err("%s (%s): Cache name already exists.\n", | 
|  | __func__, name); | 
|  | dump_stack(); | 
|  | s = NULL; | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg, | 
|  | const char *name, size_t size) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | int memcg_update_all_caches(int num_memcgs) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int ret = 0; | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | if (!is_root_cache(s)) | 
|  | continue; | 
|  |  | 
|  | ret = memcg_update_cache_size(s, num_memcgs); | 
|  | /* | 
|  | * See comment in memcontrol.c, memcg_update_cache_size: | 
|  | * Instead of freeing the memory, we'll just leave the caches | 
|  | * up to this point in an updated state. | 
|  | */ | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcg_update_array_size(num_memcgs); | 
|  | out: | 
|  | mutex_unlock(&slab_mutex); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Figure out what the alignment of the objects will be given a set of | 
|  | * flags, a user specified alignment and the size of the objects. | 
|  | */ | 
|  | unsigned long calculate_alignment(unsigned long flags, | 
|  | unsigned long align, unsigned long size) | 
|  | { | 
|  | /* | 
|  | * If the user wants hardware cache aligned objects then follow that | 
|  | * suggestion if the object is sufficiently large. | 
|  | * | 
|  | * The hardware cache alignment cannot override the specified | 
|  | * alignment though. If that is greater then use it. | 
|  | */ | 
|  | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | unsigned long ralign = cache_line_size(); | 
|  | while (size <= ralign / 2) | 
|  | ralign /= 2; | 
|  | align = max(align, ralign); | 
|  | } | 
|  |  | 
|  | if (align < ARCH_SLAB_MINALIGN) | 
|  | align = ARCH_SLAB_MINALIGN; | 
|  |  | 
|  | return ALIGN(align, sizeof(void *)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * kmem_cache_create - Create a cache. | 
|  | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | * @size: The size of objects to be created in this cache. | 
|  | * @align: The required alignment for the objects. | 
|  | * @flags: SLAB flags | 
|  | * @ctor: A constructor for the objects. | 
|  | * | 
|  | * Returns a ptr to the cache on success, NULL on failure. | 
|  | * Cannot be called within a interrupt, but can be interrupted. | 
|  | * The @ctor is run when new pages are allocated by the cache. | 
|  | * | 
|  | * The flags are | 
|  | * | 
|  | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | * to catch references to uninitialised memory. | 
|  | * | 
|  | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
|  | * for buffer overruns. | 
|  | * | 
|  | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | * as davem. | 
|  | */ | 
|  |  | 
|  | struct kmem_cache * | 
|  | kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size, | 
|  | size_t align, unsigned long flags, void (*ctor)(void *), | 
|  | struct kmem_cache *parent_cache) | 
|  | { | 
|  | struct kmem_cache *s = NULL; | 
|  | int err = 0; | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | if (!kmem_cache_sanity_check(memcg, name, size) == 0) | 
|  | goto out_locked; | 
|  |  | 
|  | /* | 
|  | * Some allocators will constraint the set of valid flags to a subset | 
|  | * of all flags. We expect them to define CACHE_CREATE_MASK in this | 
|  | * case, and we'll just provide them with a sanitized version of the | 
|  | * passed flags. | 
|  | */ | 
|  | flags &= CACHE_CREATE_MASK; | 
|  |  | 
|  | s = __kmem_cache_alias(memcg, name, size, align, flags, ctor); | 
|  | if (s) | 
|  | goto out_locked; | 
|  |  | 
|  | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | 
|  | if (s) { | 
|  | s->object_size = s->size = size; | 
|  | s->align = calculate_alignment(flags, align, size); | 
|  | s->ctor = ctor; | 
|  |  | 
|  | if (memcg_register_cache(memcg, s, parent_cache)) { | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | err = -ENOMEM; | 
|  | goto out_locked; | 
|  | } | 
|  |  | 
|  | s->name = kstrdup(name, GFP_KERNEL); | 
|  | if (!s->name) { | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | err = -ENOMEM; | 
|  | goto out_locked; | 
|  | } | 
|  |  | 
|  | err = __kmem_cache_create(s, flags); | 
|  | if (!err) { | 
|  | s->refcount = 1; | 
|  | list_add(&s->list, &slab_caches); | 
|  | memcg_cache_list_add(memcg, s); | 
|  | } else { | 
|  | kfree(s->name); | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | } | 
|  | } else | 
|  | err = -ENOMEM; | 
|  |  | 
|  | out_locked: | 
|  | mutex_unlock(&slab_mutex); | 
|  | put_online_cpus(); | 
|  |  | 
|  | if (err) { | 
|  |  | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | 
|  | name, err); | 
|  | else { | 
|  | printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", | 
|  | name, err); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return s; | 
|  | } | 
|  |  | 
|  | struct kmem_cache * | 
|  | kmem_cache_create(const char *name, size_t size, size_t align, | 
|  | unsigned long flags, void (*ctor)(void *)) | 
|  | { | 
|  | return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_create); | 
|  |  | 
|  | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | { | 
|  | /* Destroy all the children caches if we aren't a memcg cache */ | 
|  | kmem_cache_destroy_memcg_children(s); | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&slab_mutex); | 
|  | s->refcount--; | 
|  | if (!s->refcount) { | 
|  | list_del(&s->list); | 
|  |  | 
|  | if (!__kmem_cache_shutdown(s)) { | 
|  | mutex_unlock(&slab_mutex); | 
|  | if (s->flags & SLAB_DESTROY_BY_RCU) | 
|  | rcu_barrier(); | 
|  |  | 
|  | memcg_release_cache(s); | 
|  | kfree(s->name); | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | } else { | 
|  | list_add(&s->list, &slab_caches); | 
|  | mutex_unlock(&slab_mutex); | 
|  | printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n", | 
|  | s->name); | 
|  | dump_stack(); | 
|  | } | 
|  | } else { | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  | put_online_cpus(); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  |  | 
|  | int slab_is_available(void) | 
|  | { | 
|  | return slab_state >= UP; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SLOB | 
|  | /* Create a cache during boot when no slab services are available yet */ | 
|  | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, | 
|  | unsigned long flags) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | s->name = name; | 
|  | s->size = s->object_size = size; | 
|  | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); | 
|  | err = __kmem_cache_create(s, flags); | 
|  |  | 
|  | if (err) | 
|  | panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n", | 
|  | name, size, err); | 
|  |  | 
|  | s->refcount = -1;	/* Exempt from merging for now */ | 
|  | } | 
|  |  | 
|  | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
|  |  | 
|  | if (!s) | 
|  | panic("Out of memory when creating slab %s\n", name); | 
|  |  | 
|  | create_boot_cache(s, name, size, flags); | 
|  | list_add(&s->list, &slab_caches); | 
|  | s->refcount = 1; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_SLOB */ | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SLABINFO | 
|  | void print_slabinfo_header(struct seq_file *m) | 
|  | { | 
|  | /* | 
|  | * Output format version, so at least we can change it | 
|  | * without _too_ many complaints. | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
|  | #else | 
|  | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | #endif | 
|  | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> " | 
|  | "<objperslab> <pagesperslab>"); | 
|  | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " | 
|  | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | 
|  | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
|  | #endif | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static void *s_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | loff_t n = *pos; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | if (!n) | 
|  | print_slabinfo_header(m); | 
|  |  | 
|  | return seq_list_start(&slab_caches, *pos); | 
|  | } | 
|  |  | 
|  | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(p, &slab_caches, pos); | 
|  | } | 
|  |  | 
|  | static void s_stop(struct seq_file *m, void *p) | 
|  | { | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | static void | 
|  | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | 
|  | { | 
|  | struct kmem_cache *c; | 
|  | struct slabinfo sinfo; | 
|  | int i; | 
|  |  | 
|  | if (!is_root_cache(s)) | 
|  | return; | 
|  |  | 
|  | for_each_memcg_cache_index(i) { | 
|  | c = cache_from_memcg(s, i); | 
|  | if (!c) | 
|  | continue; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(c, &sinfo); | 
|  |  | 
|  | info->active_slabs += sinfo.active_slabs; | 
|  | info->num_slabs += sinfo.num_slabs; | 
|  | info->shared_avail += sinfo.shared_avail; | 
|  | info->active_objs += sinfo.active_objs; | 
|  | info->num_objs += sinfo.num_objs; | 
|  | } | 
|  | } | 
|  |  | 
|  | int cache_show(struct kmem_cache *s, struct seq_file *m) | 
|  | { | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(s, &sinfo); | 
|  |  | 
|  | memcg_accumulate_slabinfo(s, &sinfo); | 
|  |  | 
|  | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
|  | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, | 
|  | sinfo.objects_per_slab, (1 << sinfo.cache_order)); | 
|  |  | 
|  | seq_printf(m, " : tunables %4u %4u %4u", | 
|  | sinfo.limit, sinfo.batchcount, sinfo.shared); | 
|  | seq_printf(m, " : slabdata %6lu %6lu %6lu", | 
|  | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | 
|  | slabinfo_show_stats(m, s); | 
|  | seq_putc(m, '\n'); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | 
|  |  | 
|  | if (!is_root_cache(s)) | 
|  | return 0; | 
|  | return cache_show(s, m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * slabinfo_op - iterator that generates /proc/slabinfo | 
|  | * | 
|  | * Output layout: | 
|  | * cache-name | 
|  | * num-active-objs | 
|  | * total-objs | 
|  | * object size | 
|  | * num-active-slabs | 
|  | * total-slabs | 
|  | * num-pages-per-slab | 
|  | * + further values on SMP and with statistics enabled | 
|  | */ | 
|  | static const struct seq_operations slabinfo_op = { | 
|  | .start = s_start, | 
|  | .next = s_next, | 
|  | .stop = s_stop, | 
|  | .show = s_show, | 
|  | }; | 
|  |  | 
|  | static int slabinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &slabinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_slabinfo_operations = { | 
|  | .open		= slabinfo_open, | 
|  | .read		= seq_read, | 
|  | .write          = slabinfo_write, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init slab_proc_init(void) | 
|  | { | 
|  | proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); | 
|  | return 0; | 
|  | } | 
|  | module_init(slab_proc_init); | 
|  | #endif /* CONFIG_SLABINFO */ |