blob: ecdcd85d5d28ecafa6e959e8500b93cdf99be77a [file] [log] [blame]
/*
* linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000
*
* Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org>
* May be copied or modified under the terms of the GNU General Public License
*/
/*
* Special Thanks to Mark for his Six years of work.
*
* Copyright (c) 1995-1998 Mark Lord
* May be copied or modified under the terms of the GNU General Public License
*/
/*
* This module provides support for the bus-master IDE DMA functions
* of various PCI chipsets, including the Intel PIIX (i82371FB for
* the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and
* 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset)
* ("PIIX" stands for "PCI ISA IDE Xcellerator").
*
* Pretty much the same code works for other IDE PCI bus-mastering chipsets.
*
* DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
*
* By default, DMA support is prepared for use, but is currently enabled only
* for drives which already have DMA enabled (UltraDMA or mode 2 multi/single),
* or which are recognized as "good" (see table below). Drives with only mode0
* or mode1 (multi/single) DMA should also work with this chipset/driver
* (eg. MC2112A) but are not enabled by default.
*
* Use "hdparm -i" to view modes supported by a given drive.
*
* The hdparm-3.5 (or later) utility can be used for manually enabling/disabling
* DMA support, but must be (re-)compiled against this kernel version or later.
*
* To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting.
* If problems arise, ide.c will disable DMA operation after a few retries.
* This error recovery mechanism works and has been extremely well exercised.
*
* IDE drives, depending on their vintage, may support several different modes
* of DMA operation. The boot-time modes are indicated with a "*" in
* the "hdparm -i" listing, and can be changed with *knowledgeable* use of
* the "hdparm -X" feature. There is seldom a need to do this, as drives
* normally power-up with their "best" PIO/DMA modes enabled.
*
* Testing has been done with a rather extensive number of drives,
* with Quantum & Western Digital models generally outperforming the pack,
* and Fujitsu & Conner (and some Seagate which are really Conner) drives
* showing more lackluster throughput.
*
* Keep an eye on /var/adm/messages for "DMA disabled" messages.
*
* Some people have reported trouble with Intel Zappa motherboards.
* This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0,
* available from ftp://ftp.intel.com/pub/bios/10004bs0.exe
* (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this).
*
* Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
* fixing the problem with the BIOS on some Acer motherboards.
*
* Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
* "TX" chipset compatibility and for providing patches for the "TX" chipset.
*
* Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
* at generic DMA -- his patches were referred to when preparing this code.
*
* Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
* for supplying a Promise UDMA board & WD UDMA drive for this work!
*
* And, yes, Intel Zappa boards really *do* use both PIIX IDE ports.
*
* check_drive_lists(ide_drive_t *drive, int good_bad)
*
* ATA-66/100 and recovery functions, I forgot the rest......
* SELECT_READ_WRITE(hwif,drive,func) for active tuning based on IO direction.
*
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ide.h>
#include <asm/io.h>
#include <asm/irq.h>
/*
* Long lost data from 2.0.34 that is now in 2.0.39
*
* This was used in ./drivers/block/triton.c to do DMA Base address setup
* when PnP failed. Oh the things we forget. I believe this was part
* of SFF-8038i that has been withdrawn from public access... :-((
*/
#define DEFAULT_BMIBA 0xe800 /* in case BIOS did not init it */
#define DEFAULT_BMCRBA 0xcc00 /* VIA's default value */
#define DEFAULT_BMALIBA 0xd400 /* ALI's default value */
extern char *ide_dmafunc_verbose(ide_dma_action_t dmafunc);
#ifdef CONFIG_IDEDMA_NEW_DRIVE_LISTINGS
struct drive_list_entry {
char * id_model;
char * id_firmware;
};
struct drive_list_entry drive_whitelist [] = {
{ "Micropolis 2112A" , "ALL" },
{ "CONNER CTMA 4000" , "ALL" },
{ "CONNER CTT8000-A" , "ALL" },
{ "ST34342A" , "ALL" },
{ 0 , 0 }
};
struct drive_list_entry drive_blacklist [] = {
{ "WDC AC11000H" , "ALL" },
{ "WDC AC22100H" , "ALL" },
{ "WDC AC32500H" , "ALL" },
{ "WDC AC33100H" , "ALL" },
{ "WDC AC31600H" , "ALL" },
{ "WDC AC32100H" , "24.09P07" },
{ "WDC AC23200L" , "21.10N21" },
{ "Compaq CRD-8241B" , "ALL" },
{ "CRD-8400B" , "ALL" },
{ "CRD-8480B", "ALL" },
{ "CRD-8480C", "ALL" },
{ "CRD-8482B", "ALL" },
{ "CRD-84" , "ALL" },
{ "SanDisk SDP3B" , "ALL" },
{ "SanDisk SDP3B-64" , "ALL" },
{ "SANYO CD-ROM CRD" , "ALL" },
{ "HITACHI CDR-8" , "ALL" },
{ "HITACHI CDR-8335" , "ALL" },
{ "HITACHI CDR-8435" , "ALL" },
{ "Toshiba CD-ROM XM-6202B" , "ALL" },
{ "CD-532E-A" , "ALL" },
{ "E-IDE CD-ROM CR-840", "ALL" },
{ "CD-ROM Drive/F5A", "ALL" },
{ "RICOH CD-R/RW MP7083A", "ALL" },
{ "WPI CDD-820", "ALL" },
{ "SAMSUNG CD-ROM SC-148C", "ALL" },
{ "SAMSUNG CD-ROM SC-148F", "ALL" },
{ "SAMSUNG CD-ROM SC", "ALL" },
{ "SanDisk SDP3B-64" , "ALL" },
{ "SAMSUNG CD-ROM SN-124", "ALL" },
{ "PLEXTOR CD-R PX-W8432T", "ALL" },
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", "ALL" },
{ "_NEC DV5800A", "ALL" },
{ 0 , 0 }
};
int in_drive_list(struct hd_driveid *id, struct drive_list_entry * drive_table)
{
for ( ; drive_table->id_model ; drive_table++)
if ((!strcmp(drive_table->id_model, id->model)) &&
((!strstr(drive_table->id_firmware, id->fw_rev)) ||
(!strcmp(drive_table->id_firmware, "ALL"))))
return 1;
return 0;
}
#else /* !CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */
/*
* good_dma_drives() lists the model names (from "hdparm -i")
* of drives which do not support mode2 DMA but which are
* known to work fine with this interface under Linux.
*/
const char *good_dma_drives[] = {"Micropolis 2112A",
"CONNER CTMA 4000",
"CONNER CTT8000-A",
"ST34342A", /* for Sun Ultra */
NULL};
/*
* bad_dma_drives() lists the model names (from "hdparm -i")
* of drives which supposedly support (U)DMA but which are
* known to corrupt data with this interface under Linux.
*
* This is an empirical list. Its generated from bug reports. That means
* while it reflects actual problem distributions it doesn't answer whether
* the drive or the controller, or cabling, or software, or some combination
* thereof is the fault. If you don't happen to agree with the kernel's
* opinion of your drive - use hdparm to turn DMA on.
*/
const char *bad_dma_drives[] = {"WDC AC11000H",
"WDC AC22100H",
"WDC AC32100H",
"WDC AC32500H",
"WDC AC33100H",
"WDC AC31600H",
NULL};
#endif /* CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */
/*
* dma_intr() is the handler for disk read/write DMA interrupts
*/
ide_startstop_t ide_dma_intr (ide_drive_t *drive)
{
byte stat, dma_stat;
dma_stat = HWIF(drive)->dmaproc(ide_dma_end, drive);
stat = GET_STAT(); /* get drive status */
if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {
if (!dma_stat) {
struct request *rq = HWGROUP(drive)->rq;
__ide_end_request(HWGROUP(drive), 1, rq->nr_sectors);
return ide_stopped;
}
printk("%s: dma_intr: bad DMA status (dma_stat=%x)\n",
drive->name, dma_stat);
}
return ide_error(drive, "dma_intr", stat);
}
static int ide_build_sglist (ide_hwif_t *hwif, struct request *rq)
{
request_queue_t *q = &hwif->drives[DEVICE_NR(rq->rq_dev) & 1].queue;
struct scatterlist *sg = hwif->sg_table;
int nents;
nents = blk_rq_map_sg(q, rq, hwif->sg_table);
if (rq->q && nents > rq->nr_segments)
printk("ide-dma: received %d segments, build %d\n", rq->nr_segments, nents);
if (rq_data_dir(rq) == READ)
hwif->sg_dma_direction = PCI_DMA_FROMDEVICE;
else
hwif->sg_dma_direction = PCI_DMA_TODEVICE;
return pci_map_sg(hwif->pci_dev, sg, nents, hwif->sg_dma_direction);
}
/*
* ide_build_dmatable() prepares a dma request.
* Returns 0 if all went okay, returns 1 otherwise.
* May also be invoked from trm290.c
*/
int ide_build_dmatable (ide_drive_t *drive, ide_dma_action_t func)
{
ide_hwif_t *hwif = HWIF(drive);
unsigned int *table = hwif->dmatable_cpu;
#ifdef CONFIG_BLK_DEV_TRM290
unsigned int is_trm290_chipset = (hwif->chipset == ide_trm290);
#else
const int is_trm290_chipset = 0;
#endif
unsigned int count = 0;
int i;
struct scatterlist *sg;
hwif->sg_nents = i = ide_build_sglist(hwif, HWGROUP(drive)->rq);
if (!i)
return 0;
sg = hwif->sg_table;
while (i) {
u32 cur_addr;
u32 cur_len;
cur_addr = sg_dma_address(sg);
cur_len = sg_dma_len(sg);
/*
* Fill in the dma table, without crossing any 64kB boundaries.
* Most hardware requires 16-bit alignment of all blocks,
* but the trm290 requires 32-bit alignment.
*/
while (cur_len) {
u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff);
if (count++ >= PRD_ENTRIES) {
printk("ide-dma: req %p\n", HWGROUP(drive)->rq);
printk("count %d, sg_nents %d, cur_len %d, cur_addr %u\n", count, hwif->sg_nents, cur_len, cur_addr);
BUG();
}
if (bcount > cur_len)
bcount = cur_len;
*table++ = cpu_to_le32(cur_addr);
xcount = bcount & 0xffff;
if (is_trm290_chipset)
xcount = ((xcount >> 2) - 1) << 16;
if (xcount == 0x0000) {
/*
* Most chipsets correctly interpret a length of
* 0x0000 as 64KB, but at least one (e.g. CS5530)
* misinterprets it as zero (!). So here we break
* the 64KB entry into two 32KB entries instead.
*/
if (count++ >= PRD_ENTRIES) {
pci_unmap_sg(hwif->pci_dev, sg,
hwif->sg_nents,
hwif->sg_dma_direction);
return 0;
}
*table++ = cpu_to_le32(0x8000);
*table++ = cpu_to_le32(cur_addr + 0x8000);
xcount = 0x8000;
}
*table++ = cpu_to_le32(xcount);
cur_addr += bcount;
cur_len -= bcount;
}
sg++;
i--;
}
if (!count)
printk("%s: empty DMA table?\n", drive->name);
else if (!is_trm290_chipset)
*--table |= cpu_to_le32(0x80000000);
return count;
}
/* Teardown mappings after DMA has completed. */
void ide_destroy_dmatable (ide_drive_t *drive)
{
struct pci_dev *dev = HWIF(drive)->pci_dev;
struct scatterlist *sg = HWIF(drive)->sg_table;
int nents = HWIF(drive)->sg_nents;
pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction);
}
/*
* For both Blacklisted and Whitelisted drives.
* This is setup to be called as an extern for future support
* to other special driver code.
*/
int check_drive_lists (ide_drive_t *drive, int good_bad)
{
struct hd_driveid *id = drive->id;
#ifdef CONFIG_IDEDMA_NEW_DRIVE_LISTINGS
if (good_bad) {
return in_drive_list(id, drive_whitelist);
} else {
int blacklist = in_drive_list(id, drive_blacklist);
if (blacklist)
printk("%s: Disabling (U)DMA for %s\n", drive->name, id->model);
return(blacklist);
}
#else /* !CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */
const char **list;
if (good_bad) {
/* Consult the list of known "good" drives */
list = good_dma_drives;
while (*list) {
if (!strcmp(*list++,id->model))
return 1;
}
} else {
/* Consult the list of known "bad" drives */
list = bad_dma_drives;
while (*list) {
if (!strcmp(*list++,id->model)) {
printk("%s: Disabling (U)DMA for %s\n",
drive->name, id->model);
return 1;
}
}
}
#endif /* CONFIG_IDEDMA_NEW_DRIVE_LISTINGS */
return 0;
}
int report_drive_dmaing (ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
if ((id->field_valid & 4) && (eighty_ninty_three(drive)) &&
(id->dma_ultra & (id->dma_ultra >> 11) & 7)) {
if ((id->dma_ultra >> 13) & 1) {
printk(", UDMA(100)"); /* UDMA BIOS-enabled! */
} else if ((id->dma_ultra >> 12) & 1) {
printk(", UDMA(66)"); /* UDMA BIOS-enabled! */
} else {
printk(", UDMA(44)"); /* UDMA BIOS-enabled! */
}
} else if ((id->field_valid & 4) &&
(id->dma_ultra & (id->dma_ultra >> 8) & 7)) {
if ((id->dma_ultra >> 10) & 1) {
printk(", UDMA(33)"); /* UDMA BIOS-enabled! */
} else if ((id->dma_ultra >> 9) & 1) {
printk(", UDMA(25)"); /* UDMA BIOS-enabled! */
} else {
printk(", UDMA(16)"); /* UDMA BIOS-enabled! */
}
} else if (id->field_valid & 4) {
printk(", (U)DMA"); /* Can be BIOS-enabled! */
} else {
printk(", DMA");
}
return 1;
}
static int config_drive_for_dma (ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
ide_hwif_t *hwif = HWIF(drive);
if (id && (id->capability & 1) && hwif->autodma) {
/* Consult the list of known "bad" drives */
if (ide_dmaproc(ide_dma_bad_drive, drive))
return hwif->dmaproc(ide_dma_off, drive);
/* Enable DMA on any drive that has UltraDMA (mode 3/4/5) enabled */
if ((id->field_valid & 4) && (eighty_ninty_three(drive)))
if ((id->dma_ultra & (id->dma_ultra >> 11) & 7))
return hwif->dmaproc(ide_dma_on, drive);
/* Enable DMA on any drive that has UltraDMA (mode 0/1/2) enabled */
if (id->field_valid & 4) /* UltraDMA */
if ((id->dma_ultra & (id->dma_ultra >> 8) & 7))
return hwif->dmaproc(ide_dma_on, drive);
/* Enable DMA on any drive that has mode2 DMA (multi or single) enabled */
if (id->field_valid & 2) /* regular DMA */
if ((id->dma_mword & 0x404) == 0x404 || (id->dma_1word & 0x404) == 0x404)
return hwif->dmaproc(ide_dma_on, drive);
/* Consult the list of known "good" drives */
if (ide_dmaproc(ide_dma_good_drive, drive))
return hwif->dmaproc(ide_dma_on, drive);
}
return hwif->dmaproc(ide_dma_off_quietly, drive);
}
#ifndef CONFIG_BLK_DEV_IDEDMA_TIMEOUT
/*
* 1 dmaing, 2 error, 4 intr
*/
static int dma_timer_expiry (ide_drive_t *drive)
{
byte dma_stat = inb(HWIF(drive)->dma_base+2);
#ifdef DEBUG
printk("%s: dma_timer_expiry: dma status == 0x%02x\n", drive->name, dma_stat);
#endif /* DEBUG */
#if 1
HWGROUP(drive)->expiry = NULL; /* one free ride for now */
#endif
if (dma_stat & 2) { /* ERROR */
byte stat = GET_STAT();
return ide_error(drive, "dma_timer_expiry", stat);
}
if (dma_stat & 1) /* DMAing */
return WAIT_CMD;
return 0;
}
#else /* CONFIG_BLK_DEV_IDEDMA_TIMEOUT */
static ide_startstop_t ide_dma_timeout_revovery (ide_drive_t *drive)
{
ide_hwgroup_t *hwgroup = HWGROUP(drive);
ide_hwif_t *hwif = HWIF(drive);
int enable_dma = drive->using_dma;
unsigned long flags;
ide_startstop_t startstop;
spin_lock_irqsave(&io_request_lock, flags);
hwgroup->handler = NULL;
del_timer(&hwgroup->timer);
spin_unlock_irqrestore(&io_request_lock, flags);
drive->waiting_for_dma = 0;
startstop = ide_do_reset(drive);
if ((enable_dma) && !(drive->using_dma))
(void) hwif->dmaproc(ide_dma_on, drive);
return startstop;
}
#endif /* CONFIG_BLK_DEV_IDEDMA_TIMEOUT */
static void ide_toggle_bounce(ide_drive_t *drive, int on)
{
dma64_addr_t addr = BLK_BOUNCE_HIGH;
if (on && drive->media == ide_disk && HWIF(drive)->highmem) {
if (!PCI_DMA_BUS_IS_PHYS)
addr = BLK_BOUNCE_ANY;
else
addr = HWIF(drive)->pci_dev->dma_mask;
}
blk_queue_bounce_limit(&drive->queue, addr);
}
/*
* ide_dmaproc() initiates/aborts DMA read/write operations on a drive.
*
* The caller is assumed to have selected the drive and programmed the drive's
* sector address using CHS or LBA. All that remains is to prepare for DMA
* and then issue the actual read/write DMA/PIO command to the drive.
*
* For ATAPI devices, we just prepare for DMA and return. The caller should
* then issue the packet command to the drive and call us again with
* ide_dma_begin afterwards.
*
* Returns 0 if all went well.
* Returns 1 if DMA read/write could not be started, in which case
* the caller should revert to PIO for the current request.
* May also be invoked from trm290.c
*/
int ide_dmaproc (ide_dma_action_t func, ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
unsigned long dma_base = hwif->dma_base;
byte unit = (drive->select.b.unit & 0x01);
unsigned int count, reading = 0, set_high = 1;
byte dma_stat;
switch (func) {
case ide_dma_off:
printk("%s: DMA disabled\n", drive->name);
set_high = 0;
case ide_dma_off_quietly:
outb(inb(dma_base+2) & ~(1<<(5+unit)), dma_base+2);
case ide_dma_on:
ide_toggle_bounce(drive, set_high);
drive->using_dma = (func == ide_dma_on);
if (drive->using_dma)
outb(inb(dma_base+2)|(1<<(5+unit)), dma_base+2);
return 0;
case ide_dma_check:
return config_drive_for_dma (drive);
case ide_dma_read:
reading = 1 << 3;
case ide_dma_write:
SELECT_READ_WRITE(hwif,drive,func);
if (!(count = ide_build_dmatable(drive, func)))
return 1; /* try PIO instead of DMA */
outl(hwif->dmatable_dma, dma_base + 4); /* PRD table */
outb(reading, dma_base); /* specify r/w */
outb(inb(dma_base+2)|6, dma_base+2); /* clear INTR & ERROR flags */
drive->waiting_for_dma = 1;
if (drive->media != ide_disk)
return 0;
#ifdef CONFIG_BLK_DEV_IDEDMA_TIMEOUT
ide_set_handler(drive, &ide_dma_intr, WAIT_CMD, NULL); /* issue cmd to drive */
#else /* !CONFIG_BLK_DEV_IDEDMA_TIMEOUT */
ide_set_handler(drive, &ide_dma_intr, WAIT_CMD, dma_timer_expiry); /* issue cmd to drive */
#endif /* CONFIG_BLK_DEV_IDEDMA_TIMEOUT */
OUT_BYTE(reading ? WIN_READDMA : WIN_WRITEDMA, IDE_COMMAND_REG);
case ide_dma_begin:
/* Note that this is done *after* the cmd has
* been issued to the drive, as per the BM-IDE spec.
* The Promise Ultra33 doesn't work correctly when
* we do this part before issuing the drive cmd.
*/
outb(inb(dma_base)|1, dma_base); /* start DMA */
return 0;
case ide_dma_end: /* returns 1 on error, 0 otherwise */
drive->waiting_for_dma = 0;
outb(inb(dma_base)&~1, dma_base); /* stop DMA */
dma_stat = inb(dma_base+2); /* get DMA status */
outb(dma_stat|6, dma_base+2); /* clear the INTR & ERROR bits */
ide_destroy_dmatable(drive); /* purge DMA mappings */
return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0; /* verify good DMA status */
case ide_dma_test_irq: /* returns 1 if dma irq issued, 0 otherwise */
dma_stat = inb(dma_base+2);
#if 0 /* do not set unless you know what you are doing */
if (dma_stat & 4) {
byte stat = GET_STAT();
outb(dma_base+2, dma_stat & 0xE4);
}
#endif
return (dma_stat & 4) == 4; /* return 1 if INTR asserted */
case ide_dma_bad_drive:
case ide_dma_good_drive:
return check_drive_lists(drive, (func == ide_dma_good_drive));
case ide_dma_verbose:
return report_drive_dmaing(drive);
case ide_dma_timeout:
// FIXME: Many IDE chipsets do not permit command file register access
// FIXME: while the bus-master function is still active.
// FIXME: To prevent deadlock with those chipsets, we must be extremely
// FIXME: careful here (and in ide_intr() as well) to NOT access any
// FIXME: registers from the 0x1Fx/0x17x sets before terminating the
// FIXME: bus-master operation via the bus-master control reg.
// FIXME: Otherwise, chipset deadlock will occur, and some systems will
// FIXME: lock up completely!!
#ifdef CONFIG_BLK_DEV_IDEDMA_TIMEOUT
/*
* Have to issue an abort and requeue the request
* DMA engine got turned off by a goofy ASIC, and
* we have to clean up the mess, and here is as good
* as any. Do it globally for all chipsets.
*/
outb(0x00, dma_base); /* stop DMA */
dma_stat = inb(dma_base+2); /* get DMA status */
outb(dma_stat|6, dma_base+2); /* clear the INTR & ERROR bits */
printk("%s: %s: Lets do it again!" \
"stat = 0x%02x, dma_stat = 0x%02x\n",
drive->name, ide_dmafunc_verbose(func),
GET_STAT(), dma_stat);
if (dma_stat & 0xF0)
return ide_dma_timeout_revovery(drive);
printk("%s: %s: (restart_request) Lets do it again!" \
"stat = 0x%02x, dma_stat = 0x%02x\n",
drive->name, ide_dmafunc_verbose(func),
GET_STAT(), dma_stat);
return restart_request(drive); // BUG: return types do not match!!
#endif /* CONFIG_BLK_DEV_IDEDMA_TIMEOUT */
case ide_dma_retune:
case ide_dma_lostirq:
printk("ide_dmaproc: chipset supported %s func only: %d\n", ide_dmafunc_verbose(func), func);
return 1;
default:
printk("ide_dmaproc: unsupported %s func: %d\n", ide_dmafunc_verbose(func), func);
return 1;
}
}
/*
* Needed for allowing full modular support of ide-driver
*/
int ide_release_dma (ide_hwif_t *hwif)
{
if (hwif->dmatable_cpu) {
pci_free_consistent(hwif->pci_dev,
PRD_ENTRIES * PRD_BYTES,
hwif->dmatable_cpu,
hwif->dmatable_dma);
hwif->dmatable_cpu = NULL;
}
if (hwif->sg_table) {
kfree(hwif->sg_table);
hwif->sg_table = NULL;
}
if ((hwif->dma_extra) && (hwif->channel == 0))
release_region((hwif->dma_base + 16), hwif->dma_extra);
release_region(hwif->dma_base, 8);
return 1;
}
/*
* This can be called for a dynamically installed interface. Don't __init it
*/
void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports)
{
printk(" %s: BM-DMA at 0x%04lx-0x%04lx", hwif->name, dma_base, dma_base + num_ports - 1);
if (check_region(dma_base, num_ports)) {
printk(" -- ERROR, PORT ADDRESSES ALREADY IN USE\n");
return;
}
request_region(dma_base, num_ports, hwif->name);
hwif->dma_base = dma_base;
hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev,
PRD_ENTRIES * PRD_BYTES,
&hwif->dmatable_dma);
if (hwif->dmatable_cpu == NULL)
goto dma_alloc_failure;
hwif->sg_table = kmalloc(sizeof(struct scatterlist) * PRD_ENTRIES,
GFP_KERNEL);
if (hwif->sg_table == NULL) {
pci_free_consistent(hwif->pci_dev, PRD_ENTRIES * PRD_BYTES,
hwif->dmatable_cpu, hwif->dmatable_dma);
goto dma_alloc_failure;
}
hwif->dmaproc = &ide_dmaproc;
if (hwif->chipset != ide_trm290) {
byte dma_stat = inb(dma_base+2);
printk(", BIOS settings: %s:%s, %s:%s",
hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio",
hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio");
}
printk("\n");
return;
dma_alloc_failure:
printk(" -- ERROR, UNABLE TO ALLOCATE DMA TABLES\n");
}
/*
* Fetch the DMA Bus-Master-I/O-Base-Address (BMIBA) from PCI space:
*/
unsigned long __init ide_get_or_set_dma_base (ide_hwif_t *hwif, int extra, const char *name)
{
unsigned long dma_base = 0;
struct pci_dev *dev = hwif->pci_dev;
#ifdef CONFIG_BLK_DEV_IDEDMA_FORCED
int second_chance = 0;
second_chance_to_dma:
#endif /* CONFIG_BLK_DEV_IDEDMA_FORCED */
if (hwif->mate && hwif->mate->dma_base) {
dma_base = hwif->mate->dma_base - (hwif->channel ? 0 : 8);
} else {
dma_base = pci_resource_start(dev, 4);
if (!dma_base) {
printk("%s: dma_base is invalid (0x%04lx)\n", name, dma_base);
dma_base = 0;
}
}
#ifdef CONFIG_BLK_DEV_IDEDMA_FORCED
if ((!dma_base) && (!second_chance)) {
unsigned long set_bmiba = 0;
second_chance++;
switch(dev->vendor) {
case PCI_VENDOR_ID_AL:
set_bmiba = DEFAULT_BMALIBA; break;
case PCI_VENDOR_ID_VIA:
set_bmiba = DEFAULT_BMCRBA; break;
case PCI_VENDOR_ID_INTEL:
set_bmiba = DEFAULT_BMIBA; break;
default:
return dma_base;
}
pci_write_config_dword(dev, 0x20, set_bmiba|1);
goto second_chance_to_dma;
}
#endif /* CONFIG_BLK_DEV_IDEDMA_FORCED */
if (dma_base) {
if (extra) /* PDC20246, PDC20262, HPT343, & HPT366 */
request_region(dma_base+16, extra, name);
dma_base += hwif->channel ? 8 : 0;
hwif->dma_extra = extra;
switch(dev->device) {
case PCI_DEVICE_ID_AL_M5219:
case PCI_DEVICE_ID_AMD_VIPER_7409:
case PCI_DEVICE_ID_CMD_643:
outb(inb(dma_base+2) & 0x60, dma_base+2);
if (inb(dma_base+2) & 0x80) {
printk("%s: simplex device: DMA forced\n", name);
}
break;
default:
/*
* If the device claims "simplex" DMA,
* this means only one of the two interfaces
* can be trusted with DMA at any point in time.
* So we should enable DMA only on one of the
* two interfaces.
*/
if ((inb(dma_base+2) & 0x80)) { /* simplex device? */
if ((!hwif->drives[0].present && !hwif->drives[1].present) ||
(hwif->mate && hwif->mate->dma_base)) {
printk("%s: simplex device: DMA disabled\n", name);
dma_base = 0;
}
}
}
}
return dma_base;
}