blob: d2c81dd635dc3a0ce6d3c07b00baedb738047b1a [file] [log] [blame]
/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "nv50.h"
#include "ramseq.h"
#include <core/device.h>
#include <core/option.h>
#include <subdev/bios.h>
#include <subdev/bios/perf.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/timing.h>
#include <subdev/clk/pll.h>
struct nv50_ramseq {
struct hwsq base;
struct hwsq_reg r_0x002504;
struct hwsq_reg r_0x004008;
struct hwsq_reg r_0x00400c;
struct hwsq_reg r_0x00c040;
struct hwsq_reg r_0x100210;
struct hwsq_reg r_0x1002d0;
struct hwsq_reg r_0x1002d4;
struct hwsq_reg r_0x1002dc;
struct hwsq_reg r_0x100da0[8];
struct hwsq_reg r_0x100e20;
struct hwsq_reg r_0x100e24;
struct hwsq_reg r_0x611200;
struct hwsq_reg r_timing[9];
struct hwsq_reg r_mr[4];
};
struct nv50_ram {
struct nvkm_ram base;
struct nv50_ramseq hwsq;
};
#define QFX5800NVA0 1
static int
nv50_ram_calc(struct nvkm_fb *pfb, u32 freq)
{
struct nvkm_bios *bios = nvkm_bios(pfb);
struct nv50_ram *ram = (void *)pfb->ram;
struct nv50_ramseq *hwsq = &ram->hwsq;
struct nvbios_perfE perfE;
struct nvbios_pll mpll;
struct {
u32 data;
u8 size;
} ramcfg, timing;
u8 ver, hdr, cnt, len, strap;
int N1, M1, N2, M2, P;
int ret, i;
/* lookup closest matching performance table entry for frequency */
i = 0;
do {
ramcfg.data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
&ramcfg.size, &perfE);
if (!ramcfg.data || (ver < 0x25 || ver >= 0x40) ||
(ramcfg.size < 2)) {
nv_error(pfb, "invalid/missing perftab entry\n");
return -EINVAL;
}
} while (perfE.memory < freq);
/* locate specific data set for the attached memory */
strap = nvbios_ramcfg_index(nv_subdev(pfb));
if (strap >= cnt) {
nv_error(pfb, "invalid ramcfg strap\n");
return -EINVAL;
}
ramcfg.data += hdr + (strap * ramcfg.size);
/* lookup memory timings, if bios says they're present */
strap = nv_ro08(bios, ramcfg.data + 0x01);
if (strap != 0xff) {
timing.data = nvbios_timingEe(bios, strap, &ver, &hdr,
&cnt, &len);
if (!timing.data || ver != 0x10 || hdr < 0x12) {
nv_error(pfb, "invalid/missing timing entry "
"%02x %04x %02x %02x\n",
strap, timing.data, ver, hdr);
return -EINVAL;
}
} else {
timing.data = 0;
}
ret = ram_init(hwsq, nv_subdev(pfb));
if (ret)
return ret;
ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
ram_wr32(hwsq, 0x611200, 0x00003300);
ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
ram_nsec(hwsq, 8000);
ram_setf(hwsq, 0x10, 0x00); /* disable fb */
ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
ret = nvbios_pll_parse(bios, 0x004008, &mpll);
mpll.vco2.max_freq = 0;
if (ret == 0) {
ret = nv04_pll_calc(nv_subdev(pfb), &mpll, freq,
&N1, &M1, &N2, &M2, &P);
if (ret == 0)
ret = -EINVAL;
}
if (ret < 0)
return ret;
ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
ram_mask(hwsq, 0x004008, 0x00000200, 0x00000200);
ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
ram_mask(hwsq, 0x004008, 0x81ff0000, 0x80000000 | (mpll.bias_p << 19) |
(P << 22) | (P << 16));
#if QFX5800NVA0
for (i = 0; i < 8; i++)
ram_mask(hwsq, 0x100da0[i], 0x00000000, 0x00000000); /*XXX*/
#endif
ram_nsec(hwsq, 96000); /*XXX*/
ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
ram_nsec(hwsq, 12000);
switch (ram->base.type) {
case NV_MEM_TYPE_DDR2:
ram_nuke(hwsq, mr[0]); /* force update */
ram_mask(hwsq, mr[0], 0x000, 0x000);
break;
case NV_MEM_TYPE_GDDR3:
ram_mask(hwsq, mr[2], 0x000, 0x000);
ram_nuke(hwsq, mr[0]); /* force update */
ram_mask(hwsq, mr[0], 0x000, 0x000);
break;
default:
break;
}
ram_mask(hwsq, timing[3], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[1], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[6], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[7], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[8], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[2], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[4], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[5], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
#if QFX5800NVA0
ram_nuke(hwsq, 0x100e24);
ram_mask(hwsq, 0x100e24, 0x00000000, 0x00000000);
ram_nuke(hwsq, 0x100e20);
ram_mask(hwsq, 0x100e20, 0x00000000, 0x00000000);
#endif
ram_mask(hwsq, mr[0], 0x100, 0x100);
ram_mask(hwsq, mr[0], 0x100, 0x000);
ram_setf(hwsq, 0x10, 0x01); /* enable fb */
ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
ram_wr32(hwsq, 0x611200, 0x00003330);
ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
return 0;
}
static int
nv50_ram_prog(struct nvkm_fb *pfb)
{
struct nvkm_device *device = nv_device(pfb);
struct nv50_ram *ram = (void *)pfb->ram;
struct nv50_ramseq *hwsq = &ram->hwsq;
ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
return 0;
}
static void
nv50_ram_tidy(struct nvkm_fb *pfb)
{
struct nv50_ram *ram = (void *)pfb->ram;
struct nv50_ramseq *hwsq = &ram->hwsq;
ram_exec(hwsq, false);
}
void
__nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem *mem)
{
struct nvkm_mm_node *this;
while (!list_empty(&mem->regions)) {
this = list_first_entry(&mem->regions, typeof(*this), rl_entry);
list_del(&this->rl_entry);
nvkm_mm_free(&pfb->vram, &this);
}
nvkm_mm_free(&pfb->tags, &mem->tag);
}
void
nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem **pmem)
{
struct nvkm_mem *mem = *pmem;
*pmem = NULL;
if (unlikely(mem == NULL))
return;
mutex_lock(&pfb->base.mutex);
__nv50_ram_put(pfb, mem);
mutex_unlock(&pfb->base.mutex);
kfree(mem);
}
int
nv50_ram_get(struct nvkm_fb *pfb, u64 size, u32 align, u32 ncmin,
u32 memtype, struct nvkm_mem **pmem)
{
struct nvkm_mm *heap = &pfb->vram;
struct nvkm_mm *tags = &pfb->tags;
struct nvkm_mm_node *r;
struct nvkm_mem *mem;
int comp = (memtype & 0x300) >> 8;
int type = (memtype & 0x07f);
int back = (memtype & 0x800);
int min, max, ret;
max = (size >> 12);
min = ncmin ? (ncmin >> 12) : max;
align >>= 12;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return -ENOMEM;
mutex_lock(&pfb->base.mutex);
if (comp) {
if (align == 16) {
int n = (max >> 4) * comp;
ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
if (ret)
mem->tag = NULL;
}
if (unlikely(!mem->tag))
comp = 0;
}
INIT_LIST_HEAD(&mem->regions);
mem->memtype = (comp << 7) | type;
mem->size = max;
type = nv50_fb_memtype[type];
do {
if (back)
ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
else
ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
if (ret) {
mutex_unlock(&pfb->base.mutex);
pfb->ram->put(pfb, &mem);
return ret;
}
list_add_tail(&r->rl_entry, &mem->regions);
max -= r->length;
} while (max);
mutex_unlock(&pfb->base.mutex);
r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
mem->offset = (u64)r->offset << 12;
*pmem = mem;
return 0;
}
static u32
nv50_fb_vram_rblock(struct nvkm_fb *pfb, struct nvkm_ram *ram)
{
int colbits, rowbitsa, rowbitsb, banks;
u64 rowsize, predicted;
u32 r0, r4, rt, rblock_size;
r0 = nv_rd32(pfb, 0x100200);
r4 = nv_rd32(pfb, 0x100204);
rt = nv_rd32(pfb, 0x100250);
nv_debug(pfb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n",
r0, r4, rt, nv_rd32(pfb, 0x001540));
colbits = (r4 & 0x0000f000) >> 12;
rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
rowsize = ram->parts * banks * (1 << colbits) * 8;
predicted = rowsize << rowbitsa;
if (r0 & 0x00000004)
predicted += rowsize << rowbitsb;
if (predicted != ram->size) {
nv_warn(pfb, "memory controller reports %d MiB VRAM\n",
(u32)(ram->size >> 20));
}
rblock_size = rowsize;
if (rt & 1)
rblock_size *= 3;
nv_debug(pfb, "rblock %d bytes\n", rblock_size);
return rblock_size;
}
int
nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, int length, void **pobject)
{
const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
struct nvkm_bios *bios = nvkm_bios(parent);
struct nvkm_fb *pfb = nvkm_fb(parent);
struct nvkm_ram *ram;
int ret;
ret = nvkm_ram_create_(parent, engine, oclass, length, pobject);
ram = *pobject;
if (ret)
return ret;
ram->size = nv_rd32(pfb, 0x10020c);
ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);
ram->part_mask = (nv_rd32(pfb, 0x001540) & 0x00ff0000) >> 16;
ram->parts = hweight8(ram->part_mask);
switch (nv_rd32(pfb, 0x100714) & 0x00000007) {
case 0: ram->type = NV_MEM_TYPE_DDR1; break;
case 1:
if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
ram->type = NV_MEM_TYPE_DDR3;
else
ram->type = NV_MEM_TYPE_DDR2;
break;
case 2: ram->type = NV_MEM_TYPE_GDDR3; break;
case 3: ram->type = NV_MEM_TYPE_GDDR4; break;
case 4: ram->type = NV_MEM_TYPE_GDDR5; break;
default:
break;
}
ret = nvkm_mm_init(&pfb->vram, rsvd_head, (ram->size >> 12) -
(rsvd_head + rsvd_tail),
nv50_fb_vram_rblock(pfb, ram) >> 12);
if (ret)
return ret;
ram->ranks = (nv_rd32(pfb, 0x100200) & 0x4) ? 2 : 1;
ram->tags = nv_rd32(pfb, 0x100320);
ram->get = nv50_ram_get;
ram->put = nv50_ram_put;
return 0;
}
static int
nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 datasize,
struct nvkm_object **pobject)
{
struct nv50_ram *ram;
int ret, i;
ret = nv50_ram_create(parent, engine, oclass, &ram);
*pobject = nv_object(ram);
if (ret)
return ret;
switch (ram->base.type) {
case NV_MEM_TYPE_DDR2:
case NV_MEM_TYPE_GDDR3:
ram->base.calc = nv50_ram_calc;
ram->base.prog = nv50_ram_prog;
ram->base.tidy = nv50_ram_tidy;
break;
default:
nv_warn(ram, "reclocking of this ram type unsupported\n");
return 0;
}
ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
for (i = 0; i < 8; i++)
ram->hwsq.r_0x100da0[i] = hwsq_reg(0x100da0 + (i * 0x04));
ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
for (i = 0; i < 9; i++)
ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
if (ram->base.ranks > 1) {
ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
} else {
ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
}
return 0;
}
struct nvkm_oclass
nv50_ram_oclass = {
.ofuncs = &(struct nvkm_ofuncs) {
.ctor = nv50_ram_ctor,
.dtor = _nvkm_ram_dtor,
.init = _nvkm_ram_init,
.fini = _nvkm_ram_fini,
}
};