blob: 1331216a9cae749cce5e13b7ff4adcf9ba5fefaa [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
*
* NOHZ implementation for low and high resolution timers
*
* Started by: Thomas Gleixner and Ingo Molnar
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/nmi.h>
#include <linux/profile.h>
#include <linux/sched/signal.h>
#include <linux/sched/clock.h>
#include <linux/sched/stat.h>
#include <linux/sched/nohz.h>
#include <linux/sched/loadavg.h>
#include <linux/module.h>
#include <linux/irq_work.h>
#include <linux/posix-timers.h>
#include <linux/context_tracking.h>
#include <linux/mm.h>
#include <asm/irq_regs.h>
#include "tick-internal.h"
#include <trace/events/timer.h>
/*
* Per-CPU nohz control structure
*/
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
struct tick_sched *tick_get_tick_sched(int cpu)
{
return &per_cpu(tick_cpu_sched, cpu);
}
/*
* The time when the last jiffy update happened. Write access must hold
* jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
* consistent view of jiffies and last_jiffies_update.
*/
static ktime_t last_jiffies_update;
/*
* Must be called with interrupts disabled !
*/
static void tick_do_update_jiffies64(ktime_t now)
{
unsigned long ticks = 1;
ktime_t delta, nextp;
/*
* 64-bit can do a quick check without holding the jiffies lock and
* without looking at the sequence count. The smp_load_acquire()
* pairs with the update done later in this function.
*
* 32-bit cannot do that because the store of 'tick_next_period'
* consists of two 32-bit stores, and the first store could be
* moved by the CPU to a random point in the future.
*/
if (IS_ENABLED(CONFIG_64BIT)) {
if (ktime_before(now, smp_load_acquire(&tick_next_period)))
return;
} else {
unsigned int seq;
/*
* Avoid contention on 'jiffies_lock' and protect the quick
* check with the sequence count.
*/
do {
seq = read_seqcount_begin(&jiffies_seq);
nextp = tick_next_period;
} while (read_seqcount_retry(&jiffies_seq, seq));
if (ktime_before(now, nextp))
return;
}
/* Quick check failed, i.e. update is required. */
raw_spin_lock(&jiffies_lock);
/*
* Re-evaluate with the lock held. Another CPU might have done the
* update already.
*/
if (ktime_before(now, tick_next_period)) {
raw_spin_unlock(&jiffies_lock);
return;
}
write_seqcount_begin(&jiffies_seq);
delta = ktime_sub(now, tick_next_period);
if (unlikely(delta >= TICK_NSEC)) {
/* Slow path for long idle sleep times */
s64 incr = TICK_NSEC;
ticks += ktime_divns(delta, incr);
last_jiffies_update = ktime_add_ns(last_jiffies_update,
incr * ticks);
} else {
last_jiffies_update = ktime_add_ns(last_jiffies_update,
TICK_NSEC);
}
/* Advance jiffies to complete the 'jiffies_seq' protected job */
jiffies_64 += ticks;
/* Keep the tick_next_period variable up to date */
nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
if (IS_ENABLED(CONFIG_64BIT)) {
/*
* Pairs with smp_load_acquire() in the lockless quick
* check above, and ensures that the update to 'jiffies_64' is
* not reordered vs. the store to 'tick_next_period', neither
* by the compiler nor by the CPU.
*/
smp_store_release(&tick_next_period, nextp);
} else {
/*
* A plain store is good enough on 32-bit, as the quick check
* above is protected by the sequence count.
*/
tick_next_period = nextp;
}
/*
* Release the sequence count. calc_global_load() below is not
* protected by it, but 'jiffies_lock' needs to be held to prevent
* concurrent invocations.
*/
write_seqcount_end(&jiffies_seq);
calc_global_load();
raw_spin_unlock(&jiffies_lock);
update_wall_time();
}
/*
* Initialize and return retrieve the jiffies update.
*/
static ktime_t tick_init_jiffy_update(void)
{
ktime_t period;
raw_spin_lock(&jiffies_lock);
write_seqcount_begin(&jiffies_seq);
/* Have we started the jiffies update yet ? */
if (last_jiffies_update == 0) {
u32 rem;
/*
* Ensure that the tick is aligned to a multiple of
* TICK_NSEC.
*/
div_u64_rem(tick_next_period, TICK_NSEC, &rem);
if (rem)
tick_next_period += TICK_NSEC - rem;
last_jiffies_update = tick_next_period;
}
period = last_jiffies_update;
write_seqcount_end(&jiffies_seq);
raw_spin_unlock(&jiffies_lock);
return period;
}
static inline int tick_sched_flag_test(struct tick_sched *ts,
unsigned long flag)
{
return !!(ts->flags & flag);
}
static inline void tick_sched_flag_set(struct tick_sched *ts,
unsigned long flag)
{
lockdep_assert_irqs_disabled();
ts->flags |= flag;
}
static inline void tick_sched_flag_clear(struct tick_sched *ts,
unsigned long flag)
{
lockdep_assert_irqs_disabled();
ts->flags &= ~flag;
}
#define MAX_STALLED_JIFFIES 5
static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
{
int cpu = smp_processor_id();
/*
* Check if the do_timer duty was dropped. We don't care about
* concurrency: This happens only when the CPU in charge went
* into a long sleep. If two CPUs happen to assign themselves to
* this duty, then the jiffies update is still serialized by
* 'jiffies_lock'.
*
* If nohz_full is enabled, this should not happen because the
* 'tick_do_timer_cpu' CPU never relinquishes.
*/
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
#ifdef CONFIG_NO_HZ_FULL
WARN_ON_ONCE(tick_nohz_full_running);
#endif
tick_do_timer_cpu = cpu;
}
/* Check if jiffies need an update */
if (tick_do_timer_cpu == cpu)
tick_do_update_jiffies64(now);
/*
* If the jiffies update stalled for too long (timekeeper in stop_machine()
* or VMEXIT'ed for several msecs), force an update.
*/
if (ts->last_tick_jiffies != jiffies) {
ts->stalled_jiffies = 0;
ts->last_tick_jiffies = READ_ONCE(jiffies);
} else {
if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
tick_do_update_jiffies64(now);
ts->stalled_jiffies = 0;
ts->last_tick_jiffies = READ_ONCE(jiffies);
}
}
if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
ts->got_idle_tick = 1;
}
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
/*
* When we are idle and the tick is stopped, we have to touch
* the watchdog as we might not schedule for a really long
* time. This happens on completely idle SMP systems while
* waiting on the login prompt. We also increment the "start of
* idle" jiffy stamp so the idle accounting adjustment we do
* when we go busy again does not account too many ticks.
*/
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
touch_softlockup_watchdog_sched();
if (is_idle_task(current))
ts->idle_jiffies++;
/*
* In case the current tick fired too early past its expected
* expiration, make sure we don't bypass the next clock reprogramming
* to the same deadline.
*/
ts->next_tick = 0;
}
update_process_times(user_mode(regs));
profile_tick(CPU_PROFILING);
}
/*
* We rearm the timer until we get disabled by the idle code.
* Called with interrupts disabled.
*/
static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
{
struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
struct pt_regs *regs = get_irq_regs();
ktime_t now = ktime_get();
tick_sched_do_timer(ts, now);
/*
* Do not call when we are not in IRQ context and have
* no valid 'regs' pointer
*/
if (regs)
tick_sched_handle(ts, regs);
else
ts->next_tick = 0;
/*
* In dynticks mode, tick reprogram is deferred:
* - to the idle task if in dynticks-idle
* - to IRQ exit if in full-dynticks.
*/
if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
return HRTIMER_NORESTART;
hrtimer_forward(timer, now, TICK_NSEC);
return HRTIMER_RESTART;
}
static void tick_sched_timer_cancel(struct tick_sched *ts)
{
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
hrtimer_cancel(&ts->sched_timer);
else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
tick_program_event(KTIME_MAX, 1);
}
#ifdef CONFIG_NO_HZ_FULL
cpumask_var_t tick_nohz_full_mask;
EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
bool tick_nohz_full_running;
EXPORT_SYMBOL_GPL(tick_nohz_full_running);
static atomic_t tick_dep_mask;
static bool check_tick_dependency(atomic_t *dep)
{
int val = atomic_read(dep);
if (val & TICK_DEP_MASK_POSIX_TIMER) {
trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
return true;
}
if (val & TICK_DEP_MASK_PERF_EVENTS) {
trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
return true;
}
if (val & TICK_DEP_MASK_SCHED) {
trace_tick_stop(0, TICK_DEP_MASK_SCHED);
return true;
}
if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
return true;
}
if (val & TICK_DEP_MASK_RCU) {
trace_tick_stop(0, TICK_DEP_MASK_RCU);
return true;
}
if (val & TICK_DEP_MASK_RCU_EXP) {
trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
return true;
}
return false;
}
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
{
lockdep_assert_irqs_disabled();
if (unlikely(!cpu_online(cpu)))
return false;
if (check_tick_dependency(&tick_dep_mask))
return false;
if (check_tick_dependency(&ts->tick_dep_mask))
return false;
if (check_tick_dependency(&current->tick_dep_mask))
return false;
if (check_tick_dependency(&current->signal->tick_dep_mask))
return false;
return true;
}
static void nohz_full_kick_func(struct irq_work *work)
{
/* Empty, the tick restart happens on tick_nohz_irq_exit() */
}
static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
IRQ_WORK_INIT_HARD(nohz_full_kick_func);
/*
* Kick this CPU if it's full dynticks in order to force it to
* re-evaluate its dependency on the tick and restart it if necessary.
* This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
* is NMI safe.
*/
static void tick_nohz_full_kick(void)
{
if (!tick_nohz_full_cpu(smp_processor_id()))
return;
irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
}
/*
* Kick the CPU if it's full dynticks in order to force it to
* re-evaluate its dependency on the tick and restart it if necessary.
*/
void tick_nohz_full_kick_cpu(int cpu)
{
if (!tick_nohz_full_cpu(cpu))
return;
irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
}
static void tick_nohz_kick_task(struct task_struct *tsk)
{
int cpu;
/*
* If the task is not running, run_posix_cpu_timers()
* has nothing to elapse, and an IPI can then be optimized out.
*
* activate_task() STORE p->tick_dep_mask
* STORE p->on_rq
* __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
* LOCK rq->lock LOAD p->on_rq
* smp_mb__after_spin_lock()
* tick_nohz_task_switch()
* LOAD p->tick_dep_mask
*/
if (!sched_task_on_rq(tsk))
return;
/*
* If the task concurrently migrates to another CPU,
* we guarantee it sees the new tick dependency upon
* schedule.
*
* set_task_cpu(p, cpu);
* STORE p->cpu = @cpu
* __schedule() (switch to task 'p')
* LOCK rq->lock
* smp_mb__after_spin_lock() STORE p->tick_dep_mask
* tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
* LOAD p->tick_dep_mask LOAD p->cpu
*/
cpu = task_cpu(tsk);
preempt_disable();
if (cpu_online(cpu))
tick_nohz_full_kick_cpu(cpu);
preempt_enable();
}
/*
* Kick all full dynticks CPUs in order to force these to re-evaluate
* their dependency on the tick and restart it if necessary.
*/
static void tick_nohz_full_kick_all(void)
{
int cpu;
if (!tick_nohz_full_running)
return;
preempt_disable();
for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
tick_nohz_full_kick_cpu(cpu);
preempt_enable();
}
static void tick_nohz_dep_set_all(atomic_t *dep,
enum tick_dep_bits bit)
{
int prev;
prev = atomic_fetch_or(BIT(bit), dep);
if (!prev)
tick_nohz_full_kick_all();
}
/*
* Set a global tick dependency. Used by perf events that rely on freq and
* unstable clocks.
*/
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
tick_nohz_dep_set_all(&tick_dep_mask, bit);
}
void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
atomic_andnot(BIT(bit), &tick_dep_mask);
}
/*
* Set per-CPU tick dependency. Used by scheduler and perf events in order to
* manage event-throttling.
*/
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
int prev;
struct tick_sched *ts;
ts = per_cpu_ptr(&tick_cpu_sched, cpu);
prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
if (!prev) {
preempt_disable();
/* Perf needs local kick that is NMI safe */
if (cpu == smp_processor_id()) {
tick_nohz_full_kick();
} else {
/* Remote IRQ work not NMI-safe */
if (!WARN_ON_ONCE(in_nmi()))
tick_nohz_full_kick_cpu(cpu);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
atomic_andnot(BIT(bit), &ts->tick_dep_mask);
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
/*
* Set a per-task tick dependency. RCU needs this. Also posix CPU timers
* in order to elapse per task timers.
*/
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
tick_nohz_kick_task(tsk);
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
/*
* Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
* per process timers.
*/
void tick_nohz_dep_set_signal(struct task_struct *tsk,
enum tick_dep_bits bit)
{
int prev;
struct signal_struct *sig = tsk->signal;
prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
if (!prev) {
struct task_struct *t;
lockdep_assert_held(&tsk->sighand->siglock);
__for_each_thread(sig, t)
tick_nohz_kick_task(t);
}
}
void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
atomic_andnot(BIT(bit), &sig->tick_dep_mask);
}
/*
* Re-evaluate the need for the tick as we switch the current task.
* It might need the tick due to per task/process properties:
* perf events, posix CPU timers, ...
*/
void __tick_nohz_task_switch(void)
{
struct tick_sched *ts;
if (!tick_nohz_full_cpu(smp_processor_id()))
return;
ts = this_cpu_ptr(&tick_cpu_sched);
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
if (atomic_read(&current->tick_dep_mask) ||
atomic_read(&current->signal->tick_dep_mask))
tick_nohz_full_kick();
}
}
/* Get the boot-time nohz CPU list from the kernel parameters. */
void __init tick_nohz_full_setup(cpumask_var_t cpumask)
{
alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
cpumask_copy(tick_nohz_full_mask, cpumask);
tick_nohz_full_running = true;
}
bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
{
/*
* The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
* timers, workqueues, timekeeping, ...) on behalf of full dynticks
* CPUs. It must remain online when nohz full is enabled.
*/
if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
return false;
return true;
}
static int tick_nohz_cpu_down(unsigned int cpu)
{
return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
}
void __init tick_nohz_init(void)
{
int cpu, ret;
if (!tick_nohz_full_running)
return;
/*
* Full dynticks uses IRQ work to drive the tick rescheduling on safe
* locking contexts. But then we need IRQ work to raise its own
* interrupts to avoid circular dependency on the tick.
*/
if (!arch_irq_work_has_interrupt()) {
pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
cpumask_clear(tick_nohz_full_mask);
tick_nohz_full_running = false;
return;
}
if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
cpu = smp_processor_id();
if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
pr_warn("NO_HZ: Clearing %d from nohz_full range "
"for timekeeping\n", cpu);
cpumask_clear_cpu(cpu, tick_nohz_full_mask);
}
}
for_each_cpu(cpu, tick_nohz_full_mask)
ct_cpu_track_user(cpu);
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"kernel/nohz:predown", NULL,
tick_nohz_cpu_down);
WARN_ON(ret < 0);
pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
cpumask_pr_args(tick_nohz_full_mask));
}
#endif /* #ifdef CONFIG_NO_HZ_FULL */
/*
* NOHZ - aka dynamic tick functionality
*/
#ifdef CONFIG_NO_HZ_COMMON
/*
* NO HZ enabled ?
*/
bool tick_nohz_enabled __read_mostly = true;
unsigned long tick_nohz_active __read_mostly;
/*
* Enable / Disable tickless mode
*/
static int __init setup_tick_nohz(char *str)
{
return (kstrtobool(str, &tick_nohz_enabled) == 0);
}
__setup("nohz=", setup_tick_nohz);
bool tick_nohz_tick_stopped(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
}
bool tick_nohz_tick_stopped_cpu(int cpu)
{
struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
}
/**
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
* @now: current ktime_t
*
* Called from interrupt entry when the CPU was idle
*
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
* must be updated. Otherwise an interrupt handler could use a stale jiffy
* value. We do this unconditionally on any CPU, as we don't know whether the
* CPU, which has the update task assigned, is in a long sleep.
*/
static void tick_nohz_update_jiffies(ktime_t now)
{
unsigned long flags;
__this_cpu_write(tick_cpu_sched.idle_waketime, now);
local_irq_save(flags);
tick_do_update_jiffies64(now);
local_irq_restore(flags);
touch_softlockup_watchdog_sched();
}
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
{
ktime_t delta;
if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
return;
delta = ktime_sub(now, ts->idle_entrytime);
write_seqcount_begin(&ts->idle_sleeptime_seq);
if (nr_iowait_cpu(smp_processor_id()) > 0)
ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
else
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
ts->idle_entrytime = now;
tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
write_seqcount_end(&ts->idle_sleeptime_seq);
sched_clock_idle_wakeup_event();
}
static void tick_nohz_start_idle(struct tick_sched *ts)
{
write_seqcount_begin(&ts->idle_sleeptime_seq);
ts->idle_entrytime = ktime_get();
tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
write_seqcount_end(&ts->idle_sleeptime_seq);
sched_clock_idle_sleep_event();
}
static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
bool compute_delta, u64 *last_update_time)
{
ktime_t now, idle;
unsigned int seq;
if (!tick_nohz_active)
return -1;
now = ktime_get();
if (last_update_time)
*last_update_time = ktime_to_us(now);
do {
seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
idle = ktime_add(*sleeptime, delta);
} else {
idle = *sleeptime;
}
} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
return ktime_to_us(idle);
}
/**
* get_cpu_idle_time_us - get the total idle time of a CPU
* @cpu: CPU number to query
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
*
* Return the cumulative idle time (since boot) for a given
* CPU, in microseconds. Note that this is partially broken due to
* the counter of iowait tasks that can be remotely updated without
* any synchronization. Therefore it is possible to observe backward
* values within two consecutive reads.
*
* This time is measured via accounting rather than sampling,
* and is as accurate as ktime_get() is.
*
* Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
*/
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
!nr_iowait_cpu(cpu), last_update_time);
}
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
/**
* get_cpu_iowait_time_us - get the total iowait time of a CPU
* @cpu: CPU number to query
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
*
* Return the cumulative iowait time (since boot) for a given
* CPU, in microseconds. Note this is partially broken due to
* the counter of iowait tasks that can be remotely updated without
* any synchronization. Therefore it is possible to observe backward
* values within two consecutive reads.
*
* This time is measured via accounting rather than sampling,
* and is as accurate as ktime_get() is.
*
* Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
*/
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
nr_iowait_cpu(cpu), last_update_time);
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
hrtimer_cancel(&ts->sched_timer);
hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
/* Forward the time to expire in the future */
hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
hrtimer_start_expires(&ts->sched_timer,
HRTIMER_MODE_ABS_PINNED_HARD);
} else {
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}
/*
* Reset to make sure the next tick stop doesn't get fooled by past
* cached clock deadline.
*/
ts->next_tick = 0;
}
static inline bool local_timer_softirq_pending(void)
{
return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
}
/*
* Read jiffies and the time when jiffies were updated last
*/
u64 get_jiffies_update(unsigned long *basej)
{
unsigned long basejiff;
unsigned int seq;
u64 basemono;
do {
seq = read_seqcount_begin(&jiffies_seq);
basemono = last_jiffies_update;
basejiff = jiffies;
} while (read_seqcount_retry(&jiffies_seq, seq));
*basej = basejiff;
return basemono;
}
/**
* tick_nohz_next_event() - return the clock monotonic based next event
* @ts: pointer to tick_sched struct
* @cpu: CPU number
*
* Return:
* *%0 - When the next event is a maximum of TICK_NSEC in the future
* and the tick is not stopped yet
* *%next_event - Next event based on clock monotonic
*/
static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
{
u64 basemono, next_tick, delta, expires;
unsigned long basejiff;
basemono = get_jiffies_update(&basejiff);
ts->last_jiffies = basejiff;
ts->timer_expires_base = basemono;
/*
* Keep the periodic tick, when RCU, architecture or irq_work
* requests it.
* Aside of that, check whether the local timer softirq is
* pending. If so, its a bad idea to call get_next_timer_interrupt(),
* because there is an already expired timer, so it will request
* immediate expiry, which rearms the hardware timer with a
* minimal delta, which brings us back to this place
* immediately. Lather, rinse and repeat...
*/
if (rcu_needs_cpu() || arch_needs_cpu() ||
irq_work_needs_cpu() || local_timer_softirq_pending()) {
next_tick = basemono + TICK_NSEC;
} else {
/*
* Get the next pending timer. If high resolution
* timers are enabled this only takes the timer wheel
* timers into account. If high resolution timers are
* disabled this also looks at the next expiring
* hrtimer.
*/
next_tick = get_next_timer_interrupt(basejiff, basemono);
ts->next_timer = next_tick;
}
/* Make sure next_tick is never before basemono! */
if (WARN_ON_ONCE(basemono > next_tick))
next_tick = basemono;
/*
* If the tick is due in the next period, keep it ticking or
* force prod the timer.
*/
delta = next_tick - basemono;
if (delta <= (u64)TICK_NSEC) {
/*
* We've not stopped the tick yet, and there's a timer in the
* next period, so no point in stopping it either, bail.
*/
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
ts->timer_expires = 0;
goto out;
}
}
/*
* If this CPU is the one which had the do_timer() duty last, we limit
* the sleep time to the timekeeping 'max_deferment' value.
* Otherwise we can sleep as long as we want.
*/
delta = timekeeping_max_deferment();
if (cpu != tick_do_timer_cpu &&
(tick_do_timer_cpu != TICK_DO_TIMER_NONE ||
!tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
delta = KTIME_MAX;
/* Calculate the next expiry time */
if (delta < (KTIME_MAX - basemono))
expires = basemono + delta;
else
expires = KTIME_MAX;
ts->timer_expires = min_t(u64, expires, next_tick);
out:
return ts->timer_expires;
}
static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
{
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
unsigned long basejiff = ts->last_jiffies;
u64 basemono = ts->timer_expires_base;
bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
u64 expires;
/* Make sure we won't be trying to stop it twice in a row. */
ts->timer_expires_base = 0;
/*
* Now the tick should be stopped definitely - so the timer base needs
* to be marked idle as well to not miss a newly queued timer.
*/
expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
if (expires > ts->timer_expires) {
/*
* This path could only happen when the first timer was removed
* between calculating the possible sleep length and now (when
* high resolution mode is not active, timer could also be a
* hrtimer).
*
* We have to stick to the original calculated expiry value to
* not stop the tick for too long with a shallow C-state (which
* was programmed by cpuidle because of an early next expiration
* value).
*/
expires = ts->timer_expires;
}
/* If the timer base is not idle, retain the not yet stopped tick. */
if (!timer_idle)
return;
/*
* If this CPU is the one which updates jiffies, then give up
* the assignment and let it be taken by the CPU which runs
* the tick timer next, which might be this CPU as well. If we
* don't drop this here, the jiffies might be stale and
* do_timer() never gets invoked. Keep track of the fact that it
* was the one which had the do_timer() duty last.
*/
if (cpu == tick_do_timer_cpu) {
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
}
/* Skip reprogram of event if it's not changed */
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
/* Sanity check: make sure clockevent is actually programmed */
if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
return;
WARN_ON_ONCE(1);
printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
basemono, ts->next_tick, dev->next_event,
hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
}
/*
* tick_nohz_stop_tick() can be called several times before
* tick_nohz_restart_sched_tick() is called. This happens when
* interrupts arrive which do not cause a reschedule. In the first
* call we save the current tick time, so we can restart the
* scheduler tick in tick_nohz_restart_sched_tick().
*/
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
calc_load_nohz_start();
quiet_vmstat();
ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
tick_sched_flag_set(ts, TS_FLAG_STOPPED);
trace_tick_stop(1, TICK_DEP_MASK_NONE);
}
ts->next_tick = expires;
/*
* If the expiration time == KTIME_MAX, then we simply stop
* the tick timer.
*/
if (unlikely(expires == KTIME_MAX)) {
tick_sched_timer_cancel(ts);
return;
}
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
hrtimer_start(&ts->sched_timer, expires,
HRTIMER_MODE_ABS_PINNED_HARD);
} else {
hrtimer_set_expires(&ts->sched_timer, expires);
tick_program_event(expires, 1);
}
}
static void tick_nohz_retain_tick(struct tick_sched *ts)
{
ts->timer_expires_base = 0;
}
#ifdef CONFIG_NO_HZ_FULL
static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
{
if (tick_nohz_next_event(ts, cpu))
tick_nohz_stop_tick(ts, cpu);
else
tick_nohz_retain_tick(ts);
}
#endif /* CONFIG_NO_HZ_FULL */
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
{
/* Update jiffies first */
tick_do_update_jiffies64(now);
/*
* Clear the timer idle flag, so we avoid IPIs on remote queueing and
* the clock forward checks in the enqueue path:
*/
timer_clear_idle();
calc_load_nohz_stop();
touch_softlockup_watchdog_sched();
/* Cancel the scheduled timer and restore the tick: */
tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
tick_nohz_restart(ts, now);
}
static void __tick_nohz_full_update_tick(struct tick_sched *ts,
ktime_t now)
{
#ifdef CONFIG_NO_HZ_FULL
int cpu = smp_processor_id();
if (can_stop_full_tick(cpu, ts))
tick_nohz_full_stop_tick(ts, cpu);
else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
tick_nohz_restart_sched_tick(ts, now);
#endif
}
static void tick_nohz_full_update_tick(struct tick_sched *ts)
{
if (!tick_nohz_full_cpu(smp_processor_id()))
return;
if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
return;
__tick_nohz_full_update_tick(ts, ktime_get());
}
/*
* A pending softirq outside an IRQ (or softirq disabled section) context
* should be waiting for ksoftirqd to handle it. Therefore we shouldn't
* reach this code due to the need_resched() early check in can_stop_idle_tick().
*
* However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
* cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
* triggering the code below, since wakep_softirqd() is ignored.
*
*/
static bool report_idle_softirq(void)
{
static int ratelimit;
unsigned int pending = local_softirq_pending();
if (likely(!pending))
return false;
/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
if (!cpu_active(smp_processor_id())) {
pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
if (!pending)
return false;
}
if (ratelimit >= 10)
return false;
/* On RT, softirq handling may be waiting on some lock */
if (local_bh_blocked())
return false;
pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
pending);
ratelimit++;
return true;
}
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
WARN_ON_ONCE(cpu_is_offline(cpu));
if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
return false;
if (need_resched())
return false;
if (unlikely(report_idle_softirq()))
return false;
if (tick_nohz_full_enabled()) {
/*
* Keep the tick alive to guarantee timekeeping progression
* if there are full dynticks CPUs around
*/
if (tick_do_timer_cpu == cpu)
return false;
/* Should not happen for nohz-full */
if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
return false;
}
return true;
}
/**
* tick_nohz_idle_stop_tick - stop the idle tick from the idle task
*
* When the next event is more than a tick into the future, stop the idle tick
*/
void tick_nohz_idle_stop_tick(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
int cpu = smp_processor_id();
ktime_t expires;
/*
* If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
* tick timer expiration time is known already.
*/
if (ts->timer_expires_base)
expires = ts->timer_expires;
else if (can_stop_idle_tick(cpu, ts))
expires = tick_nohz_next_event(ts, cpu);
else
return;
ts->idle_calls++;
if (expires > 0LL) {
int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
tick_nohz_stop_tick(ts, cpu);
ts->idle_sleeps++;
ts->idle_expires = expires;
if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
ts->idle_jiffies = ts->last_jiffies;
nohz_balance_enter_idle(cpu);
}
} else {
tick_nohz_retain_tick(ts);
}
}
void tick_nohz_idle_retain_tick(void)
{
tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
}
/**
* tick_nohz_idle_enter - prepare for entering idle on the current CPU
*
* Called when we start the idle loop.
*/
void tick_nohz_idle_enter(void)
{
struct tick_sched *ts;
lockdep_assert_irqs_enabled();
local_irq_disable();
ts = this_cpu_ptr(&tick_cpu_sched);
WARN_ON_ONCE(ts->timer_expires_base);
tick_sched_flag_set(ts, TS_FLAG_INIDLE);
tick_nohz_start_idle(ts);
local_irq_enable();
}
/**
* tick_nohz_irq_exit - Notify the tick about IRQ exit
*
* A timer may have been added/modified/deleted either by the current IRQ,
* or by another place using this IRQ as a notification. This IRQ may have
* also updated the RCU callback list. These events may require a
* re-evaluation of the next tick. Depending on the context:
*
* 1) If the CPU is idle and no resched is pending, just proceed with idle
* time accounting. The next tick will be re-evaluated on the next idle
* loop iteration.
*
* 2) If the CPU is nohz_full:
*
* 2.1) If there is any tick dependency, restart the tick if stopped.
*
* 2.2) If there is no tick dependency, (re-)evaluate the next tick and
* stop/update it accordingly.
*/
void tick_nohz_irq_exit(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
tick_nohz_start_idle(ts);
else
tick_nohz_full_update_tick(ts);
}
/**
* tick_nohz_idle_got_tick - Check whether or not the tick handler has run
*
* Return: %true if the tick handler has run, otherwise %false
*/
bool tick_nohz_idle_got_tick(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (ts->got_idle_tick) {
ts->got_idle_tick = 0;
return true;
}
return false;
}
/**
* tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
* or the tick, whichever expires first. Note that, if the tick has been
* stopped, it returns the next hrtimer.
*
* Called from power state control code with interrupts disabled
*
* Return: the next expiration time
*/
ktime_t tick_nohz_get_next_hrtimer(void)
{
return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
}
/**
* tick_nohz_get_sleep_length - return the expected length of the current sleep
* @delta_next: duration until the next event if the tick cannot be stopped
*
* Called from power state control code with interrupts disabled.
*
* The return value of this function and/or the value returned by it through the
* @delta_next pointer can be negative which must be taken into account by its
* callers.
*
* Return: the expected length of the current sleep
*/
ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
{
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
int cpu = smp_processor_id();
/*
* The idle entry time is expected to be a sufficient approximation of
* the current time at this point.
*/
ktime_t now = ts->idle_entrytime;
ktime_t next_event;
WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
*delta_next = ktime_sub(dev->next_event, now);
if (!can_stop_idle_tick(cpu, ts))
return *delta_next;
next_event = tick_nohz_next_event(ts, cpu);
if (!next_event)
return *delta_next;
/*
* If the next highres timer to expire is earlier than 'next_event', the
* idle governor needs to know that.
*/
next_event = min_t(u64, next_event,
hrtimer_next_event_without(&ts->sched_timer));
return ktime_sub(next_event, now);
}
/**
* tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
* for a particular CPU.
* @cpu: target CPU number
*
* Called from the schedutil frequency scaling governor in scheduler context.
*
* Return: the current idle calls counter value for @cpu
*/
unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
{
struct tick_sched *ts = tick_get_tick_sched(cpu);
return ts->idle_calls;
}
/**
* tick_nohz_get_idle_calls - return the current idle calls counter value
*
* Called from the schedutil frequency scaling governor in scheduler context.
*
* Return: the current idle calls counter value for the current CPU
*/
unsigned long tick_nohz_get_idle_calls(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
return ts->idle_calls;
}
static void tick_nohz_account_idle_time(struct tick_sched *ts,
ktime_t now)
{
unsigned long ticks;
ts->idle_exittime = now;
if (vtime_accounting_enabled_this_cpu())
return;
/*
* We stopped the tick in idle. update_process_times() would miss the
* time we slept, as it does only a 1 tick accounting.
* Enforce that this is accounted to idle !
*/
ticks = jiffies - ts->idle_jiffies;
/*
* We might be one off. Do not randomly account a huge number of ticks!
*/
if (ticks && ticks < LONG_MAX)
account_idle_ticks(ticks);
}
void tick_nohz_idle_restart_tick(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
ktime_t now = ktime_get();
tick_nohz_restart_sched_tick(ts, now);
tick_nohz_account_idle_time(ts, now);
}
}
static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
{
if (tick_nohz_full_cpu(smp_processor_id()))
__tick_nohz_full_update_tick(ts, now);
else
tick_nohz_restart_sched_tick(ts, now);
tick_nohz_account_idle_time(ts, now);
}
/**
* tick_nohz_idle_exit - Update the tick upon idle task exit
*
* When the idle task exits, update the tick depending on the
* following situations:
*
* 1) If the CPU is not in nohz_full mode (most cases), then
* restart the tick.
*
* 2) If the CPU is in nohz_full mode (corner case):
* 2.1) If the tick can be kept stopped (no tick dependencies)
* then re-evaluate the next tick and try to keep it stopped
* as long as possible.
* 2.2) If the tick has dependencies, restart the tick.
*
*/
void tick_nohz_idle_exit(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
bool idle_active, tick_stopped;
ktime_t now;
local_irq_disable();
WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
WARN_ON_ONCE(ts->timer_expires_base);
tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
if (idle_active || tick_stopped)
now = ktime_get();
if (idle_active)
tick_nohz_stop_idle(ts, now);
if (tick_stopped)
tick_nohz_idle_update_tick(ts, now);
local_irq_enable();
}
/*
* In low-resolution mode, the tick handler must be implemented directly
* at the clockevent level. hrtimer can't be used instead, because its
* infrastructure actually relies on the tick itself as a backend in
* low-resolution mode (see hrtimer_run_queues()).
*/
static void tick_nohz_lowres_handler(struct clock_event_device *dev)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
dev->next_event = KTIME_MAX;
if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}
static inline void tick_nohz_activate(struct tick_sched *ts)
{
if (!tick_nohz_enabled)
return;
tick_sched_flag_set(ts, TS_FLAG_NOHZ);
/* One update is enough */
if (!test_and_set_bit(0, &tick_nohz_active))
timers_update_nohz();
}
/**
* tick_nohz_switch_to_nohz - switch to NOHZ mode
*/
static void tick_nohz_switch_to_nohz(void)
{
if (!tick_nohz_enabled)
return;
if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
return;
/*
* Recycle the hrtimer in 'ts', so we can share the
* highres code.
*/
tick_setup_sched_timer(false);
}
static inline void tick_nohz_irq_enter(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
ktime_t now;
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
return;
now = ktime_get();
if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
tick_nohz_stop_idle(ts, now);
/*
* If all CPUs are idle we may need to update a stale jiffies value.
* Note nohz_full is a special case: a timekeeper is guaranteed to stay
* alive but it might be busy looping with interrupts disabled in some
* rare case (typically stop machine). So we must make sure we have a
* last resort.
*/
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
tick_nohz_update_jiffies(now);
}
#else
static inline void tick_nohz_switch_to_nohz(void) { }
static inline void tick_nohz_irq_enter(void) { }
static inline void tick_nohz_activate(struct tick_sched *ts) { }
#endif /* CONFIG_NO_HZ_COMMON */
/*
* Called from irq_enter() to notify about the possible interruption of idle()
*/
void tick_irq_enter(void)
{
tick_check_oneshot_broadcast_this_cpu();
tick_nohz_irq_enter();
}
static int sched_skew_tick;
static int __init skew_tick(char *str)
{
get_option(&str, &sched_skew_tick);
return 0;
}
early_param("skew_tick", skew_tick);
/**
* tick_setup_sched_timer - setup the tick emulation timer
* @hrtimer: whether to use the hrtimer or not
*/
void tick_setup_sched_timer(bool hrtimer)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
/* Emulate tick processing via per-CPU hrtimers: */
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
ts->sched_timer.function = tick_nohz_handler;
}
/* Get the next period (per-CPU) */
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
/* Offset the tick to avert 'jiffies_lock' contention. */
if (sched_skew_tick) {
u64 offset = TICK_NSEC >> 1;
do_div(offset, num_possible_cpus());
offset *= smp_processor_id();
hrtimer_add_expires_ns(&ts->sched_timer, offset);
}
hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
else
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
tick_nohz_activate(ts);
}
/*
* Shut down the tick and make sure the CPU won't try to retake the timekeeping
* duty before disabling IRQs in idle for the last time.
*/
void tick_sched_timer_dying(int cpu)
{
struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
struct clock_event_device *dev = td->evtdev;
ktime_t idle_sleeptime, iowait_sleeptime;
unsigned long idle_calls, idle_sleeps;
/* This must happen before hrtimers are migrated! */
tick_sched_timer_cancel(ts);
/*
* If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
* make sure not to call low-res tick handler.
*/
if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
dev->event_handler = clockevents_handle_noop;
idle_sleeptime = ts->idle_sleeptime;
iowait_sleeptime = ts->iowait_sleeptime;
idle_calls = ts->idle_calls;
idle_sleeps = ts->idle_sleeps;
memset(ts, 0, sizeof(*ts));
ts->idle_sleeptime = idle_sleeptime;
ts->iowait_sleeptime = iowait_sleeptime;
ts->idle_calls = idle_calls;
ts->idle_sleeps = idle_sleeps;
}
/*
* Async notification about clocksource changes
*/
void tick_clock_notify(void)
{
int cpu;
for_each_possible_cpu(cpu)
set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}
/*
* Async notification about clock event changes
*/
void tick_oneshot_notify(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
set_bit(0, &ts->check_clocks);
}
/*
* Check if a change happened, which makes oneshot possible.
*
* Called cyclically from the hrtimer softirq (driven by the timer
* softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
* mode, because high resolution timers are disabled (either compile
* or runtime). Called with interrupts disabled.
*/
int tick_check_oneshot_change(int allow_nohz)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (!test_and_clear_bit(0, &ts->check_clocks))
return 0;
if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
return 0;
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
return 0;
if (!allow_nohz)
return 1;
tick_nohz_switch_to_nohz();
return 0;
}