blob: d87635dd23ea7d071ddfa69900c84c9fc12dffd0 [file] [log] [blame]
/*
* Disk Array driver for Compaq SMART2 Controllers
* Copyright 2000 Compaq Computer Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Questions/Comments/Bugfixes to arrays@compaq.com
*
*/
#include <linux/config.h> /* CONFIG_PROC_FS */
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/blk.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "Compaq CISS Driver (v 2.5.0)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(2,5,0)
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Charles M. White III - Compaq Computer Corporation");
MODULE_DESCRIPTION("Driver for Compaq Smart Array Controller 5xxx v. 2.5.0");
MODULE_LICENSE("GPL");
#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>
/* define the PCI info for the cards we can control */
const struct pci_device_id cciss_pci_device_id[] = {
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,
0x0E11, 0x4070, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4080, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4082, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4083, 0, 0, 0},
{0,}
};
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
#define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{ 0x40700E11, "Smart Array 5300", &SA5_access },
{ 0x40800E11, "Smart Array 5i", &SA5B_access},
{ 0x40820E11, "Smart Array 532", &SA5B_access},
{ 0x40830E11, "Smart Array 5312", &SA5B_access},
};
/* How long to wait (in millesconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 1000
#define READ_AHEAD 128
#define NR_CMDS 384 /* #commands that can be outstanding */
#define MAX_CTLR 8
#define CCISS_DMA_MASK 0xFFFFFFFF /* 32 bit DMA */
static ctlr_info_t *hba[MAX_CTLR];
static struct proc_dir_entry *proc_cciss;
static void do_cciss_request(request_queue_t *q);
static int cciss_open(struct inode *inode, struct file *filep);
static int cciss_release(struct inode *inode, struct file *filep);
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg);
static int revalidate_allvol(kdev_t dev);
static int revalidate_logvol(kdev_t dev, int maxusage);
static int frevalidate_logvol(kdev_t dev);
static int deregister_disk(int ctlr, int logvol);
static int register_new_disk(kdev_t dev, int cltr);
static void cciss_getgeometry(int cntl_num);
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c);
static void start_io( ctlr_info_t *h);
#ifdef CONFIG_PROC_FS
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data);
static void cciss_procinit(int i);
#else
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data) { return 0;}
static void cciss_procinit(int i) {}
#endif /* CONFIG_PROC_FS */
static struct block_device_operations cciss_fops = {
owner: THIS_MODULE,
open: cciss_open,
release: cciss_release,
ioctl: cciss_ioctl,
revalidate: frevalidate_logvol,
};
#include "cciss_scsi.c" /* For SCSI tape support */
/*
* Report information about this controller.
*/
#ifdef CONFIG_PROC_FS
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data)
{
off_t pos = 0;
off_t len = 0;
int size, i, ctlr;
ctlr_info_t *h = (ctlr_info_t*)data;
drive_info_struct *drv;
ctlr = h->ctlr;
size = sprintf(buffer, "%s: Compaq %s Controller\n"
" Board ID: 0x%08lx\n"
" Firmware Version: %c%c%c%c\n"
" Memory Address: 0x%08lx\n"
" IRQ: %d\n"
" Logical drives: %d\n"
" Highest Logical Volume ID: %d\n"
" Current Q depth: %d\n"
" Max Q depth since init: %d\n"
" Max # commands on controller since init: %d\n"
" Max SG entries since init: %d\n\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
(unsigned long)h->vaddr,
(unsigned int)h->intr,
h->num_luns,
h->highest_lun,
h->Qdepth, h->maxQsinceinit, h->max_outstanding, h->maxSG);
pos += size; len += size;
cciss_proc_tape_report(ctlr, buffer, &pos, &len);
for(i=0; i<h->highest_lun; i++) {
drv = &h->drv[i];
if (drv->block_size == 0)
continue;
size = sprintf(buffer+len, "cciss/c%dd%d: blksz=%d nr_blocks=%d\n",
ctlr, i, drv->block_size, drv->nr_blocks);
pos += size; len += size;
}
size = sprintf(buffer+len, "nr_allocs = %d\nnr_frees = %d\n",
h->nr_allocs, h->nr_frees);
pos += size; len += size;
*eof = 1;
*start = buffer+offset;
len -= offset;
if (len>length)
len = length;
return len;
}
static int
cciss_proc_write(struct file *file, const char *buffer,
unsigned long count, void *data)
{
unsigned char cmd[80];
int len;
#ifdef CONFIG_CISS_SCSI_TAPE
ctlr_info_t *h = (ctlr_info_t *) data;
int rc;
#endif
if (count > sizeof(cmd)-1) return -EINVAL;
if (copy_from_user(cmd, buffer, count)) return -EFAULT;
cmd[count] = '\0';
len = strlen(cmd); // above 3 lines ensure safety
if (cmd[len-1] == '\n')
cmd[--len] = '\0';
# ifdef CONFIG_CISS_SCSI_TAPE
if (strcmp("engage scsi", cmd)==0) {
rc = cciss_engage_scsi(h->ctlr);
if (rc != 0) return -rc;
return count;
}
/* might be nice to have "disengage" too, but it's not
safely possible. (only 1 module use count, lock issues.) */
# endif
return -EINVAL;
}
/*
* Get us a file in /proc/cciss that says something about each controller.
* Create /proc/cciss if it doesn't exist yet.
*/
static void __init cciss_procinit(int i)
{
struct proc_dir_entry *pde;
if (proc_cciss == NULL) {
proc_cciss = proc_mkdir("cciss", proc_root_driver);
if (!proc_cciss)
return;
}
pde = create_proc_read_entry(hba[i]->devname,
S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
proc_cciss, cciss_proc_get_info, hba[i]);
pde->write_proc = cciss_proc_write;
}
#endif /* CONFIG_PROC_FS */
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use. For operations that can wait for kmalloc
* to possible sleep, this routine can be called with get_from_pool set to 0.
* cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
*/
static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool)
{
CommandList_struct *c;
int i;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
if (!get_from_pool)
{
c = (CommandList_struct *) pci_alloc_consistent(
h->pdev, sizeof(CommandList_struct), &cmd_dma_handle);
if(c==NULL)
return NULL;
memset(c, 0, sizeof(CommandList_struct));
c->err_info = (ErrorInfo_struct *)pci_alloc_consistent(
h->pdev, sizeof(ErrorInfo_struct),
&err_dma_handle);
if (c->err_info == NULL)
{
pci_free_consistent(h->pdev,
sizeof(CommandList_struct), c, cmd_dma_handle);
return NULL;
}
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
} else /* get it out of the controllers pool */
{
do {
i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
if (i == NR_CMDS)
return NULL;
} while(test_and_set_bit(i & 31, h->cmd_pool_bits+(i/32)) != 0);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
#endif
c = h->cmd_pool + i;
memset(c, 0, sizeof(CommandList_struct));
cmd_dma_handle = h->cmd_pool_dhandle
+ i*sizeof(CommandList_struct);
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
err_dma_handle = h->errinfo_pool_dhandle
+ i*sizeof(ErrorInfo_struct);
h->nr_allocs++;
}
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
/*
* Frees a command block that was previously allocated with cmd_alloc().
*/
static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
{
int i;
u64bit temp64;
if( !got_from_pool)
{
temp64.val32.lower = c->ErrDesc.Addr.lower;
temp64.val32.upper = c->ErrDesc.Addr.upper;
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
c->err_info, (dma_addr_t) temp64.val);
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
c, (dma_addr_t) c->busaddr);
} else
{
i = c - h->cmd_pool;
clear_bit(i%32, h->cmd_pool_bits+(i/32));
h->nr_frees++;
}
}
/*
* fills in the disk information.
*/
static void cciss_geninit( int ctlr)
{
drive_info_struct *drv;
int i,j;
/* Loop through each real device */
hba[ctlr]->gendisk.nr_real = 0;
for(i=0; i< NWD; i++)
{
drv = &(hba[ctlr]->drv[i]);
if( !(drv->nr_blocks))
continue;
hba[ctlr]->hd[i << NWD_SHIFT].nr_sects =
hba[ctlr]->sizes[i << NWD_SHIFT] = drv->nr_blocks;
/* for each partition */
for(j=0; j<MAX_PART; j++)
hba[ctlr]->blocksizes[(i<<NWD_SHIFT) + j] = 1024;
//hba[ctlr]->gendisk.nr_real++;
(BLK_DEFAULT_QUEUE(MAJOR_NR + ctlr))->hardsect_size = drv->block_size;
}
hba[ctlr]->gendisk.nr_real = hba[ctlr]->highest_lun+1;
}
/*
* Open. Make sure the device is really there.
*/
static int cciss_open(struct inode *inode, struct file *filep)
{
int ctlr = major(inode->i_rdev) - MAJOR_NR;
int dsk = minor(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_open %x (%x:%x)\n", inode->i_rdev, ctlr, dsk);
#endif /* CCISS_DEBUG */
if (ctlr > MAX_CTLR || hba[ctlr] == NULL)
return -ENXIO;
/*
* Root is allowed to open raw volume zero even if its not configured
* so array config can still work. I don't think I really like this,
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (hba[ctlr]->sizes[minor(inode->i_rdev)] == 0) {
if (minor(inode->i_rdev) != 0)
return -ENXIO;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
}
hba[ctlr]->drv[dsk].usage_count++;
hba[ctlr]->usage_count++;
return 0;
}
/*
* Close. Sync first.
*/
static int cciss_release(struct inode *inode, struct file *filep)
{
int ctlr = major(inode->i_rdev) - MAJOR_NR;
int dsk = minor(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_release %x (%x:%x)\n", inode->i_rdev, ctlr, dsk);
#endif /* CCISS_DEBUG */
/* fsync_dev(inode->i_rdev); */
hba[ctlr]->drv[dsk].usage_count--;
hba[ctlr]->usage_count--;
return 0;
}
/*
* ioctl
*/
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg)
{
int ctlr = major(inode->i_rdev) - MAJOR_NR;
int dsk = minor(inode->i_rdev) >> NWD_SHIFT;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
#endif /* CCISS_DEBUG */
switch(cmd) {
case HDIO_GETGEO:
{
struct hd_geometry driver_geo;
if (hba[ctlr]->drv[dsk].cylinders) {
driver_geo.heads = hba[ctlr]->drv[dsk].heads;
driver_geo.sectors = hba[ctlr]->drv[dsk].sectors;
driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders;
} else {
driver_geo.heads = 0xff;
driver_geo.sectors = 0x3f;
driver_geo.cylinders = hba[ctlr]->drv[dsk].nr_blocks / (0xff*0x3f);
}
driver_geo.start=
hba[ctlr]->hd[minor(inode->i_rdev)].start_sect;
if (copy_to_user((void *) arg, &driver_geo,
sizeof( struct hd_geometry)))
return -EFAULT;
return(0);
}
case HDIO_GETGEO_BIG:
{
struct hd_big_geometry driver_geo;
if (hba[ctlr]->drv[dsk].cylinders) {
driver_geo.heads = hba[ctlr]->drv[dsk].heads;
driver_geo.sectors = hba[ctlr]->drv[dsk].sectors;
driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders;
} else {
driver_geo.heads = 0xff;
driver_geo.sectors = 0x3f;
driver_geo.cylinders = hba[ctlr]->drv[dsk].nr_blocks / (0xff*0x3f);
}
driver_geo.start=
hba[ctlr]->hd[minor(inode->i_rdev)].start_sect;
if (copy_to_user((void *) arg, &driver_geo,
sizeof( struct hd_big_geometry)))
return -EFAULT;
return(0);
}
case BLKRRPART:
return revalidate_logvol(inode->i_rdev, 1);
case BLKGETSIZE:
case BLKGETSIZE64:
case BLKFLSBUF:
case BLKBSZSET:
case BLKBSZGET:
case BLKROSET:
case BLKROGET:
case BLKPG:
return blk_ioctl(inode->i_bdev, cmd, arg);
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct pciinfo;
if (!arg) return -EINVAL;
pciinfo.bus = hba[ctlr]->pdev->bus->number;
pciinfo.dev_fn = hba[ctlr]->pdev->devfn;
pciinfo.board_id = hba[ctlr]->board_id;
if (copy_to_user((void *) arg, &pciinfo, sizeof( cciss_pci_info_struct )))
return -EFAULT;
return(0);
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct intinfo;
ctlr_info_t *c = hba[ctlr];
if (!arg) return -EINVAL;
intinfo.delay = readl(&c->cfgtable->HostWrite.CoalIntDelay);
intinfo.count = readl(&c->cfgtable->HostWrite.CoalIntCount);
if (copy_to_user((void *) arg, &intinfo, sizeof( cciss_coalint_struct )))
return -EFAULT;
return(0);
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct intinfo;
ctlr_info_t *c = hba[ctlr];
unsigned long flags;
int i;
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (copy_from_user(&intinfo, (void *) arg, sizeof( cciss_coalint_struct)))
return -EFAULT;
if ( (intinfo.delay == 0 ) && (intinfo.count == 0))
{
// printk("cciss_ioctl: delay and count cannot be 0\n");
return( -EINVAL);
}
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* Update the field, and then ring the doorbell */
writel( intinfo.delay,
&(c->cfgtable->HostWrite.CoalIntDelay));
writel( intinfo.count,
&(c->cfgtable->HostWrite.CoalIntCount));
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_CONFIG_WAIT;i++)
{
if (!(readl(c->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
if (i >= MAX_CONFIG_WAIT)
return( -EFAULT);
return(0);
}
case CCISS_GETNODENAME:
{
NodeName_type NodeName;
ctlr_info_t *c = hba[ctlr];
int i;
if (!arg) return -EINVAL;
for(i=0;i<16;i++)
NodeName[i] = readb(&c->cfgtable->ServerName[i]);
if (copy_to_user((void *) arg, NodeName, sizeof( NodeName_type)))
return -EFAULT;
return(0);
}
case CCISS_SETNODENAME:
{
NodeName_type NodeName;
ctlr_info_t *c = hba[ctlr];
unsigned long flags;
int i;
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (copy_from_user(NodeName, (void *) arg, sizeof( NodeName_type)))
return -EFAULT;
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* Update the field, and then ring the doorbell */
for(i=0;i<16;i++)
writeb( NodeName[i], &c->cfgtable->ServerName[i]);
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_CONFIG_WAIT;i++)
{
if (!(readl(c->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
if (i >= MAX_CONFIG_WAIT)
return( -EFAULT);
return(0);
}
case CCISS_GETHEARTBEAT:
{
Heartbeat_type heartbeat;
ctlr_info_t *c = hba[ctlr];
if (!arg) return -EINVAL;
heartbeat = readl(&c->cfgtable->HeartBeat);
if (copy_to_user((void *) arg, &heartbeat, sizeof( Heartbeat_type)))
return -EFAULT;
return(0);
}
case CCISS_GETBUSTYPES:
{
BusTypes_type BusTypes;
ctlr_info_t *c = hba[ctlr];
if (!arg) return -EINVAL;
BusTypes = readl(&c->cfgtable->BusTypes);
if (copy_to_user((void *) arg, &BusTypes, sizeof( BusTypes_type) ))
return -EFAULT;
return(0);
}
case CCISS_GETFIRMVER:
{
FirmwareVer_type firmware;
if (!arg) return -EINVAL;
memcpy(firmware, hba[ctlr]->firm_ver, 4);
if (copy_to_user((void *) arg, firmware, sizeof( FirmwareVer_type)))
return -EFAULT;
return(0);
}
case CCISS_GETDRIVVER:
{
DriverVer_type DriverVer = DRIVER_VERSION;
if (!arg) return -EINVAL;
if (copy_to_user((void *) arg, &DriverVer, sizeof( DriverVer_type) ))
return -EFAULT;
return(0);
}
case CCISS_REVALIDVOLS:
return( revalidate_allvol(inode->i_rdev));
case CCISS_DEREGDISK:
return( deregister_disk(ctlr,dsk));
case CCISS_REGNEWD:
{
return(register_new_disk(inode->i_rdev, ctlr));
}
case CCISS_PASSTHRU:
{
IOCTL_Command_struct iocommand;
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
char *buff = NULL;
u64bit temp64;
unsigned long flags;
DECLARE_COMPLETION(wait);
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_RAWIO)) return -EPERM;
if (copy_from_user(&iocommand, (void *) arg, sizeof( IOCTL_Command_struct) ))
return -EFAULT;
if((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE))
{
return -EINVAL;
}
/* Check kmalloc limits */
if(iocommand.buf_size > 128000)
return -EINVAL;
if(iocommand.buf_size > 0)
{
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if( buff == NULL)
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_WRITE)
{
/* Copy the data into the buffer we created */
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
{
kfree(buff);
return -EFAULT;
}
}
if ((c = cmd_alloc(h , 0)) == NULL)
{
kfree(buff);
return -ENOMEM;
}
// Fill in the command type
c->cmd_type = CMD_IOCTL_PEND;
// Fill in Command Header
c->Header.ReplyQueue = 0; // unused in simple mode
if( iocommand.buf_size > 0) // buffer to fill
{
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else // no buffers to fill
{
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.LUN = iocommand.LUN_info;
c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
// Fill in Request block
c->Request = iocommand.Request;
// Fill in the scatter gather information
if (iocommand.buf_size > 0 )
{
temp64.val = pci_map_single( h->pdev, buff,
iocommand.buf_size,
PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; // we are not chaining
}
c->waiting = &wait;
/* Put the request on the tail of the request queue */
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
temp64.val32.lower = c->SG[0].Addr.lower;
temp64.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single( h->pdev, (dma_addr_t) temp64.val,
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if ( copy_to_user((void *) arg, &iocommand, sizeof( IOCTL_Command_struct) ) )
{
kfree(buff);
cmd_free(h, c, 0);
return( -EFAULT);
}
if (iocommand.Request.Type.Direction == XFER_READ)
{
/* Copy the data out of the buffer we created */
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size))
{
kfree(buff);
cmd_free(h, c, 0);
return -EFAULT;
}
}
kfree(buff);
cmd_free(h, c, 0);
return(0);
}
default:
return -EBADRQC;
}
}
/* Borrowed and adapted from sd.c */
static int revalidate_logvol(kdev_t dev, int maxusage)
{
int ctlr, target;
struct gendisk *gdev;
unsigned long flags;
int res;
target = minor(dev) >> NWD_SHIFT;
ctlr = major(dev) - MAJOR_NR;
gdev = &(hba[ctlr]->gendisk);
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
if (hba[ctlr]->drv[target].usage_count > maxusage) {
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
printk(KERN_WARNING "cciss: Device busy for "
"revalidation (usage=%d)\n",
hba[ctlr]->drv[target].usage_count);
return -EBUSY;
}
hba[ctlr]->drv[target].usage_count++;
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
res = wipe_partitions(dev);
if (res)
goto leave;
/* setup partitions per disk */
grok_partitions(dev, hba[ctlr]->drv[target].nr_blocks);
leave:
hba[ctlr]->drv[target].usage_count--;
return res;
}
static int frevalidate_logvol(kdev_t dev)
{
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: frevalidate has been called\n");
#endif /* CCISS_DEBUG */
return revalidate_logvol(dev, 0);
}
/*
* revalidate_allvol is for online array config utilities. After a
* utility reconfigures the drives in the array, it can use this function
* (through an ioctl) to make the driver zap any previous disk structs for
* that controller and get new ones.
*
* Right now I'm using the getgeometry() function to do this, but this
* function should probably be finer grained and allow you to revalidate one
* particualar logical volume (instead of all of them on a particular
* controller).
*/
static int revalidate_allvol(kdev_t dev)
{
int ctlr, i;
unsigned long flags;
ctlr = major(dev) - MAJOR_NR;
if (minor(dev) != 0)
return -ENXIO;
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
if (hba[ctlr]->usage_count > 1) {
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
printk(KERN_WARNING "cciss: Device busy for volume"
" revalidation (usage=%d)\n", hba[ctlr]->usage_count);
return -EBUSY;
}
hba[ctlr]->usage_count++;
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
/*
* Set the partition and block size structures for all volumes
* on this controller to zero. We will reread all of this data
*/
memset(hba[ctlr]->hd, 0, sizeof(struct hd_struct) * 256);
memset(hba[ctlr]->sizes, 0, sizeof(int) * 256);
memset(hba[ctlr]->blocksizes, 0, sizeof(int) * 256);
memset(hba[ctlr]->drv, 0, sizeof(drive_info_struct)
* CISS_MAX_LUN);
hba[ctlr]->gendisk.nr_real = 0;
/*
* Tell the array controller not to give us any interrupts while
* we check the new geometry. Then turn interrupts back on when
* we're done.
*/
hba[ctlr]->access.set_intr_mask(hba[ctlr], CCISS_INTR_OFF);
cciss_getgeometry(ctlr);
hba[ctlr]->access.set_intr_mask(hba[ctlr], CCISS_INTR_ON);
cciss_geninit(ctlr);
for(i=0; i<NWD; i++) {
kdev_t kdev = mk_kdev(major(dev), i << NWD_SHIFT);
if (hba[ctlr]->sizes[ i<<NWD_SHIFT ])
revalidate_logvol(kdev, 2);
}
hba[ctlr]->usage_count--;
return 0;
}
static int deregister_disk(int ctlr, int logvol)
{
unsigned long flags;
struct gendisk *gdev = &(hba[ctlr]->gendisk);
ctlr_info_t *h = hba[ctlr];
int start, max_p, i;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* make sure logical volume is NOT is use */
if( h->drv[logvol].usage_count > 1)
{
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
return -EBUSY;
}
h->drv[logvol].usage_count++;
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
/* invalidate the devices and deregister the disk */
max_p = 1 << gdev->minor_shift;
start = logvol << gdev->minor_shift;
for (i=max_p-1; i>=0; i--)
{
int minor = start+i;
kdev_t kdev = mk_kdev(MAJOR_NR+ctlr, minor);
// printk("invalidating( %d %d)\n", ctlr, minor);
invalidate_device(kdev, 1);
/* so open will now fail */
h->sizes[minor] = 0;
/* so it will no longer appear in /proc/partitions */
gdev->part[minor].start_sect = 0;
gdev->part[minor].nr_sects = 0;
}
/* check to see if it was the last disk */
if (logvol == h->highest_lun)
{
/* if so, find the new hightest lun */
int i, newhighest =-1;
for(i=0; i<h->highest_lun; i++)
{
/* if the disk has size > 0, it is available */
if (h->sizes[i << gdev->minor_shift] != 0)
newhighest = i;
}
h->highest_lun = newhighest;
}
--h->num_luns;
gdev->nr_real = h->highest_lun+1;
/* zero out the disk size info */
h->drv[logvol].nr_blocks = 0;
h->drv[logvol].block_size = 0;
h->drv[logvol].LunID = 0;
return(0);
}
static int sendcmd_withirq(__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int use_unit_num,
unsigned int log_unit,
__u8 page_code )
{
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
u64bit buff_dma_handle;
unsigned long flags;
int return_status = IO_OK;
DECLARE_COMPLETION(wait);
if ((c = cmd_alloc(h , 0)) == NULL)
{
return -ENOMEM;
}
// Fill in the command type
c->cmd_type = CMD_IOCTL_PEND;
// Fill in Command Header
c->Header.ReplyQueue = 0; // unused in simple mode
if( buff != NULL) // buffer to fill
{
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else // no buffers to fill
{
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
// Fill in Request block
switch(cmd)
{
case CISS_INQUIRY:
/* If the logical unit number is 0 then, this is going
to controller so It's a physical command
mode = 0 target = 0.
So we have nothing to write.
Otherwise
mode = 1 target = LUNID
*/
if(use_unit_num != 0)
{
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
}
if(page_code != 0)
{
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
/* Talking to controller so It's a physical command
mode = 00 target = 0.
So we have nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CISS_REPORT_LOG;
c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CCISS_READ_CAPACITY;
break;
default:
printk(KERN_WARNING
"cciss: Unknown Command 0x%c sent attempted\n", cmd);
cmd_free(h, c, 1);
return(IO_ERROR);
};
// Fill in the scatter gather information
if (size > 0 )
{
buff_dma_handle.val = (__u64) pci_map_single( h->pdev,
buff, size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; // we are not chaining
}
c->waiting = &wait;
/* Put the request on the tail of the queue and send it */
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val,
size, PCI_DMA_BIDIRECTIONAL);
if(c->err_info->CommandStatus != 0)
{ /* an error has occurred */
switch(c->err_info->CommandStatus)
{
case CMD_TARGET_STATUS:
printk(KERN_WARNING "cciss: cmd %p has "
" completed with errors\n", c);
if( c->err_info->ScsiStatus)
{
printk(KERN_WARNING "cciss: cmd %p "
"has SCSI Status = %x\n",
c,
c->err_info->ScsiStatus);
}
break;
case CMD_DATA_UNDERRUN:
case CMD_DATA_OVERRUN:
/* expected for inquire and report lun commands */
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: Cmd %p is "
"reported invalid\n", c);
return_status = IO_ERROR;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd %p has "
"protocol error \n", c);
return_status = IO_ERROR;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd %p had "
" hardware error\n", c);
return_status = IO_ERROR;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd %p had "
"connection lost\n", c);
return_status = IO_ERROR;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd %p was "
"aborted\n", c);
return_status = IO_ERROR;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd %p reports "
"abort failed\n", c);
return_status = IO_ERROR;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING "cciss: cmd %p aborted "
"do to an unsolicited abort\n", c);
return_status = IO_ERROR;
break;
default:
printk(KERN_WARNING "cciss: cmd %p returned "
"unknown status %x\n", c,
c->err_info->CommandStatus);
return_status = IO_ERROR;
}
}
cmd_free(h, c, 0);
return(return_status);
}
static int register_new_disk(kdev_t dev, int ctlr)
{
struct gendisk *gdev = &(hba[ctlr]->gendisk);
ctlr_info_t *h = hba[ctlr];
int start, max_p, i;
int num_luns;
int logvol;
int new_lun_found = 0;
int new_lun_index = 0;
int free_index_found = 0;
int free_index = 0;
ReportLunData_struct *ld_buff;
ReadCapdata_struct *size_buff;
InquiryData_struct *inq_buff;
int return_code;
int listlength = 0;
__u32 lunid = 0;
unsigned int block_size;
unsigned int total_size;
kdev_t kdev;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
/* if we have no space in our disk array left to add anything */
if( h->num_luns >= CISS_MAX_LUN)
return -EINVAL;
ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
return -1;
}
memset(ld_buff, 0, sizeof(ReportLunData_struct));
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
return -1;
}
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
kfree(size_buff);
return -1;
}
return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
sizeof(ReportLunData_struct), 0, 0, 0 );
if( return_code == IO_OK)
{
// printk("LUN Data\n--------------------------\n");
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
} else /* reading number of logical volumes failed */
{
printk(KERN_WARNING "cciss: report logical volume"
" command failed\n");
listlength = 0;
return -1;
}
num_luns = listlength / 8; // 8 bytes pre entry
if (num_luns > CISS_MAX_LUN)
{
num_luns = CISS_MAX_LUN;
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
ld_buff->LUNListLength[3], num_luns);
#endif
for(i=0; i< num_luns; i++)
{
int j;
int lunID_found = 0;
lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
/* check to see if this is a new lun */
for(j=0; j <= h->highest_lun; j++)
{
#ifdef CCISS_DEBUG
printk("Checking %d %x against %x\n", j,h->drv[j].LunID,
lunid);
#endif /* CCISS_DEBUG */
if (h->drv[j].LunID == lunid)
{
lunID_found = 1;
break;
}
}
if( lunID_found == 1)
continue;
else
{ /* It is the new lun we have been looking for */
#ifdef CCISS_DEBUG
printk("new lun found at %d\n", i);
#endif /* CCISS_DEBUG */
new_lun_index = i;
new_lun_found = 1;
break;
}
}
if (!new_lun_found)
{
printk(KERN_WARNING "cciss: New Logical Volume not found\n");
return -1;
}
/* Now find the free index */
for(i=0; i <CISS_MAX_LUN; i++)
{
#ifdef CCISS_DEBUG
printk("Checking Index %d\n", i);
#endif /* CCISS_DEBUG */
if(hba[ctlr]->drv[i].LunID == 0)
{
#ifdef CCISS_DEBUG
printk("free index found at %d\n", i);
#endif /* CCISS_DEBUG */
free_index_found = 1;
free_index = i;
break;
}
}
if (!free_index_found)
{
printk(KERN_WARNING "cciss: unable to find free slot for disk\n");
return -1;
}
logvol = free_index;
hba[ctlr]->drv[logvol].LunID = lunid;
/* there could be gaps in lun numbers, track hightest */
if(hba[ctlr]->highest_lun < lunid)
hba[ctlr]->highest_lun = logvol;
memset(size_buff, 0, sizeof(ReadCapdata_struct));
return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, size_buff,
sizeof( ReadCapdata_struct), 1, logvol, 0 );
if (return_code == IO_OK)
{
total_size = (0xff &
(unsigned int)(size_buff->total_size[0])) << 24;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[1])) << 16;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[2])) << 8;
total_size |= (0xff & (unsigned int)
(size_buff->total_size[3]));
total_size++; // command returns highest block address
block_size = (0xff &
(unsigned int)(size_buff->block_size[0])) << 24;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[1])) << 16;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[2])) << 8;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[3]));
} else /* read capacity command failed */
{
printk(KERN_WARNING "cciss: read capacity failed\n");
total_size = 0;
block_size = BLOCK_SIZE;
}
printk(KERN_INFO " blocks= %d block_size= %d\n",
total_size, block_size);
/* Execute the command to read the disk geometry */
memset(inq_buff, 0, sizeof(InquiryData_struct));
return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
sizeof(InquiryData_struct), 1, logvol ,0xC1 );
if (return_code == IO_OK)
{
if(inq_buff->data_byte[8] == 0xFF)
{
printk(KERN_WARNING "cciss: reading geometry failed, "
"volume does not support reading geometry\n");
hba[ctlr]->drv[logvol].block_size = block_size;
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = 255;
hba[ctlr]->drv[logvol].sectors = 32; // Sectors per track
hba[ctlr]->drv[logvol].cylinders = total_size / 255 / 32;
} else
{
hba[ctlr]->drv[logvol].block_size = block_size;
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads =
inq_buff->data_byte[6];
hba[ctlr]->drv[logvol].sectors =
inq_buff->data_byte[7];
hba[ctlr]->drv[logvol].cylinders =
(inq_buff->data_byte[4] & 0xff) << 8;
hba[ctlr]->drv[logvol].cylinders +=
inq_buff->data_byte[5];
}
}
else /* Get geometry failed */
{
printk(KERN_WARNING "cciss: reading geometry failed, "
"continuing with default geometry\n");
hba[ctlr]->drv[logvol].block_size = block_size;
hba[ctlr]->drv[logvol].nr_blocks = total_size;
hba[ctlr]->drv[logvol].heads = 255;
hba[ctlr]->drv[logvol].sectors = 32; // Sectors per track
hba[ctlr]->drv[logvol].cylinders = total_size / 255 / 32;
}
printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n",
hba[ctlr]->drv[logvol].heads,
hba[ctlr]->drv[logvol].sectors,
hba[ctlr]->drv[logvol].cylinders);
hba[ctlr]->drv[logvol].usage_count = 0;
max_p = 1 << gdev->minor_shift;
start = logvol<< gdev->minor_shift;
for(i=max_p-1; i>=0; i--) {
int minor = start+i;
kdev = mk_kdev(MAJOR_NR + ctlr, minor);
invalidate_device(kdev, 1);
gdev->part[minor].start_sect = 0;
gdev->part[minor].nr_sects = 0;
/* reset the blocksize so we can read the partition table */
blksize_size[MAJOR_NR+ctlr][minor] = 1024;
}
++hba[ctlr]->num_luns;
gdev->nr_real = hba[ctlr]->highest_lun + 1;
/* setup partitions per disk */
kdev = mk_kdev(MAJOR_NR + ctlr, logvol<< gdev->minor_shift);
grok_partitions(kdev, hba[ctlr]->drv[logvol].nr_blocks);
kfree(ld_buff);
kfree(size_buff);
kfree(inq_buff);
return (logvol);
}
/*
* Wait polling for a command to complete.
* The memory mapped FIFO is polled for the completion.
* Used only at init time, interrupts disabled.
*/
static unsigned long pollcomplete(int ctlr)
{
unsigned long done;
int i;
/* Wait (up to 2 seconds) for a command to complete */
for (i = 200000; i > 0; i--) {
done = hba[ctlr]->access.command_completed(hba[ctlr]);
if (done == FIFO_EMPTY) {
udelay(10); /* a short fixed delay */
} else
return (done);
}
/* Invalid address to tell caller we ran out of time */
return 1;
}
/*
* Send a command to the controller, and wait for it to complete.
* Only used at init time.
*/
static int sendcmd(
__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int use_unit_num, /* 0: address the controller,
1: address logical volume log_unit,
2: periph device address is scsi3addr */
unsigned int log_unit,
__u8 page_code,
unsigned char *scsi3addr)
{
CommandList_struct *c;
int i;
unsigned long complete;
ctlr_info_t *info_p= hba[ctlr];
u64bit buff_dma_handle;
c = cmd_alloc(info_p, 1);
if (c == NULL)
{
printk(KERN_WARNING "cciss: unable to get memory");
return(IO_ERROR);
}
// Fill in Command Header
c->Header.ReplyQueue = 0; // unused in simple mode
if( buff != NULL) // buffer to fill
{
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else // no buffers to fill
{
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
// Fill in Request block
switch(cmd)
{
case CISS_INQUIRY:
/* If the logical unit number is 0 then, this is going
to controller so It's a physical command
mode = 0 target = 0.
So we have nothing to write.
otherwise, if use_unit_num == 1,
mode = 1(volume set addressing) target = LUNID
otherwise, if use_unit_num == 2,
mode = 0(periph dev addr) target = scsi3addr
*/
if(use_unit_num == 1)
{
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
}
else if (use_unit_num == 2)
{
memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8);
c->Header.LUN.LogDev.Mode = 0; // phys dev addr
}
/* are we trying to read a vital product page */
if(page_code != 0)
{
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
case CISS_REPORT_PHYS:
/* Talking to controller so It's a physical command
mode = 00 target = 0.
So we have nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = cmd;
c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Header.LUN.LogDev.VolId=
hba[ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ; // Read
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = CCISS_READ_CAPACITY;
break;
case CCISS_CACHE_FLUSH:
c->Request.CDBLen = 12;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE; // No data
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = BMIC_WRITE; // BMIC Passthru
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
break;
default:
printk(KERN_WARNING
"cciss: Unknown Command 0x%c sent attempted\n",
cmd);
cmd_free(info_p, c, 1);
return(IO_ERROR);
};
// Fill in the scatter gather information
if (size > 0 )
{
buff_dma_handle.val = (__u64) pci_map_single( info_p->pdev,
buff, size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; // we are not chaining
}
/*
* Disable interrupt
*/
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: turning intr off\n");
#endif /* CCISS_DEBUG */
info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
/* Make sure there is room in the command FIFO */
/* Actually it should be completely empty at this time. */
for (i = 200000; i > 0; i--)
{
/* if fifo isn't full go */
if (!(info_p->access.fifo_full(info_p)))
{
break;
}
udelay(10);
printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
" waiting!\n", ctlr);
}
/*
* Send the cmd
*/
info_p->access.submit_command(info_p, c);
complete = pollcomplete(ctlr);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: command completed\n");
#endif /* CCISS_DEBUG */
/* unlock the data buffer from DMA */
pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
size, PCI_DMA_BIDIRECTIONAL);
if (complete != 1) {
if ( (complete & CISS_ERROR_BIT)
&& (complete & ~CISS_ERROR_BIT) == c->busaddr)
{
/* if data overrun or underun on Report command
ignore it
*/
if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
(c->Request.CDB[0] == CISS_REPORT_PHYS) ||
(c->Request.CDB[0] == CISS_INQUIRY)) &&
((c->err_info->CommandStatus ==
CMD_DATA_OVERRUN) ||
(c->err_info->CommandStatus ==
CMD_DATA_UNDERRUN)
))
{
complete = c->busaddr;
} else
{
printk(KERN_WARNING "ciss ciss%d: sendcmd"
" Error %x \n", ctlr,
c->err_info->CommandStatus);
printk(KERN_WARNING "ciss ciss%d: sendcmd"
" offensive info\n"
" size %x\n num %x value %x\n", ctlr,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
cmd_free(info_p,c, 1);
return(IO_ERROR);
}
}
if (complete != c->busaddr) {
printk( KERN_WARNING "cciss cciss%d: SendCmd "
"Invalid command list address returned! (%lx)\n",
ctlr, complete);
cmd_free(info_p, c, 1);
return (IO_ERROR);
}
} else {
printk( KERN_WARNING
"cciss cciss%d: SendCmd Timeout out, "
"No command list address returned!\n",
ctlr);
cmd_free(info_p, c, 1);
return (IO_ERROR);
}
cmd_free(info_p, c, 1);
return (IO_OK);
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static ulong remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
ulong page_remapped = (ulong) ioremap(page_base, page_offs+size);
return (ulong) (page_remapped ? (page_remapped + page_offs) : 0UL);
}
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
{
if (*Qptr == NULL) {
*Qptr = c;
c->next = c->prev = c;
} else {
c->prev = (*Qptr)->prev;
c->next = (*Qptr);
(*Qptr)->prev->next = c;
(*Qptr)->prev = c;
}
}
static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
CommandList_struct *c)
{
if (c && c->next != c) {
if (*Qptr == c) *Qptr = c->next;
c->prev->next = c->next;
c->next->prev = c->prev;
} else {
*Qptr = NULL;
}
return c;
}
/*
* Takes jobs of the Q and sends them to the hardware, then puts it on
* the Q to wait for completion.
*/
static void start_io( ctlr_info_t *h)
{
CommandList_struct *c;
while(( c = h->reqQ) != NULL )
{
/* can't do anything if fifo is full */
if ((h->access.fifo_full(h))) {
printk(KERN_WARNING "cciss: fifo full\n");
break;
}
/* Get the frist entry from the Request Q */
removeQ(&(h->reqQ), c);
h->Qdepth--;
/* Tell the controller execute command */
h->access.submit_command(h, c);
/* Put job onto the completed Q */
addQ (&(h->cmpQ), c);
}
}
static inline void complete_buffers(struct bio *bio, int status)
{
while (bio) {
struct bio *xbh = bio->bi_next;
bio->bi_next = NULL;
blk_finished_io(bio_sectors(bio));
bio_endio(bio, status);
bio = xbh;
}
}
/* checks the status of the job and calls complete buffers to mark all
* buffers for the completed job.
*/
static inline void complete_command( CommandList_struct *cmd, int timeout)
{
int status = 1;
int i;
u64bit temp64;
if (timeout)
status = 0;
/* unmap the DMA mapping for all the scatter gather elements */
for(i=0; i<cmd->Header.SGList; i++)
{
temp64.val32.lower = cmd->SG[i].Addr.lower;
temp64.val32.upper = cmd->SG[i].Addr.upper;
pci_unmap_page(hba[cmd->ctlr]->pdev,
temp64.val, cmd->SG[i].Len,
(cmd->Request.Type.Direction == XFER_READ) ?
PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
}
if(cmd->err_info->CommandStatus != 0)
{ /* an error has occurred */
switch(cmd->err_info->CommandStatus)
{
unsigned char sense_key;
case CMD_TARGET_STATUS:
status = 0;
if( cmd->err_info->ScsiStatus == 0x02)
{
printk(KERN_WARNING "cciss: cmd %p "
"has CHECK CONDITION "
" byte 2 = 0x%x\n", cmd,
cmd->err_info->SenseInfo[2]
);
/* check the sense key */
sense_key = 0xf &
cmd->err_info->SenseInfo[2];
/* no status or recovered error */
if((sense_key == 0x0) ||
(sense_key == 0x1))
{
status = 1;
}
} else
{
printk(KERN_WARNING "cciss: cmd %p "
"has SCSI Status 0x%x\n",
cmd, cmd->err_info->ScsiStatus);
}
break;
case CMD_DATA_UNDERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data underrun "
"reported\n", cmd);
break;
case CMD_DATA_OVERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data overrun "
"reported\n", cmd);
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: cmd %p is "
"reported invalid\n", cmd);
status = 0;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd %p has "
"protocol error \n", cmd);
status = 0;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd %p had "
" hardware error\n", cmd);
status = 0;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd %p had "
"connection lost\n", cmd);
status=0;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd %p was "
"aborted\n", cmd);
status=0;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd %p reports "
"abort failed\n", cmd);
status=0;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING "cciss: cmd %p aborted "
"do to an unsolicited abort\n", cmd);
status=0;
break;
case CMD_TIMEOUT:
printk(KERN_WARNING "cciss: cmd %p timedout\n",
cmd);
status=0;
break;
default:
printk(KERN_WARNING "cciss: cmd %p returned "
"unknown status %x\n", cmd,
cmd->err_info->CommandStatus);
status=0;
}
}
complete_buffers(cmd->rq->bio, status);
#ifdef CCISS_DEBUG
printk("Done with %p\n", cmd->rq);
#endif /* CCISS_DEBUG */
end_that_request_last(cmd->rq);
}
/*
* Get a request and submit it to the controller.
*/
static void do_cciss_request(request_queue_t *q)
{
ctlr_info_t *h= q->queuedata;
CommandList_struct *c;
int log_unit, start_blk, seg;
struct request *creq;
u64bit temp64;
struct scatterlist tmp_sg[MAXSGENTRIES];
int i, dir;
if (blk_queue_plugged(q))
goto startio;
queue:
if (blk_queue_empty(q))
goto startio;
creq = elv_next_request(q);
if (creq->nr_phys_segments > MAXSGENTRIES)
BUG();
if (h->ctlr != major(creq->rq_dev)-MAJOR_NR )
{
printk(KERN_WARNING "doreq cmd for %d, %x at %p\n",
h->ctlr, major(creq->rq_dev), creq);
blkdev_dequeue_request(creq);
complete_buffers(creq->bio, 0);
end_that_request_last(creq);
goto startio;
}
if (( c = cmd_alloc(h, 1)) == NULL)
goto startio;
blkdev_dequeue_request(creq);
spin_unlock_irq(q->queue_lock);
c->cmd_type = CMD_RWREQ;
c->rq = creq;
/* fill in the request */
log_unit = minor(creq->rq_dev) >> NWD_SHIFT;
c->Header.ReplyQueue = 0; // unused in simple mode
c->Header.Tag.lower = c->busaddr; // use the physical address the cmd block for tag
c->Header.LUN.LogDev.VolId= hba[h->ctlr]->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction =
(rq_data_dir(creq) == READ) ? XFER_READ: XFER_WRITE;
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? CCISS_READ : CCISS_WRITE;
start_blk = creq->sector;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
(int) creq->nr_sectors);
#endif /* CCISS_DEBUG */
seg = blk_rq_map_sg(q, creq, tmp_sg);
/* get the DMA records for the setup */
if (c->Request.Type.Direction == XFER_READ)
dir = PCI_DMA_FROMDEVICE;
else
dir = PCI_DMA_TODEVICE;
for (i=0; i<seg; i++)
{
c->SG[i].Len = tmp_sg[i].length;
temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
tmp_sg[i].offset, tmp_sg[i].length,
dir);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Ext = 0; // we are not chaining
}
/* track how many SG entries we are using */
if( seg > h->maxSG)
h->maxSG = seg;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", creq->nr_sectors, seg);
#endif /* CCISS_DEBUG */
c->Header.SGList = c->Header.SGTotal = seg;
c->Request.CDB[1]= 0;
c->Request.CDB[2]= (start_blk >> 24) & 0xff; //MSB
c->Request.CDB[3]= (start_blk >> 16) & 0xff;
c->Request.CDB[4]= (start_blk >> 8) & 0xff;
c->Request.CDB[5]= start_blk & 0xff;
c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB
c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff;
c->Request.CDB[8]= creq->nr_sectors & 0xff;
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
spin_lock_irq(q->queue_lock);
addQ(&(h->reqQ),c);
h->Qdepth++;
if(h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
goto queue;
startio:
start_io(h);
}
static void do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
{
ctlr_info_t *h = dev_id;
CommandList_struct *c;
unsigned long flags;
__u32 a, a1;
/* Is this interrupt for us? */
if ( h->access.intr_pending(h) == 0)
return;
/*
* If there are completed commands in the completion queue,
* we had better do something about it.
*/
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
while( h->access.intr_pending(h))
{
while((a = h->access.command_completed(h)) != FIFO_EMPTY)
{
a1 = a;
a &= ~3;
if ((c = h->cmpQ) == NULL)
{
printk(KERN_WARNING "cciss: Completion of %08lx ignored\n", (unsigned long)a1);
continue;
}
while(c->busaddr != a) {
c = c->next;
if (c == h->cmpQ)
break;
}
/*
* If we've found the command, take it off the
* completion Q and free it
*/
if (c->busaddr == a) {
removeQ(&h->cmpQ, c);
if (c->cmd_type == CMD_RWREQ) {
complete_command(c, 0);
cmd_free(h, c, 1);
} else if (c->cmd_type == CMD_IOCTL_PEND) {
complete(c->waiting);
}
# ifdef CONFIG_CISS_SCSI_TAPE
else if (c->cmd_type == CMD_SCSI)
complete_scsi_command(c, 0, a1);
# endif
continue;
}
}
}
/*
* See if we can queue up some more IO
*/
do_cciss_request(BLK_DEFAULT_QUEUE(MAJOR_NR + h->ctlr));
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
}
/*
* We cannot read the structure directly, for portablity we must use
* the io functions.
* This is for debug only.
*/
#ifdef CCISS_DEBUG
static void print_cfg_table( CfgTable_struct *tb)
{
int i;
char temp_name[17];
printk("Controller Configuration information\n");
printk("------------------------------------\n");
for(i=0;i<4;i++)
temp_name[i] = readb(&(tb->Signature[i]));
temp_name[4]='\0';
printk(" Signature = %s\n", temp_name);
printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
printk(" Transport methods supported = 0x%x\n",
readl(&(tb-> TransportSupport)));
printk(" Transport methods active = 0x%x\n",
readl(&(tb->TransportActive)));
printk(" Requested transport Method = 0x%x\n",
readl(&(tb->HostWrite.TransportRequest)));
printk(" Coalese Interrupt Delay = 0x%x\n",
readl(&(tb->HostWrite.CoalIntDelay)));
printk(" Coalese Interrupt Count = 0x%x\n",
readl(&(tb->HostWrite.CoalIntCount)));
printk(" Max outstanding commands = 0x%d\n",
readl(&(tb->CmdsOutMax)));
printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
for(i=0;i<16;i++)
temp_name[i] = readb(&(tb->ServerName[i]));
temp_name[16] = '\0';
printk(" Server Name = %s\n", temp_name);
printk(" Heartbeat Counter = 0x%x\n\n\n",
readl(&(tb->HeartBeat)));
}
#endif /* CCISS_DEBUG */
static void release_io_mem(ctlr_info_t *c)
{
/* if IO mem was not protected do nothing */
if( c->io_mem_addr == 0)
return;
release_region(c->io_mem_addr, c->io_mem_length);
c->io_mem_addr = 0;
c->io_mem_length = 0;
}
static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
{
ushort vendor_id, device_id, command;
unchar cache_line_size, latency_timer;
unchar irq, revision;
uint addr[6];
__u32 board_id;
int cfg_offset;
int cfg_base_addr;
int cfg_base_addr_index;
int i;
vendor_id = pdev->vendor;
device_id = pdev->device;
irq = pdev->irq;
for(i=0; i<6; i++)
addr[i] = pdev->resource[i].start;
if (pci_enable_device(pdev))
{
printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
return( -1);
}
if (pci_set_dma_mask(pdev, CCISS_DMA_MASK ) != 0)
{
printk(KERN_ERR "cciss: Unable to set DMA mask\n");
return(-1);
}
(void) pci_read_config_word(pdev, PCI_COMMAND,&command);
(void) pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
(void) pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
&cache_line_size);
(void) pci_read_config_byte(pdev, PCI_LATENCY_TIMER,
&latency_timer);
(void) pci_read_config_dword(pdev, PCI_SUBSYSTEM_VENDOR_ID,
&board_id);
/* check to see if controller has been disabled */
if(!(command & 0x02))
{
printk(KERN_WARNING "cciss: controller appears to be disabled\n");
return(-1);
}
/* search for our IO range so we can protect it */
for(i=0; i<6; i++)
{
/* is this an IO range */
if( pdev->resource[i].flags & 0x01 )
{
c->io_mem_addr = pdev->resource[i].start;
c->io_mem_length = pdev->resource[i].end -
pdev->resource[i].start +1;
#ifdef CCISS_DEBUG
printk("IO value found base_addr[%d] %lx %lx\n", i,
c->io_mem_addr, c->io_mem_length);
#endif /* CCISS_DEBUG */
/* register the IO range */
if(!request_region( c->io_mem_addr,
c->io_mem_length, "cciss"))
{
printk(KERN_WARNING "cciss I/O memory range already in use addr=%lx length=%ld\n",
c->io_mem_addr, c->io_mem_length);
c->io_mem_addr= 0;
c->io_mem_length = 0;
}
break;
}
}
#ifdef CCISS_DEBUG
printk("vendor_id = %x\n", vendor_id);
printk("device_id = %x\n", device_id);
printk("command = %x\n", command);
for(i=0; i<6; i++)
printk("addr[%d] = %x\n", i, addr[i]);
printk("revision = %x\n", revision);
printk("irq = %x\n", irq);
printk("cache_line_size = %x\n", cache_line_size);
printk("latency_timer = %x\n", latency_timer);
printk("board_id = %x\n", board_id);
#endif /* CCISS_DEBUG */
c->intr = irq;
/*
* Memory base addr is first addr , the second points to the config
* table
*/
c->paddr = addr[0] ; /* addressing mode bits already removed */
#ifdef CCISS_DEBUG
printk("address 0 = %x\n", c->paddr);
#endif /* CCISS_DEBUG */
c->vaddr = remap_pci_mem(c->paddr, 200);
/* get the address index number */
cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
/* I am not prepared to deal with a 64 bit address value */
cfg_base_addr &= 0xffff;
#ifdef CCISS_DEBUG
printk("cfg base address = %x\n", cfg_base_addr);
#endif /* CCISS_DEBUG */
cfg_base_addr_index = (cfg_base_addr - PCI_BASE_ADDRESS_0)/4;
#ifdef CCISS_DEBUG
printk("cfg base address index = %x\n", cfg_base_addr_index);
#endif /* CCISS_DEBUG */
cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
#ifdef CCISS_DEBUG
printk("cfg offset = %x\n", cfg_offset);
#endif /* CCISS_DEBUG */
c->cfgtable = (CfgTable_struct *)
remap_pci_mem((addr[cfg_base_addr_index] & 0xfffffff0)
+ cfg_offset, sizeof(CfgTable_struct));
c->board_id = board_id;
#ifdef CCISS_DEBUG
print_cfg_table(c->cfgtable);
#endif /* CCISS_DEBUG */
for(i=0; i<NR_PRODUCTS; i++) {
if (board_id == products[i].board_id) {
c->product_name = products[i].product_name;
c->access = *(products[i].access);
break;
}
}
if (i == NR_PRODUCTS) {
printk(KERN_WARNING "cciss: Sorry, I don't know how"
" to access the Smart Array controller %08lx\n",
(unsigned long)board_id);
return -1;
}
if ( (readb(&c->cfgtable->Signature[0]) != 'C') ||
(readb(&c->cfgtable->Signature[1]) != 'I') ||
(readb(&c->cfgtable->Signature[2]) != 'S') ||
(readb(&c->cfgtable->Signature[3]) != 'S') )
{
printk("Does not appear to be a valid CISS config table\n");
return -1;
}
#ifdef CCISS_DEBUG
printk("Trying to put board into Simple mode\n");
#endif /* CCISS_DEBUG */
c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
/* Update the field, and then ring the doorbell */
writel( CFGTBL_Trans_Simple,
&(c->cfgtable->HostWrite.TransportRequest));
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_CONFIG_WAIT;i++)
{
if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL));
#endif /* CCISS_DEBUG */
#ifdef CCISS_DEBUG
print_cfg_table(c->cfgtable);
#endif /* CCISS_DEBUG */
if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
{
printk(KERN_WARNING "cciss: unable to get board into"
" simple mode\n");
return -1;
}
return 0;
}
/*
* Gets information about the local volumes attached to the controller.
*/
static void cciss_getgeometry(int cntl_num)
{
ReportLunData_struct *ld_buff;
ReadCapdata_struct *size_buff;
InquiryData_struct *inq_buff;
int return_code;
int i;
int listlength = 0;
__u32 lunid = 0;
int block_size;
int total_size;
ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
return;
}
memset(ld_buff, 0, sizeof(ReportLunData_struct));
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
return;
}
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
kfree(size_buff);
return;
}
/* Get the firmware version */
return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
sizeof(InquiryData_struct), 0, 0 ,0, NULL );
if (return_code == IO_OK)
{
hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
} else /* send command failed */
{
printk(KERN_WARNING "cciss: unable to determine firmware"
" version of controller\n");
}
/* Get the number of logical volumes */
return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
sizeof(ReportLunData_struct), 0, 0, 0, NULL );
if( return_code == IO_OK)
{
#ifdef CCISS_DEBUG
printk("LUN Data\n--------------------------\n");
#endif /* CCISS_DEBUG */
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
} else /* reading number of logical volumes failed */
{
printk(KERN_WARNING "cciss: report logical volume"
" command failed\n");
listlength = 0;
}
hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
if (hba[cntl_num]->num_luns > CISS_MAX_LUN)
{
printk(KERN_ERR "ciss: only %d number of logical volumes supported\n",
CISS_MAX_LUN);
hba[cntl_num]->num_luns = CISS_MAX_LUN;
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
ld_buff->LUNListLength[3], hba[cntl_num]->num_luns);
#endif /* CCISS_DEBUG */
hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1;
for(i=0; i< hba[cntl_num]->num_luns; i++)
{
lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
hba[cntl_num]->drv[i].LunID = lunid;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
ld_buff->LUN[i][0], ld_buff->LUN[i][1],ld_buff->LUN[i][2],
ld_buff->LUN[i][3], hba[cntl_num]->drv[i].LunID);
#endif /* CCISS_DEBUG */
memset(size_buff, 0, sizeof(ReadCapdata_struct));
return_code = sendcmd(CCISS_READ_CAPACITY, cntl_num, size_buff,
sizeof( ReadCapdata_struct), 1, i, 0, NULL );
if (return_code == IO_OK)
{
total_size = (0xff &
(unsigned int)(size_buff->total_size[0])) << 24;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[1])) << 16;
total_size |= (0xff &
(unsigned int)(size_buff->total_size[2])) << 8;
total_size |= (0xff & (unsigned int)
(size_buff->total_size[3]));
total_size++; // command returns highest block address
block_size = (0xff &
(unsigned int)(size_buff->block_size[0])) << 24;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[1])) << 16;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[2])) << 8;
block_size |= (0xff &
(unsigned int)(size_buff->block_size[3]));
} else /* read capacity command failed */
{
printk(KERN_WARNING "cciss: read capacity failed\n");
total_size = 0;
block_size = BLOCK_SIZE;
}
printk(KERN_INFO " blocks= %d block_size= %d\n",
total_size, block_size);
/* Execute the command to read the disk geometry */
memset(inq_buff, 0, sizeof(InquiryData_struct));
return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
sizeof(InquiryData_struct), 1, i ,0xC1, NULL );
if (return_code == IO_OK)
{
if(inq_buff->data_byte[8] == 0xFF)
{
printk(KERN_WARNING "cciss: reading geometry failed, volume does not support reading geometry\n");
hba[cntl_num]->drv[i].block_size = block_size;
hba[cntl_num]->drv[i].nr_blocks = total_size;
hba[cntl_num]->drv[i].heads = 255;
hba[cntl_num]->drv[i].sectors = 32; // Sectors per track
hba[cntl_num]->drv[i].cylinders = total_size / 255 / 32; } else
{
hba[cntl_num]->drv[i].block_size = block_size;
hba[cntl_num]->drv[i].nr_blocks = total_size;
hba[cntl_num]->drv[i].heads =
inq_buff->data_byte[6];
hba[cntl_num]->drv[i].sectors =
inq_buff->data_byte[7];
hba[cntl_num]->drv[i].cylinders =
(inq_buff->data_byte[4] & 0xff) << 8;
hba[cntl_num]->drv[i].cylinders +=
inq_buff->data_byte[5];
}
}
else /* Get geometry failed */
{
printk(KERN_WARNING "cciss: reading geometry failed, continuing with default geometry\n");
hba[cntl_num]->drv[i].block_size = block_size;
hba[cntl_num]->drv[i].nr_blocks = total_size;
hba[cntl_num]->drv[i].heads = 255;
hba[cntl_num]->drv[i].sectors = 32; // Sectors per track
hba[cntl_num]->drv[i].cylinders = total_size / 255 / 32;
}
printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n",
hba[cntl_num]->drv[i].heads,
hba[cntl_num]->drv[i].sectors,
hba[cntl_num]->drv[i].cylinders);
}
kfree(ld_buff);
kfree(size_buff);
kfree(inq_buff);
}
/* Function to find the first free pointer into our hba[] array */
/* Returns -1 if no free entries are left. */
static int alloc_cciss_hba(void)
{
int i;
for(i=0; i< MAX_CTLR; i++)
{
if (hba[i] == NULL)
{
hba[i] = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
if(hba[i]==NULL)
{
printk(KERN_ERR "cciss: out of memory.\n");
return (-1);
}
return (i);
}
}
printk(KERN_WARNING "cciss: This driver supports a maximum"
" of 8 controllers.\n");
return(-1);
}
static void free_hba(int i)
{
kfree(hba[i]);
hba[i]=NULL;
}
/*
* This is it. Find all the controllers and register them. I really hate
* stealing all these major device numbers.
* returns the number of block devices registered.
*/
static int __init cciss_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
request_queue_t *q;
int i;
int j;
printk(KERN_DEBUG "cciss: Device 0x%x has been found at"
" bus %d dev %d func %d\n",
pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
PCI_FUNC(pdev->devfn));
i = alloc_cciss_hba();
if( i < 0 )
return (-1);
memset(hba[i], 0, sizeof(ctlr_info_t));
if (cciss_pci_init(hba[i], pdev) != 0)
{
release_io_mem(hba[i]);
free_hba(i);
return (-1);
}
sprintf(hba[i]->devname, "cciss%d", i);
hba[i]->ctlr = i;
hba[i]->pdev = pdev;
/* configure PCI DMA stuff */
if (!pci_set_dma_mask(pdev, (u64) 0xffffffffffffffff))
printk("cciss: using DAC cycles\n");
else if (!pci_set_dma_mask(pdev, 0xffffffff))
printk("cciss: not using DAC cycles\n");
else {
printk("cciss: no suitable DMA available\n");
free_hba(i);
return -ENODEV;
}
if( register_blkdev(MAJOR_NR+i, hba[i]->devname, &cciss_fops))
{
printk(KERN_ERR "cciss: Unable to get major number "
"%d for %s\n", MAJOR_NR+i, hba[i]->devname);
release_io_mem(hba[i]);
free_hba(i);
return(-1);
}
/* make sure the board interrupts are off */
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
if( request_irq(hba[i]->intr, do_cciss_intr,
SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM,
hba[i]->devname, hba[i]))
{
printk(KERN_ERR "ciss: Unable to get irq %d for %s\n",
hba[i]->intr, hba[i]->devname);
unregister_blkdev( MAJOR_NR+i, hba[i]->devname);
release_io_mem(hba[i]);
free_hba(i);
return(-1);
}
hba[i]->cmd_pool_bits = (__u32*)kmalloc(
((NR_CMDS+31)/32)*sizeof(__u32), GFP_KERNEL);
hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent(
hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
&(hba[i]->cmd_pool_dhandle));
hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent(
hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
&(hba[i]->errinfo_pool_dhandle));
if((hba[i]->cmd_pool_bits == NULL)
|| (hba[i]->cmd_pool == NULL)
|| (hba[i]->errinfo_pool == NULL))
{
if(hba[i]->cmd_pool_bits)
kfree(hba[i]->cmd_pool_bits);
if(hba[i]->cmd_pool)
pci_free_consistent(hba[i]->pdev,
NR_CMDS * sizeof(CommandList_struct),
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
if(hba[i]->errinfo_pool)
pci_free_consistent(hba[i]->pdev,
NR_CMDS * sizeof( ErrorInfo_struct),
hba[i]->errinfo_pool,
hba[i]->errinfo_pool_dhandle);
free_irq(hba[i]->intr, hba[i]);
unregister_blkdev(MAJOR_NR+i, hba[i]->devname);
release_io_mem(hba[i]);
free_hba(i);
printk( KERN_ERR "cciss: out of memory");
return(-1);
}
/* Initialize the pdev driver private data.
have it point to hba[i]. */
pci_set_drvdata(pdev, hba[i]);
/* command and error info recs zeroed out before
they are used */
memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+31)/32)*sizeof(__u32));
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i);
#endif /* CCISS_DEBUG */
cciss_getgeometry(i);
cciss_find_non_disk_devices(i); /* find our tape drives, if any */
/* Turn the interrupts on so we can service requests */
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
cciss_procinit(i);
q = BLK_DEFAULT_QUEUE(MAJOR_NR + i);
q->queuedata = hba[i];
spin_lock_init(&hba[i]->lock);
blk_init_queue(q, do_cciss_request, &hba[i]->lock);
blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
/* This is a hardware imposed limit. */
blk_queue_max_hw_segments(q, MAXSGENTRIES);
/* This is a limit in the driver and could be eliminated. */
blk_queue_max_phys_segments(q, MAXSGENTRIES);
blk_queue_max_sectors(q, 512);
/* fill in the other Kernel structs */
blksize_size[MAJOR_NR+i] = hba[i]->blocksizes;
/* Fill in the gendisk data */
hba[i]->gendisk.major = MAJOR_NR + i;
hba[i]->gendisk.major_name = "cciss";
hba[i]->gendisk.minor_shift = NWD_SHIFT;
hba[i]->gendisk.part = hba[i]->hd;
hba[i]->gendisk.sizes = hba[i]->sizes;
hba[i]->gendisk.nr_real = hba[i]->highest_lun+1;
/* Get on the disk list */
add_gendisk(&(hba[i]->gendisk));
cciss_geninit(i);
for(j=0; j<NWD; j++)
register_disk(&(hba[i]->gendisk),
mk_kdev(MAJOR_NR+i, j <<4),
MAX_PART, &cciss_fops,
hba[i]->drv[j].nr_blocks);
cciss_register_scsi(i, 1); /* hook ourself into SCSI subsystem */
return(1);
}
static void __devexit cciss_remove_one (struct pci_dev *pdev)
{
ctlr_info_t *tmp_ptr;
int i;
char flush_buf[4];
int return_code;
if (pci_get_drvdata(pdev) == NULL)
{
printk( KERN_ERR "cciss: Unable to remove device \n");
return;
}
tmp_ptr = pci_get_drvdata(pdev);
i = tmp_ptr->ctlr;
if (hba[i] == NULL)
{
printk(KERN_ERR "cciss: device appears to "
"already be removed \n");
return;
}
/* Turn board interrupts off and send the flush cache command */
/* sendcmd will turn off interrupt, and send the flush...
* To write all data in the battery backed cache to disks */
memset(flush_buf, 0, 4);
return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL);
if(return_code != IO_OK)
{
printk(KERN_WARNING "Error Flushing cache on controller %d\n",
i);
}
free_irq(hba[i]->intr, hba[i]);
pci_set_drvdata(pdev, NULL);
iounmap((void*)hba[i]->vaddr);
cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
unregister_blkdev(MAJOR_NR+i, hba[i]->devname);
remove_proc_entry(hba[i]->devname, proc_cciss);
/* remove it from the disk list */
del_gendisk(&(hba[i]->gendisk));
pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
kfree(hba[i]->cmd_pool_bits);
release_io_mem(hba[i]);
free_hba(i);
}
static struct pci_driver cciss_pci_driver = {
name: "cciss",
probe: cciss_init_one,
remove: __devexit_p(cciss_remove_one),
id_table: cciss_pci_device_id, /* id_table */
};
/*
* This is it. Register the PCI driver information for the cards we control
* the OS will call our registered routines when it finds one of our cards.
*/
int __init cciss_init(void)
{
printk(KERN_INFO DRIVER_NAME "\n");
/* Register for out PCI devices */
if (pci_register_driver(&cciss_pci_driver) > 0 )
return 0;
else
return -ENODEV;
}
EXPORT_NO_SYMBOLS;
static int __init init_cciss_module(void)
{
return ( cciss_init());
}
static void __exit cleanup_cciss_module(void)
{
int i;
pci_unregister_driver(&cciss_pci_driver);
/* double check that all controller entrys have been removed */
for (i=0; i< MAX_CTLR; i++)
{
if (hba[i] != NULL)
{
printk(KERN_WARNING "cciss: had to remove"
" controller %d\n", i);
cciss_remove_one(hba[i]->pdev);
}
}
remove_proc_entry("cciss", proc_root_driver);
}
module_init(init_cciss_module);
module_exit(cleanup_cciss_module);