| /* | 
 |  * Copyright (c) 2015 Nicira, Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of version 2 of the GNU General Public | 
 |  * License as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 |  * General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/openvswitch.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/udp.h> | 
 | #include <linux/sctp.h> | 
 | #include <net/ip.h> | 
 | #include <net/netfilter/nf_conntrack_core.h> | 
 | #include <net/netfilter/nf_conntrack_helper.h> | 
 | #include <net/netfilter/nf_conntrack_labels.h> | 
 | #include <net/netfilter/nf_conntrack_seqadj.h> | 
 | #include <net/netfilter/nf_conntrack_zones.h> | 
 | #include <net/netfilter/ipv6/nf_defrag_ipv6.h> | 
 |  | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | #include <linux/netfilter/nf_nat.h> | 
 | #include <net/netfilter/nf_nat_core.h> | 
 | #include <net/netfilter/nf_nat_l3proto.h> | 
 | #endif | 
 |  | 
 | #include "datapath.h" | 
 | #include "conntrack.h" | 
 | #include "flow.h" | 
 | #include "flow_netlink.h" | 
 |  | 
 | struct ovs_ct_len_tbl { | 
 | 	int maxlen; | 
 | 	int minlen; | 
 | }; | 
 |  | 
 | /* Metadata mark for masked write to conntrack mark */ | 
 | struct md_mark { | 
 | 	u32 value; | 
 | 	u32 mask; | 
 | }; | 
 |  | 
 | /* Metadata label for masked write to conntrack label. */ | 
 | struct md_labels { | 
 | 	struct ovs_key_ct_labels value; | 
 | 	struct ovs_key_ct_labels mask; | 
 | }; | 
 |  | 
 | enum ovs_ct_nat { | 
 | 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */ | 
 | 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ | 
 | 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ | 
 | }; | 
 |  | 
 | /* Conntrack action context for execution. */ | 
 | struct ovs_conntrack_info { | 
 | 	struct nf_conntrack_helper *helper; | 
 | 	struct nf_conntrack_zone zone; | 
 | 	struct nf_conn *ct; | 
 | 	u8 commit : 1; | 
 | 	u8 nat : 3;                 /* enum ovs_ct_nat */ | 
 | 	u8 force : 1; | 
 | 	u16 family; | 
 | 	struct md_mark mark; | 
 | 	struct md_labels labels; | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | 	struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */ | 
 | #endif | 
 | }; | 
 |  | 
 | static bool labels_nonzero(const struct ovs_key_ct_labels *labels); | 
 |  | 
 | static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); | 
 |  | 
 | static u16 key_to_nfproto(const struct sw_flow_key *key) | 
 | { | 
 | 	switch (ntohs(key->eth.type)) { | 
 | 	case ETH_P_IP: | 
 | 		return NFPROTO_IPV4; | 
 | 	case ETH_P_IPV6: | 
 | 		return NFPROTO_IPV6; | 
 | 	default: | 
 | 		return NFPROTO_UNSPEC; | 
 | 	} | 
 | } | 
 |  | 
 | /* Map SKB connection state into the values used by flow definition. */ | 
 | static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) | 
 | { | 
 | 	u8 ct_state = OVS_CS_F_TRACKED; | 
 |  | 
 | 	switch (ctinfo) { | 
 | 	case IP_CT_ESTABLISHED_REPLY: | 
 | 	case IP_CT_RELATED_REPLY: | 
 | 		ct_state |= OVS_CS_F_REPLY_DIR; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (ctinfo) { | 
 | 	case IP_CT_ESTABLISHED: | 
 | 	case IP_CT_ESTABLISHED_REPLY: | 
 | 		ct_state |= OVS_CS_F_ESTABLISHED; | 
 | 		break; | 
 | 	case IP_CT_RELATED: | 
 | 	case IP_CT_RELATED_REPLY: | 
 | 		ct_state |= OVS_CS_F_RELATED; | 
 | 		break; | 
 | 	case IP_CT_NEW: | 
 | 		ct_state |= OVS_CS_F_NEW; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ct_state; | 
 | } | 
 |  | 
 | static u32 ovs_ct_get_mark(const struct nf_conn *ct) | 
 | { | 
 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) | 
 | 	return ct ? ct->mark : 0; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /* Guard against conntrack labels max size shrinking below 128 bits. */ | 
 | #if NF_CT_LABELS_MAX_SIZE < 16 | 
 | #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes | 
 | #endif | 
 |  | 
 | static void ovs_ct_get_labels(const struct nf_conn *ct, | 
 | 			      struct ovs_key_ct_labels *labels) | 
 | { | 
 | 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; | 
 |  | 
 | 	if (cl) | 
 | 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); | 
 | 	else | 
 | 		memset(labels, 0, OVS_CT_LABELS_LEN); | 
 | } | 
 |  | 
 | static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, | 
 | 					const struct nf_conntrack_tuple *orig, | 
 | 					u8 icmp_proto) | 
 | { | 
 | 	key->ct_orig_proto = orig->dst.protonum; | 
 | 	if (orig->dst.protonum == icmp_proto) { | 
 | 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); | 
 | 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); | 
 | 	} else { | 
 | 		key->ct.orig_tp.src = orig->src.u.all; | 
 | 		key->ct.orig_tp.dst = orig->dst.u.all; | 
 | 	} | 
 | } | 
 |  | 
 | static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, | 
 | 				const struct nf_conntrack_zone *zone, | 
 | 				const struct nf_conn *ct) | 
 | { | 
 | 	key->ct_state = state; | 
 | 	key->ct_zone = zone->id; | 
 | 	key->ct.mark = ovs_ct_get_mark(ct); | 
 | 	ovs_ct_get_labels(ct, &key->ct.labels); | 
 |  | 
 | 	if (ct) { | 
 | 		const struct nf_conntrack_tuple *orig; | 
 |  | 
 | 		/* Use the master if we have one. */ | 
 | 		if (ct->master) | 
 | 			ct = ct->master; | 
 | 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; | 
 |  | 
 | 		/* IP version must match with the master connection. */ | 
 | 		if (key->eth.type == htons(ETH_P_IP) && | 
 | 		    nf_ct_l3num(ct) == NFPROTO_IPV4) { | 
 | 			key->ipv4.ct_orig.src = orig->src.u3.ip; | 
 | 			key->ipv4.ct_orig.dst = orig->dst.u3.ip; | 
 | 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); | 
 | 			return; | 
 | 		} else if (key->eth.type == htons(ETH_P_IPV6) && | 
 | 			   !sw_flow_key_is_nd(key) && | 
 | 			   nf_ct_l3num(ct) == NFPROTO_IPV6) { | 
 | 			key->ipv6.ct_orig.src = orig->src.u3.in6; | 
 | 			key->ipv6.ct_orig.dst = orig->dst.u3.in6; | 
 | 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack | 
 | 	 * original direction key fields. | 
 | 	 */ | 
 | 	key->ct_orig_proto = 0; | 
 | } | 
 |  | 
 | /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has | 
 |  * previously sent the packet to conntrack via the ct action.  If | 
 |  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are | 
 |  * initialized from the connection status. | 
 |  */ | 
 | static void ovs_ct_update_key(const struct sk_buff *skb, | 
 | 			      const struct ovs_conntrack_info *info, | 
 | 			      struct sw_flow_key *key, bool post_ct, | 
 | 			      bool keep_nat_flags) | 
 | { | 
 | 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; | 
 | 	enum ip_conntrack_info ctinfo; | 
 | 	struct nf_conn *ct; | 
 | 	u8 state = 0; | 
 |  | 
 | 	ct = nf_ct_get(skb, &ctinfo); | 
 | 	if (ct) { | 
 | 		state = ovs_ct_get_state(ctinfo); | 
 | 		/* All unconfirmed entries are NEW connections. */ | 
 | 		if (!nf_ct_is_confirmed(ct)) | 
 | 			state |= OVS_CS_F_NEW; | 
 | 		/* OVS persists the related flag for the duration of the | 
 | 		 * connection. | 
 | 		 */ | 
 | 		if (ct->master) | 
 | 			state |= OVS_CS_F_RELATED; | 
 | 		if (keep_nat_flags) { | 
 | 			state |= key->ct_state & OVS_CS_F_NAT_MASK; | 
 | 		} else { | 
 | 			if (ct->status & IPS_SRC_NAT) | 
 | 				state |= OVS_CS_F_SRC_NAT; | 
 | 			if (ct->status & IPS_DST_NAT) | 
 | 				state |= OVS_CS_F_DST_NAT; | 
 | 		} | 
 | 		zone = nf_ct_zone(ct); | 
 | 	} else if (post_ct) { | 
 | 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; | 
 | 		if (info) | 
 | 			zone = &info->zone; | 
 | 	} | 
 | 	__ovs_ct_update_key(key, state, zone, ct); | 
 | } | 
 |  | 
 | /* This is called to initialize CT key fields possibly coming in from the local | 
 |  * stack. | 
 |  */ | 
 | void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) | 
 | { | 
 | 	ovs_ct_update_key(skb, NULL, key, false, false); | 
 | } | 
 |  | 
 | #define IN6_ADDR_INITIALIZER(ADDR) \ | 
 | 	{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \ | 
 | 	  (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] } | 
 |  | 
 | int ovs_ct_put_key(const struct sw_flow_key *swkey, | 
 | 		   const struct sw_flow_key *output, struct sk_buff *skb) | 
 | { | 
 | 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && | 
 | 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && | 
 | 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && | 
 | 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), | 
 | 		    &output->ct.labels)) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (swkey->ct_orig_proto) { | 
 | 		if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 			struct ovs_key_ct_tuple_ipv4 orig = { | 
 | 				output->ipv4.ct_orig.src, | 
 | 				output->ipv4.ct_orig.dst, | 
 | 				output->ct.orig_tp.src, | 
 | 				output->ct.orig_tp.dst, | 
 | 				output->ct_orig_proto, | 
 | 			}; | 
 | 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, | 
 | 				    sizeof(orig), &orig)) | 
 | 				return -EMSGSIZE; | 
 | 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 			struct ovs_key_ct_tuple_ipv6 orig = { | 
 | 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src), | 
 | 				IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst), | 
 | 				output->ct.orig_tp.src, | 
 | 				output->ct.orig_tp.dst, | 
 | 				output->ct_orig_proto, | 
 | 			}; | 
 | 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, | 
 | 				    sizeof(orig), &orig)) | 
 | 				return -EMSGSIZE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, | 
 | 			   u32 ct_mark, u32 mask) | 
 | { | 
 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) | 
 | 	u32 new_mark; | 
 |  | 
 | 	new_mark = ct_mark | (ct->mark & ~(mask)); | 
 | 	if (ct->mark != new_mark) { | 
 | 		ct->mark = new_mark; | 
 | 		if (nf_ct_is_confirmed(ct)) | 
 | 			nf_conntrack_event_cache(IPCT_MARK, ct); | 
 | 		key->ct.mark = new_mark; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | #else | 
 | 	return -ENOTSUPP; | 
 | #endif | 
 | } | 
 |  | 
 | static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) | 
 | { | 
 | 	struct nf_conn_labels *cl; | 
 |  | 
 | 	cl = nf_ct_labels_find(ct); | 
 | 	if (!cl) { | 
 | 		nf_ct_labels_ext_add(ct); | 
 | 		cl = nf_ct_labels_find(ct); | 
 | 	} | 
 |  | 
 | 	return cl; | 
 | } | 
 |  | 
 | /* Initialize labels for a new, yet to be committed conntrack entry.  Note that | 
 |  * since the new connection is not yet confirmed, and thus no-one else has | 
 |  * access to it's labels, we simply write them over. | 
 |  */ | 
 | static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, | 
 | 			      const struct ovs_key_ct_labels *labels, | 
 | 			      const struct ovs_key_ct_labels *mask) | 
 | { | 
 | 	struct nf_conn_labels *cl, *master_cl; | 
 | 	bool have_mask = labels_nonzero(mask); | 
 |  | 
 | 	/* Inherit master's labels to the related connection? */ | 
 | 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; | 
 |  | 
 | 	if (!master_cl && !have_mask) | 
 | 		return 0;   /* Nothing to do. */ | 
 |  | 
 | 	cl = ovs_ct_get_conn_labels(ct); | 
 | 	if (!cl) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* Inherit the master's labels, if any. */ | 
 | 	if (master_cl) | 
 | 		*cl = *master_cl; | 
 |  | 
 | 	if (have_mask) { | 
 | 		u32 *dst = (u32 *)cl->bits; | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) | 
 | 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | | 
 | 				(labels->ct_labels_32[i] | 
 | 				 & mask->ct_labels_32[i]); | 
 | 	} | 
 |  | 
 | 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the | 
 | 	 * IPCT_LABEL bit it set in the event cache. | 
 | 	 */ | 
 | 	nf_conntrack_event_cache(IPCT_LABEL, ct); | 
 |  | 
 | 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, | 
 | 			     const struct ovs_key_ct_labels *labels, | 
 | 			     const struct ovs_key_ct_labels *mask) | 
 | { | 
 | 	struct nf_conn_labels *cl; | 
 | 	int err; | 
 |  | 
 | 	cl = ovs_ct_get_conn_labels(ct); | 
 | 	if (!cl) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	err = nf_connlabels_replace(ct, labels->ct_labels_32, | 
 | 				    mask->ct_labels_32, | 
 | 				    OVS_CT_LABELS_LEN_32); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* 'skb' should already be pulled to nh_ofs. */ | 
 | static int ovs_ct_helper(struct sk_buff *skb, u16 proto) | 
 | { | 
 | 	const struct nf_conntrack_helper *helper; | 
 | 	const struct nf_conn_help *help; | 
 | 	enum ip_conntrack_info ctinfo; | 
 | 	unsigned int protoff; | 
 | 	struct nf_conn *ct; | 
 | 	int err; | 
 |  | 
 | 	ct = nf_ct_get(skb, &ctinfo); | 
 | 	if (!ct || ctinfo == IP_CT_RELATED_REPLY) | 
 | 		return NF_ACCEPT; | 
 |  | 
 | 	help = nfct_help(ct); | 
 | 	if (!help) | 
 | 		return NF_ACCEPT; | 
 |  | 
 | 	helper = rcu_dereference(help->helper); | 
 | 	if (!helper) | 
 | 		return NF_ACCEPT; | 
 |  | 
 | 	switch (proto) { | 
 | 	case NFPROTO_IPV4: | 
 | 		protoff = ip_hdrlen(skb); | 
 | 		break; | 
 | 	case NFPROTO_IPV6: { | 
 | 		u8 nexthdr = ipv6_hdr(skb)->nexthdr; | 
 | 		__be16 frag_off; | 
 | 		int ofs; | 
 |  | 
 | 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, | 
 | 				       &frag_off); | 
 | 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { | 
 | 			pr_debug("proto header not found\n"); | 
 | 			return NF_ACCEPT; | 
 | 		} | 
 | 		protoff = ofs; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		WARN_ONCE(1, "helper invoked on non-IP family!"); | 
 | 		return NF_DROP; | 
 | 	} | 
 |  | 
 | 	err = helper->help(skb, protoff, ct, ctinfo); | 
 | 	if (err != NF_ACCEPT) | 
 | 		return err; | 
 |  | 
 | 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g., | 
 | 	 * FTP with NAT) adusting the TCP payload size when mangling IP | 
 | 	 * addresses and/or port numbers in the text-based control connection. | 
 | 	 */ | 
 | 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && | 
 | 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) | 
 | 		return NF_DROP; | 
 | 	return NF_ACCEPT; | 
 | } | 
 |  | 
 | /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero | 
 |  * value if 'skb' is freed. | 
 |  */ | 
 | static int handle_fragments(struct net *net, struct sw_flow_key *key, | 
 | 			    u16 zone, struct sk_buff *skb) | 
 | { | 
 | 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb); | 
 | 	int err; | 
 |  | 
 | 	if (key->eth.type == htons(ETH_P_IP)) { | 
 | 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; | 
 |  | 
 | 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); | 
 | 		err = ip_defrag(net, skb, user); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		ovs_cb.mru = IPCB(skb)->frag_max_size; | 
 | #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) | 
 | 	} else if (key->eth.type == htons(ETH_P_IPV6)) { | 
 | 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; | 
 |  | 
 | 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); | 
 | 		err = nf_ct_frag6_gather(net, skb, user); | 
 | 		if (err) { | 
 | 			if (err != -EINPROGRESS) | 
 | 				kfree_skb(skb); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		key->ip.proto = ipv6_hdr(skb)->nexthdr; | 
 | 		ovs_cb.mru = IP6CB(skb)->frag_max_size; | 
 | #endif | 
 | 	} else { | 
 | 		kfree_skb(skb); | 
 | 		return -EPFNOSUPPORT; | 
 | 	} | 
 |  | 
 | 	key->ip.frag = OVS_FRAG_TYPE_NONE; | 
 | 	skb_clear_hash(skb); | 
 | 	skb->ignore_df = 1; | 
 | 	*OVS_CB(skb) = ovs_cb; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct nf_conntrack_expect * | 
 | ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, | 
 | 		   u16 proto, const struct sk_buff *skb) | 
 | { | 
 | 	struct nf_conntrack_tuple tuple; | 
 |  | 
 | 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) | 
 | 		return NULL; | 
 | 	return __nf_ct_expect_find(net, zone, &tuple); | 
 | } | 
 |  | 
 | /* This replicates logic from nf_conntrack_core.c that is not exported. */ | 
 | static enum ip_conntrack_info | 
 | ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) | 
 | { | 
 | 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); | 
 |  | 
 | 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) | 
 | 		return IP_CT_ESTABLISHED_REPLY; | 
 | 	/* Once we've had two way comms, always ESTABLISHED. */ | 
 | 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) | 
 | 		return IP_CT_ESTABLISHED; | 
 | 	if (test_bit(IPS_EXPECTED_BIT, &ct->status)) | 
 | 		return IP_CT_RELATED; | 
 | 	return IP_CT_NEW; | 
 | } | 
 |  | 
 | /* Find an existing connection which this packet belongs to without | 
 |  * re-attributing statistics or modifying the connection state.  This allows an | 
 |  * skb->_nfct lost due to an upcall to be recovered during actions execution. | 
 |  * | 
 |  * Must be called with rcu_read_lock. | 
 |  * | 
 |  * On success, populates skb->_nfct and returns the connection.  Returns NULL | 
 |  * if there is no existing entry. | 
 |  */ | 
 | static struct nf_conn * | 
 | ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, | 
 | 		     u8 l3num, struct sk_buff *skb, bool natted) | 
 | { | 
 | 	struct nf_conntrack_l3proto *l3proto; | 
 | 	struct nf_conntrack_l4proto *l4proto; | 
 | 	struct nf_conntrack_tuple tuple; | 
 | 	struct nf_conntrack_tuple_hash *h; | 
 | 	struct nf_conn *ct; | 
 | 	unsigned int dataoff; | 
 | 	u8 protonum; | 
 |  | 
 | 	l3proto = __nf_ct_l3proto_find(l3num); | 
 | 	if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, | 
 | 				 &protonum) <= 0) { | 
 | 		pr_debug("ovs_ct_find_existing: Can't get protonum\n"); | 
 | 		return NULL; | 
 | 	} | 
 | 	l4proto = __nf_ct_l4proto_find(l3num, protonum); | 
 | 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, | 
 | 			     protonum, net, &tuple, l3proto, l4proto)) { | 
 | 		pr_debug("ovs_ct_find_existing: Can't get tuple\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Must invert the tuple if skb has been transformed by NAT. */ | 
 | 	if (natted) { | 
 | 		struct nf_conntrack_tuple inverse; | 
 |  | 
 | 		if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) { | 
 | 			pr_debug("ovs_ct_find_existing: Inversion failed!\n"); | 
 | 			return NULL; | 
 | 		} | 
 | 		tuple = inverse; | 
 | 	} | 
 |  | 
 | 	/* look for tuple match */ | 
 | 	h = nf_conntrack_find_get(net, zone, &tuple); | 
 | 	if (!h) | 
 | 		return NULL;   /* Not found. */ | 
 |  | 
 | 	ct = nf_ct_tuplehash_to_ctrack(h); | 
 |  | 
 | 	/* Inverted packet tuple matches the reverse direction conntrack tuple, | 
 | 	 * select the other tuplehash to get the right 'ctinfo' bits for this | 
 | 	 * packet. | 
 | 	 */ | 
 | 	if (natted) | 
 | 		h = &ct->tuplehash[!h->tuple.dst.dir]; | 
 |  | 
 | 	nf_ct_set(skb, ct, ovs_ct_get_info(h)); | 
 | 	return ct; | 
 | } | 
 |  | 
 | /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ | 
 | static bool skb_nfct_cached(struct net *net, | 
 | 			    const struct sw_flow_key *key, | 
 | 			    const struct ovs_conntrack_info *info, | 
 | 			    struct sk_buff *skb) | 
 | { | 
 | 	enum ip_conntrack_info ctinfo; | 
 | 	struct nf_conn *ct; | 
 |  | 
 | 	ct = nf_ct_get(skb, &ctinfo); | 
 | 	/* If no ct, check if we have evidence that an existing conntrack entry | 
 | 	 * might be found for this skb.  This happens when we lose a skb->_nfct | 
 | 	 * due to an upcall.  If the connection was not confirmed, it is not | 
 | 	 * cached and needs to be run through conntrack again. | 
 | 	 */ | 
 | 	if (!ct && key->ct_state & OVS_CS_F_TRACKED && | 
 | 	    !(key->ct_state & OVS_CS_F_INVALID) && | 
 | 	    key->ct_zone == info->zone.id) { | 
 | 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, | 
 | 					  !!(key->ct_state | 
 | 					     & OVS_CS_F_NAT_MASK)); | 
 | 		if (ct) | 
 | 			nf_ct_get(skb, &ctinfo); | 
 | 	} | 
 | 	if (!ct) | 
 | 		return false; | 
 | 	if (!net_eq(net, read_pnet(&ct->ct_net))) | 
 | 		return false; | 
 | 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) | 
 | 		return false; | 
 | 	if (info->helper) { | 
 | 		struct nf_conn_help *help; | 
 |  | 
 | 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); | 
 | 		if (help && rcu_access_pointer(help->helper) != info->helper) | 
 | 			return false; | 
 | 	} | 
 | 	/* Force conntrack entry direction to the current packet? */ | 
 | 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { | 
 | 		/* Delete the conntrack entry if confirmed, else just release | 
 | 		 * the reference. | 
 | 		 */ | 
 | 		if (nf_ct_is_confirmed(ct)) | 
 | 			nf_ct_delete(ct, 0, 0); | 
 | 		else | 
 | 			nf_conntrack_put(&ct->ct_general); | 
 | 		nf_ct_set(skb, NULL, 0); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | /* Modelled after nf_nat_ipv[46]_fn(). | 
 |  * range is only used for new, uninitialized NAT state. | 
 |  * Returns either NF_ACCEPT or NF_DROP. | 
 |  */ | 
 | static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, | 
 | 			      enum ip_conntrack_info ctinfo, | 
 | 			      const struct nf_nat_range *range, | 
 | 			      enum nf_nat_manip_type maniptype) | 
 | { | 
 | 	int hooknum, nh_off, err = NF_ACCEPT; | 
 |  | 
 | 	nh_off = skb_network_offset(skb); | 
 | 	skb_pull_rcsum(skb, nh_off); | 
 |  | 
 | 	/* See HOOK2MANIP(). */ | 
 | 	if (maniptype == NF_NAT_MANIP_SRC) | 
 | 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */ | 
 | 	else | 
 | 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ | 
 |  | 
 | 	switch (ctinfo) { | 
 | 	case IP_CT_RELATED: | 
 | 	case IP_CT_RELATED_REPLY: | 
 | 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && | 
 | 		    skb->protocol == htons(ETH_P_IP) && | 
 | 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) { | 
 | 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, | 
 | 							   hooknum)) | 
 | 				err = NF_DROP; | 
 | 			goto push; | 
 | 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && | 
 | 			   skb->protocol == htons(ETH_P_IPV6)) { | 
 | 			__be16 frag_off; | 
 | 			u8 nexthdr = ipv6_hdr(skb)->nexthdr; | 
 | 			int hdrlen = ipv6_skip_exthdr(skb, | 
 | 						      sizeof(struct ipv6hdr), | 
 | 						      &nexthdr, &frag_off); | 
 |  | 
 | 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { | 
 | 				if (!nf_nat_icmpv6_reply_translation(skb, ct, | 
 | 								     ctinfo, | 
 | 								     hooknum, | 
 | 								     hdrlen)) | 
 | 					err = NF_DROP; | 
 | 				goto push; | 
 | 			} | 
 | 		} | 
 | 		/* Non-ICMP, fall thru to initialize if needed. */ | 
 | 	case IP_CT_NEW: | 
 | 		/* Seen it before?  This can happen for loopback, retrans, | 
 | 		 * or local packets. | 
 | 		 */ | 
 | 		if (!nf_nat_initialized(ct, maniptype)) { | 
 | 			/* Initialize according to the NAT action. */ | 
 | 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) | 
 | 				/* Action is set up to establish a new | 
 | 				 * mapping. | 
 | 				 */ | 
 | 				? nf_nat_setup_info(ct, range, maniptype) | 
 | 				: nf_nat_alloc_null_binding(ct, hooknum); | 
 | 			if (err != NF_ACCEPT) | 
 | 				goto push; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case IP_CT_ESTABLISHED: | 
 | 	case IP_CT_ESTABLISHED_REPLY: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		err = NF_DROP; | 
 | 		goto push; | 
 | 	} | 
 |  | 
 | 	err = nf_nat_packet(ct, ctinfo, hooknum, skb); | 
 | push: | 
 | 	skb_push(skb, nh_off); | 
 | 	skb_postpush_rcsum(skb, skb->data, nh_off); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void ovs_nat_update_key(struct sw_flow_key *key, | 
 | 			       const struct sk_buff *skb, | 
 | 			       enum nf_nat_manip_type maniptype) | 
 | { | 
 | 	if (maniptype == NF_NAT_MANIP_SRC) { | 
 | 		__be16 src; | 
 |  | 
 | 		key->ct_state |= OVS_CS_F_SRC_NAT; | 
 | 		if (key->eth.type == htons(ETH_P_IP)) | 
 | 			key->ipv4.addr.src = ip_hdr(skb)->saddr; | 
 | 		else if (key->eth.type == htons(ETH_P_IPV6)) | 
 | 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, | 
 | 			       sizeof(key->ipv6.addr.src)); | 
 | 		else | 
 | 			return; | 
 |  | 
 | 		if (key->ip.proto == IPPROTO_UDP) | 
 | 			src = udp_hdr(skb)->source; | 
 | 		else if (key->ip.proto == IPPROTO_TCP) | 
 | 			src = tcp_hdr(skb)->source; | 
 | 		else if (key->ip.proto == IPPROTO_SCTP) | 
 | 			src = sctp_hdr(skb)->source; | 
 | 		else | 
 | 			return; | 
 |  | 
 | 		key->tp.src = src; | 
 | 	} else { | 
 | 		__be16 dst; | 
 |  | 
 | 		key->ct_state |= OVS_CS_F_DST_NAT; | 
 | 		if (key->eth.type == htons(ETH_P_IP)) | 
 | 			key->ipv4.addr.dst = ip_hdr(skb)->daddr; | 
 | 		else if (key->eth.type == htons(ETH_P_IPV6)) | 
 | 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, | 
 | 			       sizeof(key->ipv6.addr.dst)); | 
 | 		else | 
 | 			return; | 
 |  | 
 | 		if (key->ip.proto == IPPROTO_UDP) | 
 | 			dst = udp_hdr(skb)->dest; | 
 | 		else if (key->ip.proto == IPPROTO_TCP) | 
 | 			dst = tcp_hdr(skb)->dest; | 
 | 		else if (key->ip.proto == IPPROTO_SCTP) | 
 | 			dst = sctp_hdr(skb)->dest; | 
 | 		else | 
 | 			return; | 
 |  | 
 | 		key->tp.dst = dst; | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ | 
 | static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, | 
 | 		      const struct ovs_conntrack_info *info, | 
 | 		      struct sk_buff *skb, struct nf_conn *ct, | 
 | 		      enum ip_conntrack_info ctinfo) | 
 | { | 
 | 	enum nf_nat_manip_type maniptype; | 
 | 	int err; | 
 |  | 
 | 	if (nf_ct_is_untracked(ct)) { | 
 | 		/* A NAT action may only be performed on tracked packets. */ | 
 | 		return NF_ACCEPT; | 
 | 	} | 
 |  | 
 | 	/* Add NAT extension if not confirmed yet. */ | 
 | 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) | 
 | 		return NF_ACCEPT;   /* Can't NAT. */ | 
 |  | 
 | 	/* Determine NAT type. | 
 | 	 * Check if the NAT type can be deduced from the tracked connection. | 
 | 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only | 
 | 	 * when committing. | 
 | 	 */ | 
 | 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && | 
 | 	    ct->status & IPS_NAT_MASK && | 
 | 	    (ctinfo != IP_CT_RELATED || info->commit)) { | 
 | 		/* NAT an established or related connection like before. */ | 
 | 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) | 
 | 			/* This is the REPLY direction for a connection | 
 | 			 * for which NAT was applied in the forward | 
 | 			 * direction.  Do the reverse NAT. | 
 | 			 */ | 
 | 			maniptype = ct->status & IPS_SRC_NAT | 
 | 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; | 
 | 		else | 
 | 			maniptype = ct->status & IPS_SRC_NAT | 
 | 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; | 
 | 	} else if (info->nat & OVS_CT_SRC_NAT) { | 
 | 		maniptype = NF_NAT_MANIP_SRC; | 
 | 	} else if (info->nat & OVS_CT_DST_NAT) { | 
 | 		maniptype = NF_NAT_MANIP_DST; | 
 | 	} else { | 
 | 		return NF_ACCEPT; /* Connection is not NATed. */ | 
 | 	} | 
 | 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); | 
 |  | 
 | 	/* Mark NAT done if successful and update the flow key. */ | 
 | 	if (err == NF_ACCEPT) | 
 | 		ovs_nat_update_key(key, skb, maniptype); | 
 |  | 
 | 	return err; | 
 | } | 
 | #else /* !CONFIG_NF_NAT_NEEDED */ | 
 | static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, | 
 | 		      const struct ovs_conntrack_info *info, | 
 | 		      struct sk_buff *skb, struct nf_conn *ct, | 
 | 		      enum ip_conntrack_info ctinfo) | 
 | { | 
 | 	return NF_ACCEPT; | 
 | } | 
 | #endif | 
 |  | 
 | /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if | 
 |  * not done already.  Update key with new CT state after passing the packet | 
 |  * through conntrack. | 
 |  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be | 
 |  * set to NULL and 0 will be returned. | 
 |  */ | 
 | static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, | 
 | 			   const struct ovs_conntrack_info *info, | 
 | 			   struct sk_buff *skb) | 
 | { | 
 | 	/* If we are recirculating packets to match on conntrack fields and | 
 | 	 * committing with a separate conntrack action,  then we don't need to | 
 | 	 * actually run the packet through conntrack twice unless it's for a | 
 | 	 * different zone. | 
 | 	 */ | 
 | 	bool cached = skb_nfct_cached(net, key, info, skb); | 
 | 	enum ip_conntrack_info ctinfo; | 
 | 	struct nf_conn *ct; | 
 |  | 
 | 	if (!cached) { | 
 | 		struct nf_conn *tmpl = info->ct; | 
 | 		int err; | 
 |  | 
 | 		/* Associate skb with specified zone. */ | 
 | 		if (tmpl) { | 
 | 			if (skb_nfct(skb)) | 
 | 				nf_conntrack_put(skb_nfct(skb)); | 
 | 			nf_conntrack_get(&tmpl->ct_general); | 
 | 			nf_ct_set(skb, tmpl, IP_CT_NEW); | 
 | 		} | 
 |  | 
 | 		err = nf_conntrack_in(net, info->family, | 
 | 				      NF_INET_PRE_ROUTING, skb); | 
 | 		if (err != NF_ACCEPT) | 
 | 			return -ENOENT; | 
 |  | 
 | 		/* Clear CT state NAT flags to mark that we have not yet done | 
 | 		 * NAT after the nf_conntrack_in() call.  We can actually clear | 
 | 		 * the whole state, as it will be re-initialized below. | 
 | 		 */ | 
 | 		key->ct_state = 0; | 
 |  | 
 | 		/* Update the key, but keep the NAT flags. */ | 
 | 		ovs_ct_update_key(skb, info, key, true, true); | 
 | 	} | 
 |  | 
 | 	ct = nf_ct_get(skb, &ctinfo); | 
 | 	if (ct) { | 
 | 		/* Packets starting a new connection must be NATted before the | 
 | 		 * helper, so that the helper knows about the NAT.  We enforce | 
 | 		 * this by delaying both NAT and helper calls for unconfirmed | 
 | 		 * connections until the committing CT action.  For later | 
 | 		 * packets NAT and Helper may be called in either order. | 
 | 		 * | 
 | 		 * NAT will be done only if the CT action has NAT, and only | 
 | 		 * once per packet (per zone), as guarded by the NAT bits in | 
 | 		 * the key->ct_state. | 
 | 		 */ | 
 | 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && | 
 | 		    (nf_ct_is_confirmed(ct) || info->commit) && | 
 | 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* Userspace may decide to perform a ct lookup without a helper | 
 | 		 * specified followed by a (recirculate and) commit with one. | 
 | 		 * Therefore, for unconfirmed connections which we will commit, | 
 | 		 * we need to attach the helper here. | 
 | 		 */ | 
 | 		if (!nf_ct_is_confirmed(ct) && info->commit && | 
 | 		    info->helper && !nfct_help(ct)) { | 
 | 			int err = __nf_ct_try_assign_helper(ct, info->ct, | 
 | 							    GFP_ATOMIC); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		/* Call the helper only if: | 
 | 		 * - nf_conntrack_in() was executed above ("!cached") for a | 
 | 		 *   confirmed connection, or | 
 | 		 * - When committing an unconfirmed connection. | 
 | 		 */ | 
 | 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && | 
 | 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) { | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Lookup connection and read fields into key. */ | 
 | static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, | 
 | 			 const struct ovs_conntrack_info *info, | 
 | 			 struct sk_buff *skb) | 
 | { | 
 | 	struct nf_conntrack_expect *exp; | 
 |  | 
 | 	/* If we pass an expected packet through nf_conntrack_in() the | 
 | 	 * expectation is typically removed, but the packet could still be | 
 | 	 * lost in upcall processing.  To prevent this from happening we | 
 | 	 * perform an explicit expectation lookup.  Expected connections are | 
 | 	 * always new, and will be passed through conntrack only when they are | 
 | 	 * committed, as it is OK to remove the expectation at that time. | 
 | 	 */ | 
 | 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); | 
 | 	if (exp) { | 
 | 		u8 state; | 
 |  | 
 | 		/* NOTE: New connections are NATted and Helped only when | 
 | 		 * committed, so we are not calling into NAT here. | 
 | 		 */ | 
 | 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; | 
 | 		__ovs_ct_update_key(key, state, &info->zone, exp->master); | 
 | 	} else { | 
 | 		struct nf_conn *ct; | 
 | 		int err; | 
 |  | 
 | 		err = __ovs_ct_lookup(net, key, info, skb); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		ct = (struct nf_conn *)skb_nfct(skb); | 
 | 		if (ct) | 
 | 			nf_ct_deliver_cached_events(ct); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool labels_nonzero(const struct ovs_key_ct_labels *labels) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) | 
 | 		if (labels->ct_labels_32[i]) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Lookup connection and confirm if unconfirmed. */ | 
 | static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, | 
 | 			 const struct ovs_conntrack_info *info, | 
 | 			 struct sk_buff *skb) | 
 | { | 
 | 	enum ip_conntrack_info ctinfo; | 
 | 	struct nf_conn *ct; | 
 | 	int err; | 
 |  | 
 | 	err = __ovs_ct_lookup(net, key, info, skb); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* The connection could be invalid, in which case this is a no-op.*/ | 
 | 	ct = nf_ct_get(skb, &ctinfo); | 
 | 	if (!ct) | 
 | 		return 0; | 
 |  | 
 | 	/* Apply changes before confirming the connection so that the initial | 
 | 	 * conntrack NEW netlink event carries the values given in the CT | 
 | 	 * action. | 
 | 	 */ | 
 | 	if (info->mark.mask) { | 
 | 		err = ovs_ct_set_mark(ct, key, info->mark.value, | 
 | 				      info->mark.mask); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	if (!nf_ct_is_confirmed(ct)) { | 
 | 		err = ovs_ct_init_labels(ct, key, &info->labels.value, | 
 | 					 &info->labels.mask); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} else if (labels_nonzero(&info->labels.mask)) { | 
 | 		err = ovs_ct_set_labels(ct, key, &info->labels.value, | 
 | 					&info->labels.mask); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	/* This will take care of sending queued events even if the connection | 
 | 	 * is already confirmed. | 
 | 	 */ | 
 | 	if (nf_conntrack_confirm(skb) != NF_ACCEPT) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero | 
 |  * value if 'skb' is freed. | 
 |  */ | 
 | int ovs_ct_execute(struct net *net, struct sk_buff *skb, | 
 | 		   struct sw_flow_key *key, | 
 | 		   const struct ovs_conntrack_info *info) | 
 | { | 
 | 	int nh_ofs; | 
 | 	int err; | 
 |  | 
 | 	/* The conntrack module expects to be working at L3. */ | 
 | 	nh_ofs = skb_network_offset(skb); | 
 | 	skb_pull_rcsum(skb, nh_ofs); | 
 |  | 
 | 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) { | 
 | 		err = handle_fragments(net, key, info->zone.id, skb); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	if (info->commit) | 
 | 		err = ovs_ct_commit(net, key, info, skb); | 
 | 	else | 
 | 		err = ovs_ct_lookup(net, key, info, skb); | 
 |  | 
 | 	skb_push(skb, nh_ofs); | 
 | 	skb_postpush_rcsum(skb, skb->data, nh_ofs); | 
 | 	if (err) | 
 | 		kfree_skb(skb); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, | 
 | 			     const struct sw_flow_key *key, bool log) | 
 | { | 
 | 	struct nf_conntrack_helper *helper; | 
 | 	struct nf_conn_help *help; | 
 |  | 
 | 	helper = nf_conntrack_helper_try_module_get(name, info->family, | 
 | 						    key->ip.proto); | 
 | 	if (!helper) { | 
 | 		OVS_NLERR(log, "Unknown helper \"%s\"", name); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); | 
 | 	if (!help) { | 
 | 		module_put(helper->me); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	rcu_assign_pointer(help->helper, helper); | 
 | 	info->helper = helper; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | static int parse_nat(const struct nlattr *attr, | 
 | 		     struct ovs_conntrack_info *info, bool log) | 
 | { | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 | 	bool have_ip_max = false; | 
 | 	bool have_proto_max = false; | 
 | 	bool ip_vers = (info->family == NFPROTO_IPV6); | 
 |  | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { | 
 | 			[OVS_NAT_ATTR_SRC] = {0, 0}, | 
 | 			[OVS_NAT_ATTR_DST] = {0, 0}, | 
 | 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), | 
 | 						 sizeof(struct in6_addr)}, | 
 | 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), | 
 | 						 sizeof(struct in6_addr)}, | 
 | 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, | 
 | 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, | 
 | 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0}, | 
 | 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, | 
 | 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, | 
 | 		}; | 
 | 		int type = nla_type(a); | 
 |  | 
 | 		if (type > OVS_NAT_ATTR_MAX) { | 
 | 			OVS_NLERR(log, | 
 | 				  "Unknown NAT attribute (type=%d, max=%d).\n", | 
 | 				  type, OVS_NAT_ATTR_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { | 
 | 			OVS_NLERR(log, | 
 | 				  "NAT attribute type %d has unexpected length (%d != %d).\n", | 
 | 				  type, nla_len(a), | 
 | 				  ovs_nat_attr_lens[type][ip_vers]); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_NAT_ATTR_SRC: | 
 | 		case OVS_NAT_ATTR_DST: | 
 | 			if (info->nat) { | 
 | 				OVS_NLERR(log, | 
 | 					  "Only one type of NAT may be specified.\n" | 
 | 					  ); | 
 | 				return -ERANGE; | 
 | 			} | 
 | 			info->nat |= OVS_CT_NAT; | 
 | 			info->nat |= ((type == OVS_NAT_ATTR_SRC) | 
 | 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); | 
 | 			break; | 
 |  | 
 | 		case OVS_NAT_ATTR_IP_MIN: | 
 | 			nla_memcpy(&info->range.min_addr, a, | 
 | 				   sizeof(info->range.min_addr)); | 
 | 			info->range.flags |= NF_NAT_RANGE_MAP_IPS; | 
 | 			break; | 
 |  | 
 | 		case OVS_NAT_ATTR_IP_MAX: | 
 | 			have_ip_max = true; | 
 | 			nla_memcpy(&info->range.max_addr, a, | 
 | 				   sizeof(info->range.max_addr)); | 
 | 			info->range.flags |= NF_NAT_RANGE_MAP_IPS; | 
 | 			break; | 
 |  | 
 | 		case OVS_NAT_ATTR_PROTO_MIN: | 
 | 			info->range.min_proto.all = htons(nla_get_u16(a)); | 
 | 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; | 
 | 			break; | 
 |  | 
 | 		case OVS_NAT_ATTR_PROTO_MAX: | 
 | 			have_proto_max = true; | 
 | 			info->range.max_proto.all = htons(nla_get_u16(a)); | 
 | 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; | 
 | 			break; | 
 |  | 
 | 		case OVS_NAT_ATTR_PERSISTENT: | 
 | 			info->range.flags |= NF_NAT_RANGE_PERSISTENT; | 
 | 			break; | 
 |  | 
 | 		case OVS_NAT_ATTR_PROTO_HASH: | 
 | 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; | 
 | 			break; | 
 |  | 
 | 		case OVS_NAT_ATTR_PROTO_RANDOM: | 
 | 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rem > 0) { | 
 | 		OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (!info->nat) { | 
 | 		/* Do not allow flags if no type is given. */ | 
 | 		if (info->range.flags) { | 
 | 			OVS_NLERR(log, | 
 | 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" | 
 | 				  ); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */ | 
 | 	} else if (!info->commit) { | 
 | 		OVS_NLERR(log, | 
 | 			  "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" | 
 | 			  ); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* Allow missing IP_MAX. */ | 
 | 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { | 
 | 		memcpy(&info->range.max_addr, &info->range.min_addr, | 
 | 		       sizeof(info->range.max_addr)); | 
 | 	} | 
 | 	/* Allow missing PROTO_MAX. */ | 
 | 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && | 
 | 	    !have_proto_max) { | 
 | 		info->range.max_proto.all = info->range.min_proto.all; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { | 
 | 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 }, | 
 | 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 }, | 
 | 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16), | 
 | 				    .maxlen = sizeof(u16) }, | 
 | 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark), | 
 | 				    .maxlen = sizeof(struct md_mark) }, | 
 | 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels), | 
 | 				    .maxlen = sizeof(struct md_labels) }, | 
 | 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1, | 
 | 				    .maxlen = NF_CT_HELPER_NAME_LEN }, | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | 	/* NAT length is checked when parsing the nested attributes. */ | 
 | 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX }, | 
 | #endif | 
 | }; | 
 |  | 
 | static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, | 
 | 		    const char **helper, bool log) | 
 | { | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 |  | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 | 		int maxlen = ovs_ct_attr_lens[type].maxlen; | 
 | 		int minlen = ovs_ct_attr_lens[type].minlen; | 
 |  | 
 | 		if (type > OVS_CT_ATTR_MAX) { | 
 | 			OVS_NLERR(log, | 
 | 				  "Unknown conntrack attr (type=%d, max=%d)", | 
 | 				  type, OVS_CT_ATTR_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (nla_len(a) < minlen || nla_len(a) > maxlen) { | 
 | 			OVS_NLERR(log, | 
 | 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", | 
 | 				  type, nla_len(a), maxlen); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_CT_ATTR_FORCE_COMMIT: | 
 | 			info->force = true; | 
 | 			/* fall through. */ | 
 | 		case OVS_CT_ATTR_COMMIT: | 
 | 			info->commit = true; | 
 | 			break; | 
 | #ifdef CONFIG_NF_CONNTRACK_ZONES | 
 | 		case OVS_CT_ATTR_ZONE: | 
 | 			info->zone.id = nla_get_u16(a); | 
 | 			break; | 
 | #endif | 
 | #ifdef CONFIG_NF_CONNTRACK_MARK | 
 | 		case OVS_CT_ATTR_MARK: { | 
 | 			struct md_mark *mark = nla_data(a); | 
 |  | 
 | 			if (!mark->mask) { | 
 | 				OVS_NLERR(log, "ct_mark mask cannot be 0"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			info->mark = *mark; | 
 | 			break; | 
 | 		} | 
 | #endif | 
 | #ifdef CONFIG_NF_CONNTRACK_LABELS | 
 | 		case OVS_CT_ATTR_LABELS: { | 
 | 			struct md_labels *labels = nla_data(a); | 
 |  | 
 | 			if (!labels_nonzero(&labels->mask)) { | 
 | 				OVS_NLERR(log, "ct_labels mask cannot be 0"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			info->labels = *labels; | 
 | 			break; | 
 | 		} | 
 | #endif | 
 | 		case OVS_CT_ATTR_HELPER: | 
 | 			*helper = nla_data(a); | 
 | 			if (!memchr(*helper, '\0', nla_len(a))) { | 
 | 				OVS_NLERR(log, "Invalid conntrack helper"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			break; | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | 		case OVS_CT_ATTR_NAT: { | 
 | 			int err = parse_nat(a, info, log); | 
 |  | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 | 		} | 
 | #endif | 
 | 		default: | 
 | 			OVS_NLERR(log, "Unknown conntrack attr (%d)", | 
 | 				  type); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NF_CONNTRACK_MARK | 
 | 	if (!info->commit && info->mark.mask) { | 
 | 		OVS_NLERR(log, | 
 | 			  "Setting conntrack mark requires 'commit' flag."); | 
 | 		return -EINVAL; | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_NF_CONNTRACK_LABELS | 
 | 	if (!info->commit && labels_nonzero(&info->labels.mask)) { | 
 | 		OVS_NLERR(log, | 
 | 			  "Setting conntrack labels requires 'commit' flag."); | 
 | 		return -EINVAL; | 
 | 	} | 
 | #endif | 
 | 	if (rem > 0) { | 
 | 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) | 
 | { | 
 | 	if (attr == OVS_KEY_ATTR_CT_STATE) | 
 | 		return true; | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && | 
 | 	    attr == OVS_KEY_ATTR_CT_ZONE) | 
 | 		return true; | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && | 
 | 	    attr == OVS_KEY_ATTR_CT_MARK) | 
 | 		return true; | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && | 
 | 	    attr == OVS_KEY_ATTR_CT_LABELS) { | 
 | 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id); | 
 |  | 
 | 		return ovs_net->xt_label; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, | 
 | 		       const struct sw_flow_key *key, | 
 | 		       struct sw_flow_actions **sfa,  bool log) | 
 | { | 
 | 	struct ovs_conntrack_info ct_info; | 
 | 	const char *helper = NULL; | 
 | 	u16 family; | 
 | 	int err; | 
 |  | 
 | 	family = key_to_nfproto(key); | 
 | 	if (family == NFPROTO_UNSPEC) { | 
 | 		OVS_NLERR(log, "ct family unspecified"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	memset(&ct_info, 0, sizeof(ct_info)); | 
 | 	ct_info.family = family; | 
 |  | 
 | 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, | 
 | 			NF_CT_DEFAULT_ZONE_DIR, 0); | 
 |  | 
 | 	err = parse_ct(attr, &ct_info, &helper, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Set up template for tracking connections in specific zones. */ | 
 | 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); | 
 | 	if (!ct_info.ct) { | 
 | 		OVS_NLERR(log, "Failed to allocate conntrack template"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); | 
 | 	nf_conntrack_get(&ct_info.ct->ct_general); | 
 |  | 
 | 	if (helper) { | 
 | 		err = ovs_ct_add_helper(&ct_info, helper, key, log); | 
 | 		if (err) | 
 | 			goto err_free_ct; | 
 | 	} | 
 |  | 
 | 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, | 
 | 				 sizeof(ct_info), log); | 
 | 	if (err) | 
 | 		goto err_free_ct; | 
 |  | 
 | 	return 0; | 
 | err_free_ct: | 
 | 	__ovs_ct_free_action(&ct_info); | 
 | 	return err; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, | 
 | 			       struct sk_buff *skb) | 
 | { | 
 | 	struct nlattr *start; | 
 |  | 
 | 	start = nla_nest_start(skb, OVS_CT_ATTR_NAT); | 
 | 	if (!start) | 
 | 		return false; | 
 |  | 
 | 	if (info->nat & OVS_CT_SRC_NAT) { | 
 | 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) | 
 | 			return false; | 
 | 	} else if (info->nat & OVS_CT_DST_NAT) { | 
 | 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) | 
 | 			return false; | 
 | 	} else { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { | 
 | 		if (IS_ENABLED(CONFIG_NF_NAT_IPV4) && | 
 | 		    info->family == NFPROTO_IPV4) { | 
 | 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, | 
 | 					    info->range.min_addr.ip) || | 
 | 			    (info->range.max_addr.ip | 
 | 			     != info->range.min_addr.ip && | 
 | 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, | 
 | 					      info->range.max_addr.ip)))) | 
 | 				return false; | 
 | 		} else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) && | 
 | 			   info->family == NFPROTO_IPV6) { | 
 | 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, | 
 | 					     &info->range.min_addr.in6) || | 
 | 			    (memcmp(&info->range.max_addr.in6, | 
 | 				    &info->range.min_addr.in6, | 
 | 				    sizeof(info->range.max_addr.in6)) && | 
 | 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, | 
 | 					       &info->range.max_addr.in6)))) | 
 | 				return false; | 
 | 		} else { | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 | 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && | 
 | 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, | 
 | 			 ntohs(info->range.min_proto.all)) || | 
 | 	     (info->range.max_proto.all != info->range.min_proto.all && | 
 | 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, | 
 | 			  ntohs(info->range.max_proto.all))))) | 
 | 		return false; | 
 |  | 
 | 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT && | 
 | 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) | 
 | 		return false; | 
 | 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && | 
 | 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) | 
 | 		return false; | 
 | 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && | 
 | 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) | 
 | 		return false; | 
 | out: | 
 | 	nla_nest_end(skb, start); | 
 |  | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, | 
 | 			  struct sk_buff *skb) | 
 | { | 
 | 	struct nlattr *start; | 
 |  | 
 | 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); | 
 | 	if (!start) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (ct_info->commit && nla_put_flag(skb, ct_info->force | 
 | 					    ? OVS_CT_ATTR_FORCE_COMMIT | 
 | 					    : OVS_CT_ATTR_COMMIT)) | 
 | 		return -EMSGSIZE; | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && | 
 | 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) | 
 | 		return -EMSGSIZE; | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && | 
 | 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), | 
 | 		    &ct_info->mark)) | 
 | 		return -EMSGSIZE; | 
 | 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && | 
 | 	    labels_nonzero(&ct_info->labels.mask) && | 
 | 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), | 
 | 		    &ct_info->labels)) | 
 | 		return -EMSGSIZE; | 
 | 	if (ct_info->helper) { | 
 | 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER, | 
 | 				   ct_info->helper->name)) | 
 | 			return -EMSGSIZE; | 
 | 	} | 
 | #ifdef CONFIG_NF_NAT_NEEDED | 
 | 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) | 
 | 		return -EMSGSIZE; | 
 | #endif | 
 | 	nla_nest_end(skb, start); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void ovs_ct_free_action(const struct nlattr *a) | 
 | { | 
 | 	struct ovs_conntrack_info *ct_info = nla_data(a); | 
 |  | 
 | 	__ovs_ct_free_action(ct_info); | 
 | } | 
 |  | 
 | static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) | 
 | { | 
 | 	if (ct_info->helper) | 
 | 		module_put(ct_info->helper->me); | 
 | 	if (ct_info->ct) | 
 | 		nf_ct_tmpl_free(ct_info->ct); | 
 | } | 
 |  | 
 | void ovs_ct_init(struct net *net) | 
 | { | 
 | 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; | 
 | 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id); | 
 |  | 
 | 	if (nf_connlabels_get(net, n_bits - 1)) { | 
 | 		ovs_net->xt_label = false; | 
 | 		OVS_NLERR(true, "Failed to set connlabel length"); | 
 | 	} else { | 
 | 		ovs_net->xt_label = true; | 
 | 	} | 
 | } | 
 |  | 
 | void ovs_ct_exit(struct net *net) | 
 | { | 
 | 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id); | 
 |  | 
 | 	if (ovs_net->xt_label) | 
 | 		nf_connlabels_put(net); | 
 | } |