blob: ad14e1ba25f7f7ae971e36e3ac0b64cd5bcf1d90 [file] [log] [blame]
/*****************************************************************************/
/* ips.c -- driver for the IBM ServeRAID controller */
/* */
/* Written By: Keith Mitchell, IBM Corporation */
/* Jack Hammer, Adaptec, Inc. */
/* David Jeffery, Adaptec, Inc. */
/* */
/* Copyright (C) 2000 IBM Corporation */
/* */
/* This program is free software; you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* NO WARRANTY */
/* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR */
/* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT */
/* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, */
/* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is */
/* solely responsible for determining the appropriateness of using and */
/* distributing the Program and assumes all risks associated with its */
/* exercise of rights under this Agreement, including but not limited to */
/* the risks and costs of program errors, damage to or loss of data, */
/* programs or equipment, and unavailability or interruption of operations. */
/* */
/* DISCLAIMER OF LIABILITY */
/* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY */
/* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL */
/* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND */
/* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR */
/* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE */
/* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED */
/* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program; if not, write to the Free Software */
/* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* */
/* Bugs/Comments/Suggestions about this driver should be mailed to: */
/* ipslinux@us.ibm.com */
/* */
/* For system support issues, contact your local IBM Customer support. */
/* Directions to find IBM Customer Support for each country can be found at: */
/* http://www.ibm.com/planetwide/ */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* Change Log */
/* */
/* 0.99.02 - Breakup commands that are bigger than 8 * the stripe size */
/* 0.99.03 - Make interrupt routine handle all completed request on the */
/* adapter not just the first one */
/* - Make sure passthru commands get woken up if we run out of */
/* SCBs */
/* - Send all of the commands on the queue at once rather than */
/* one at a time since the card will support it. */
/* 0.99.04 - Fix race condition in the passthru mechanism -- this required */
/* the interface to the utilities to change */
/* - Fix error recovery code */
/* 0.99.05 - Fix an oops when we get certain passthru commands */
/* 1.00.00 - Initial Public Release */
/* Functionally equivalent to 0.99.05 */
/* 3.60.00 - Bump max commands to 128 for use with ServeRAID firmware 3.60 */
/* - Change version to 3.60 to coincide with ServeRAID release */
/* numbering. */
/* 3.60.01 - Remove bogus error check in passthru routine */
/* 3.60.02 - Make DCDB direction based on lookup table */
/* - Only allow one DCDB command to a SCSI ID at a time */
/* 4.00.00 - Add support for ServeRAID 4 */
/* 4.00.01 - Add support for First Failure Data Capture */
/* 4.00.02 - Fix problem with PT DCDB with no buffer */
/* 4.00.03 - Add alternative passthru interface */
/* - Add ability to flash ServeRAID BIOS */
/* 4.00.04 - Rename structures/constants to be prefixed with IPS_ */
/* 4.00.05 - Remove wish_block from init routine */
/* - Use linux/spinlock.h instead of asm/spinlock.h for kernels */
/* 2.3.18 and later */
/* - Sync with other changes from the 2.3 kernels */
/* 4.00.06 - Fix timeout with initial FFDC command */
/* 4.00.06a - Port to 2.4 (trivial) -- Christoph Hellwig <hch@caldera.de> */
/* 4.10.00 - Add support for ServeRAID 4M/4L */
/* 4.10.13 - Fix for dynamic unload and proc file system */
/* 4.20.03 - Rename version to coincide with new release schedules */
/* Performance fixes */
/* Fix truncation of /proc files with cat */
/* Merge in changes through kernel 2.4.0test1ac21 */
/* 4.20.13 - Fix some failure cases / reset code */
/* - Hook into the reboot_notifier to flush the controller cache */
/* 4.50.01 - Fix problem when there is a hole in logical drive numbering */
/* 4.70.09 - Use a Common ( Large Buffer ) for Flashing from the JCRM CD */
/* - Add IPSSEND Flash Support */
/* - Set Sense Data for Unknown SCSI Command */
/* - Use Slot Number from NVRAM Page 5 */
/* - Restore caller's DCDB Structure */
/* 4.70.12 - Corrective actions for bad controller ( during initialization )*/
/* 4.70.13 - Don't Send CDB's if we already know the device is not present */
/* - Don't release HA Lock in ips_next() until SC taken off queue */
/* - Unregister SCSI device in ips_release() */
/* 4.70.15 - Fix Breakup for very large ( non-SG ) requests in ips_done() */
/* 4.71.00 - Change all memory allocations to not use GFP_DMA flag */
/* Code Clean-Up for 2.4.x kernel */
/* 4.72.00 - Allow for a Scatter-Gather Element to exceed MAX_XFER Size */
/* 4.72.01 - I/O Mapped Memory release ( so "insmod ips" does not Fail ) */
/* - Don't Issue Internal FFDC Command if there are Active Commands */
/* - Close Window for getting too many IOCTL's active */
/* 4.80.00 - Make ia64 Safe */
/* 4.80.04 - Eliminate calls to strtok() if 2.4.x or greater */
/* - Adjustments to Device Queue Depth */
/* 4.80.14 - Take all semaphores off stack */
/* - Clean Up New_IOCTL path */
/* 4.80.20 - Set max_sectors in Scsi_Host structure ( if >= 2.4.7 kernel ) */
/* - 5 second delay needed after resetting an i960 adapter */
/* 4.80.26 - Clean up potential code problems ( Arjan's recommendations ) */
/* 4.90.01 - Version Matching for FirmWare, BIOS, and Driver */
/* 4.90.05 - Use New PCI Architecture to facilitate Hot Plug Development */
/* 4.90.08 - Increase Delays in Flashing ( Trombone Only - 4H ) */
/* 4.90.08 - Data Corruption if First Scatter Gather Element is > 64K */
/* 4.90.11 - Don't actually RESET unless it's physically required */
/* - Remove unused compile options */
/* 5.00.01 - Sarasota ( 5i ) adapters must always be scanned first */
/* - Get rid on IOCTL_NEW_COMMAND code */
/* - Add Extended DCDB Commands for Tape Support in 5I */
/* 5.10.12 - use pci_dma interfaces, update for 2.5 kernel changes */
/*****************************************************************************/
/*
* Conditional Compilation directives for this driver:
*
* IPS_DEBUG - Turn on debugging info
*
* Parameters:
*
* debug:<number> - Set debug level to <number>
* NOTE: only works when IPS_DEBUG compile directive is used.
* 1 - Normal debug messages
* 2 - Verbose debug messages
* 11 - Method trace (non interrupt)
* 12 - Method trace (includes interrupt)
*
* noi2o - Don't use I2O Queues (ServeRAID 4 only)
* nommap - Don't use memory mapped I/O
* ioctlsize - Initial size of the IOCTL buffer
*/
#include <asm/io.h>
#include <asm/byteorder.h>
#include <asm/page.h>
#include <linux/stddef.h>
#include <linux/version.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/reboot.h>
#include <linux/tqueue.h>
#include <linux/interrupt.h>
#include <linux/blk.h>
#include <linux/types.h>
#include <scsi/sg.h>
#include "sd.h"
#include "scsi.h"
#include "hosts.h"
#include "ips.h"
#include <linux/module.h>
#include <linux/stat.h>
#include <linux/config.h>
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
#include <linux/spinlock.h>
#include <linux/init.h>
#else
#include <asm/spinlock.h>
#endif
#include <linux/smp.h>
#ifdef MODULE
static char *ips = NULL;
MODULE_PARM(ips, "s");
#endif
/*
* DRIVER_VER
*/
#define IPS_VERSION_HIGH "5.10"
#define IPS_VERSION_LOW ".13-BETA "
#if LINUX_VERSION_CODE < LinuxVersionCode(2,4,0)
struct proc_dir_entry proc_scsi_ips = {
0,
3, "ips",
S_IFDIR | S_IRUGO | S_IXUGO, 2
};
#endif
#if !defined(__i386__) && !defined(__ia64__)
#error "This driver has only been tested on the x86/ia64 platforms"
#endif
#if LINUX_VERSION_CODE < LinuxVersionCode(2,2,0)
#error "This driver only works with kernel 2.2.0 and later"
#elif LINUX_VERSION_CODE <= LinuxVersionCode(2,3,18)
#define dma_addr_t uint32_t
static inline void *pci_alloc_consistent(struct pci_dev *dev,int size,
dma_addr_t *dmahandle) {
void * ptr = kmalloc(size, GFP_ATOMIC);
if(ptr){
*dmahandle = VIRT_TO_BUS(ptr);
}
return ptr;
}
#define pci_free_consistent(a,size,address,dmahandle) kfree(address)
#define pci_map_sg(a,b,n,z) (n)
#define pci_unmap_sg(a,b,c,d)
#define pci_map_single(a,b,c,d) (VIRT_TO_BUS(b))
#define pci_unmap_single(a,b,c,d)
#ifndef sg_dma_address
#define sg_dma_address(x) (VIRT_TO_BUS((x)->address))
#define sg_dma_len(x) ((x)->length)
#endif
#define pci_unregister_driver(x)
#endif
#if LINUX_VERSION_CODE <= LinuxVersionCode(2,5,0)
#define IPS_SG_ADDRESS(sg) ((sg)->address)
#define IPS_LOCK_IRQ(lock) spin_lock_irq(&io_request_lock)
#define IPS_UNLOCK_IRQ(lock) spin_unlock_irq(&io_request_lock)
#define IPS_LOCK_SAVE(lock,flags) spin_lock_irqsave(&io_request_lock,flags)
#define IPS_UNLOCK_RESTORE(lock,flags) spin_unlock_irqrestore(&io_request_lock,flags)
#else
#define IPS_SG_ADDRESS(sg) (page_address((sg)->page) ? \
page_address((sg)->page)+(sg)->offset : 0)
#define IPS_LOCK_IRQ(lock) spin_lock_irq(lock)
#define IPS_UNLOCK_IRQ(lock) spin_unlock_irq(lock)
#define IPS_LOCK_SAVE(lock,flags) spin_lock_irqsave(lock,flags)
#define IPS_UNLOCK_RESTORE(lock,flags) spin_unlock_irqrestore(lock,flags)
#endif
#define IPS_DMA_DIR(scb) ((!scb->scsi_cmd || ips_is_passthru(scb->scsi_cmd) || \
SCSI_DATA_NONE == scb->scsi_cmd->sc_data_direction) ? \
PCI_DMA_BIDIRECTIONAL : \
scsi_to_pci_dma_dir(scb->scsi_cmd->sc_data_direction))
#ifdef IPS_DEBUG
#define METHOD_TRACE(s, i) if (ips_debug >= (i+10)) printk(KERN_NOTICE s "\n");
#define DEBUG(i, s) if (ips_debug >= i) printk(KERN_NOTICE s "\n");
#define DEBUG_VAR(i, s, v...) if (ips_debug >= i) printk(KERN_NOTICE s "\n", v);
#else
#define METHOD_TRACE(s, i)
#define DEBUG(i, s)
#define DEBUG_VAR(i, s, v...)
#endif
/*
* global variables
*/
static const char ips_name[] = "ips";
static struct Scsi_Host *ips_sh[IPS_MAX_ADAPTERS]; /* Array of host controller structures */
static ips_ha_t *ips_ha[IPS_MAX_ADAPTERS]; /* Array of HA structures */
static unsigned int ips_next_controller = 0;
static unsigned int ips_num_controllers = 0;
static unsigned int ips_released_controllers = 0;
static int ips_cmd_timeout = 60;
static int ips_reset_timeout = 60 * 5;
static int ips_force_memio = 1; /* Always use Memory Mapped I/O */
static int ips_force_i2o = 1; /* Always use I2O command delivery */
static int ips_ioctlsize = IPS_IOCTL_SIZE; /* Size of the ioctl buffer */
static int ips_cd_boot = 0; /* Booting from ServeRAID Manager CD */
static char *ips_FlashData = NULL; /* CD Boot - Flash Data Buffer */
static long ips_FlashDataInUse = 0; /* CD Boot - Flash Data In Use Flag */
static uint32_t MaxLiteCmds = 32; /* Max Active Cmds for a Lite Adapter */
IPS_DEFINE_COMPAT_TABLE( Compatable ); /* Version Compatability Table */
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
/* This table describes any / all ServeRAID Adapters */
static struct pci_device_id ips_pci_table[] __devinitdata = {
{ 0x1014, 0x002E, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ 0x1014, 0x01BD, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ 0, }
};
/* This table describes only Sarasota ( ServeRAID 5i ) Adapters */
static struct pci_device_id ips_pci_table_5i[] __devinitdata = {
{ 0x1014, 0x01BD, PCI_ANY_ID, 0x259, 0, 0 },
{ 0x1014, 0x01BD, PCI_ANY_ID, 0x258, 0, 0 },
{ 0, }
};
/* This table describes all i960 Adapters */
static struct pci_device_id ips_pci_table_i960[] __devinitdata = {
{ 0x1014, 0x01BD, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ 0, }
};
MODULE_DEVICE_TABLE( pci, ips_pci_table );
static char ips_hot_plug_name[] = "ips";
static int __devinit ips_insert_device(struct pci_dev *pci_dev, const struct pci_device_id *ent);
static void __devexit ips_remove_device(struct pci_dev *pci_dev);
struct pci_driver ips_pci_driver = {
name: ips_hot_plug_name,
id_table: ips_pci_table,
probe: ips_insert_device,
remove: ips_remove_device,
};
struct pci_driver ips_pci_driver_5i = {
name: ips_hot_plug_name,
id_table: ips_pci_table_5i,
probe: ips_insert_device,
remove: ips_remove_device,
};
struct pci_driver ips_pci_driver_i960 = {
name: ips_hot_plug_name,
id_table: ips_pci_table_i960,
probe: ips_insert_device,
remove: ips_remove_device,
};
#endif
/*
* Necessary forward function protoypes
*/
static int ips_halt(struct notifier_block *nb, ulong event, void *buf);
#define MAX_ADAPTER_NAME 11
static char ips_adapter_name[][30] = {
"ServeRAID",
"ServeRAID II",
"ServeRAID on motherboard",
"ServeRAID on motherboard",
"ServeRAID 3H",
"ServeRAID 3L",
"ServeRAID 4H",
"ServeRAID 4M",
"ServeRAID 4L",
"ServeRAID 4Mx",
"ServeRAID 4Lx",
"ServeRAID 5i",
"ServeRAID 5i"
};
static struct notifier_block ips_notifier = {
ips_halt, NULL, 0
};
/*
* Direction table
*/
static char ips_command_direction[] = {
IPS_DATA_NONE, IPS_DATA_NONE, IPS_DATA_IN, IPS_DATA_IN, IPS_DATA_OUT,
IPS_DATA_IN, IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_IN, IPS_DATA_UNK,
IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_IN, IPS_DATA_NONE, IPS_DATA_NONE, IPS_DATA_IN, IPS_DATA_OUT,
IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_NONE, IPS_DATA_NONE, IPS_DATA_OUT,
IPS_DATA_NONE, IPS_DATA_IN, IPS_DATA_NONE, IPS_DATA_IN, IPS_DATA_OUT,
IPS_DATA_NONE, IPS_DATA_UNK, IPS_DATA_IN, IPS_DATA_UNK, IPS_DATA_IN,
IPS_DATA_UNK, IPS_DATA_OUT, IPS_DATA_IN, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_IN, IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_NONE, IPS_DATA_UNK,
IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_OUT,
IPS_DATA_OUT, IPS_DATA_NONE, IPS_DATA_IN, IPS_DATA_NONE, IPS_DATA_NONE,
IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_OUT,
IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_OUT,
IPS_DATA_OUT, IPS_DATA_IN, IPS_DATA_IN, IPS_DATA_IN, IPS_DATA_NONE,
IPS_DATA_UNK, IPS_DATA_NONE, IPS_DATA_NONE, IPS_DATA_NONE, IPS_DATA_UNK,
IPS_DATA_NONE, IPS_DATA_OUT, IPS_DATA_IN, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_OUT, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_IN, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_NONE, IPS_DATA_NONE, IPS_DATA_UNK, IPS_DATA_IN, IPS_DATA_NONE,
IPS_DATA_OUT, IPS_DATA_UNK, IPS_DATA_NONE, IPS_DATA_UNK, IPS_DATA_OUT,
IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_OUT, IPS_DATA_NONE,
IPS_DATA_UNK, IPS_DATA_IN, IPS_DATA_OUT, IPS_DATA_IN, IPS_DATA_IN,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_OUT,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK,
IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK, IPS_DATA_UNK
};
/*
* Function prototypes
*/
int ips_detect(Scsi_Host_Template *);
int ips_release(struct Scsi_Host *);
int ips_eh_abort(Scsi_Cmnd *);
int ips_eh_reset(Scsi_Cmnd *);
int ips_queue(Scsi_Cmnd *, void (*) (Scsi_Cmnd *));
int ips_biosparam(Disk *, kdev_t, int *);
const char * ips_info(struct Scsi_Host *);
void do_ipsintr(int, void *, struct pt_regs *);
static int ips_hainit(ips_ha_t *);
static int ips_map_status(ips_ha_t *, ips_scb_t *, ips_stat_t *);
static int ips_send_wait(ips_ha_t *, ips_scb_t *, int, int);
static int ips_send_cmd(ips_ha_t *, ips_scb_t *);
static int ips_online(ips_ha_t *, ips_scb_t *);
static int ips_inquiry(ips_ha_t *, ips_scb_t *);
static int ips_rdcap(ips_ha_t *, ips_scb_t *);
static int ips_msense(ips_ha_t *, ips_scb_t *);
static int ips_reqsen(ips_ha_t *, ips_scb_t *);
static int ips_deallocatescbs(ips_ha_t *, int);
static int ips_allocatescbs(ips_ha_t *);
static int ips_reset_copperhead(ips_ha_t *);
static int ips_reset_copperhead_memio(ips_ha_t *);
static int ips_reset_morpheus(ips_ha_t *);
static int ips_issue_copperhead(ips_ha_t *, ips_scb_t *);
static int ips_issue_copperhead_memio(ips_ha_t *, ips_scb_t *);
static int ips_issue_i2o(ips_ha_t *, ips_scb_t *);
static int ips_issue_i2o_memio(ips_ha_t *, ips_scb_t *);
static int ips_isintr_copperhead(ips_ha_t *);
static int ips_isintr_copperhead_memio(ips_ha_t *);
static int ips_isintr_morpheus(ips_ha_t *);
static int ips_wait(ips_ha_t *, int, int);
static int ips_write_driver_status(ips_ha_t *, int);
static int ips_read_adapter_status(ips_ha_t *, int);
static int ips_read_subsystem_parameters(ips_ha_t *, int);
static int ips_read_config(ips_ha_t *, int);
static int ips_clear_adapter(ips_ha_t *, int);
static int ips_readwrite_page5(ips_ha_t *, int, int);
static int ips_init_copperhead(ips_ha_t *);
static int ips_init_copperhead_memio(ips_ha_t *);
static int ips_init_morpheus(ips_ha_t *);
static int ips_isinit_copperhead(ips_ha_t *);
static int ips_isinit_copperhead_memio(ips_ha_t *);
static int ips_isinit_morpheus(ips_ha_t *);
static int ips_erase_bios(ips_ha_t *);
static int ips_program_bios(ips_ha_t *, char *, uint32_t, uint32_t);
static int ips_verify_bios(ips_ha_t *, char *, uint32_t, uint32_t);
static int ips_erase_bios_memio(ips_ha_t *);
static int ips_program_bios_memio(ips_ha_t *, char *, uint32_t, uint32_t);
static int ips_verify_bios_memio(ips_ha_t *, char *, uint32_t, uint32_t);
static int ips_flash_copperhead(ips_ha_t *, ips_passthru_t *, ips_scb_t *);
static int ips_flash_bios(ips_ha_t *, ips_passthru_t *, ips_scb_t *);
static int ips_flash_firmware(ips_ha_t *, ips_passthru_t *, ips_scb_t *);
static void ips_free_flash_copperhead(ips_ha_t *ha);
static void ips_get_bios_version(ips_ha_t *, int);
static void ips_identify_controller(ips_ha_t *);
static void ips_select_queue_depth(struct Scsi_Host *, Scsi_Device *);
static void ips_chkstatus(ips_ha_t *, IPS_STATUS *);
static void ips_enable_int_copperhead(ips_ha_t *);
static void ips_enable_int_copperhead_memio(ips_ha_t *);
static void ips_enable_int_morpheus(ips_ha_t *);
static void ips_intr_copperhead(ips_ha_t *);
static void ips_intr_morpheus(ips_ha_t *);
static void ips_next(ips_ha_t *, int);
static void ipsintr_blocking(ips_ha_t *, struct ips_scb *);
static void ipsintr_done(ips_ha_t *, struct ips_scb *);
static void ips_done(ips_ha_t *, ips_scb_t *);
static void ips_free(ips_ha_t *);
static void ips_init_scb(ips_ha_t *, ips_scb_t *);
static void ips_freescb(ips_ha_t *, ips_scb_t *);
static void ips_statinit(ips_ha_t *);
static void ips_statinit_memio(ips_ha_t *);
static void ips_fix_ffdc_time(ips_ha_t *, ips_scb_t *, time_t);
static void ips_ffdc_reset(ips_ha_t *, int);
static void ips_ffdc_time(ips_ha_t *);
static uint32_t ips_statupd_copperhead(ips_ha_t *);
static uint32_t ips_statupd_copperhead_memio(ips_ha_t *);
static uint32_t ips_statupd_morpheus(ips_ha_t *);
static ips_scb_t * ips_getscb(ips_ha_t *);
static inline void ips_putq_scb_head(ips_scb_queue_t *, ips_scb_t *);
static inline void ips_putq_scb_tail(ips_scb_queue_t *, ips_scb_t *);
static inline void ips_putq_wait_head(ips_wait_queue_t *, Scsi_Cmnd *);
static inline void ips_putq_wait_tail(ips_wait_queue_t *, Scsi_Cmnd *);
static inline void ips_putq_copp_head(ips_copp_queue_t *, ips_copp_wait_item_t *);
static inline void ips_putq_copp_tail(ips_copp_queue_t *, ips_copp_wait_item_t *);
static inline ips_scb_t * ips_removeq_scb_head(ips_scb_queue_t *);
static inline ips_scb_t * ips_removeq_scb(ips_scb_queue_t *, ips_scb_t *);
static inline Scsi_Cmnd * ips_removeq_wait_head(ips_wait_queue_t *);
static inline Scsi_Cmnd * ips_removeq_wait(ips_wait_queue_t *, Scsi_Cmnd *);
static inline ips_copp_wait_item_t * ips_removeq_copp(ips_copp_queue_t *, ips_copp_wait_item_t *);
static inline ips_copp_wait_item_t * ips_removeq_copp_head(ips_copp_queue_t *);
static int ips_is_passthru(Scsi_Cmnd *);
static int ips_make_passthru(ips_ha_t *, Scsi_Cmnd *, ips_scb_t *, int);
static int ips_usrcmd(ips_ha_t *, ips_passthru_t *, ips_scb_t *);
static void ips_cleanup_passthru(ips_ha_t *, ips_scb_t *);
int ips_proc_info(char *, char **, off_t, int, int, int);
static int ips_host_info(ips_ha_t *, char *, off_t, int);
static void copy_mem_info(IPS_INFOSTR *, char *, int);
static int copy_info(IPS_INFOSTR *, char *, ...);
static int ips_get_version_info(ips_ha_t *ha, IPS_VERSION_DATA *Buffer, int intr );
static void ips_version_check(ips_ha_t *ha, int intr);
static int ips_init_phase2( int index );
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
static int ips_init_phase1( struct pci_dev *pci_dev, int *indexPtr );
#endif
/*--------------------------------------------------------------------------*/
/* Exported Functions */
/*--------------------------------------------------------------------------*/
/****************************************************************************/
/* */
/* Routine Name: ips_setup */
/* */
/* Routine Description: */
/* */
/* setup parameters to the driver */
/* */
/****************************************************************************/
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
static int
ips_setup(char *ips_str) {
#else
void
ips_setup(char *ips_str, int *dummy) {
#endif
int i;
char *key;
char *value;
IPS_OPTION options[] = {
{"noi2o", &ips_force_i2o, 0},
{"nommap", &ips_force_memio, 0},
{"ioctlsize", &ips_ioctlsize, IPS_IOCTL_SIZE},
{"cdboot", &ips_cd_boot, 0},
{"maxcmds", &MaxLiteCmds, 32},
};
/* Don't use strtok() anymore ( if 2.4 Kernel or beyond ) */
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
/* Search for value */
while ((key = strsep(&ips_str, ",."))) {
if (!*key)
continue;
value = strchr(key, ':');
if (value)
*value++ = '\0';
/*
* We now have key/value pairs.
* Update the variables
*/
for (i = 0; i < (sizeof(options) / sizeof(options[0])); i++) {
if (strnicmp(key, options[i].option_name, strlen(options[i].option_name)) == 0) {
if (value)
*options[i].option_flag = simple_strtoul(value, NULL, 0);
else
*options[i].option_flag = options[i].option_value;
break;
}
}
}
return (1);
__setup("ips=", ips_setup);
#else
char *p;
char tokens[3] = {',', '.', 0};
for (key = strtok(ips_str, tokens); key; key = strtok(NULL, tokens)) {
p = key;
/* Search for value */
while ((p) && (*p != ':'))
p++;
if (p) {
*p = '\0';
value = p+1;
} else
value = NULL;
/*
* We now have key/value pairs.
* Update the variables
*/
for (i = 0; i < (sizeof(options) / sizeof(options[0])); i++) {
if (strnicmp(key, options[i].option_name, strlen(ips_str)) == 0) {
if (value)
*options[i].option_flag = simple_strtoul(value, NULL, 0);
else
*options[i].option_flag = options[i].option_value;
break;
}
}
}
#endif
}
/****************************************************************************/
/* */
/* Routine Name: ips_detect */
/* */
/* Routine Description: */
/* */
/* Detect and initialize the driver */
/* */
/* NOTE: this routine is called under the io_request_lock spinlock */
/* */
/****************************************************************************/
int
ips_detect(Scsi_Host_Template *SHT) {
struct Scsi_Host *sh;
ips_ha_t *ha;
uint32_t io_addr;
uint32_t mem_addr;
uint32_t io_len;
uint32_t mem_len;
uint16_t planer;
uint8_t revision_id;
uint8_t bus;
uint8_t func;
uint8_t irq;
uint16_t deviceID[2];
uint16_t subdevice_id;
int i;
int j;
uint32_t count;
char *ioremap_ptr;
char *mem_ptr;
struct pci_dev *dev[2];
struct pci_dev *morpheus = NULL;
struct pci_dev *trombone = NULL;
#if LINUX_VERSION_CODE < LinuxVersionCode(2,4,0)
uint32_t currbar;
uint32_t maskbar;
uint8_t barnum;
#endif
METHOD_TRACE("ips_detect", 1);
#ifdef MODULE
if (ips)
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
ips_setup(ips);
#else
ips_setup(ips, NULL);
#endif
#endif
/* If Booting from the ServeRAID Manager CD, Allocate a large Flash */
/* Buffer ( so we won't need to allocate one for each adapter ). */
if ( ips_cd_boot ) {
ips_FlashData = ( char * ) __get_free_pages( GFP_KERNEL, 7 );
if (ips_FlashData == NULL) {
/* The validity of this pointer is checked in ips_make_passthru() before it is used */
printk( KERN_WARNING "ERROR: Can't Allocate Large Buffer for Flashing\n" );
}
}
SHT->proc_info = ips_proc_info;
#if LINUX_VERSION_CODE < LinuxVersionCode(2,4,0)
SHT->proc_dir = &proc_scsi_ips;
#else
SHT->proc_name = "ips";
#endif
#if defined(CONFIG_PCI)
/* initalize number of controllers */
ips_num_controllers = 0;
ips_next_controller = 0;
ips_released_controllers = 0;
if (!pci_present())
return (0);
morpheus = pci_find_device(IPS_VENDORID, IPS_DEVICEID_MORPHEUS, morpheus);
trombone = pci_find_device(IPS_VENDORID, IPS_DEVICEID_COPPERHEAD, trombone);
/* determine which controller to probe first */
if (!morpheus) {
/* we only have trombone */
dev[0] = trombone;
dev[1] = NULL;
deviceID[0] = IPS_DEVICEID_COPPERHEAD;
} else if (!trombone) {
/* we only have morpheus */
dev[0] = morpheus;
dev[1] = NULL;
deviceID[0] = IPS_DEVICEID_MORPHEUS;
} else {
/* we have both in the system */
if (trombone->bus->number < morpheus->bus->number) {
dev[0] = trombone;
dev[1] = morpheus;
deviceID[0] = IPS_DEVICEID_COPPERHEAD;
deviceID[1] = IPS_DEVICEID_MORPHEUS;
} else if (trombone->bus->number > morpheus->bus->number) {
dev[0] = morpheus;
dev[1] = trombone;
deviceID[0] = IPS_DEVICEID_MORPHEUS;
deviceID[1] = IPS_DEVICEID_COPPERHEAD;
} else {
/* further detection required */
if (trombone->devfn < morpheus->devfn) {
dev[0] = trombone;
dev[1] = morpheus;
deviceID[0] = IPS_DEVICEID_COPPERHEAD;
deviceID[1] = IPS_DEVICEID_MORPHEUS;
} else {
dev[0] = morpheus;
dev[1] = trombone;
deviceID[0] = IPS_DEVICEID_MORPHEUS;
deviceID[1] = IPS_DEVICEID_COPPERHEAD;
}
}
}
/**********************************************************************************/
/* For Kernel Versions 2.4 or greater, use new PCI ( Hot Pluggable ) architecture */
/**********************************************************************************/
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
#if LINUX_VERSION_CODE < LinuxVersionCode(2,5,0)
spin_unlock_irq(&io_request_lock);
#endif
/* By definition, a Sarasota ( 5i ) Adapter MUST be enumerated first or the */
/* server may not boot properly. The adapters must be enumerated in exactly */
/* the same order as ServeRAID BIOS for the machine to come up properly. */
pci_module_init(&ips_pci_driver_5i); /* Ask for 5i Adapters First */
if (ips_num_controllers) /* If there is a 5i Adapter */
pci_module_init(&ips_pci_driver_i960); /* Get all i960's next */
pci_module_init(&ips_pci_driver); /* Get all remaining Adapters */
/* ( in normal BUS order ) */
#if LINUX_VERSION_CODE < LinuxVersionCode(2,5,0)
spin_lock_irq(&io_request_lock);
#endif
if (ips_num_controllers > 0)
register_reboot_notifier(&ips_notifier);
return (ips_num_controllers);
#endif
/* Now scan the controllers */
for (i = 0; i < 2; i++) {
if (!dev[i])
break;
do {
if (ips_next_controller >= IPS_MAX_ADAPTERS)
break;
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
if (pci_enable_device(dev[i]))
break;
#endif
/* stuff that we get in dev */
irq = dev[i]->irq;
bus = dev[i]->bus->number;
func = dev[i]->devfn;
/* Init MEM/IO addresses to 0 */
mem_addr = 0;
io_addr = 0;
mem_len = 0;
io_len = 0;
for (j = 0; j < 2; j++) {
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
if (!pci_resource_start(dev[i], j))
break;
if (pci_resource_flags(dev[i], j) & IORESOURCE_IO) {
io_addr = pci_resource_start(dev[i], j);
io_len = pci_resource_len(dev[i], j);
} else {
mem_addr = pci_resource_start(dev[i], j);
mem_len = pci_resource_len(dev[i], j);
}
#else
if (!dev[i]->base_address[j])
break;
if ((dev[i]->base_address[j] & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
barnum = PCI_BASE_ADDRESS_0 + (j * 4);
io_addr = dev[i]->base_address[j] & PCI_BASE_ADDRESS_IO_MASK;
/* Get Size */
pci_read_config_dword(dev[i], barnum, &currbar);
pci_write_config_dword(dev[i], barnum, ~0);
pci_read_config_dword(dev[i], barnum, &maskbar);
pci_write_config_dword(dev[i], barnum, currbar);
io_len = ~(maskbar & PCI_BASE_ADDRESS_IO_MASK) + 1;
} else {
barnum = PCI_BASE_ADDRESS_0 + (j * 4);
mem_addr = dev[i]->base_address[j] & PCI_BASE_ADDRESS_MEM_MASK;
/* Get Size */
pci_read_config_dword(dev[i], barnum, &currbar);
pci_write_config_dword(dev[i], barnum, ~0);
pci_read_config_dword(dev[i], barnum, &maskbar);
pci_write_config_dword(dev[i], barnum, currbar);
mem_len = ~(maskbar & PCI_BASE_ADDRESS_MEM_MASK) + 1;
}
#endif
}
/* setup memory mapped area (if applicable) */
if (mem_addr) {
uint32_t base;
uint32_t offs;
DEBUG_VAR(1, "(%s%d) detect, Memory region %x, size: %d",
ips_name, ips_next_controller, mem_addr, mem_len);
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
if (check_mem_region(mem_addr, mem_len)) {
/* Couldn't allocate io space */
printk(KERN_WARNING "(%s%d) couldn't allocate IO space %x len %d.\n",
ips_name, ips_next_controller, io_addr, io_len);
ips_next_controller++;
continue;
}
request_mem_region(mem_addr, mem_len, "ips");
#endif
base = mem_addr & PAGE_MASK;
offs = mem_addr - base;
ioremap_ptr = ioremap(base, PAGE_SIZE);
mem_ptr = ioremap_ptr + offs;
} else {
ioremap_ptr = NULL;
mem_ptr = NULL;
}
/* setup I/O mapped area (if applicable) */
if (io_addr) {
DEBUG_VAR(1, "(%s%d) detect, IO region %x, size: %d",
ips_name, ips_next_controller, io_addr, io_len);
if (check_region(io_addr, io_len)) {
/* Couldn't allocate io space */
printk(KERN_WARNING "(%s%d) couldn't allocate IO space %x len %d.\n",
ips_name, ips_next_controller, io_addr, io_len);
ips_next_controller++;
continue;
}
request_region(io_addr, io_len, "ips");
}
/* get planer status */
if (pci_read_config_word(dev[i], 0x04, &planer)) {
printk(KERN_WARNING "(%s%d) can't get planer status.\n",
ips_name, ips_next_controller);
ips_next_controller++;
continue;
}
/* check to see if an onboard planer controller is disabled */
if (!(planer & 0x000C)) {
DEBUG_VAR(1, "(%s%d) detect, Onboard ServeRAID disabled by BIOS",
ips_name, ips_next_controller);
ips_next_controller++;
continue;
}
DEBUG_VAR(1, "(%s%d) detect bus %d, func %x, irq %d, io %x, mem: %x, ptr: %p",
ips_name, ips_next_controller, bus, func, irq, io_addr, mem_addr, mem_ptr);
/* get the revision ID */
if (pci_read_config_byte(dev[i], PCI_REVISION_ID, &revision_id)) {
printk(KERN_WARNING "(%s%d) can't get revision id.\n",
ips_name, ips_next_controller);
ips_next_controller++;
continue;
}
#if LINUX_VERSION_CODE < LinuxVersionCode(2,4,0)
/* get the subdevice id */
if (pci_read_config_word(dev[i], PCI_SUBSYSTEM_ID, &subdevice_id)) {
printk(KERN_WARNING "(%s%d) can't get subdevice id.\n",
ips_name, ips_next_controller);
ips_next_controller++;
continue;
}
#else
subdevice_id = dev[i]->subsystem_device;
#endif
/* found a controller */
sh = scsi_register(SHT, sizeof(ips_ha_t));
if (sh == NULL) {
printk(KERN_WARNING "(%s%d) Unable to register controller with SCSI subsystem - skipping controller\n",
ips_name, ips_next_controller);
ips_next_controller++;
continue;
}
ha = IPS_HA(sh);
memset(ha, 0, sizeof(ips_ha_t));
/* Initialize spin lock */
spin_lock_init(&ha->scb_lock);
spin_lock_init(&ha->copp_lock);
spin_lock_init(&ha->ips_lock);
spin_lock_init(&ha->copp_waitlist.lock);
spin_lock_init(&ha->scb_waitlist.lock);
spin_lock_init(&ha->scb_activelist.lock);
ips_sh[ips_next_controller] = sh;
ips_ha[ips_next_controller] = ha;
ips_num_controllers++;
ha->active = 1;
ha->enq = kmalloc(sizeof(IPS_ENQ), GFP_KERNEL);
if (!ha->enq) {
printk(KERN_WARNING "(%s%d) Unable to allocate host inquiry structure - skipping contoller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
ha->adapt = kmalloc(sizeof(IPS_ADAPTER), GFP_KERNEL);
if (!ha->adapt) {
printk(KERN_WARNING "(%s%d) Unable to allocate host adapt structure - skipping controller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
ha->conf = kmalloc(sizeof(IPS_CONF), GFP_KERNEL);
if (!ha->conf) {
printk(KERN_WARNING "(%s%d) Unable to allocate host conf structure - skipping controller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
ha->nvram = kmalloc(sizeof(IPS_NVRAM_P5), GFP_KERNEL);
if (!ha->nvram) {
printk(KERN_WARNING "(%s%d) Unable to allocate host nvram structure - skipping controller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
ha->subsys = kmalloc(sizeof(IPS_SUBSYS), GFP_KERNEL);
if (!ha->subsys) {
printk(KERN_WARNING "(%s%d) Unable to allocate host subsystem structure - skipping controller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
ha->dummy = kmalloc(sizeof(IPS_IO_CMD), GFP_KERNEL);
if (!ha->dummy) {
printk(KERN_WARNING "(%s%d) Unable to allocate host dummy structure - skipping controller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
for (count = PAGE_SIZE, ha->ioctl_order = 0;
count < ips_ioctlsize;
ha->ioctl_order++, count <<= 1);
ha->ioctl_data = (char *) __get_free_pages(GFP_KERNEL, ha->ioctl_order);
ha->ioctl_datasize = count;
if (!ha->ioctl_data) {
printk(KERN_WARNING "(%s%d) Unable to allocate ioctl data\n",
ips_name, ips_next_controller);
ha->ioctl_data = NULL;
ha->ioctl_order = 0;
ha->ioctl_datasize = 0;
}
/* Store away needed values for later use */
sh->io_port = io_addr;
sh->n_io_port = io_addr ? 255 : 0;
sh->unique_id = (io_addr) ? io_addr : mem_addr;
sh->irq = irq;
sh->select_queue_depths = ips_select_queue_depth;
sh->sg_tablesize = sh->hostt->sg_tablesize;
sh->can_queue = sh->hostt->can_queue;
sh->cmd_per_lun = sh->hostt->cmd_per_lun;
sh->unchecked_isa_dma = sh->hostt->unchecked_isa_dma;
sh->use_clustering = sh->hostt->use_clustering;
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,7)
sh->max_sectors = 128;
#endif
#if LINUX_VERSION_CODE < LinuxVersionCode(2,4,0)
sh->wish_block = FALSE;
#endif
/* Store info in HA structure */
ha->irq = irq;
ha->io_addr = io_addr;
ha->io_len = io_len;
ha->mem_addr = mem_addr;
ha->mem_len = mem_len;
ha->mem_ptr = mem_ptr;
ha->ioremap_ptr = ioremap_ptr;
ha->host_num = ips_next_controller;
ha->revision_id = revision_id;
ha->slot_num = PCI_SLOT(dev[i]->devfn);
ha->device_id = deviceID[i];
ha->subdevice_id = subdevice_id;
ha->pcidev = dev[i];
/*
* Setup Functions
*/
if (IPS_IS_MORPHEUS(ha)) {
/* morpheus */
ha->func.isintr = ips_isintr_morpheus;
ha->func.isinit = ips_isinit_morpheus;
ha->func.issue = ips_issue_i2o_memio;
ha->func.init = ips_init_morpheus;
ha->func.statupd = ips_statupd_morpheus;
ha->func.reset = ips_reset_morpheus;
ha->func.intr = ips_intr_morpheus;
ha->func.enableint = ips_enable_int_morpheus;
} else if (IPS_USE_MEMIO(ha)) {
/* copperhead w/MEMIO */
ha->func.isintr = ips_isintr_copperhead_memio;
ha->func.isinit = ips_isinit_copperhead_memio;
ha->func.init = ips_init_copperhead_memio;
ha->func.statupd = ips_statupd_copperhead_memio;
ha->func.statinit = ips_statinit_memio;
ha->func.reset = ips_reset_copperhead_memio;
ha->func.intr = ips_intr_copperhead;
ha->func.erasebios = ips_erase_bios_memio;
ha->func.programbios = ips_program_bios_memio;
ha->func.verifybios = ips_verify_bios_memio;
ha->func.enableint = ips_enable_int_copperhead_memio;
if (IPS_USE_I2O_DELIVER(ha))
ha->func.issue = ips_issue_i2o_memio;
else
ha->func.issue = ips_issue_copperhead_memio;
} else {
/* copperhead */
ha->func.isintr = ips_isintr_copperhead;
ha->func.isinit = ips_isinit_copperhead;
ha->func.init = ips_init_copperhead;
ha->func.statupd = ips_statupd_copperhead;
ha->func.statinit = ips_statinit;
ha->func.reset = ips_reset_copperhead;
ha->func.intr = ips_intr_copperhead;
ha->func.erasebios = ips_erase_bios;
ha->func.programbios = ips_program_bios;
ha->func.verifybios = ips_verify_bios;
ha->func.enableint = ips_enable_int_copperhead;
if (IPS_USE_I2O_DELIVER(ha))
ha->func.issue = ips_issue_i2o;
else
ha->func.issue = ips_issue_copperhead;
}
/*
* Initialize the card if it isn't already
*/
if (!(*ha->func.isinit)(ha)) {
if (!(*ha->func.init)(ha)) {
/*
* Initialization failed
*/
printk(KERN_WARNING "(%s%d) unable to initialize controller - skipping controller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
}
/* install the interrupt handler */
if (request_irq(irq, do_ipsintr, SA_SHIRQ, ips_name, ha)) {
printk(KERN_WARNING "(%s%d) unable to install interrupt handler - skipping controller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
ips_next_controller++;
ips_num_controllers--;
continue;
}
/*
* Allocate a temporary SCB for initialization
*/
ha->max_cmds = 1;
if (!ips_allocatescbs(ha)) {
/* couldn't allocate a temp SCB */
printk(KERN_WARNING "(%s%d) unable to allocate CCBs - skipping contoller\n",
ips_name, ips_next_controller);
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[ips_next_controller] = 0;
ips_sh[ips_next_controller] = 0;
free_irq(ha->irq, ha);
ips_next_controller++;
ips_num_controllers--;
continue;
}
ips_next_controller++;
} while ((dev[i] = pci_find_device(IPS_VENDORID, deviceID[i], dev[i])));
}
/*
* Do Phase 2 Initialization
* Controller init
*/
for (i = 0; i < ips_next_controller; i++) {
if (ips_ha[i] == 0) {
printk(KERN_WARNING "(%s%d) ignoring bad controller\n", ips_name, i);
continue;
}
if (ips_init_phase2(i) != SUCCESS)
ips_num_controllers--;
}
if (ips_num_controllers > 0)
register_reboot_notifier(&ips_notifier);
return (ips_num_controllers);
#else
/* No PCI -- No ServeRAID */
return (0);
#endif /* CONFIG_PCI */
}
/****************************************************************************/
/* */
/* Routine Name: ips_release */
/* */
/* Routine Description: */
/* */
/* Remove a driver */
/* */
/****************************************************************************/
int
ips_release(struct Scsi_Host *sh) {
ips_scb_t *scb;
ips_ha_t *ha;
int i;
METHOD_TRACE("ips_release", 1);
for (i = 0; i < IPS_MAX_ADAPTERS && ips_sh[i] != sh; i++);
if (i == IPS_MAX_ADAPTERS) {
printk(KERN_WARNING "(%s) release, invalid Scsi_Host pointer.\n",
ips_name);
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
BUG();
#endif
return (FALSE);
}
ha = IPS_HA(sh);
if (!ha)
return (FALSE);
/* flush the cache on the controller */
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_FLUSH;
scb->cmd.flush_cache.op_code = IPS_CMD_FLUSH;
scb->cmd.flush_cache.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.flush_cache.state = IPS_NORM_STATE;
scb->cmd.flush_cache.reserved = 0;
scb->cmd.flush_cache.reserved2 = 0;
scb->cmd.flush_cache.reserved3 = 0;
scb->cmd.flush_cache.reserved4 = 0;
printk(KERN_NOTICE "(%s%d) Flushing Cache.\n", ips_name, ha->host_num);
/* send command */
if (ips_send_wait(ha, scb, ips_cmd_timeout, IPS_INTR_ON) == IPS_FAILURE)
printk(KERN_NOTICE "(%s%d) Incomplete Flush.\n", ips_name, ha->host_num);
printk(KERN_NOTICE "(%s%d) Flushing Complete.\n", ips_name, ha->host_num);
ips_sh[i] = NULL;
ips_ha[i] = NULL;
/* free extra memory */
ips_free(ha);
/* Free I/O Region */
if (ha->io_addr)
release_region(ha->io_addr, ha->io_len);
/* free IRQ */
free_irq(ha->irq, ha);
scsi_unregister(sh);
ips_released_controllers++;
if (ips_num_controllers == ips_released_controllers){
unregister_reboot_notifier(&ips_notifier);
pci_unregister_driver(&ips_pci_driver);
}
return (FALSE);
}
/****************************************************************************/
/* */
/* Routine Name: ips_halt */
/* */
/* Routine Description: */
/* */
/* Perform cleanup when the system reboots */
/* */
/****************************************************************************/
static int
ips_halt(struct notifier_block *nb, ulong event, void *buf) {
ips_scb_t *scb;
ips_ha_t *ha;
int i;
if ((event != SYS_RESTART) && (event != SYS_HALT) &&
(event != SYS_POWER_OFF))
return (NOTIFY_DONE);
for (i = 0; i < ips_next_controller; i++) {
ha = (ips_ha_t *) ips_ha[i];
if (!ha)
continue;
if (!ha->active)
continue;
/* flush the cache on the controller */
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_FLUSH;
scb->cmd.flush_cache.op_code = IPS_CMD_FLUSH;
scb->cmd.flush_cache.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.flush_cache.state = IPS_NORM_STATE;
scb->cmd.flush_cache.reserved = 0;
scb->cmd.flush_cache.reserved2 = 0;
scb->cmd.flush_cache.reserved3 = 0;
scb->cmd.flush_cache.reserved4 = 0;
printk(KERN_NOTICE "(%s%d) Flushing Cache.\n", ips_name, ha->host_num);
/* send command */
if (ips_send_wait(ha, scb, ips_cmd_timeout, IPS_INTR_ON) == IPS_FAILURE)
printk(KERN_NOTICE "(%s%d) Incomplete Flush.\n", ips_name, ha->host_num);
else
printk(KERN_NOTICE "(%s%d) Flushing Complete.\n", ips_name, ha->host_num);
}
return (NOTIFY_OK);
}
/****************************************************************************/
/* */
/* Routine Name: ips_eh_abort */
/* */
/* Routine Description: */
/* */
/* Abort a command (using the new error code stuff) */
/* */
/****************************************************************************/
int
ips_eh_abort(Scsi_Cmnd *SC) {
ips_ha_t *ha;
ips_copp_wait_item_t *item;
METHOD_TRACE("ips_eh_abort", 1);
if (!SC)
return (FAILED);
ha = (ips_ha_t *) SC->host->hostdata;
if (!ha)
return (FAILED);
if (!ha->active)
return (FAILED);
if (SC->serial_number != SC->serial_number_at_timeout) {
/* HMM, looks like a bogus command */
DEBUG(1, "Abort called with bogus scsi command");
return (FAILED);
}
if (test_and_set_bit(IPS_IN_ABORT, &ha->flags))
return (FAILED);
/* See if the command is on the copp queue */
IPS_QUEUE_LOCK(&ha->copp_waitlist);
item = ha->copp_waitlist.head;
while ((item) && (item->scsi_cmd != SC))
item = item->next;
IPS_QUEUE_UNLOCK(&ha->copp_waitlist);
if (item) {
/* Found it */
ips_removeq_copp(&ha->copp_waitlist, item);
clear_bit(IPS_IN_ABORT, &ha->flags);
return (SUCCESS);
}
/* See if the command is on the wait queue */
if (ips_removeq_wait(&ha->scb_waitlist, SC)) {
/* command not sent yet */
clear_bit(IPS_IN_ABORT, &ha->flags);
return (SUCCESS);
} else {
/* command must have already been sent */
clear_bit(IPS_IN_ABORT, &ha->flags);
return (FAILED);
}
}
/****************************************************************************/
/* */
/* Routine Name: ips_eh_reset */
/* */
/* Routine Description: */
/* */
/* Reset the controller (with new eh error code) */
/* */
/* NOTE: this routine is called under the io_request_lock spinlock */
/* */
/****************************************************************************/
int
ips_eh_reset(Scsi_Cmnd *SC) {
int ret;
int i;
ips_ha_t *ha;
ips_scb_t *scb;
ips_copp_wait_item_t *item;
unsigned long cpu_flags;
METHOD_TRACE("ips_eh_reset", 1);
#ifdef NO_IPS_RESET
return (FAILED);
#else
if (!SC) {
DEBUG(1, "Reset called with NULL scsi command");
return (FAILED);
}
ha = (ips_ha_t *) SC->host->hostdata;
if (!ha) {
DEBUG(1, "Reset called with NULL ha struct");
return (FAILED);
}
if (!ha->active)
return (FAILED);
if (test_and_set_bit(IPS_IN_RESET, &ha->flags))
return (FAILED);
/* See if the command is on the copp queue */
IPS_QUEUE_LOCK(&ha->copp_waitlist);
item = ha->copp_waitlist.head;
while ((item) && (item->scsi_cmd != SC))
item = item->next;
IPS_QUEUE_UNLOCK(&ha->copp_waitlist);
if (item) {
/* Found it */
ips_removeq_copp(&ha->copp_waitlist, item);
clear_bit(IPS_IN_RESET, &ha->flags);
return (SUCCESS);
}
/* See if the command is on the wait queue */
if (ips_removeq_wait(&ha->scb_waitlist, SC)) {
/* command not sent yet */
clear_bit(IPS_IN_RESET, &ha->flags);
return (SUCCESS);
}
/* An explanation for the casual observer: */
/* Part of the function of a RAID controller is automatic error */
/* detection and recovery. As such, the only problem that physically */
/* resetting a ServeRAID adapter will ever fix is when, for some reason,*/
/* the driver is not successfully communicating with the adapter. */
/* Therefore, we will attempt to flush this adapter. If that succeeds, */
/* then there's no real purpose in a physical reset. This will complete */
/* much faster and avoids any problems that might be caused by a */
/* physical reset ( such as having to fail all the outstanding I/O's ). */
if (ha->ioctl_reset == 0) { /* IF Not an IOCTL Requested Reset */
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_FLUSH;
scb->cmd.flush_cache.op_code = IPS_CMD_FLUSH;
scb->cmd.flush_cache.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.flush_cache.state = IPS_NORM_STATE;
scb->cmd.flush_cache.reserved = 0;
scb->cmd.flush_cache.reserved2 = 0;
scb->cmd.flush_cache.reserved3 = 0;
scb->cmd.flush_cache.reserved4 = 0;
/* Attempt the flush command */
ret = ips_send_wait(ha, scb, ips_cmd_timeout, IPS_INTR_IORL);
if (ret == IPS_SUCCESS) {
printk(KERN_NOTICE "(%s%d) Reset Request - Flushed Cache\n", ips_name, ha->host_num);
clear_bit(IPS_IN_RESET, &ha->flags);
return (SUCCESS);
}
}
/* Either we can't communicate with the adapter or it's an IOCTL request */
/* from a ServeRAID utility. A physical reset is needed at this point. */
ha->ioctl_reset = 0; /* Reset the IOCTL Requested Reset Flag */
/*
* command must have already been sent
* reset the controller
*/
printk(KERN_NOTICE "(%s%d) Resetting controller.\n",
ips_name, ha->host_num);
ret = (*ha->func.reset)(ha);
if (!ret) {
Scsi_Cmnd *scsi_cmd;
printk(KERN_NOTICE
"(%s%d) Controller reset failed - controller now offline.\n",
ips_name, ha->host_num);
/* Now fail all of the active commands */
DEBUG_VAR(1, "(%s%d) Failing active commands",
ips_name, ha->host_num);
while ((scb = ips_removeq_scb_head(&ha->scb_activelist))) {
scb->scsi_cmd->result = DID_ERROR << 16;
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
ips_freescb(ha, scb);
}
/* Now fail all of the pending commands */
DEBUG_VAR(1, "(%s%d) Failing pending commands",
ips_name, ha->host_num);
while ((scsi_cmd = ips_removeq_wait_head(&ha->scb_waitlist))) {
scsi_cmd->result = DID_ERROR;
scsi_cmd->scsi_done(scsi_cmd);
}
ha->active = FALSE;
clear_bit(IPS_IN_RESET, &ha->flags);
return (FAILED);
}
if (!ips_clear_adapter(ha, IPS_INTR_IORL)) {
Scsi_Cmnd *scsi_cmd;
printk(KERN_NOTICE
"(%s%d) Controller reset failed - controller now offline.\n",
ips_name, ha->host_num);
/* Now fail all of the active commands */
DEBUG_VAR(1, "(%s%d) Failing active commands",
ips_name, ha->host_num);
while ((scb = ips_removeq_scb_head(&ha->scb_activelist))) {
scb->scsi_cmd->result = DID_ERROR << 16;
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
ips_freescb(ha, scb);
}
/* Now fail all of the pending commands */
DEBUG_VAR(1, "(%s%d) Failing pending commands",
ips_name, ha->host_num);
while ((scsi_cmd = ips_removeq_wait_head(&ha->scb_waitlist))) {
scsi_cmd->result = DID_ERROR << 16;
scsi_cmd->scsi_done(scsi_cmd);
}
ha->active = FALSE;
clear_bit(IPS_IN_RESET, &ha->flags);
return (FAILED);
}
/* FFDC */
if (le32_to_cpu(ha->subsys->param[3]) & 0x300000) {
struct timeval tv;
do_gettimeofday(&tv);
IPS_HA_LOCK(cpu_flags);
ha->last_ffdc = tv.tv_sec;
ha->reset_count++;
IPS_HA_UNLOCK(cpu_flags);
ips_ffdc_reset(ha, IPS_INTR_IORL);
}
/* Now fail all of the active commands */
DEBUG_VAR(1, "(%s%d) Failing active commands",
ips_name, ha->host_num);
while ((scb = ips_removeq_scb_head(&ha->scb_activelist))) {
scb->scsi_cmd->result = (DID_RESET << 16) | (SUGGEST_RETRY << 24);
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
ips_freescb(ha, scb);
}
/* Reset DCDB active command bits */
for (i = 1; i < ha->nbus; i++)
ha->dcdb_active[i-1] = 0;
/* Reset the number of active IOCTLs */
IPS_HA_LOCK(cpu_flags);
ha->num_ioctl = 0;
IPS_HA_UNLOCK(cpu_flags);
clear_bit(IPS_IN_RESET, &ha->flags);
if (!test_bit(IPS_IN_INTR, &ha->flags)) {
/*
* Only execute the next command when
* we are not being called from the
* interrupt handler. The interrupt
* handler wants to do this and since
* interrupts are turned off here....
*/
ips_next(ha, IPS_INTR_IORL);
}
return (SUCCESS);
#endif /* NO_IPS_RESET */
}
/****************************************************************************/
/* */
/* Routine Name: ips_queue */
/* */
/* Routine Description: */
/* */
/* Send a command to the controller */
/* */
/* NOTE: */
/* Linux obtains io_request_lock before calling this function */
/* */
/****************************************************************************/
int
ips_queue(Scsi_Cmnd *SC, void (*done) (Scsi_Cmnd *)) {
ips_ha_t *ha;
unsigned long cpu_flags;
ips_passthru_t *pt;
METHOD_TRACE("ips_queue", 1);
ha = (ips_ha_t *) SC->host->hostdata;
if (!ha)
return (1);
if (!ha->active)
return (DID_ERROR);
if (ips_is_passthru(SC)) {
IPS_QUEUE_LOCK(&ha->copp_waitlist);
if (ha->copp_waitlist.count == IPS_MAX_IOCTL_QUEUE) {
IPS_QUEUE_UNLOCK(&ha->copp_waitlist);
SC->result = DID_BUS_BUSY << 16;
done(SC);
return (0);
} else {
IPS_QUEUE_UNLOCK(&ha->copp_waitlist);
}
} else {
IPS_QUEUE_LOCK(&ha->scb_waitlist);
if (ha->scb_waitlist.count == IPS_MAX_QUEUE) {
IPS_QUEUE_UNLOCK(&ha->scb_waitlist);
SC->result = DID_BUS_BUSY << 16;
done(SC);
return (0);
} else {
IPS_QUEUE_UNLOCK(&ha->scb_waitlist);
}
}
SC->scsi_done = done;
DEBUG_VAR(2, "(%s%d): ips_queue: cmd 0x%X (%d %d %d)",
ips_name,
ha->host_num,
SC->cmnd[0],
SC->channel,
SC->target,
SC->lun);
/* Check for command to initiator IDs */
if ((SC->channel > 0) && (SC->target == ha->ha_id[SC->channel])) {
SC->result = DID_NO_CONNECT << 16;
done(SC);
return (0);
}
if (ips_is_passthru(SC)) {
ips_copp_wait_item_t *scratch;
/* A Reset IOCTL is only sent by the ServeRAID boot CD in extreme cases. */
/* There can never be any system activity ( network or disk ), but check */
/* anyway just as a good practice. */
pt = (ips_passthru_t *) SC->request_buffer;
if ((pt->CoppCP.cmd.reset.op_code == IPS_CMD_RESET_CHANNEL) &&
(pt->CoppCP.cmd.reset.adapter_flag == 1)) {
if (ha->scb_activelist.count != 0) {
SC->result = DID_BUS_BUSY << 16;
done(SC);
return (0);
}
ha->ioctl_reset = 1; /* This reset request is from an IOCTL */
ips_eh_reset(SC);
SC->result = DID_OK << 16;
SC->scsi_done(SC);
return (0);
}
/* allocate space for the scribble */
scratch = kmalloc(sizeof(ips_copp_wait_item_t), GFP_ATOMIC);
if (!scratch) {
SC->result = DID_ERROR << 16;
done(SC);
return (0);
}
scratch->scsi_cmd = SC;
sema_init(&ha->ioctl_sem, 0);
scratch->sem = &ha->ioctl_sem;
scratch->next = NULL;
ips_putq_copp_tail(&ha->copp_waitlist, scratch);
}
else
ips_putq_wait_tail(&ha->scb_waitlist, SC);
if(ha->scb_waitlist.count + ha->scb_activelist.count > 32)
mod_timer(&SC->eh_timeout, jiffies + 120 * HZ);
IPS_HA_LOCK(cpu_flags);
if ((!test_bit(IPS_IN_INTR, &ha->flags)) &&
(!test_bit(IPS_IN_ABORT, &ha->flags)) &&
(!test_bit(IPS_IN_RESET, &ha->flags))) {
IPS_HA_UNLOCK(cpu_flags);
ips_next(ha, IPS_INTR_IORL);
} else {
IPS_HA_UNLOCK(cpu_flags);
}
/* If We were using the CD Boot Flash Buffer, Restore the Old Values */
if ( ips_FlashData == ha->ioctl_data ) {
ha->ioctl_data = ha->flash_data;
ha->ioctl_order = ha->flash_order;
ha->ioctl_datasize = ha->flash_datasize;
ips_FlashDataInUse = 0;
}
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_biosparam */
/* */
/* Routine Description: */
/* */
/* Set bios geometry for the controller */
/* */
/****************************************************************************/
int
ips_biosparam(Disk *disk, kdev_t dev, int geom[]) {
ips_ha_t *ha;
int heads;
int sectors;
int cylinders;
METHOD_TRACE("ips_biosparam", 1);
ha = (ips_ha_t *) disk->device->host->hostdata;
if (!ha)
/* ?!?! host adater info invalid */
return (0);
if (!ha->active)
return (0);
if (!ips_read_adapter_status(ha, IPS_INTR_ON))
/* ?!?! Enquiry command failed */
return (0);
if ((disk->capacity > 0x400000) &&
((ha->enq->ucMiscFlag & 0x8) == 0)) {
heads = IPS_NORM_HEADS;
sectors = IPS_NORM_SECTORS;
} else {
heads = IPS_COMP_HEADS;
sectors = IPS_COMP_SECTORS;
}
cylinders = disk->capacity / (heads * sectors);
DEBUG_VAR(2, "Geometry: heads: %d, sectors: %d, cylinders: %d",
heads, sectors, cylinders);
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_select_queue_depth */
/* */
/* Routine Description: */
/* */
/* Select queue depths for the devices on the contoller */
/* */
/****************************************************************************/
static void
ips_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs) {
Scsi_Device *device;
ips_ha_t *ha;
int count = 0;
int min;
ha = IPS_HA(host);
min = ha->max_cmds / 4;
for (device = scsi_devs; device; device = device->next) {
if (device->host == host) {
if ((device->channel == 0) && (device->type == 0))
count++;
}
}
for (device = scsi_devs; device; device = device->next) {
if (device->host == host) {
if ((device->channel == 0) && (device->type == 0)) {
device->queue_depth = ( ha->max_cmds - 1 ) / count;
if (device->queue_depth < min)
device->queue_depth = min;
}
else {
device->queue_depth = 2;
}
if (device->queue_depth < 2)
device->queue_depth = 2;
}
}
}
/****************************************************************************/
/* */
/* Routine Name: do_ipsintr */
/* */
/* Routine Description: */
/* */
/* Wrapper for the interrupt handler */
/* */
/****************************************************************************/
void
do_ipsintr(int irq, void *dev_id, struct pt_regs *regs) {
ips_ha_t *ha;
unsigned long cpu_flags;
struct Scsi_Host *host;
METHOD_TRACE("do_ipsintr", 2);
ha = (ips_ha_t *) dev_id;
if (!ha)
return;
host = ips_sh[ha->host_num];
IPS_LOCK_SAVE(host->host_lock, cpu_flags);
if (test_and_set_bit(IPS_IN_INTR, &ha->flags)) {
IPS_UNLOCK_RESTORE(host->host_lock, cpu_flags);
return ;
}
if (!ha->active) {
clear_bit(IPS_IN_INTR, &ha->flags);
IPS_UNLOCK_RESTORE(host->host_lock, cpu_flags);
return;
}
(*ha->func.intr)(ha);
clear_bit(IPS_IN_INTR, &ha->flags);
IPS_UNLOCK_RESTORE(host->host_lock, cpu_flags);
/* start the next command */
ips_next(ha, IPS_INTR_ON);
}
/****************************************************************************/
/* */
/* Routine Name: ips_intr_copperhead */
/* */
/* Routine Description: */
/* */
/* Polling interrupt handler */
/* */
/* ASSUMES interrupts are disabled */
/* */
/****************************************************************************/
void
ips_intr_copperhead(ips_ha_t *ha) {
ips_stat_t *sp;
ips_scb_t *scb;
IPS_STATUS cstatus;
int intrstatus;
unsigned long cpu_flags;
METHOD_TRACE("ips_intr", 2);
if (!ha)
return;
if (!ha->active)
return;
IPS_HA_LOCK(cpu_flags);
intrstatus = (*ha->func.isintr)(ha);
if (!intrstatus) {
/*
* Unexpected/Shared interrupt
*/
IPS_HA_UNLOCK(cpu_flags);
return;
}
while (TRUE) {
sp = &ha->sp;
intrstatus = (*ha->func.isintr)(ha);
if (!intrstatus)
break;
else
cstatus.value = (*ha->func.statupd)(ha);
if (cstatus.fields.command_id > (IPS_MAX_CMDS - 1)) {
/* Spurious Interupt ? */
continue;
}
ips_chkstatus(ha, &cstatus);
scb = (ips_scb_t *) sp->scb_addr;
/*
* use the callback function to finish things up
* NOTE: interrupts are OFF for this
*/
IPS_HA_UNLOCK(cpu_flags);
(*scb->callback) (ha, scb);
IPS_HA_LOCK(cpu_flags);
} /* end while */
IPS_HA_UNLOCK(cpu_flags);
}
/****************************************************************************/
/* */
/* Routine Name: ips_intr_morpheus */
/* */
/* Routine Description: */
/* */
/* Polling interrupt handler */
/* */
/* ASSUMES interrupts are disabled */
/* */
/****************************************************************************/
void
ips_intr_morpheus(ips_ha_t *ha) {
ips_stat_t *sp;
ips_scb_t *scb;
IPS_STATUS cstatus;
int intrstatus;
unsigned long cpu_flags;
METHOD_TRACE("ips_intr_morpheus", 2);
if (!ha)
return;
if (!ha->active)
return;
IPS_HA_LOCK(cpu_flags);
intrstatus = (*ha->func.isintr)(ha);
if (!intrstatus) {
/*
* Unexpected/Shared interrupt
*/
IPS_HA_UNLOCK(cpu_flags);
return;
}
while (TRUE) {
sp = &ha->sp;
intrstatus = (*ha->func.isintr)(ha);
if (!intrstatus)
break;
else
cstatus.value = (*ha->func.statupd)(ha);
if (cstatus.value == 0xffffffff)
/* No more to process */
break;
if (cstatus.fields.command_id > (IPS_MAX_CMDS - 1)) {
printk(KERN_WARNING "(%s%d) Spurious interrupt; no ccb.\n",
ips_name, ha->host_num);
continue;
}
ips_chkstatus(ha, &cstatus);
scb = (ips_scb_t *) sp->scb_addr;
/*
* use the callback function to finish things up
* NOTE: interrupts are OFF for this
*/
IPS_HA_UNLOCK(cpu_flags);
(*scb->callback) (ha, scb);
IPS_HA_LOCK(cpu_flags);
} /* end while */
IPS_HA_UNLOCK(cpu_flags);
}
/****************************************************************************/
/* */
/* Routine Name: ips_info */
/* */
/* Routine Description: */
/* */
/* Return info about the driver */
/* */
/****************************************************************************/
const char *
ips_info(struct Scsi_Host *SH) {
static char buffer[256];
char *bp;
ips_ha_t *ha;
METHOD_TRACE("ips_info", 1);
ha = IPS_HA(SH);
if (!ha)
return (NULL);
bp = &buffer[0];
memset(bp, 0, sizeof(buffer));
sprintf(bp, "%s%s%s", "IBM PCI ServeRAID ", IPS_VERSION_HIGH, IPS_VERSION_LOW );
if (ha->ad_type > 0 &&
ha->ad_type <= MAX_ADAPTER_NAME) {
strcat(bp, " <");
strcat(bp, ips_adapter_name[ha->ad_type-1]);
strcat(bp, ">");
}
return (bp);
}
/****************************************************************************/
/* */
/* Routine Name: ips_proc_info */
/* */
/* Routine Description: */
/* */
/* The passthru interface for the driver */
/* */
/****************************************************************************/
int
ips_proc_info(char *buffer, char **start, off_t offset,
int length, int hostno, int func) {
int i;
int ret;
ips_ha_t *ha = NULL;
METHOD_TRACE("ips_proc_info", 1);
/* Find our host structure */
for (i = 0; i < ips_next_controller; i++) {
if (ips_sh[i]) {
if (ips_sh[i]->host_no == hostno) {
ha = (ips_ha_t *) ips_sh[i]->hostdata;
break;
}
}
}
if (!ha)
return (-EINVAL);
if (func) {
/* write */
return (0);
} else {
/* read */
if (start)
*start = buffer;
ret = ips_host_info(ha, buffer, offset, length);
return (ret);
}
}
/*--------------------------------------------------------------------------*/
/* Helper Functions */
/*--------------------------------------------------------------------------*/
/****************************************************************************/
/* */
/* Routine Name: ips_is_passthru */
/* */
/* Routine Description: */
/* */
/* Determine if the specified SCSI command is really a passthru command */
/* */
/****************************************************************************/
static int
ips_is_passthru(Scsi_Cmnd *SC) {
METHOD_TRACE("ips_is_passthru", 1);
if (!SC)
return (0);
if ((SC->cmnd[0] == IPS_IOCTL_COMMAND) &&
(SC->channel == 0) &&
(SC->target == IPS_ADAPTER_ID) &&
(SC->lun == 0) &&
SC->request_buffer){
if((!SC->use_sg) && SC->request_bufflen &&
(((char *) SC->request_buffer)[0] == 'C') &&
(((char *) SC->request_buffer)[1] == 'O') &&
(((char *) SC->request_buffer)[2] == 'P') &&
(((char *) SC->request_buffer)[3] == 'P'))
return 1;
else if(SC->use_sg){
struct scatterlist *sg = SC->request_buffer;
char *buffer = IPS_SG_ADDRESS(sg);
if(buffer && buffer[0] == 'C' && buffer[1] == 'O' &&
buffer[2] == 'P' && buffer[3] == 'P')
return 1;
}
}
return 0;
}
/****************************************************************************/
/* */
/* Routine Name: ips_make_passthru */
/* */
/* Routine Description: */
/* */
/* Make a passthru command out of the info in the Scsi block */
/* */
/****************************************************************************/
static int
ips_make_passthru(ips_ha_t *ha, Scsi_Cmnd *SC, ips_scb_t *scb, int intr) {
ips_passthru_t *pt;
char *buffer;
int length = 0;
METHOD_TRACE("ips_make_passthru", 1);
if(!SC->use_sg){
buffer = SC->request_buffer;
length = SC->request_bufflen;
}else{
struct scatterlist *sg = SC->request_buffer;
int i;
for(i = 0; i < SC->use_sg; i++)
length += sg[i].length;
if (length < sizeof(ips_passthru_t)) {
/* wrong size */
DEBUG_VAR(1, "(%s%d) Passthru structure wrong size",
ips_name, ha->host_num);
return (IPS_FAILURE);
}else if(!ha->ioctl_data || length > (PAGE_SIZE << ha->ioctl_order)){
void *bigger_buf;
int count;
int order;
/* try to allocate a bigger buffer */
for (count = PAGE_SIZE, order = 0;
count < length;
order++, count <<= 1);
bigger_buf = (void *) __get_free_pages(GFP_ATOMIC, order);
if (bigger_buf) {
/* free the old memory */
free_pages((unsigned long) ha->ioctl_data, ha->ioctl_order);
/* use the new memory */
ha->ioctl_data = (char *) bigger_buf;
ha->ioctl_order = order;
ha->ioctl_datasize = count;
} else {
pt = (ips_passthru_t*)IPS_SG_ADDRESS(sg);
pt->BasicStatus = 0x0B;
pt->ExtendedStatus = 0x00;
SC->result = DID_ERROR << 16;
return (IPS_FAILURE);
}
}
ha->ioctl_datasize = length;
length = 0;
for(i = 0; i < SC->use_sg; i++){
memcpy(&ha->ioctl_data[length], IPS_SG_ADDRESS(&sg[i]), sg[i].length);
length += sg[i].length;
}
pt = (ips_passthru_t *)ha->ioctl_data;
buffer = ha->ioctl_data;
}
if (!length || !buffer) {
/* no data */
DEBUG_VAR(1, "(%s%d) No passthru structure",
ips_name, ha->host_num);
return (IPS_FAILURE);
}
if (length < sizeof(ips_passthru_t)) {
/* wrong size */
DEBUG_VAR(1, "(%s%d) Passthru structure wrong size",
ips_name, ha->host_num);
return (IPS_FAILURE);
}
pt = (ips_passthru_t*) buffer;
/*
* Some notes about the passthru interface used
*
* IF the scsi op_code == 0x0d then we assume
* that the data came along with/goes with the
* packet we received from the sg driver. In this
* case the CmdBSize field of the pt structure is
* used for the size of the buffer.
*
* IF the scsi op_code == 0x81 then we assume that
* we will need our own buffer and we will copy the
* data to/from the user buffer passed in the scsi
* command. The data address resides at offset 4
* in the scsi command. The length of the data resides
* at offset 8 in the scsi command.
*/
switch (pt->CoppCmd) {
case IPS_NUMCTRLS:
memcpy(buffer + sizeof(ips_passthru_t),
&ips_num_controllers, sizeof(int));
SC->result = DID_OK << 16;
return (IPS_SUCCESS_IMM);
case IPS_CTRLINFO:
memcpy(buffer + sizeof(ips_passthru_t),
ha, sizeof(ips_ha_t));
SC->result = DID_OK << 16;
return (IPS_SUCCESS_IMM);
case IPS_COPPUSRCMD:
case IPS_COPPIOCCMD:
if (SC->cmnd[0] == IPS_IOCTL_COMMAND) {
if (length < (sizeof(ips_passthru_t) + pt->CmdBSize)) {
/* wrong size */
DEBUG_VAR(1, "(%s%d) Passthru structure wrong size",
ips_name, ha->host_num);
return (IPS_FAILURE);
}
if(ha->device_id == IPS_DEVICEID_COPPERHEAD &&
pt->CoppCP.cmd.flashfw.op_code == IPS_CMD_RW_BIOSFW)
return ips_flash_copperhead(ha, pt, scb);
if (ips_usrcmd(ha, pt, scb))
return (IPS_SUCCESS);
else
return (IPS_FAILURE);
}
break;
} /* end switch */
return (IPS_FAILURE);
}
/****************************************************************************/
/* Routine Name: ips_flash_copperhead */
/* Routine Description: */
/* Flash the BIOS/FW on a Copperhead style controller */
/****************************************************************************/
static int
ips_flash_copperhead(ips_ha_t *ha, ips_passthru_t *pt, ips_scb_t *scb){
int datasize, count;
/* Trombone is the only copperhead that can do packet flash, but only
* for firmware. No one said it had to make sence. */
if(IPS_IS_TROMBONE(ha) && pt->CoppCP.cmd.flashfw.type == IPS_FW_IMAGE){
if(ips_usrcmd(ha, pt, scb))
return IPS_SUCCESS;
else
return IPS_FAILURE;
}
pt->BasicStatus = 0x0B;
pt->ExtendedStatus = 0;
scb->scsi_cmd->result = DID_OK <<16;
/* IF it's OK to Use the "CD BOOT" Flash Buffer, then you can */
/* avoid allocating a huge buffer per adapter ( which can fail ). */
if(pt->CoppCP.cmd.flashfw.type == IPS_BIOS_IMAGE &&
pt->CoppCP.cmd.flashfw.direction == IPS_ERASE_BIOS){
pt->BasicStatus = 0;
return ips_flash_bios(ha, pt, scb);
}else if(pt->CoppCP.cmd.flashfw.packet_num == 0){
if(ips_FlashData && !test_and_set_bit(0, &ips_FlashDataInUse)){
ha->flash_data = ips_FlashData;
ha->flash_order = 7;
ha->flash_datasize = 0;
}else if(!ha->flash_data){
datasize = pt->CoppCP.cmd.flashfw.total_packets *
pt->CoppCP.cmd.flashfw.count;
for (count = PAGE_SIZE, ha->flash_order = 0; count < datasize;
ha->flash_order++, count <<= 1);
ha->flash_data = (char *)__get_free_pages(GFP_ATOMIC, ha->flash_order);
ha->flash_datasize = 0;
}else
return IPS_FAILURE;
}else{
if(pt->CoppCP.cmd.flashfw.count + ha->flash_datasize >
(PAGE_SIZE << ha->flash_order)){
ips_free_flash_copperhead(ha);
printk(KERN_WARNING "failed size sanity check\n");
return IPS_FAILURE;
}
}
if(!ha->flash_data)
return IPS_FAILURE;
pt->BasicStatus = 0;
memcpy(&ha->flash_data[ha->flash_datasize], pt + 1,
pt->CoppCP.cmd.flashfw.count);
ha->flash_datasize += pt->CoppCP.cmd.flashfw.count;
if(pt->CoppCP.cmd.flashfw.packet_num ==
pt->CoppCP.cmd.flashfw.total_packets - 1){
if(pt->CoppCP.cmd.flashfw.type == IPS_BIOS_IMAGE)
return ips_flash_bios(ha, pt, scb);
else if(pt->CoppCP.cmd.flashfw.type == IPS_FW_IMAGE)
return ips_flash_firmware(ha, pt, scb);
}
return IPS_SUCCESS_IMM;
}
/****************************************************************************/
/* Routine Name: ips_flash_bios */
/* Routine Description: */
/* flashes the bios of a copperhead adapter */
/****************************************************************************/
static int
ips_flash_bios(ips_ha_t * ha, ips_passthru_t *pt, ips_scb_t *scb){
if(pt->CoppCP.cmd.flashfw.type == IPS_BIOS_IMAGE &&
pt->CoppCP.cmd.flashfw.direction == IPS_WRITE_BIOS){
if ((!ha->func.programbios) || (!ha->func.erasebios) ||
(!ha->func.verifybios))
goto error;
if((*ha->func.erasebios)(ha)){
DEBUG_VAR(1, "(%s%d) flash bios failed - unable to erase flash",
ips_name, ha->host_num);
goto error;
}else if ((*ha->func.programbios)(ha, ha->flash_data + IPS_BIOS_HEADER,
ha->flash_datasize - IPS_BIOS_HEADER, 0 )) {
DEBUG_VAR(1, "(%s%d) flash bios failed - unable to flash",
ips_name, ha->host_num);
goto error;
}else if ((*ha->func.verifybios)(ha, ha->flash_data + IPS_BIOS_HEADER,
ha->flash_datasize - IPS_BIOS_HEADER, 0 )) {
DEBUG_VAR(1, "(%s%d) flash bios failed - unable to verify flash",
ips_name, ha->host_num);
goto error;
}
ips_free_flash_copperhead(ha);
return IPS_SUCCESS_IMM;
}else if(pt->CoppCP.cmd.flashfw.type == IPS_BIOS_IMAGE &&
pt->CoppCP.cmd.flashfw.direction == IPS_ERASE_BIOS){
if(!ha->func.erasebios)
goto error;
if((*ha->func.erasebios)(ha)){
DEBUG_VAR(1, "(%s%d) flash bios failed - unable to erase flash",
ips_name, ha->host_num);
goto error;
}
return IPS_SUCCESS_IMM;
}
error:
pt->BasicStatus = 0x0B;
pt->ExtendedStatus = 0x00;
ips_free_flash_copperhead(ha);
return IPS_FAILURE;
}
/****************************************************************************/
/* Routine Name: ips_flash_firmware */
/* Routine Description: */
/* flashes the firmware of a copperhead adapter */
/****************************************************************************/
static int
ips_flash_firmware(ips_ha_t * ha, ips_passthru_t *pt, ips_scb_t *scb){
IPS_SG_LIST *sg_list;
uint32_t cmd_busaddr;
if(pt->CoppCP.cmd.flashfw.type == IPS_FW_IMAGE &&
pt->CoppCP.cmd.flashfw.direction == IPS_WRITE_FW ){
memset(&pt->CoppCP.cmd, 0, sizeof(IPS_HOST_COMMAND));
pt->CoppCP.cmd.flashfw.op_code = IPS_CMD_DOWNLOAD;
pt->CoppCP.cmd.flashfw.count = cpu_to_le32(ha->flash_datasize);
}else{
pt->BasicStatus = 0x0B;
pt->ExtendedStatus = 0x00;
ips_free_flash_copperhead(ha);
return IPS_FAILURE;
}
/* Save the S/G list pointer so it doesn't get clobbered */
sg_list = scb->sg_list;
cmd_busaddr = scb->scb_busaddr;
/* copy in the CP */
memcpy(&scb->cmd, &pt->CoppCP.cmd, sizeof(IPS_IOCTL_CMD));
/* FIX stuff that might be wrong */
scb->sg_list = sg_list;
scb->scb_busaddr = cmd_busaddr;
scb->bus = scb->scsi_cmd->channel;
scb->target_id = scb->scsi_cmd->target;
scb->lun = scb->scsi_cmd->lun;
scb->sg_len = 0;
scb->data_len = 0;
scb->flags = 0;
scb->op_code = 0;
scb->callback = ipsintr_done;
scb->timeout = ips_cmd_timeout;
scb->data_len = ha->flash_datasize;
scb->data_busaddr = pci_map_single(ha->pcidev, ha->flash_data, scb->data_len,
IPS_DMA_DIR(scb));
scb->flags |= IPS_SCB_MAP_SINGLE;
scb->cmd.flashfw.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.flashfw.buffer_addr = scb->data_busaddr;
if (pt->TimeOut)
scb->timeout = pt->TimeOut;
scb->scsi_cmd->result = DID_OK <<16;
return IPS_SUCCESS;
}
/****************************************************************************/
/* Routine Name: ips_free_flash_copperhead */
/* Routine Description: */
/* release the memory resources used to hold the flash image */
/****************************************************************************/
static void
ips_free_flash_copperhead(ips_ha_t *ha){
if(ha->flash_data == ips_FlashData)
test_and_clear_bit(0, &ips_FlashDataInUse);
else if(ha->flash_data)
free_pages((unsigned long)ha->flash_data, ha->flash_order);
ha->flash_data = NULL;
}
/****************************************************************************/
/* */
/* Routine Name: ips_usrcmd */
/* */
/* Routine Description: */
/* */
/* Process a user command and make it ready to send */
/* */
/****************************************************************************/
static int
ips_usrcmd(ips_ha_t *ha, ips_passthru_t *pt, ips_scb_t *scb) {
IPS_SG_LIST *sg_list;
uint32_t cmd_busaddr;
METHOD_TRACE("ips_usrcmd", 1);
if ((!scb) || (!pt) || (!ha))
return (0);
/* Save the S/G list pointer so it doesn't get clobbered */
sg_list = scb->sg_list;
cmd_busaddr = scb->scb_busaddr;
/* copy in the CP */
memcpy(&scb->cmd, &pt->CoppCP.cmd, sizeof(IPS_IOCTL_CMD));
memcpy(&scb->dcdb, &pt->CoppCP.dcdb, sizeof(IPS_DCDB_TABLE));
/* FIX stuff that might be wrong */
scb->sg_list = sg_list;
scb->scb_busaddr = cmd_busaddr;
scb->bus = scb->scsi_cmd->channel;
scb->target_id = scb->scsi_cmd->target;
scb->lun = scb->scsi_cmd->lun;
scb->sg_len = 0;
scb->data_len = 0;
scb->flags = 0;
scb->op_code = 0;
scb->callback = ipsintr_done;
scb->timeout = ips_cmd_timeout;
scb->cmd.basic_io.command_id = IPS_COMMAND_ID(ha, scb);
/* we don't support DCDB/READ/WRITE Scatter Gather */
if ((scb->cmd.basic_io.op_code == IPS_CMD_READ_SG) ||
(scb->cmd.basic_io.op_code == IPS_CMD_WRITE_SG) ||
(scb->cmd.basic_io.op_code == IPS_CMD_DCDB_SG))
return (0);
if (pt->CmdBSize) {
if(!scb->scsi_cmd->use_sg){
scb->data_len = pt->CmdBSize;
scb->data_busaddr = pci_map_single(ha->pcidev,
scb->scsi_cmd->request_buffer +
sizeof(ips_passthru_t),
pt->CmdBSize,
IPS_DMA_DIR(scb));
scb->flags |= IPS_SCB_MAP_SINGLE;
} else {
scb->data_len = pt->CmdBSize;
scb->data_busaddr = pci_map_single(ha->pcidev,
ha->ioctl_data +
sizeof(ips_passthru_t),
pt->CmdBSize,
IPS_DMA_DIR(scb));
scb->flags |= IPS_SCB_MAP_SINGLE;
}
} else {
scb->data_busaddr = 0L;
}
if (scb->cmd.dcdb.op_code == IPS_CMD_DCDB)
scb->cmd.dcdb.dcdb_address = cpu_to_le32(scb->scb_busaddr +
(unsigned long)&scb->dcdb -
(unsigned long)scb);
if (pt->CmdBSize) {
if (scb->cmd.dcdb.op_code == IPS_CMD_DCDB)
scb->dcdb.buffer_pointer = cpu_to_le32(scb->data_busaddr);
else
scb->cmd.basic_io.sg_addr = cpu_to_le32(scb->data_busaddr);
}
/* set timeouts */
if (pt->TimeOut) {
scb->timeout = pt->TimeOut;
if (pt->TimeOut <= 10)
scb->dcdb.cmd_attribute |= IPS_TIMEOUT10;
else if (pt->TimeOut <= 60)
scb->dcdb.cmd_attribute |= IPS_TIMEOUT60;
else
scb->dcdb.cmd_attribute |= IPS_TIMEOUT20M;
}
/* assume success */
scb->scsi_cmd->result = DID_OK << 16;
/* success */
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_cleanup_passthru */
/* */
/* Routine Description: */
/* */
/* Cleanup after a passthru command */
/* */
/****************************************************************************/
static void
ips_cleanup_passthru(ips_ha_t *ha, ips_scb_t *scb) {
ips_passthru_t *pt;
METHOD_TRACE("ips_cleanup_passthru", 1);
if ((!scb) || (!scb->scsi_cmd) || (!scb->scsi_cmd->request_buffer)) {
DEBUG_VAR(1, "(%s%d) couldn't cleanup after passthru",
ips_name, ha->host_num);
return ;
}
if(!scb->scsi_cmd->use_sg)
pt = (ips_passthru_t *) scb->scsi_cmd->request_buffer;
else
pt = (ips_passthru_t *) ha->ioctl_data;
/* Copy data back to the user */
if (scb->cmd.dcdb.op_code == IPS_CMD_DCDB) /* Copy DCDB Back to Caller's Area */
memcpy(&pt->CoppCP.dcdb, &scb->dcdb, sizeof(IPS_DCDB_TABLE));
pt->BasicStatus = scb->basic_status;
pt->ExtendedStatus = scb->extended_status;
pt->AdapterType = ha->ad_type;
if(ha->device_id == IPS_DEVICEID_COPPERHEAD &&
(scb->cmd.flashfw.op_code == IPS_CMD_DOWNLOAD ||
scb->cmd.flashfw.op_code == IPS_CMD_RW_BIOSFW))
ips_free_flash_copperhead(ha);
if(scb->scsi_cmd->use_sg){
int i, length = 0;
struct scatterlist *sg = scb->scsi_cmd->request_buffer;
for(i = 0; i < scb->scsi_cmd->use_sg; i++){
memcpy(IPS_SG_ADDRESS(&sg[i]), &ha->ioctl_data[length], sg[i].length);
length += sg[i].length;
}
}
}
/****************************************************************************/
/* */
/* Routine Name: ips_host_info */
/* */
/* Routine Description: */
/* */
/* The passthru interface for the driver */
/* */
/****************************************************************************/
static int
ips_host_info(ips_ha_t *ha, char *ptr, off_t offset, int len) {
IPS_INFOSTR info;
METHOD_TRACE("ips_host_info", 1);
info.buffer = ptr;
info.length = len;
info.offset = offset;
info.pos = 0;
info.localpos = 0;
copy_info(&info, "\nIBM ServeRAID General Information:\n\n");
if ((le32_to_cpu(ha->nvram->signature) == IPS_NVRAM_P5_SIG) &&
(le16_to_cpu(ha->nvram->adapter_type) != 0))
copy_info(&info, "\tController Type : %s\n", ips_adapter_name[ha->ad_type-1]);
else
copy_info(&info, "\tController Type : Unknown\n");
if (ha->io_addr)
copy_info(&info, "\tIO region : 0x%lx (%d bytes)\n",
ha->io_addr, ha->io_len);
if (ha->mem_addr) {
copy_info(&info, "\tMemory region : 0x%lx (%d bytes)\n",
ha->mem_addr, ha->mem_len);
copy_info(&info, "\tShared memory address : 0x%lx\n", ha->mem_ptr);
}
copy_info(&info, "\tIRQ number : %d\n", ha->irq);
if (le32_to_cpu(ha->nvram->signature) == IPS_NVRAM_P5_SIG)
copy_info(&info, "\tBIOS Version : %c%c%c%c%c%c%c%c\n",
ha->nvram->bios_high[0], ha->nvram->bios_high[1],
ha->nvram->bios_high[2], ha->nvram->bios_high[3],
ha->nvram->bios_low[0], ha->nvram->bios_low[1],
ha->nvram->bios_low[2], ha->nvram->bios_low[3]);
copy_info(&info, "\tFirmware Version : %c%c%c%c%c%c%c%c\n",
ha->enq->CodeBlkVersion[0], ha->enq->CodeBlkVersion[1],
ha->enq->CodeBlkVersion[2], ha->enq->CodeBlkVersion[3],
ha->enq->CodeBlkVersion[4], ha->enq->CodeBlkVersion[5],
ha->enq->CodeBlkVersion[6], ha->enq->CodeBlkVersion[7]);
copy_info(&info, "\tBoot Block Version : %c%c%c%c%c%c%c%c\n",
ha->enq->BootBlkVersion[0], ha->enq->BootBlkVersion[1],
ha->enq->BootBlkVersion[2], ha->enq->BootBlkVersion[3],
ha->enq->BootBlkVersion[4], ha->enq->BootBlkVersion[5],
ha->enq->BootBlkVersion[6], ha->enq->BootBlkVersion[7]);
copy_info(&info, "\tDriver Version : %s%s\n",
IPS_VERSION_HIGH, IPS_VERSION_LOW);
copy_info(&info, "\tMax Physical Devices : %d\n",
ha->enq->ucMaxPhysicalDevices);
copy_info(&info, "\tMax Active Commands : %d\n",
ha->max_cmds);
copy_info(&info, "\tCurrent Queued Commands : %d\n",
ha->scb_waitlist.count);
copy_info(&info, "\tCurrent Active Commands : %d\n",
ha->scb_activelist.count - ha->num_ioctl);
copy_info(&info, "\tCurrent Queued PT Commands : %d\n",
ha->copp_waitlist.count);
copy_info(&info, "\tCurrent Active PT Commands : %d\n",
ha->num_ioctl);
copy_info(&info, "\n");
return (info.localpos);
}
/****************************************************************************/
/* */
/* Routine Name: copy_mem_info */
/* */
/* Routine Description: */
/* */
/* Copy data into an IPS_INFOSTR structure */
/* */
/****************************************************************************/
static void
copy_mem_info(IPS_INFOSTR *info, char *data, int len) {
METHOD_TRACE("copy_mem_info", 1);
if (info->pos + len < info->offset) {
info->pos += len;
return;
}
if (info->pos < info->offset) {
data += (info->offset - info->pos);
len -= (info->offset - info->pos);
info->pos += (info->offset - info->pos);
}
if (info->localpos + len > info->length)
len = info->length - info->localpos;
if (len > 0) {
memcpy(info->buffer + info->localpos, data, len);
info->pos += len;
info->localpos += len;
}
}
/****************************************************************************/
/* */
/* Routine Name: copy_info */
/* */
/* Routine Description: */
/* */
/* printf style wrapper for an info structure */
/* */
/****************************************************************************/
static int
copy_info(IPS_INFOSTR *info, char *fmt, ...) {
va_list args;
char buf[128];
int len;
METHOD_TRACE("copy_info", 1);
va_start(args, fmt);
len = vsprintf(buf, fmt, args);
va_end(args);
copy_mem_info(info, buf, len);
return (len);
}
/****************************************************************************/
/* */
/* Routine Name: ips_identify_controller */
/* */
/* Routine Description: */
/* */
/* Identify this controller */
/* */
/****************************************************************************/
static void
ips_identify_controller(ips_ha_t *ha) {
METHOD_TRACE("ips_identify_controller", 1);
switch (ha->device_id) {
case IPS_DEVICEID_COPPERHEAD:
if (ha->revision_id <= IPS_REVID_SERVERAID) {
ha->ad_type = IPS_ADTYPE_SERVERAID;
} else if (ha->revision_id == IPS_REVID_SERVERAID2) {
ha->ad_type = IPS_ADTYPE_SERVERAID2;
} else if (ha->revision_id == IPS_REVID_NAVAJO) {
ha->ad_type = IPS_ADTYPE_NAVAJO;
} else if ((ha->revision_id == IPS_REVID_SERVERAID2) && (ha->slot_num == 0)) {
ha->ad_type = IPS_ADTYPE_KIOWA;
} else if ((ha->revision_id >= IPS_REVID_CLARINETP1) &&
(ha->revision_id <= IPS_REVID_CLARINETP3)) {
if (ha->enq->ucMaxPhysicalDevices == 15)
ha->ad_type = IPS_ADTYPE_SERVERAID3L;
else
ha->ad_type = IPS_ADTYPE_SERVERAID3;
} else if ((ha->revision_id >= IPS_REVID_TROMBONE32) &&
(ha->revision_id <= IPS_REVID_TROMBONE64)) {
ha->ad_type = IPS_ADTYPE_SERVERAID4H;
}
break;
case IPS_DEVICEID_MORPHEUS:
switch (ha->subdevice_id) {
case IPS_SUBDEVICEID_4L:
ha->ad_type = IPS_ADTYPE_SERVERAID4L;
break;
case IPS_SUBDEVICEID_4M:
ha->ad_type = IPS_ADTYPE_SERVERAID4M;
break;
case IPS_SUBDEVICEID_4MX:
ha->ad_type = IPS_ADTYPE_SERVERAID4MX;
break;
case IPS_SUBDEVICEID_4LX:
ha->ad_type = IPS_ADTYPE_SERVERAID4LX;
break;
case IPS_SUBDEVICEID_5I2:
ha->ad_type = IPS_ADTYPE_SERVERAID5I2;
break;
case IPS_SUBDEVICEID_5I1:
ha->ad_type = IPS_ADTYPE_SERVERAID5I1;
break;
}
break;
}
}
/****************************************************************************/
/* */
/* Routine Name: ips_get_bios_version */
/* */
/* Routine Description: */
/* */
/* Get the BIOS revision number */
/* */
/****************************************************************************/
static void
ips_get_bios_version(ips_ha_t *ha, int intr) {
ips_scb_t *scb;
int ret;
uint8_t major;
uint8_t minor;
uint8_t subminor;
uint8_t *buffer;
char hexDigits[] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'};
METHOD_TRACE("ips_get_bios_version", 1);
major = 0;
minor = 0;
strncpy(ha->bios_version, " ?", 8);
if (ha->device_id == IPS_DEVICEID_COPPERHEAD) {
if (IPS_USE_MEMIO(ha)) {
/* Memory Mapped I/O */
/* test 1st byte */
writel(0, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (readb(ha->mem_ptr + IPS_REG_FLDP) != 0x55)
return;
writel(1, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (readb(ha->mem_ptr + IPS_REG_FLDP) != 0xAA)
return;
/* Get Major version */
writel(0x1FF, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
major = readb(ha->mem_ptr + IPS_REG_FLDP);
/* Get Minor version */
writel(0x1FE, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
minor = readb(ha->mem_ptr + IPS_REG_FLDP);
/* Get SubMinor version */
writel(0x1FD, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
subminor = readb(ha->mem_ptr + IPS_REG_FLDP);
} else {
/* Programmed I/O */
/* test 1st byte */
outl(0, ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (inb(ha->io_addr + IPS_REG_FLDP) != 0x55)
return ;
outl(cpu_to_le32(1), ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (inb(ha->io_addr + IPS_REG_FLDP) != 0xAA)
return ;
/* Get Major version */
outl(cpu_to_le32(0x1FF), ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
major = inb(ha->io_addr + IPS_REG_FLDP);
/* Get Minor version */
outl(cpu_to_le32(0x1FE), ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
minor = inb(ha->io_addr + IPS_REG_FLDP);
/* Get SubMinor version */
outl(cpu_to_le32(0x1FD), ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
subminor = inb(ha->io_addr + IPS_REG_FLDP);
}
} else {
/* Morpheus Family - Send Command to the card */
buffer = kmalloc(0x1000, GFP_ATOMIC);
if (!buffer)
return;
memset(buffer, 0, 0x1000);
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_RW_BIOSFW;
scb->cmd.flashfw.op_code = IPS_CMD_RW_BIOSFW;
scb->cmd.flashfw.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.flashfw.type = 1;
scb->cmd.flashfw.direction = 0;
scb->cmd.flashfw.count = cpu_to_le32(0x800);
scb->cmd.flashfw.total_packets = 1;
scb->cmd.flashfw.packet_num = 0;
scb->data_len = 0x1000;
scb->data_busaddr = pci_map_single(ha->pcidev, buffer, scb->data_len,
IPS_DMA_DIR(scb));
scb->cmd.flashfw.buffer_addr = scb->data_busaddr;
scb->flags |= IPS_SCB_MAP_SINGLE;
/* issue the command */
if (((ret = ips_send_wait(ha, scb, ips_cmd_timeout, intr)) == IPS_FAILURE) ||
(ret == IPS_SUCCESS_IMM) ||
((scb->basic_status & IPS_GSC_STATUS_MASK) > 1)) {
/* Error occurred */
kfree(buffer);
return;
}
if ((buffer[0xC0] == 0x55) && (buffer[0xC1] == 0xAA)) {
major = buffer[0x1ff + 0xC0]; /* Offset 0x1ff after the header (0xc0) */
minor = buffer[0x1fe + 0xC0]; /* Offset 0x1fe after the header (0xc0) */
subminor = buffer[0x1fd + 0xC0]; /* Offset 0x1fd after the header (0xc0) */
} else {
return;
}
kfree(buffer);
}
ha->bios_version[0] = hexDigits[(major & 0xF0) >> 4];
ha->bios_version[1] = '.';
ha->bios_version[2] = hexDigits[major & 0x0F];
ha->bios_version[3] = hexDigits[subminor];
ha->bios_version[4] = '.';
ha->bios_version[5] = hexDigits[(minor & 0xF0) >> 4];
ha->bios_version[6] = hexDigits[minor & 0x0F];
ha->bios_version[7] = 0;
}
/****************************************************************************/
/* */
/* Routine Name: ips_hainit */
/* */
/* Routine Description: */
/* */
/* Initialize the controller */
/* */
/* NOTE: Assumes to be called from with a lock */
/* */
/****************************************************************************/
static int
ips_hainit(ips_ha_t *ha) {
int i;
struct timeval tv;
METHOD_TRACE("ips_hainit", 1);
if (!ha)
return (0);
if (ha->func.statinit)
(*ha->func.statinit)(ha);
if (ha->func.enableint)
(*ha->func.enableint)(ha);
/* Send FFDC */
ha->reset_count = 1;
do_gettimeofday(&tv);
ha->last_ffdc = tv.tv_sec;
ips_ffdc_reset(ha, IPS_INTR_IORL);
if (!ips_read_config(ha, IPS_INTR_IORL)) {
printk(KERN_WARNING "(%s%d) unable to read config from controller.\n",
ips_name, ha->host_num);
return (0);
} /* end if */
if (!ips_read_adapter_status(ha, IPS_INTR_IORL)) {
printk(KERN_WARNING "(%s%d) unable to read controller status.\n",
ips_name, ha->host_num);
return (0);
}
/* Identify this controller */
ips_identify_controller(ha);
if (!ips_read_subsystem_parameters(ha, IPS_INTR_IORL)) {
printk(KERN_WARNING "(%s%d) unable to read subsystem parameters.\n",
ips_name, ha->host_num);
return (0);
}
/* write nvram user page 5 */
if (!ips_write_driver_status(ha, IPS_INTR_IORL)) {
printk(KERN_WARNING "(%s%d) unable to write driver info to controller.\n",
ips_name, ha->host_num);
return (0);
}
/* set limits on SID, LUN, BUS */
ha->ntargets = IPS_MAX_TARGETS + 1;
ha->nlun = 1;
ha->nbus = (ha->enq->ucMaxPhysicalDevices / IPS_MAX_TARGETS) + 1;
switch (ha->conf->logical_drive[0].ucStripeSize) {
case 4:
ha->max_xfer = 0x10000;
break;
case 5:
ha->max_xfer = 0x20000;
break;
case 6:
ha->max_xfer = 0x40000;
break;
case 7:
default:
ha->max_xfer = 0x80000;
break;
}
/* setup max concurrent commands */
if (le32_to_cpu(ha->subsys->param[4]) & 0x1) {
/* Use the new method */
ha->max_cmds = ha->enq->ucConcurrentCmdCount;
} else {
/* use the old method */
switch (ha->conf->logical_drive[0].ucStripeSize) {
case 4:
ha->max_cmds = 32;
break;
case 5:
ha->max_cmds = 16;
break;
case 6:
ha->max_cmds = 8;
break;
case 7:
default:
ha->max_cmds = 4;
break;
}
}
/* Limit the Active Commands on a Lite Adapter */
if ((ha->ad_type == IPS_ADTYPE_SERVERAID3L) ||
(ha->ad_type == IPS_ADTYPE_SERVERAID4L) ||
(ha->ad_type == IPS_ADTYPE_SERVERAID4LX)) {
if ((ha->max_cmds > MaxLiteCmds) && (MaxLiteCmds))
ha->max_cmds = MaxLiteCmds;
}
/* set controller IDs */
ha->ha_id[0] = IPS_ADAPTER_ID;
for (i = 1; i < ha->nbus; i++) {
ha->ha_id[i] = ha->conf->init_id[i-1] & 0x1f;
ha->dcdb_active[i-1] = 0;
}
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_next */
/* */
/* Routine Description: */
/* */
/* Take the next command off the queue and send it to the controller */
/* */
/****************************************************************************/
static void
ips_next(ips_ha_t *ha, int intr) {
ips_scb_t *scb;
Scsi_Cmnd *SC;
Scsi_Cmnd *p;
Scsi_Cmnd *q;
ips_copp_wait_item_t *item;
int ret;
unsigned long cpu_flags;
unsigned long cpu_flags2 = 0;
struct Scsi_Host *host;
METHOD_TRACE("ips_next", 1);
if (!ha)
return ;
host = ips_sh[ha->host_num];
/*
* Block access to the queue function so
* this command won't time out
*/
if (intr == IPS_INTR_ON)
IPS_LOCK_SAVE(host->host_lock, cpu_flags2);
if ((ha->subsys->param[3] & 0x300000) && ( ha->scb_activelist.count == 0 )) {
struct timeval tv;
do_gettimeofday(&tv);
IPS_HA_LOCK(cpu_flags);
if (tv.tv_sec - ha->last_ffdc > IPS_SECS_8HOURS) {
ha->last_ffdc = tv.tv_sec;
IPS_HA_UNLOCK(cpu_flags);
ips_ffdc_time(ha);
} else {
IPS_HA_UNLOCK(cpu_flags);
}
}
if (intr == IPS_INTR_ON)
IPS_UNLOCK_RESTORE(host->host_lock, cpu_flags2);
/*
* Send passthru commands
* These have priority over normal I/O
* but shouldn't affect performance too much
* since we limit the number that can be active
* on the card at any one time
*/
IPS_HA_LOCK(cpu_flags);
IPS_QUEUE_LOCK(&ha->copp_waitlist);
while ((ha->num_ioctl < IPS_MAX_IOCTL) &&
(ha->copp_waitlist.head) &&
(scb = ips_getscb(ha))) {
IPS_QUEUE_UNLOCK(&ha->copp_waitlist);
item = ips_removeq_copp_head(&ha->copp_waitlist);
ha->num_ioctl++;
IPS_HA_UNLOCK(cpu_flags);
scb->scsi_cmd = item->scsi_cmd;
scb->sem = item->sem;
kfree(item);
ret = ips_make_passthru(ha, scb->scsi_cmd, scb, intr);
switch (ret) {
case IPS_FAILURE:
if (scb->scsi_cmd) {
scb->scsi_cmd->result = DID_ERROR << 16;
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
}
ips_freescb(ha, scb);
break;
case IPS_SUCCESS_IMM:
if (scb->scsi_cmd) {
scb->scsi_cmd->result = DID_OK << 16;
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
}
ips_freescb(ha, scb);
break;
default:
break;
} /* end case */
if (ret != IPS_SUCCESS) {
IPS_HA_LOCK(cpu_flags);
IPS_QUEUE_LOCK(&ha->copp_waitlist);
ha->num_ioctl--;
continue;
}
ret = ips_send_cmd(ha, scb);
if (ret == IPS_SUCCESS)
ips_putq_scb_head(&ha->scb_activelist, scb);
else
ha->num_ioctl--;
switch(ret) {
case IPS_FAILURE:
if (scb->scsi_cmd) {
scb->scsi_cmd->result = DID_ERROR << 16;
}
ips_freescb(ha, scb);
break;
case IPS_SUCCESS_IMM:
ips_freescb(ha, scb);
break;
default:
break;
} /* end case */
IPS_HA_LOCK(cpu_flags);
IPS_QUEUE_LOCK(&ha->copp_waitlist);
}
IPS_QUEUE_UNLOCK(&ha->copp_waitlist);
IPS_HA_UNLOCK(cpu_flags);
/*
* Send "Normal" I/O commands
*/
IPS_HA_LOCK(cpu_flags);
IPS_QUEUE_LOCK(&ha->scb_waitlist);
p = ha->scb_waitlist.head;
IPS_QUEUE_UNLOCK(&ha->scb_waitlist);
while ((p) && (scb = ips_getscb(ha))) {
if ((p->channel > 0) && (ha->dcdb_active[p->channel-1] & (1 << p->target))) {
ips_freescb(ha, scb);
p = (Scsi_Cmnd *) p->host_scribble;
continue;
}
q = p;
SC = ips_removeq_wait(&ha->scb_waitlist, q);
if (SC == NULL) /* Should never happen, but good to check anyway */
continue;
IPS_HA_UNLOCK(cpu_flags); /* Unlock HA after command is taken off queue */
SC->result = DID_OK;
SC->host_scribble = NULL;
memset(SC->sense_buffer, 0, sizeof(SC->sense_buffer));
scb->target_id = SC->target;
scb->lun = SC->lun;
scb->bus = SC->channel;
scb->scsi_cmd = SC;
scb->breakup = 0;
scb->data_len = 0;
scb->callback = ipsintr_done;
scb->timeout = ips_cmd_timeout;
memset(&scb->cmd, 0, 16);
/* copy in the CDB */
memcpy(scb->cdb, SC->cmnd, SC->cmd_len);
/* Now handle the data buffer */
if (SC->use_sg) {
struct scatterlist *sg;
int i;
sg = SC->request_buffer;
scb->sg_count = pci_map_sg(ha->pcidev, sg, SC->use_sg,
IPS_DMA_DIR(scb));
scb->flags |= IPS_SCB_MAP_SG;
if (scb->sg_count == 1) {
if (sg_dma_len(sg) > ha->max_xfer) {
scb->breakup = 1;
scb->data_len = ha->max_xfer;
} else
scb->data_len = sg_dma_len(sg);
scb->dcdb.transfer_length = scb->data_len;
scb->data_busaddr = sg_dma_address(sg);
scb->sg_len = 0;
} else {
/* Check for the first Element being bigger than MAX_XFER */
if (sg_dma_len(&sg[0]) > ha->max_xfer) {
scb->sg_list[0].address = cpu_to_le32(sg_dma_address(&sg[0]));
scb->sg_list[0].length = ha->max_xfer;
scb->data_len = ha->max_xfer;
scb->breakup = 0;
scb->sg_break=1;
scb->sg_len = 1;
} else {
for (i = 0; i < scb->sg_count; i++) {
scb->sg_list[i].address = cpu_to_le32(sg_dma_address(&sg[i]));
scb->sg_list[i].length = cpu_to_le32(sg_dma_len(&sg[i]));
if (scb->data_len + sg_dma_len(&sg[i]) > ha->max_xfer) {
/*
* Data Breakup required
*/
scb->breakup = i;
break;
}
scb->data_len += sg_dma_len(&sg[i]);
}
if (!scb->breakup)
scb->sg_len = scb->sg_count;
else
scb->sg_len = scb->breakup;
}
scb->dcdb.transfer_length = scb->data_len;
scb->data_busaddr = scb->sg_busaddr;
}
} else {
if (SC->request_bufflen) {
if (SC->request_bufflen > ha->max_xfer) {
/*
* Data breakup required
*/
scb->breakup = 1;
scb->data_len = ha->max_xfer;
} else {
scb->data_len = SC->request_bufflen;
}
scb->dcdb.transfer_length = scb->data_len;
scb->data_busaddr = pci_map_single(ha->pcidev, SC->request_buffer,
scb->data_len, IPS_DMA_DIR(scb));
scb->flags |= IPS_SCB_MAP_SINGLE;
scb->sg_len = 0;
} else {
scb->data_busaddr = 0L;
scb->sg_len = 0;
scb->data_len = 0;
scb->dcdb.transfer_length = 0;
}
}
scb->dcdb.cmd_attribute = ips_command_direction[scb->scsi_cmd->cmnd[0]];
if (!scb->dcdb.cmd_attribute & 0x3)
scb->dcdb.transfer_length = 0;
if (scb->data_len >= IPS_MAX_XFER) {
scb->dcdb.cmd_attribute |= IPS_TRANSFER64K;
scb->dcdb.transfer_length = 0;
}
ret = ips_send_cmd(ha, scb);
if (ret == IPS_SUCCESS)
ips_putq_scb_head(&ha->scb_activelist, scb);
switch(ret) {
case IPS_FAILURE:
if (scb->scsi_cmd) {
scb->scsi_cmd->result = DID_ERROR << 16;
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
}
if (scb->bus)
ha->dcdb_active[scb->bus-1] &= ~(1 << scb->target_id);
ips_freescb(ha, scb);
break;
case IPS_SUCCESS_IMM:
if (scb->scsi_cmd)
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
if (scb->bus)
ha->dcdb_active[scb->bus-1] &= ~(1 << scb->target_id);
ips_freescb(ha, scb);
break;
default:
break;
} /* end case */
p = (Scsi_Cmnd *) p->host_scribble;
IPS_HA_LOCK(cpu_flags);
} /* end while */
IPS_HA_UNLOCK(cpu_flags);
}
/****************************************************************************/
/* */
/* Routine Name: ips_putq_scb_head */
/* */
/* Routine Description: */
/* */
/* Add an item to the head of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline void
ips_putq_scb_head(ips_scb_queue_t *queue, ips_scb_t *item) {
METHOD_TRACE("ips_putq_scb_head", 1);
if (!item)
return ;
IPS_QUEUE_LOCK(queue);
item->q_next = queue->head;
queue->head = item;
if (!queue->tail)
queue->tail = item;
queue->count++;
IPS_QUEUE_UNLOCK(queue);
}
/****************************************************************************/
/* */
/* Routine Name: ips_putq_scb_tail */
/* */
/* Routine Description: */
/* */
/* Add an item to the tail of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline void
ips_putq_scb_tail(ips_scb_queue_t *queue, ips_scb_t *item) {
METHOD_TRACE("ips_putq_scb_tail", 1);
if (!item)
return ;
IPS_QUEUE_LOCK(queue);
item->q_next = NULL;
if (queue->tail)
queue->tail->q_next = item;
queue->tail = item;
if (!queue->head)
queue->head = item;
queue->count++;
IPS_QUEUE_UNLOCK(queue);
}
/****************************************************************************/
/* */
/* Routine Name: ips_removeq_scb_head */
/* */
/* Routine Description: */
/* */
/* Remove the head of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline ips_scb_t *
ips_removeq_scb_head(ips_scb_queue_t *queue) {
ips_scb_t *item;
METHOD_TRACE("ips_removeq_scb_head", 1);
IPS_QUEUE_LOCK(queue);
item = queue->head;
if (!item) {
IPS_QUEUE_UNLOCK(queue);
return (NULL);
}
queue->head = item->q_next;
item->q_next = NULL;
if (queue->tail == item)
queue->tail = NULL;
queue->count--;
IPS_QUEUE_UNLOCK(queue);
return (item);
}
/****************************************************************************/
/* */
/* Routine Name: ips_removeq_scb */
/* */
/* Routine Description: */
/* */
/* Remove an item from a queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline ips_scb_t *
ips_removeq_scb(ips_scb_queue_t *queue, ips_scb_t *item) {
ips_scb_t *p;
METHOD_TRACE("ips_removeq_scb", 1);
if (!item)
return (NULL);
IPS_QUEUE_LOCK(queue);
if (item == queue->head) {
IPS_QUEUE_UNLOCK(queue);
return (ips_removeq_scb_head(queue));
}
p = queue->head;
while ((p) && (item != p->q_next))
p = p->q_next;
if (p) {
/* found a match */
p->q_next = item->q_next;
if (!item->q_next)
queue->tail = p;
item->q_next = NULL;
queue->count--;
IPS_QUEUE_UNLOCK(queue);
return (item);
}
IPS_QUEUE_UNLOCK(queue);
return (NULL);
}
/****************************************************************************/
/* */
/* Routine Name: ips_putq_wait_head */
/* */
/* Routine Description: */
/* */
/* Add an item to the head of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline void
ips_putq_wait_head(ips_wait_queue_t *queue, Scsi_Cmnd *item) {
METHOD_TRACE("ips_putq_wait_head", 1);
if (!item)
return ;
IPS_QUEUE_LOCK(queue);
item->host_scribble = (char *) queue->head;
queue->head = item;
if (!queue->tail)
queue->tail = item;
queue->count++;
IPS_QUEUE_UNLOCK(queue);
}
/****************************************************************************/
/* */
/* Routine Name: ips_putq_wait_tail */
/* */
/* Routine Description: */
/* */
/* Add an item to the tail of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline void
ips_putq_wait_tail(ips_wait_queue_t *queue, Scsi_Cmnd *item) {
METHOD_TRACE("ips_putq_wait_tail", 1);
if (!item)
return ;
IPS_QUEUE_LOCK(queue);
item->host_scribble = NULL;
if (queue->tail)
queue->tail->host_scribble = (char *)item;
queue->tail = item;
if (!queue->head)
queue->head = item;
queue->count++;
IPS_QUEUE_UNLOCK(queue);
}
/****************************************************************************/
/* */
/* Routine Name: ips_removeq_wait_head */
/* */
/* Routine Description: */
/* */
/* Remove the head of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline Scsi_Cmnd *
ips_removeq_wait_head(ips_wait_queue_t *queue) {
Scsi_Cmnd *item;
METHOD_TRACE("ips_removeq_wait_head", 1);
IPS_QUEUE_LOCK(queue);
item = queue->head;
if (!item) {
IPS_QUEUE_UNLOCK(queue);
return (NULL);
}
queue->head = (Scsi_Cmnd *) item->host_scribble;
item->host_scribble = NULL;
if (queue->tail == item)
queue->tail = NULL;
queue->count--;
IPS_QUEUE_UNLOCK(queue);
return (item);
}
/****************************************************************************/
/* */
/* Routine Name: ips_removeq_wait */
/* */
/* Routine Description: */
/* */
/* Remove an item from a queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline Scsi_Cmnd *
ips_removeq_wait(ips_wait_queue_t *queue, Scsi_Cmnd *item) {
Scsi_Cmnd *p;
METHOD_TRACE("ips_removeq_wait", 1);
if (!item)
return (NULL);
IPS_QUEUE_LOCK(queue);
if (item == queue->head) {
IPS_QUEUE_UNLOCK(queue);
return (ips_removeq_wait_head(queue));
}
p = queue->head;
while ((p) && (item != (Scsi_Cmnd *) p->host_scribble))
p = (Scsi_Cmnd *) p->host_scribble;
if (p) {
/* found a match */
p->host_scribble = item->host_scribble;
if (!item->host_scribble)
queue->tail = p;
item->host_scribble = NULL;
queue->count--;
IPS_QUEUE_UNLOCK(queue);
return (item);
}
IPS_QUEUE_UNLOCK(queue);
return (NULL);
}
/****************************************************************************/
/* */
/* Routine Name: ips_putq_copp_head */
/* */
/* Routine Description: */
/* */
/* Add an item to the head of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline void
ips_putq_copp_head(ips_copp_queue_t *queue, ips_copp_wait_item_t *item) {
METHOD_TRACE("ips_putq_copp_head", 1);
if (!item)
return ;
IPS_QUEUE_LOCK(queue);
item->next = queue->head;
queue->head = item;
if (!queue->tail)
queue->tail = item;
queue->count++;
IPS_QUEUE_UNLOCK(queue);
}
/****************************************************************************/
/* */
/* Routine Name: ips_putq_copp_tail */
/* */
/* Routine Description: */
/* */
/* Add an item to the tail of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline void
ips_putq_copp_tail(ips_copp_queue_t *queue, ips_copp_wait_item_t *item) {
METHOD_TRACE("ips_putq_copp_tail", 1);
if (!item)
return ;
IPS_QUEUE_LOCK(queue);
item->next = NULL;
if (queue->tail)
queue->tail->next = item;
queue->tail = item;
if (!queue->head)
queue->head = item;
queue->count++;
IPS_QUEUE_UNLOCK(queue);
}
/****************************************************************************/
/* */
/* Routine Name: ips_removeq_copp_head */
/* */
/* Routine Description: */
/* */
/* Remove the head of the queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline ips_copp_wait_item_t *
ips_removeq_copp_head(ips_copp_queue_t *queue) {
ips_copp_wait_item_t *item;
METHOD_TRACE("ips_removeq_copp_head", 1);
IPS_QUEUE_LOCK(queue);
item = queue->head;
if (!item) {
IPS_QUEUE_UNLOCK(queue);
return (NULL);
}
queue->head = item->next;
item->next = NULL;
if (queue->tail == item)
queue->tail = NULL;
queue->count--;
IPS_QUEUE_UNLOCK(queue);
return (item);
}
/****************************************************************************/
/* */
/* Routine Name: ips_removeq_copp */
/* */
/* Routine Description: */
/* */
/* Remove an item from a queue */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static inline ips_copp_wait_item_t *
ips_removeq_copp(ips_copp_queue_t *queue, ips_copp_wait_item_t *item) {
ips_copp_wait_item_t *p;
METHOD_TRACE("ips_removeq_copp", 1);
if (!item)
return (NULL);
IPS_QUEUE_LOCK(queue);
if (item == queue->head) {
IPS_QUEUE_UNLOCK(queue);
return (ips_removeq_copp_head(queue));
}
p = queue->head;
while ((p) && (item != p->next))
p = p->next;
if (p) {
/* found a match */
p->next = item->next;
if (!item->next)
queue->tail = p;
item->next = NULL;
queue->count--;
IPS_QUEUE_UNLOCK(queue);
return (item);
}
IPS_QUEUE_UNLOCK(queue);
return (NULL);
}
/****************************************************************************/
/* */
/* Routine Name: ipsintr_blocking */
/* */
/* Routine Description: */
/* */
/* Finalize an interrupt for internal commands */
/* */
/****************************************************************************/
static void
ipsintr_blocking(ips_ha_t *ha, ips_scb_t *scb) {
METHOD_TRACE("ipsintr_blocking", 2);
ips_freescb(ha, scb);
if ((ha->waitflag == TRUE) &&
(ha->cmd_in_progress == scb->cdb[0])) {
ha->waitflag = FALSE;
return ;
}
}
/****************************************************************************/
/* */
/* Routine Name: ipsintr_done */
/* */
/* Routine Description: */
/* */
/* Finalize an interrupt for non-internal commands */
/* */
/****************************************************************************/
static void
ipsintr_done(ips_ha_t *ha, ips_scb_t *scb) {
METHOD_TRACE("ipsintr_done", 2);
if (!scb) {
printk(KERN_WARNING "(%s%d) Spurious interrupt; scb NULL.\n",
ips_name, ha->host_num);
return ;
}
if (scb->scsi_cmd == NULL) {
/* unexpected interrupt */
printk(KERN_WARNING "(%s%d) Spurious interrupt; scsi_cmd not set.\n",
ips_name, ha->host_num);
return;
}
ips_done(ha, scb);
}
/****************************************************************************/
/* */
/* Routine Name: ips_done */
/* */
/* Routine Description: */
/* */
/* Do housekeeping on completed commands */
/* */
/****************************************************************************/
static void
ips_done(ips_ha_t *ha, ips_scb_t *scb) {
int ret;
unsigned long cpu_flags;
METHOD_TRACE("ips_done", 1);
if (!scb)
return ;
if ((scb->scsi_cmd) && (ips_is_passthru(scb->scsi_cmd))) {
ips_cleanup_passthru(ha, scb);
IPS_HA_LOCK(cpu_flags);
ha->num_ioctl--;
IPS_HA_UNLOCK(cpu_flags);
} else {
/*
* Check to see if this command had too much
* data and had to be broke up. If so, queue
* the rest of the data and continue.
*/
if ((scb->breakup) || (scb->sg_break)) {
/* we had a data breakup */
uint8_t bk_save;
bk_save = scb->breakup;
scb->breakup = 0;
mod_timer(&scb->scsi_cmd->eh_timeout, jiffies + 120 * HZ);
if (scb->sg_count) {
/* S/G request */
struct scatterlist *sg;
int i;
sg = scb->scsi_cmd->request_buffer;
if (scb->sg_count == 1) {
if (sg_dma_len(sg) - (bk_save * ha->max_xfer) > ha->max_xfer) {
/* Further breakup required */
scb->data_len = ha->max_xfer;
scb->data_busaddr = sg_dma_address(sg) + (bk_save * ha->max_xfer);
scb->breakup = bk_save + 1;
} else {
scb->data_len = sg_dma_len(sg) - (bk_save * ha->max_xfer);
scb->data_busaddr = sg_dma_address(sg) + (bk_save * ha->max_xfer);
}
scb->dcdb.transfer_length = scb->data_len;
scb->sg_len = 0;
} else {
/* We're here because there was MORE than one s/g unit. */
/* bk_save points to which sg unit to look at */
/* sg_break points to how far through this unit we are */
/* NOTE: We will not move from one sg to another here, */
/* just finish the one we are in. Not the most */
/* efficient, but it keeps it from getting too hacky */
/* IF sg_break is non-zero, then just work on this current sg piece, */
/* pointed to by bk_save */
if (scb->sg_break) {
scb->sg_len = 1;
scb->sg_list[0].address = sg_dma_address(&sg[bk_save])
+ ha->max_xfer*scb->sg_break;
if (ha->max_xfer > sg_dma_len(&sg[bk_save]) - ha->max_xfer * scb->sg_break)
scb->sg_list[0].length = sg_dma_len(&sg[bk_save]) - ha->max_xfer * scb->sg_break;
else
scb->sg_list[0].length = ha->max_xfer;
scb->sg_break++; /* MUST GO HERE for math below to work */
scb->data_len = scb->sg_list[0].length;;
if (sg_dma_len(&sg[bk_save]) <= ha->max_xfer * scb->sg_break ) {
scb->sg_break = 0; /* No more work in this unit */
if (( bk_save + 1 ) >= scb->sg_count)
scb->breakup = 0;
else
scb->breakup = bk_save + 1;
}
} else {
/* ( sg_break == 0 ), so this is our first look at a new sg piece */
if (sg_dma_len(&sg[bk_save]) > ha->max_xfer) {
scb->sg_list[0].address = sg_dma_address(&sg[bk_save]);
scb->sg_list[0].length = ha->max_xfer;
scb->breakup = bk_save;
scb->sg_break = 1;
scb->data_len = ha->max_xfer;
scb->sg_len = 1;
} else {
/* OK, the next sg is a short one, so loop until full */
scb->data_len = 0;
scb->sg_len = 0;
scb->sg_break = 0;
/* We're only doing full units here */
for (i = bk_save; i < scb->sg_count; i++) {
scb->sg_list[i - bk_save].address = sg_dma_address(&sg[i]);
scb->sg_list[i - bk_save].length = cpu_to_le32(sg_dma_len(&sg[i]));
if (scb->data_len + sg_dma_len(&sg[i]) > ha->max_xfer) {
scb->breakup = i; /* sneaky, if not more work, than breakup is 0 */
break;
}
scb->data_len += sg_dma_len(&sg[i]);
scb->sg_len++; /* only if we didn't get too big */
}
}
}
/* Also, we need to be sure we don't queue work ( breakup != 0 )
if no more sg units for next time */
scb->dcdb.transfer_length = scb->data_len;
scb->data_busaddr = scb->sg_busaddr;
}
} else {
/* Non S/G Request */
pci_unmap_single(ha->pcidev, scb->data_busaddr, scb->data_len,
IPS_DMA_DIR(scb));
if ((scb->scsi_cmd->request_bufflen - (bk_save * ha->max_xfer)) > ha->max_xfer) {
/* Further breakup required */
scb->data_len = ha->max_xfer;
scb->data_busaddr = pci_map_single(ha->pcidev,
scb->scsi_cmd->request_buffer +
(bk_save * ha->max_xfer),
scb->data_len, IPS_DMA_DIR(scb));
scb->breakup = bk_save + 1;
} else {
scb->data_len = scb->scsi_cmd->request_bufflen - (bk_save * ha->max_xfer);
scb->data_busaddr = pci_map_single(ha->pcidev,
scb->scsi_cmd->request_buffer +
(bk_save * ha->max_xfer),
scb->data_len, IPS_DMA_DIR(scb));
}
scb->dcdb.transfer_length = scb->data_len;
scb->sg_len = 0;
}
scb->dcdb.cmd_attribute |= ips_command_direction[scb->scsi_cmd->cmnd[0]];
if (!scb->dcdb.cmd_attribute & 0x3)
scb->dcdb.transfer_length = 0;
if (scb->data_len >= IPS_MAX_XFER) {
scb->dcdb.cmd_attribute |= IPS_TRANSFER64K;
scb->dcdb.transfer_length = 0;
}
ret = ips_send_cmd(ha, scb);
switch(ret) {
case IPS_FAILURE:
if (scb->scsi_cmd) {
scb->scsi_cmd->result = DID_ERROR << 16;
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
}
ips_freescb(ha, scb);
break;
case IPS_SUCCESS_IMM:
if (scb->scsi_cmd) {
scb->scsi_cmd->result = DID_ERROR << 16;
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
}
ips_freescb(ha, scb);
break;
default:
break;
} /* end case */
return ;
}
} /* end if passthru */
if (scb->bus) {
IPS_HA_LOCK(cpu_flags);
ha->dcdb_active[scb->bus-1] &= ~(1 << scb->target_id);
IPS_HA_UNLOCK(cpu_flags);
}
scb->scsi_cmd->scsi_done(scb->scsi_cmd);
ips_freescb(ha, scb);
}
/****************************************************************************/
/* */
/* Routine Name: ips_map_status */
/* */
/* Routine Description: */
/* */
/* Map ServeRAID error codes to Linux Error Codes */
/* */
/****************************************************************************/
static int
ips_map_status(ips_ha_t *ha, ips_scb_t *scb, ips_stat_t *sp) {
int errcode;
int device_error;
uint32_t transfer_len;
IPS_DCDB_TABLE_TAPE *tapeDCDB;
METHOD_TRACE("ips_map_status", 1);
if (scb->bus) {
DEBUG_VAR(2, "(%s%d) Physical device error (%d %d %d): %x %x, Sense Key: %x, ASC: %x, ASCQ: %x",
ips_name,
ha->host_num,
scb->scsi_cmd->channel,
scb->scsi_cmd->target,
scb->scsi_cmd->lun,
scb->basic_status,
scb->extended_status,
scb->extended_status == IPS_ERR_CKCOND ? scb->dcdb.sense_info[2] & 0xf : 0,
scb->extended_status == IPS_ERR_CKCOND ? scb->dcdb.sense_info[12] : 0,
scb->extended_status == IPS_ERR_CKCOND ? scb->dcdb.sense_info[13] : 0);
}
/* default driver error */
errcode = DID_ERROR;
device_error = 0;
switch (scb->basic_status & IPS_GSC_STATUS_MASK) {
case IPS_CMD_TIMEOUT:
errcode = DID_TIME_OUT;
break;
case IPS_INVAL_OPCO:
case IPS_INVAL_CMD_BLK:
case IPS_INVAL_PARM_BLK:
case IPS_LD_ERROR:
case IPS_CMD_CMPLT_WERROR:
break;
case IPS_PHYS_DRV_ERROR:
switch (scb->extended_status) {
case IPS_ERR_SEL_TO:
if (scb->bus)
errcode = DID_NO_CONNECT;
break;
case IPS_ERR_OU_RUN:
if ( ( scb->cmd.dcdb.op_code == IPS_CMD_EXTENDED_DCDB ) ||
( scb->cmd.dcdb.op_code == IPS_CMD_EXTENDED_DCDB_SG ) ) {
tapeDCDB = ( IPS_DCDB_TABLE_TAPE * ) &scb->dcdb;
transfer_len = tapeDCDB->transfer_length;
} else {
transfer_len = ( uint32_t ) scb->dcdb.transfer_length;
}
if ((scb->bus) && (transfer_len < scb->data_len)) {
/* Underrun - set default to no error */
errcode = DID_OK;
/* Restrict access to physical DASD */
if ((scb->scsi_cmd->cmnd[0] == INQUIRY) &&
((((char *) scb->scsi_cmd->buffer)[0] & 0x1f) == TYPE_DISK)) {
/* underflow -- no error */
/* restrict access to physical DASD */
errcode = DID_TIME_OUT;
break;
}
} else
errcode = DID_ERROR;
break;
case IPS_ERR_RECOVERY:
/* don't fail recovered errors */
if (scb->bus)
errcode = DID_OK;
break;
case IPS_ERR_HOST_RESET:
case IPS_ERR_DEV_RESET:
errcode = DID_RESET;
break;
case IPS_ERR_CKCOND:
if (scb->bus) {
if ((scb->cmd.dcdb.op_code == IPS_CMD_EXTENDED_DCDB) ||
(scb->cmd.dcdb.op_code == IPS_CMD_EXTENDED_DCDB_SG)) {
tapeDCDB = (IPS_DCDB_TABLE_TAPE *) &scb->dcdb;
memcpy(scb->scsi_cmd->sense_buffer, tapeDCDB->sense_info,
sizeof(tapeDCDB->sense_info));
} else {
memcpy(scb->scsi_cmd->sense_buffer, scb->dcdb.sense_info,
sizeof(scb->scsi_cmd->sense_buffer));
}
device_error = 2; /* check condition */
}
errcode = DID_OK;
break;
default:
errcode = DID_ERROR;
break;
} /* end switch */
} /* end switch */
scb->scsi_cmd->result = device_error | (errcode << 16);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_send_wait */
/* */
/* Routine Description: */
/* */
/* Send a command to the controller and wait for it to return */
/* */
/* The FFDC Time Stamp use this function for the callback, but doesn't */
/* actually need to wait. */
/****************************************************************************/
static int
ips_send_wait(ips_ha_t *ha, ips_scb_t *scb, int timeout, int intr) {
int ret;
METHOD_TRACE("ips_send_wait", 1);
if (intr != IPS_FFDC) { /* Won't be Waiting if this is a Time Stamp */
ha->waitflag = TRUE;
ha->cmd_in_progress = scb->cdb[0];
}
scb->callback = ipsintr_blocking;
ret = ips_send_cmd(ha, scb);
if ((ret == IPS_FAILURE) || (ret == IPS_SUCCESS_IMM))
return (ret);
if (intr != IPS_FFDC) /* Don't Wait around if this is a Time Stamp */
ret = ips_wait(ha, timeout, intr);
return (ret);
}
/****************************************************************************/
/* */
/* Routine Name: ips_send_cmd */
/* */
/* Routine Description: */
/* */
/* Map SCSI commands to ServeRAID commands for logical drives */
/* */
/****************************************************************************/
static int
ips_send_cmd(ips_ha_t *ha, ips_scb_t *scb) {
int ret;
char *sp;
int device_error;
IPS_DCDB_TABLE_TAPE *tapeDCDB;
METHOD_TRACE("ips_send_cmd", 1);
ret = IPS_SUCCESS;
if (!scb->scsi_cmd) {
/* internal command */
if (scb->bus > 0) {
/* ServeRAID commands can't be issued */
/* to real devices -- fail them */
if ((ha->waitflag == TRUE) &&
(ha->cmd_in_progress == scb->cdb[0])) {
ha->waitflag = FALSE;
}
return (1);
}
} else if ((scb->bus == 0) && (!ips_is_passthru(scb->scsi_cmd))) {
/* command to logical bus -- interpret */
ret = IPS_SUCCESS_IMM;
switch (scb->scsi_cmd->cmnd[0]) {
case ALLOW_MEDIUM_REMOVAL:
case REZERO_UNIT:
case ERASE:
case WRITE_FILEMARKS:
case SPACE:
scb->scsi_cmd->result = DID_ERROR << 16;
break;
case START_STOP:
scb->scsi_cmd->result = DID_OK << 16;
case TEST_UNIT_READY:
case INQUIRY:
if (scb->target_id == IPS_ADAPTER_ID) {
/*
* Either we have a TUR
* or we have a SCSI inquiry
*/
if (scb->scsi_cmd->cmnd[0] == TEST_UNIT_READY)
scb->scsi_cmd->result = DID_OK << 16;
if (scb->scsi_cmd->cmnd[0] == INQUIRY) {
IPS_SCSI_INQ_DATA inquiry;
memset(&inquiry, 0, sizeof(IPS_SCSI_INQ_DATA));
inquiry.DeviceType = IPS_SCSI_INQ_TYPE_PROCESSOR;
inquiry.DeviceTypeQualifier = IPS_SCSI_INQ_LU_CONNECTED;
inquiry.Version = IPS_SCSI_INQ_REV2;
inquiry.ResponseDataFormat = IPS_SCSI_INQ_RD_REV2;
inquiry.AdditionalLength = 31;
inquiry.Flags[0] = IPS_SCSI_INQ_Address16;
inquiry.Flags[1] = IPS_SCSI_INQ_WBus16 | IPS_SCSI_INQ_Sync;
strncpy(inquiry.VendorId, "IBM ", 8);
strncpy(inquiry.ProductId, "SERVERAID ", 16);
strncpy(inquiry.ProductRevisionLevel, "1.00", 4);
memcpy(scb->scsi_cmd->request_buffer, &inquiry, scb->scsi_cmd->request_bufflen);
scb->scsi_cmd->result = DID_OK << 16;
}
} else {
scb->cmd.logical_info.op_code = IPS_CMD_GET_LD_INFO;
scb->cmd.logical_info.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.logical_info.reserved = 0;
scb->cmd.logical_info.reserved2 = 0;
scb->data_len = sizeof(ha->adapt->logical_drive_info);
scb->data_busaddr = ha->adapt->hw_status_start + sizeof(IPS_ADAPTER)
- sizeof(IPS_LD_INFO);
scb->cmd.logical_info.buffer_addr = scb->data_busaddr;
ret = IPS_SUCCESS;
}
break;
case REQUEST_SENSE:
ips_reqsen(ha, scb);
scb->scsi_cmd->result = DID_OK << 16;
break;
case READ_6:
case WRITE_6:
if (!scb->sg_len) {
scb->cmd.basic_io.op_code =
(scb->scsi_cmd->cmnd[0] == READ_6) ? IPS_CMD_READ : IPS_CMD_WRITE;
} else {
scb->cmd.basic_io.op_code =
(scb->scsi_cmd->cmnd[0] == READ_6) ? IPS_CMD_READ_SG : IPS_CMD_WRITE_SG;
}
scb->cmd.basic_io.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.basic_io.log_drv = scb->target_id;
scb->cmd.basic_io.sg_count = scb->sg_len;
scb->cmd.basic_io.sg_addr = cpu_to_le32(scb->data_busaddr);
if (scb->cmd.basic_io.lba)
scb->cmd.basic_io.lba = cpu_to_le32(le32_to_cpu(scb->cmd.basic_io.lba) +
le16_to_cpu(scb->cmd.basic_io.sector_count));
else
scb->cmd.basic_io.lba = (((scb->scsi_cmd->cmnd[1] & 0x1f) << 16) |
(scb->scsi_cmd->cmnd[2] << 8) |
(scb->scsi_cmd->cmnd[3]));
scb->cmd.basic_io.sector_count = cpu_to_le16(scb->data_len / IPS_BLKSIZE);
if (le16_to_cpu(scb->cmd.basic_io.sector_count) == 0)
scb->cmd.basic_io.sector_count = cpu_to_le16(256);
scb->cmd.basic_io.reserved = 0;
ret = IPS_SUCCESS;
break;
case READ_10:
case WRITE_10:
if (!scb->sg_len) {
scb->cmd.basic_io.op_code =
(scb->scsi_cmd->cmnd[0] == READ_10) ? IPS_CMD_READ : IPS_CMD_WRITE;
} else {
scb->cmd.basic_io.op_code =
(scb->scsi_cmd->cmnd[0] == READ_10) ? IPS_CMD_READ_SG : IPS_CMD_WRITE_SG;
}
scb->cmd.basic_io.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.basic_io.log_drv = scb->target_id;
scb->cmd.basic_io.sg_count = scb->sg_len;
scb->cmd.basic_io.sg_addr = cpu_to_le32(scb->data_busaddr);
if (scb->cmd.basic_io.lba)
scb->cmd.basic_io.lba = cpu_to_le32(le32_to_cpu(scb->cmd.basic_io.lba) +
le16_to_cpu(scb->cmd.basic_io.sector_count));
else
scb->cmd.basic_io.lba = ((scb->scsi_cmd->cmnd[2] << 24) |
(scb->scsi_cmd->cmnd[3] << 16) |
(scb->scsi_cmd->cmnd[4] << 8) |
scb->scsi_cmd->cmnd[5]);
scb->cmd.basic_io.sector_count = cpu_to_le16(scb->data_len / IPS_BLKSIZE);
scb->cmd.basic_io.reserved = 0;
if (cpu_to_le16(scb->cmd.basic_io.sector_count) == 0) {
/*
* This is a null condition
* we don't have to do anything
* so just return
*/
scb->scsi_cmd->result = DID_OK << 16;
} else
ret = IPS_SUCCESS;
break;
case RESERVE:
case RELEASE:
scb->scsi_cmd->result = DID_OK << 16;
break;
case MODE_SENSE:
scb->cmd.basic_io.op_code = IPS_CMD_ENQUIRY;
scb->cmd.basic_io.command_id = IPS_COMMAND_ID(ha, scb);
scb->data_len = sizeof(*ha->enq);
scb->data_busaddr = pci_map_single(ha->pcidev, ha->enq,
scb->data_len, IPS_DMA_DIR(scb));
scb->cmd.basic_io.sg_addr = scb->data_busaddr;
scb->flags |= IPS_SCB_MAP_SINGLE;
ret = IPS_SUCCESS;
break;
case READ_CAPACITY:
scb->cmd.logical_info.op_code = IPS_CMD_GET_LD_INFO;
scb->cmd.logical_info.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.logical_info.reserved = 0;
scb->cmd.logical_info.reserved2 = 0;
scb->cmd.logical_info.reserved3 = 0;
scb->data_len = sizeof(ha->adapt->logical_drive_info);
scb->data_busaddr = ha->adapt->hw_status_start + sizeof(IPS_ADAPTER)
- sizeof(IPS_LD_INFO);
scb->cmd.logical_info.buffer_addr = scb->data_busaddr;
ret = IPS_SUCCESS;
break;
case SEND_DIAGNOSTIC:
case REASSIGN_BLOCKS:
case FORMAT_UNIT:
case SEEK_10:
case VERIFY:
case READ_DEFECT_DATA:
case READ_BUFFER:
case WRITE_BUFFER:
scb->scsi_cmd->result = DID_OK << 16;
break;
default:
/* Set the Return Info to appear like the Command was */
/* attempted, a Check Condition occurred, and Sense */
/* Data indicating an Invalid CDB OpCode is returned. */
sp = (char *) scb->scsi_cmd->sense_buffer;
memset(sp, 0, sizeof(scb->scsi_cmd->sense_buffer));
sp[0] = 0x70; /* Error Code */
sp[2] = ILLEGAL_REQUEST; /* Sense Key 5 Illegal Req. */
sp[7] = 0x0A; /* Additional Sense Length */
sp[12] = 0x20; /* ASC = Invalid OpCode */
sp[13] = 0x00; /* ASCQ */
device_error = 2; /* Indicate Check Condition */
scb->scsi_cmd->result = device_error | (DID_OK << 16);
break;
} /* end switch */
} /* end if */
if (ret == IPS_SUCCESS_IMM)
return (ret);
/* setup DCDB */
if (scb->bus > 0) {
if (!scb->sg_len)
scb->cmd.dcdb.op_code = IPS_CMD_DCDB;
else
scb->cmd.dcdb.op_code = IPS_CMD_DCDB_SG;
/* If we already know the Device is Not there, no need to attempt a Command */
/* This also protects an NT FailOver Controller from getting CDB's sent to it */
if ( ha->conf->dev[scb->bus-1][scb->target_id].ucState == 0 ) {
scb->scsi_cmd->result = DID_NO_CONNECT << 16;
return (IPS_SUCCESS_IMM);
}
ha->dcdb_active[scb->bus-1] |= (1 << scb->target_id);
scb->cmd.dcdb.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.dcdb.dcdb_address = cpu_to_le32(scb->scb_busaddr +
(unsigned long)&scb->dcdb -
(unsigned long)scb);
scb->cmd.dcdb.reserved = 0;
scb->cmd.dcdb.reserved2 = 0;
scb->cmd.dcdb.reserved3 = 0;
if (ha->subsys->param[4] & 0x00100000) { /* If NEW Tape DCDB is Supported */
if (!scb->sg_len)
scb->cmd.dcdb.op_code = IPS_CMD_EXTENDED_DCDB;
else
scb->cmd.dcdb.op_code = IPS_CMD_EXTENDED_DCDB_SG;
tapeDCDB = (IPS_DCDB_TABLE_TAPE *) &scb->dcdb; /* Use Same Data Area as Old DCDB Struct */
tapeDCDB->device_address = ((scb->bus - 1) << 4) | scb->target_id;
tapeDCDB->cmd_attribute |= IPS_DISCONNECT_ALLOWED;
if (scb->timeout) {
if (scb->timeout <= 10)
tapeDCDB->cmd_attribute |= IPS_TIMEOUT10;
else if (scb->timeout <= 60)
tapeDCDB->cmd_attribute |= IPS_TIMEOUT60;
else
tapeDCDB->cmd_attribute |= IPS_TIMEOUT20M;
}
if (!(tapeDCDB->cmd_attribute & IPS_TIMEOUT20M))
tapeDCDB->cmd_attribute |= IPS_TIMEOUT20M;
tapeDCDB->sense_length = sizeof(tapeDCDB->sense_info);
tapeDCDB->transfer_length = scb->data_len;
tapeDCDB->buffer_pointer = cpu_to_le32(scb->data_busaddr);
tapeDCDB->sg_count = scb->sg_len;
tapeDCDB->cdb_length = scb->scsi_cmd->cmd_len;
memcpy(tapeDCDB->scsi_cdb, scb->scsi_cmd->cmnd, scb->scsi_cmd->cmd_len);
} else {
scb->dcdb.device_address = ((scb->bus - 1) << 4) | scb->target_id;
scb->dcdb.cmd_attribute |= IPS_DISCONNECT_ALLOWED;
if (scb->timeout) {
if (scb->timeout <= 10)
scb->dcdb.cmd_attribute |= IPS_TIMEOUT10;
else if (scb->timeout <= 60)
scb->dcdb.cmd_attribute |= IPS_TIMEOUT60;
else
scb->dcdb.cmd_attribute |= IPS_TIMEOUT20M;
}
if (!(scb->dcdb.cmd_attribute & IPS_TIMEOUT20M))
scb->dcdb.cmd_attribute |= IPS_TIMEOUT20M;
scb->dcdb.sense_length = sizeof(scb->dcdb.sense_info);
scb->dcdb.transfer_length = scb->data_len;
scb->dcdb.buffer_pointer = cpu_to_le32(scb->data_busaddr);
scb->dcdb.sg_count = scb->sg_len;
scb->dcdb.cdb_length = scb->scsi_cmd->cmd_len;
memcpy(scb->dcdb.scsi_cdb, scb->scsi_cmd->cmnd, scb->scsi_cmd->cmd_len);
}
}
return ((*ha->func.issue)(ha, scb));
}
/****************************************************************************/
/* */
/* Routine Name: ips_chk_status */
/* */
/* Routine Description: */
/* */
/* Check the status of commands to logical drives */
/* */
/****************************************************************************/
static void
ips_chkstatus(ips_ha_t *ha, IPS_STATUS *pstatus) {
ips_scb_t *scb;
ips_stat_t *sp;
uint8_t basic_status;
uint8_t ext_status;
int errcode;
METHOD_TRACE("ips_chkstatus", 1);
scb = &ha->scbs[pstatus->fields.command_id];
scb->basic_status = basic_status = pstatus->fields.basic_status & IPS_BASIC_STATUS_MASK;
scb->extended_status = ext_status = pstatus->fields.extended_status;
sp = &ha->sp;
sp->residue_len = 0;
sp->scb_addr = (void *) scb;
/* Remove the item from the active queue */
ips_removeq_scb(&ha->scb_activelist, scb);
if (!scb->scsi_cmd)
/* internal commands are handled in do_ipsintr */
return ;
DEBUG_VAR(2, "(%s%d) ips_chkstatus: cmd 0x%X id %d (%d %d %d)",
ips_name,
ha->host_num,
scb->cdb[0],
scb->cmd.basic_io.command_id,
scb->bus,
scb->target_id,
scb->lun);
if ((scb->scsi_cmd) && (ips_is_passthru(scb->scsi_cmd)))
/* passthru - just returns the raw result */
return ;
errcode = DID_OK;
if (((basic_status & IPS_GSC_STATUS_MASK) == IPS_CMD_SUCCESS) ||
((basic_status & IPS_GSC_STATUS_MASK) == IPS_CMD_RECOVERED_ERROR)) {
if (scb->bus == 0) {
if ((basic_status & IPS_GSC_STATUS_MASK) == IPS_CMD_RECOVERED_ERROR) {
DEBUG_VAR(1, "(%s%d) Recovered Logical Drive Error OpCode: %x, BSB: %x, ESB: %x",
ips_name, ha->host_num,
scb->cmd.basic_io.op_code, basic_status, ext_status);
}
switch (scb->scsi_cmd->cmnd[0]) {
case ALLOW_MEDIUM_REMOVAL:
case REZERO_UNIT:
case ERASE:
case WRITE_FILEMARKS:
case SPACE:
errcode = DID_ERROR;
break;
case START_STOP:
break;
case TEST_UNIT_READY:
if (!ips_online(ha, scb)) {
errcode = DID_TIME_OUT;
}
break;
case INQUIRY:
if (ips_online(ha, scb)) {
ips_inquiry(ha, scb);
} else {
errcode = DID_TIME_OUT;
}
break;
case REQUEST_SENSE:
ips_reqsen(ha, scb);
break;
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case RESERVE:
case RELEASE:
break;
case MODE_SENSE:
if (!ips_online(ha, scb) || !ips_msense(ha, scb)) {
errcode = DID_ERROR;
}
break;
case READ_CAPACITY:
if (ips_online(ha, scb))
ips_rdcap(ha, scb);
else {
errcode = DID_TIME_OUT;
}
break;
case SEND_DIAGNOSTIC:
case REASSIGN_BLOCKS:
break;
case FORMAT_UNIT:
errcode = DID_ERROR;
break;
case SEEK_10:
case VERIFY:
case READ_DEFECT_DATA:
case READ_BUFFER:
case WRITE_BUFFER:
break;
default:
errcode = DID_ERROR;
} /* end switch */
scb->scsi_cmd->result = errcode << 16;
} else { /* bus == 0 */
/* restrict access to physical drives */
if ((scb->scsi_cmd->cmnd[0] == INQUIRY) &&
((((char *) scb->scsi_cmd->buffer)[0] & 0x1f) == TYPE_DISK)) {
scb->scsi_cmd->result = DID_TIME_OUT << 16;
}
} /* else */
} else { /* recovered error / success */
if (scb->bus == 0) {
DEBUG_VAR(1, "(%s%d) Unrecovered Logical Drive Error OpCode: %x, BSB: %x, ESB: %x",
ips_name, ha->host_num,
scb->cmd.basic_io.op_code, basic_status, ext_status);
}
ips_map_status(ha, scb, sp);
} /* else */
}
/****************************************************************************/
/* */
/* Routine Name: ips_online */
/* */
/* Routine Description: */
/* */
/* Determine if a logical drive is online */
/* */
/****************************************************************************/
static int
ips_online(ips_ha_t *ha, ips_scb_t *scb) {
METHOD_TRACE("ips_online", 1);
if (scb->target_id >= IPS_MAX_LD)
return (0);
if ((scb->basic_status & IPS_GSC_STATUS_MASK) > 1) {
memset(&ha->adapt->logical_drive_info, 0, sizeof(ha->adapt->logical_drive_info));
return (0);
}
if (ha->adapt->logical_drive_info.drive_info[scb->target_id].state != IPS_LD_OFFLINE &&
ha->adapt->logical_drive_info.drive_info[scb->target_id].state != IPS_LD_FREE &&
ha->adapt->logical_drive_info.drive_info[scb->target_id].state != IPS_LD_CRS &&
ha->adapt->logical_drive_info.drive_info[scb->target_id].state != IPS_LD_SYS)
return (1);
else
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_inquiry */
/* */
/* Routine Description: */
/* */
/* Simulate an inquiry command to a logical drive */
/* */
/****************************************************************************/
static int
ips_inquiry(ips_ha_t *ha, ips_scb_t *scb) {
IPS_SCSI_INQ_DATA inquiry;
METHOD_TRACE("ips_inquiry", 1);
memset(&inquiry, 0, sizeof(IPS_SCSI_INQ_DATA));
inquiry.DeviceType = IPS_SCSI_INQ_TYPE_DASD;
inquiry.DeviceTypeQualifier = IPS_SCSI_INQ_LU_CONNECTED;
inquiry.Version = IPS_SCSI_INQ_REV2;
inquiry.ResponseDataFormat = IPS_SCSI_INQ_RD_REV2;
inquiry.AdditionalLength = 31;
inquiry.Flags[0] = IPS_SCSI_INQ_Address16;
inquiry.Flags[1] = IPS_SCSI_INQ_WBus16 | IPS_SCSI_INQ_Sync;
strncpy(inquiry.VendorId, "IBM ", 8);
strncpy(inquiry.ProductId, "SERVERAID ", 16);
strncpy(inquiry.ProductRevisionLevel, "1.00", 4);
memcpy(scb->scsi_cmd->request_buffer, &inquiry, scb->scsi_cmd->request_bufflen);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_rdcap */
/* */
/* Routine Description: */
/* */
/* Simulate a read capacity command to a logical drive */
/* */
/****************************************************************************/
static int
ips_rdcap(ips_ha_t *ha, ips_scb_t *scb) {
IPS_SCSI_CAPACITY *cap;
METHOD_TRACE("ips_rdcap", 1);
if (scb->scsi_cmd->bufflen < 8)
return (0);
cap = (IPS_SCSI_CAPACITY *) scb->scsi_cmd->request_buffer;
cap->lba = cpu_to_be32(le32_to_cpu(ha->adapt->logical_drive_info.drive_info[scb->target_id].sector_count) - 1);
cap->len = cpu_to_be32((uint32_t) IPS_BLKSIZE);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_msense */
/* */
/* Routine Description: */
/* */
/* Simulate a mode sense command to a logical drive */
/* */
/****************************************************************************/
static int
ips_msense(ips_ha_t *ha, ips_scb_t *scb) {
uint16_t heads;
uint16_t sectors;
uint32_t cylinders;
IPS_SCSI_MODE_PAGE_DATA mdata;
METHOD_TRACE("ips_msense", 1);
if (le32_to_cpu(ha->enq->ulDriveSize[scb->target_id]) > 0x400000 &&
(ha->enq->ucMiscFlag & 0x8) == 0) {
heads = IPS_NORM_HEADS;
sectors = IPS_NORM_SECTORS;
} else {
heads = IPS_COMP_HEADS;
sectors = IPS_COMP_SECTORS;
}
cylinders = (le32_to_cpu(ha->enq->ulDriveSize[scb->target_id]) - 1) / (heads * sectors);
memset(&mdata, 0, sizeof(IPS_SCSI_MODE_PAGE_DATA));
mdata.hdr.BlockDescLength = 8;
switch (scb->scsi_cmd->cmnd[2] & 0x3f) {
case 0x03: /* page 3 */
mdata.pdata.pg3.PageCode = 3;
mdata.pdata.pg3.PageLength = sizeof(IPS_SCSI_MODE_PAGE3);
mdata.hdr.DataLength = 3 + mdata.hdr.BlockDescLength + mdata.pdata.pg3.PageLength;
mdata.pdata.pg3.TracksPerZone = 0;
mdata.pdata.pg3.AltSectorsPerZone = 0;
mdata.pdata.pg3.AltTracksPerZone = 0;
mdata.pdata.pg3.AltTracksPerVolume = 0;
mdata.pdata.pg3.SectorsPerTrack = cpu_to_be16(sectors);
mdata.pdata.pg3.BytesPerSector = cpu_to_be16(IPS_BLKSIZE);
mdata.pdata.pg3.Interleave = cpu_to_be16(1);
mdata.pdata.pg3.TrackSkew = 0;
mdata.pdata.pg3.CylinderSkew = 0;
mdata.pdata.pg3.flags = IPS_SCSI_MP3_SoftSector;
break;
case 0x4:
mdata.pdata.pg4.PageCode = 4;
mdata.pdata.pg4.PageLength = sizeof(IPS_SCSI_MODE_PAGE4);
mdata.hdr.DataLength = 3 + mdata.hdr.BlockDescLength + mdata.pdata.pg4.PageLength;
mdata.pdata.pg4.CylindersHigh = cpu_to_be16((cylinders >> 8) & 0xFFFF);
mdata.pdata.pg4.CylindersLow = (cylinders & 0xFF);
mdata.pdata.pg4.Heads = heads;
mdata.pdata.pg4.WritePrecompHigh = 0;
mdata.pdata.pg4.WritePrecompLow = 0;
mdata.pdata.pg4.ReducedWriteCurrentHigh = 0;
mdata.pdata.pg4.ReducedWriteCurrentLow = 0;
mdata.pdata.pg4.StepRate = cpu_to_be16(1);
mdata.pdata.pg4.LandingZoneHigh = 0;
mdata.pdata.pg4.LandingZoneLow = 0;
mdata.pdata.pg4.flags = 0;
mdata.pdata.pg4.RotationalOffset = 0;
mdata.pdata.pg4.MediumRotationRate = 0;
break;
default:
return (0);
} /* end switch */
memcpy(scb->scsi_cmd->request_buffer, &mdata, scb->scsi_cmd->request_bufflen);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_reqsen */
/* */
/* Routine Description: */
/* */
/* Simulate a request sense command to a logical drive */
/* */
/****************************************************************************/
static int
ips_reqsen(ips_ha_t *ha, ips_scb_t *scb) {
IPS_SCSI_REQSEN reqsen;
METHOD_TRACE("ips_reqsen", 1);
memset(&reqsen, 0, sizeof(IPS_SCSI_REQSEN));
reqsen.ResponseCode = IPS_SCSI_REQSEN_VALID | IPS_SCSI_REQSEN_CURRENT_ERR;
reqsen.AdditionalLength = 10;
reqsen.AdditionalSenseCode = IPS_SCSI_REQSEN_NO_SENSE;
reqsen.AdditionalSenseCodeQual = IPS_SCSI_REQSEN_NO_SENSE;
memcpy(scb->scsi_cmd->request_buffer, &reqsen, scb->scsi_cmd->request_bufflen);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_free */
/* */
/* Routine Description: */
/* */
/* Free any allocated space for this controller */
/* */
/****************************************************************************/
static void
ips_free(ips_ha_t *ha) {
METHOD_TRACE("ips_free", 1);
if (ha) {
if (ha->enq) {
kfree(ha->enq);
ha->enq = NULL;
}
if (ha->conf) {
kfree(ha->conf);
ha->conf = NULL;
}
if (ha->adapt) {
pci_free_consistent(ha->pcidev,sizeof(IPS_ADAPTER)+ sizeof(IPS_IO_CMD),
ha->adapt, ha->adapt->hw_status_start);
ha->adapt = NULL;
}
if (ha->nvram) {
kfree(ha->nvram);
ha->nvram = NULL;
}
if (ha->subsys) {
kfree(ha->subsys);
ha->subsys = NULL;
}
if (ha->ioctl_data) {
free_pages((unsigned long) ha->ioctl_data, ha->ioctl_order);
ha->ioctl_data = NULL;
ha->ioctl_datasize = 0;
ha->ioctl_order = 0;
}
ips_deallocatescbs(ha, ha->max_cmds);
/* free memory mapped (if applicable) */
if (ha->mem_ptr) {
iounmap(ha->ioremap_ptr);
ha->ioremap_ptr = NULL;
ha->mem_ptr = NULL;
}
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
if (ha->mem_addr)
release_mem_region(ha->mem_addr, ha->mem_len);
#endif
ha->mem_addr = 0;
}
}
/****************************************************************************/
/* */
/* Routine Name: ips_deallocatescbs */
/* */
/* Routine Description: */
/* */
/* Free the command blocks */
/* */
/****************************************************************************/
static int
ips_deallocatescbs(ips_ha_t *ha, int cmds) {
if (ha->scbs) {
pci_free_consistent(ha->pcidev,sizeof(IPS_SG_LIST) * IPS_MAX_SG *
cmds, ha->scbs->sg_list, ha->scbs->sg_busaddr);
pci_free_consistent(ha->pcidev, sizeof(ips_scb_t) * cmds,
ha->scbs, ha->scbs->scb_busaddr);
ha->scbs = NULL;
} /* end if */
return 1;
}
/****************************************************************************/
/* */
/* Routine Name: ips_allocatescbs */
/* */
/* Routine Description: */
/* */
/* Allocate the command blocks */
/* */
/****************************************************************************/
static int
ips_allocatescbs(ips_ha_t *ha) {
ips_scb_t *scb_p;
IPS_SG_LIST* ips_sg;
int i;
dma_addr_t command_dma, sg_dma;
METHOD_TRACE("ips_allocatescbs", 1);
/* Allocate memory for the SCBs */
ha->scbs = pci_alloc_consistent(ha->pcidev, ha->max_cmds * sizeof(ips_scb_t),
&command_dma);
if (ha->scbs == NULL)
return 0;
ips_sg = pci_alloc_consistent(ha->pcidev, sizeof(IPS_SG_LIST) * IPS_MAX_SG *
ha->max_cmds, &sg_dma);
if(ips_sg == NULL){
pci_free_consistent(ha->pcidev,ha->max_cmds * sizeof(ips_scb_t),ha->scbs, command_dma);
return 0;
}
memset(ha->scbs, 0, ha->max_cmds * sizeof(ips_scb_t));
for (i = 0; i < ha->max_cmds; i++) {
scb_p = &ha->scbs[i];
scb_p->scb_busaddr = command_dma + sizeof(ips_scb_t) * i;
/* set up S/G list */
scb_p->sg_list = ips_sg + i * IPS_MAX_SG;
scb_p->sg_busaddr = sg_dma + sizeof(IPS_SG_LIST) * IPS_MAX_SG * i;
/* add to the free list */
if (i < ha->max_cmds - 1) {
scb_p->q_next = ha->scb_freelist;
ha->scb_freelist = scb_p;
}
}
/* success */
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_init_scb */
/* */
/* Routine Description: */
/* */
/* Initialize a CCB to default values */
/* */
/****************************************************************************/
static void
ips_init_scb(ips_ha_t *ha, ips_scb_t *scb) {
IPS_SG_LIST *sg_list;
uint32_t cmd_busaddr, sg_busaddr;
METHOD_TRACE("ips_init_scb", 1);
if (scb == NULL)
return ;
sg_list = scb->sg_list;
cmd_busaddr = scb->scb_busaddr;
sg_busaddr = scb->sg_busaddr;
/* zero fill */
memset(scb, 0, sizeof(ips_scb_t));
memset(ha->dummy, 0, sizeof(IPS_IO_CMD));
/* Initialize dummy command bucket */
ha->dummy->op_code = 0xFF;
ha->dummy->ccsar = cpu_to_le32(ha->adapt->hw_status_start
+ sizeof(IPS_ADAPTER));
ha->dummy->command_id = IPS_MAX_CMDS;
/* set bus address of scb */
scb->scb_busaddr = cmd_busaddr;
scb->sg_busaddr = sg_busaddr;
scb->sg_list = sg_list;
/* Neptune Fix */
scb->cmd.basic_io.cccr = cpu_to_le32((uint32_t) IPS_BIT_ILE);
scb->cmd.basic_io.ccsar = cpu_to_le32(ha->adapt->hw_status_start
+ sizeof(IPS_ADAPTER));
}
/****************************************************************************/
/* */
/* Routine Name: ips_get_scb */
/* */
/* Routine Description: */
/* */
/* Initialize a CCB to default values */
/* */
/* ASSUMED to be callled from within a lock */
/* */
/****************************************************************************/
static ips_scb_t *
ips_getscb(ips_ha_t *ha) {
ips_scb_t *scb;
unsigned long cpu_flags;
METHOD_TRACE("ips_getscb", 1);
IPS_SCB_LOCK(cpu_flags);
if ((scb = ha->scb_freelist) == NULL) {
IPS_SCB_UNLOCK(cpu_flags);
return (NULL);
}
ha->scb_freelist = scb->q_next;
scb->q_next = NULL;
IPS_SCB_UNLOCK(cpu_flags);
ips_init_scb(ha, scb);
return (scb);
}
/****************************************************************************/
/* */
/* Routine Name: ips_free_scb */
/* */
/* Routine Description: */
/* */
/* Return an unused CCB back to the free list */
/* */
/* ASSUMED to be called from within a lock */
/* */
/****************************************************************************/
static void
ips_freescb(ips_ha_t *ha, ips_scb_t *scb) {
unsigned long cpu_flags;
METHOD_TRACE("ips_freescb", 1);
if(scb->flags & IPS_SCB_MAP_SG)
pci_unmap_sg(ha->pcidev, scb->scsi_cmd->request_buffer,
scb->scsi_cmd->use_sg,
IPS_DMA_DIR(scb));
else if(scb->flags & IPS_SCB_MAP_SINGLE)
pci_unmap_single(ha->pcidev, scb->data_busaddr, scb->data_len,
IPS_DMA_DIR(scb));
/* check to make sure this is not our "special" scb */
if (IPS_COMMAND_ID(ha, scb) < (ha->max_cmds - 1)) {
IPS_SCB_LOCK(cpu_flags);
scb->q_next = ha->scb_freelist;
ha->scb_freelist = scb;
IPS_SCB_UNLOCK(cpu_flags);
}
}
/****************************************************************************/
/* */
/* Routine Name: ips_isinit_copperhead */
/* */
/* Routine Description: */
/* */
/* Is controller initialized ? */
/* */
/****************************************************************************/
static int
ips_isinit_copperhead(ips_ha_t *ha) {
uint8_t scpr;
uint8_t isr;
METHOD_TRACE("ips_isinit_copperhead", 1);
isr = inb(ha->io_addr + IPS_REG_HISR);
scpr = inb(ha->io_addr + IPS_REG_SCPR);
if (((isr & IPS_BIT_EI) == 0) && ((scpr & IPS_BIT_EBM) == 0))
return (0);
else
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_isinit_copperhead_memio */
/* */
/* Routine Description: */
/* */
/* Is controller initialized ? */
/* */
/****************************************************************************/
static int
ips_isinit_copperhead_memio(ips_ha_t *ha) {
uint8_t isr=0;
uint8_t scpr;
METHOD_TRACE("ips_is_init_copperhead_memio", 1);
isr = readb(ha->mem_ptr + IPS_REG_HISR);
scpr = readb(ha->mem_ptr + IPS_REG_SCPR);
if (((isr & IPS_BIT_EI) == 0) && ((scpr & IPS_BIT_EBM) == 0))
return (0);
else
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_isinit_morpheus */
/* */
/* Routine Description: */
/* */
/* Is controller initialized ? */
/* */
/****************************************************************************/
static int
ips_isinit_morpheus(ips_ha_t *ha) {
uint32_t post;
uint32_t bits;
METHOD_TRACE("ips_is_init_morpheus", 1);
post = readl(ha->mem_ptr + IPS_REG_I960_MSG0);
bits = readl(ha->mem_ptr + IPS_REG_I2O_HIR);
if (post == 0)
return (0);
else if (bits & 0x3)
return (0);
else
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_enable_int_copperhead */
/* */
/* Routine Description: */
/* Turn on interrupts */
/* */
/****************************************************************************/
static void
ips_enable_int_copperhead(ips_ha_t *ha) {
METHOD_TRACE("ips_enable_int_copperhead", 1);
outb(ha->io_addr + IPS_REG_HISR, IPS_BIT_EI);
}
/****************************************************************************/
/* */
/* Routine Name: ips_enable_int_copperhead_memio */
/* */
/* Routine Description: */
/* Turn on interrupts */
/* */
/****************************************************************************/
static void
ips_enable_int_copperhead_memio(ips_ha_t *ha) {
METHOD_TRACE("ips_enable_int_copperhead_memio", 1);
writeb(IPS_BIT_EI, ha->mem_ptr + IPS_REG_HISR);
}
/****************************************************************************/
/* */
/* Routine Name: ips_enable_int_morpheus */
/* */
/* Routine Description: */
/* Turn on interrupts */
/* */
/****************************************************************************/
static void
ips_enable_int_morpheus(ips_ha_t *ha) {
uint32_t Oimr;
METHOD_TRACE("ips_enable_int_morpheus", 1);
Oimr = readl(ha->mem_ptr + IPS_REG_I960_OIMR);
Oimr &= ~0x08;
writel(Oimr, ha->mem_ptr + IPS_REG_I960_OIMR);
}
/****************************************************************************/
/* */
/* Routine Name: ips_init_copperhead */
/* */
/* Routine Description: */
/* */
/* Initialize a copperhead controller */
/* */
/****************************************************************************/
static int
ips_init_copperhead(ips_ha_t *ha) {
uint8_t Isr;
uint8_t Cbsp;
uint8_t PostByte[IPS_MAX_POST_BYTES];
uint8_t ConfigByte[IPS_MAX_CONFIG_BYTES];
int i, j;
METHOD_TRACE("ips_init_copperhead", 1);
for (i = 0; i < IPS_MAX_POST_BYTES; i++) {
for (j = 0; j < 45; j++) {
Isr = inb(ha->io_addr + IPS_REG_HISR);
if (Isr & IPS_BIT_GHI)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (j >= 45)
/* error occurred */
return (0);
PostByte[i] = inb(ha->io_addr + IPS_REG_ISPR);
outb(Isr, ha->io_addr + IPS_REG_HISR);
}
if (PostByte[0] < IPS_GOOD_POST_STATUS) {
printk(KERN_WARNING "(%s%d) reset controller fails (post status %x %x).\n",
ips_name, ha->host_num, PostByte[0], PostByte[1]);
return (0);
}
for (i = 0; i < IPS_MAX_CONFIG_BYTES; i++) {
for (j = 0; j < 240; j++) {
Isr = inb(ha->io_addr + IPS_REG_HISR);
if (Isr & IPS_BIT_GHI)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (j >= 240)
/* error occurred */
return (0);
ConfigByte[i] = inb(ha->io_addr + IPS_REG_ISPR);
outb(Isr, ha->io_addr + IPS_REG_HISR);
}
for (i = 0; i < 240; i++) {
Cbsp = inb(ha->io_addr + IPS_REG_CBSP);
if ((Cbsp & IPS_BIT_OP) == 0)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (i >= 240)
/* reset failed */
return (0);
/* setup CCCR */
outl(cpu_to_le32(0x1010), ha->io_addr + IPS_REG_CCCR);
/* Enable busmastering */
outb(IPS_BIT_EBM, ha->io_addr + IPS_REG_SCPR);
if (ha->revision_id == IPS_REVID_TROMBONE64)
/* fix for anaconda64 */
outl(0, ha->io_addr + IPS_REG_NDAE);
/* Enable interrupts */
outb(IPS_BIT_EI, ha->io_addr + IPS_REG_HISR);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_init_copperhead_memio */
/* */
/* Routine Description: */
/* */
/* Initialize a copperhead controller with memory mapped I/O */
/* */
/****************************************************************************/
static int
ips_init_copperhead_memio(ips_ha_t *ha) {
uint8_t Isr=0;
uint8_t Cbsp;
uint8_t PostByte[IPS_MAX_POST_BYTES];
uint8_t ConfigByte[IPS_MAX_CONFIG_BYTES];
int i, j;
METHOD_TRACE("ips_init_copperhead_memio", 1);
for (i = 0; i < IPS_MAX_POST_BYTES; i++) {
for (j = 0; j < 45; j++) {
Isr = readb(ha->mem_ptr + IPS_REG_HISR);
if (Isr & IPS_BIT_GHI)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (j >= 45)
/* error occurred */
return (0);
PostByte[i] = readb(ha->mem_ptr + IPS_REG_ISPR);
writeb(Isr, ha->mem_ptr + IPS_REG_HISR);
}
if (PostByte[0] < IPS_GOOD_POST_STATUS) {
printk(KERN_WARNING "(%s%d) reset controller fails (post status %x %x).\n",
ips_name, ha->host_num, PostByte[0], PostByte[1]);
return (0);
}
for (i = 0; i < IPS_MAX_CONFIG_BYTES; i++) {
for (j = 0; j < 240; j++) {
Isr = readb(ha->mem_ptr + IPS_REG_HISR);
if (Isr & IPS_BIT_GHI)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (j >= 240)
/* error occurred */
return (0);
ConfigByte[i] = readb(ha->mem_ptr + IPS_REG_ISPR);
writeb(Isr, ha->mem_ptr + IPS_REG_HISR);
}
for (i = 0; i < 240; i++) {
Cbsp = readb(ha->mem_ptr + IPS_REG_CBSP);
if ((Cbsp & IPS_BIT_OP) == 0)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (i >= 240)
/* error occurred */
return (0);
/* setup CCCR */
writel(0x1010, ha->mem_ptr + IPS_REG_CCCR);
/* Enable busmastering */
writeb(IPS_BIT_EBM, ha->mem_ptr + IPS_REG_SCPR);
if (ha->revision_id == IPS_REVID_TROMBONE64)
/* fix for anaconda64 */
writel(0, ha->mem_ptr + IPS_REG_NDAE);
/* Enable interrupts */
writeb(IPS_BIT_EI, ha->mem_ptr + IPS_REG_HISR);
/* if we get here then everything went OK */
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_init_morpheus */
/* */
/* Routine Description: */
/* */
/* Initialize a morpheus controller */
/* */
/****************************************************************************/
static int
ips_init_morpheus(ips_ha_t *ha) {
uint32_t Post;
uint32_t Config;
uint32_t Isr;
uint32_t Oimr;
int i;
METHOD_TRACE("ips_init_morpheus", 1);
/* Wait up to 45 secs for Post */
for (i = 0; i < 45; i++) {
Isr = readl(ha->mem_ptr + IPS_REG_I2O_HIR);
if (Isr & IPS_BIT_I960_MSG0I)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (i >= 45) {
/* error occurred */
printk(KERN_WARNING "(%s%d) timeout waiting for post.\n",
ips_name, ha->host_num);
return (0);
}
Post = readl(ha->mem_ptr + IPS_REG_I960_MSG0);
/* Clear the interrupt bit */
Isr = (uint32_t) IPS_BIT_I960_MSG0I;
writel(Isr, ha->mem_ptr + IPS_REG_I2O_HIR);
if (Post < (IPS_GOOD_POST_STATUS << 8)) {
printk(KERN_WARNING "(%s%d) reset controller fails (post status %x).\n",
ips_name, ha->host_num, Post);
return (0);
}
/* Wait up to 240 secs for config bytes */
for (i = 0; i < 240; i++) {
Isr = readl(ha->mem_ptr + IPS_REG_I2O_HIR);
if (Isr & IPS_BIT_I960_MSG1I)
break;
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
}
if (i >= 240) {
/* error occurred */
printk(KERN_WARNING "(%s%d) timeout waiting for config.\n",
ips_name, ha->host_num);
return (0);
}
Config = readl(ha->mem_ptr + IPS_REG_I960_MSG1);
/* Clear interrupt bit */
Isr = (uint32_t) IPS_BIT_I960_MSG1I;
writel(Isr, ha->mem_ptr + IPS_REG_I2O_HIR);
/* Turn on the interrupts */
Oimr = readl(ha->mem_ptr + IPS_REG_I960_OIMR);
Oimr &= ~0x8;
writel(Oimr, ha->mem_ptr + IPS_REG_I960_OIMR);
/* if we get here then everything went OK */
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_reset_copperhead */
/* */
/* Routine Description: */
/* */
/* Reset the controller */
/* */
/****************************************************************************/
static int
ips_reset_copperhead(ips_ha_t *ha) {
int reset_counter;
unsigned long cpu_flags;
METHOD_TRACE("ips_reset_copperhead", 1);
DEBUG_VAR(1, "(%s%d) ips_reset_copperhead: io addr: %x, irq: %d",
ips_name, ha->host_num, ha->io_addr, ha->irq);
IPS_HA_LOCK(cpu_flags);
reset_counter = 0;
while (reset_counter < 2) {
reset_counter++;
outb(IPS_BIT_RST, ha->io_addr + IPS_REG_SCPR);
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
outb(0, ha->io_addr + IPS_REG_SCPR);
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
if ((*ha->func.init)(ha))
break;
else if (reset_counter >= 2) {
IPS_HA_UNLOCK(cpu_flags);
return (0);
}
}
IPS_HA_UNLOCK(cpu_flags);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_reset_copperhead_memio */
/* */
/* Routine Description: */
/* */
/* Reset the controller */
/* */
/****************************************************************************/
static int
ips_reset_copperhead_memio(ips_ha_t *ha) {
int reset_counter;
unsigned long cpu_flags;
METHOD_TRACE("ips_reset_copperhead_memio", 1);
DEBUG_VAR(1, "(%s%d) ips_reset_copperhead_memio: mem addr: %x, irq: %d",
ips_name, ha->host_num, ha->mem_addr, ha->irq);
IPS_HA_LOCK(cpu_flags);
reset_counter = 0;
while (reset_counter < 2) {
reset_counter++;
writeb(IPS_BIT_RST, ha->mem_ptr + IPS_REG_SCPR);
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
writeb(0, ha->mem_ptr + IPS_REG_SCPR);
/* Delay for 1 Second */
MDELAY(IPS_ONE_SEC);
if ((*ha->func.init)(ha))
break;
else if (reset_counter >= 2) {
IPS_HA_UNLOCK(cpu_flags);
return (0);
}
}
IPS_HA_UNLOCK(cpu_flags);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_reset_morpheus */
/* */
/* Routine Description: */
/* */
/* Reset the controller */
/* */
/****************************************************************************/
static int
ips_reset_morpheus(ips_ha_t *ha) {
int reset_counter;
uint8_t junk;
unsigned long cpu_flags;
METHOD_TRACE("ips_reset_morpheus", 1);
DEBUG_VAR(1, "(%s%d) ips_reset_morpheus: mem addr: %x, irq: %d",
ips_name, ha->host_num, ha->mem_addr, ha->irq);
IPS_HA_LOCK(cpu_flags);
reset_counter = 0;
while (reset_counter < 2) {
reset_counter++;
writel(0x80000000, ha->mem_ptr + IPS_REG_I960_IDR);
/* Delay for 5 Seconds */
MDELAY(5 * IPS_ONE_SEC);
/* Do a PCI config read to wait for adapter */
pci_read_config_byte(ha->pcidev, 4, &junk);
if ((*ha->func.init)(ha))
break;
else if (reset_counter >= 2) {
IPS_HA_UNLOCK(cpu_flags);
return (0);
}
}
IPS_HA_UNLOCK(cpu_flags);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_statinit */
/* */
/* Routine Description: */
/* */
/* Initialize the status queues on the controller */
/* */
/****************************************************************************/
static void
ips_statinit(ips_ha_t *ha) {
uint32_t phys_status_start;
METHOD_TRACE("ips_statinit", 1);
ha->adapt->p_status_start = ha->adapt->status;
ha->adapt->p_status_end = ha->adapt->status + IPS_MAX_CMDS;
ha->adapt->p_status_tail = ha->adapt->status;
phys_status_start = ha->adapt->hw_status_start;
outl(cpu_to_le32(phys_status_start), ha->io_addr + IPS_REG_SQSR);
outl(cpu_to_le32(phys_status_start + IPS_STATUS_Q_SIZE), ha->io_addr + IPS_REG_SQER);
outl(cpu_to_le32(phys_status_start + IPS_STATUS_SIZE), ha->io_addr + IPS_REG_SQHR);
outl(cpu_to_le32(phys_status_start), ha->io_addr + IPS_REG_SQTR);
ha->adapt->hw_status_tail = phys_status_start;
}
/****************************************************************************/
/* */
/* Routine Name: ips_statinit_memio */
/* */
/* Routine Description: */
/* */
/* Initialize the status queues on the controller */
/* */
/****************************************************************************/
static void
ips_statinit_memio(ips_ha_t *ha) {
uint32_t phys_status_start;
METHOD_TRACE("ips_statinit_memio", 1);
ha->adapt->p_status_start = ha->adapt->status;
ha->adapt->p_status_end = ha->adapt->status + IPS_MAX_CMDS;
ha->adapt->p_status_tail = ha->adapt->status;
phys_status_start = ha->adapt->hw_status_start;
writel(phys_status_start, ha->mem_ptr + IPS_REG_SQSR);
writel(phys_status_start + IPS_STATUS_Q_SIZE, ha->mem_ptr + IPS_REG_SQER);
writel(phys_status_start + IPS_STATUS_SIZE, ha->mem_ptr + IPS_REG_SQHR);
writel(phys_status_start, ha->mem_ptr + IPS_REG_SQTR);
ha->adapt->hw_status_tail = phys_status_start;
}
/****************************************************************************/
/* */
/* Routine Name: ips_statupd_copperhead */
/* */
/* Routine Description: */
/* */
/* Remove an element from the status queue */
/* */
/****************************************************************************/
static uint32_t
ips_statupd_copperhead(ips_ha_t *ha) {
METHOD_TRACE("ips_statupd_copperhead", 1);
if (ha->adapt->p_status_tail != ha->adapt->p_status_end) {
ha->adapt->p_status_tail++;
ha->adapt->hw_status_tail += sizeof(IPS_STATUS);
} else {
ha->adapt->p_status_tail = ha->adapt->p_status_start;
ha->adapt->hw_status_tail = ha->adapt->hw_status_start;
}
outl(cpu_to_le32(ha->adapt->hw_status_tail), ha->io_addr + IPS_REG_SQTR);
return (ha->adapt->p_status_tail->value);
}
/****************************************************************************/
/* */
/* Routine Name: ips_statupd_copperhead_memio */
/* */
/* Routine Description: */
/* */
/* Remove an element from the status queue */
/* */
/****************************************************************************/
static uint32_t
ips_statupd_copperhead_memio(ips_ha_t *ha) {
METHOD_TRACE("ips_statupd_copperhead_memio", 1);
if (ha->adapt->p_status_tail != ha->adapt->p_status_end) {
ha->adapt->p_status_tail++;
ha->adapt->hw_status_tail += sizeof(IPS_STATUS);
} else {
ha->adapt->p_status_tail = ha->adapt->p_status_start;
ha->adapt->hw_status_tail = ha->adapt->hw_status_start;
}
writel(ha->adapt->hw_status_tail, ha->mem_ptr + IPS_REG_SQTR);
return (ha->adapt->p_status_tail->value);
}
/****************************************************************************/
/* */
/* Routine Name: ips_statupd_morpheus */
/* */
/* Routine Description: */
/* */
/* Remove an element from the status queue */
/* */
/****************************************************************************/
static uint32_t
ips_statupd_morpheus(ips_ha_t *ha) {
uint32_t val;
METHOD_TRACE("ips_statupd_morpheus", 1);
val = readl(ha->mem_ptr + IPS_REG_I2O_OUTMSGQ);
return (val);
}
/****************************************************************************/
/* */
/* Routine Name: ips_issue_copperhead */
/* */
/* Routine Description: */
/* */
/* Send a command down to the controller */
/* */
/****************************************************************************/
static int
ips_issue_copperhead(ips_ha_t *ha, ips_scb_t *scb) {
uint32_t TimeOut;
uint32_t val;
unsigned long cpu_flags;
METHOD_TRACE("ips_issue_copperhead", 1);
if (scb->scsi_cmd) {
DEBUG_VAR(2, "(%s%d) ips_issue: cmd 0x%X id %d (%d %d %d)",
ips_name,
ha->host_num,
scb->cdb[0],
scb->cmd.basic_io.command_id,
scb->bus,
scb->target_id,
scb->lun);
} else {
DEBUG_VAR(2, KERN_NOTICE "(%s%d) ips_issue: logical cmd id %d",
ips_name,
ha->host_num,
scb->cmd.basic_io.command_id);
}
IPS_HA_LOCK(cpu_flags);
TimeOut = 0;
while ((val = le32_to_cpu(inl(ha->io_addr + IPS_REG_CCCR))) & IPS_BIT_SEM) {
udelay(1000);
if (++TimeOut >= IPS_SEM_TIMEOUT) {
if (!(val & IPS_BIT_START_STOP))
break;
printk(KERN_WARNING "(%s%d) ips_issue val [0x%x].\n",
ips_name, ha->host_num, val);
printk(KERN_WARNING "(%s%d) ips_issue semaphore chk timeout.\n",
ips_name, ha->host_num);
IPS_HA_UNLOCK(cpu_flags);
return (IPS_FAILURE);
} /* end if */
} /* end while */
outl(cpu_to_le32(scb->scb_busaddr), ha->io_addr + IPS_REG_CCSAR);
outw(cpu_to_le32(IPS_BIT_START_CMD), ha->io_addr + IPS_REG_CCCR);
IPS_HA_UNLOCK(cpu_flags);
return (IPS_SUCCESS);
}
/****************************************************************************/
/* */
/* Routine Name: ips_issue_copperhead_memio */
/* */
/* Routine Description: */
/* */
/* Send a command down to the controller */
/* */
/****************************************************************************/
static int
ips_issue_copperhead_memio(ips_ha_t *ha, ips_scb_t *scb) {
uint32_t TimeOut;
uint32_t val;
unsigned long cpu_flags;
METHOD_TRACE("ips_issue_copperhead_memio", 1);
if (scb->scsi_cmd) {
DEBUG_VAR(2, "(%s%d) ips_issue: cmd 0x%X id %d (%d %d %d)",
ips_name,
ha->host_num,
scb->cdb[0],
scb->cmd.basic_io.command_id,
scb->bus,
scb->target_id,
scb->lun);
} else {
DEBUG_VAR(2, "(%s%d) ips_issue: logical cmd id %d",
ips_name,
ha->host_num,
scb->cmd.basic_io.command_id);
}
IPS_HA_LOCK(cpu_flags);
TimeOut = 0;
while ((val = readl(ha->mem_ptr + IPS_REG_CCCR)) & IPS_BIT_SEM) {
udelay(1000);
if (++TimeOut >= IPS_SEM_TIMEOUT) {
if (!(val & IPS_BIT_START_STOP))
break;
printk(KERN_WARNING "(%s%d) ips_issue val [0x%x].\n",
ips_name, ha->host_num, val);
printk(KERN_WARNING "(%s%d) ips_issue semaphore chk timeout.\n",
ips_name, ha->host_num);
IPS_HA_UNLOCK(cpu_flags);
return (IPS_FAILURE);
} /* end if */
} /* end while */
writel(scb->scb_busaddr, ha->mem_ptr + IPS_REG_CCSAR);
writel(IPS_BIT_START_CMD, ha->mem_ptr + IPS_REG_CCCR);
IPS_HA_UNLOCK(cpu_flags);
return (IPS_SUCCESS);
}
/****************************************************************************/
/* */
/* Routine Name: ips_issue_i2o */
/* */
/* Routine Description: */
/* */
/* Send a command down to the controller */
/* */
/****************************************************************************/
static int
ips_issue_i2o(ips_ha_t *ha, ips_scb_t *scb) {
unsigned long cpu_flags;
METHOD_TRACE("ips_issue_i2o", 1);
if (scb->scsi_cmd) {
DEBUG_VAR(2, "(%s%d) ips_issue: cmd 0x%X id %d (%d %d %d)",
ips_name,
ha->host_num,
scb->cdb[0],
scb->cmd.basic_io.command_id,
scb->bus,
scb->target_id,
scb->lun);
} else {
DEBUG_VAR(2, "(%s%d) ips_issue: logical cmd id %d",
ips_name,
ha->host_num,
scb->cmd.basic_io.command_id);
}
IPS_HA_LOCK(cpu_flags);
outl(cpu_to_le32(scb->scb_busaddr), ha->io_addr + IPS_REG_I2O_INMSGQ);
IPS_HA_UNLOCK(cpu_flags);
return (IPS_SUCCESS);
}
/****************************************************************************/
/* */
/* Routine Name: ips_issue_i2o_memio */
/* */
/* Routine Description: */
/* */
/* Send a command down to the controller */
/* */
/****************************************************************************/
static int
ips_issue_i2o_memio(ips_ha_t *ha, ips_scb_t *scb) {
unsigned long cpu_flags;
METHOD_TRACE("ips_issue_i2o_memio", 1);
if (scb->scsi_cmd) {
DEBUG_VAR(2, "(%s%d) ips_issue: cmd 0x%X id %d (%d %d %d)",
ips_name,
ha->host_num,
scb->cdb[0],
scb->cmd.basic_io.command_id,
scb->bus,
scb->target_id,
scb->lun);
} else {
DEBUG_VAR(2, "(%s%d) ips_issue: logical cmd id %d",
ips_name,
ha->host_num,
scb->cmd.basic_io.command_id);
}
IPS_HA_LOCK(cpu_flags);
writel(scb->scb_busaddr, ha->mem_ptr + IPS_REG_I2O_INMSGQ);
IPS_HA_UNLOCK(cpu_flags);
return (IPS_SUCCESS);
}
/****************************************************************************/
/* */
/* Routine Name: ips_isintr_copperhead */
/* */
/* Routine Description: */
/* */
/* Test to see if an interrupt is for us */
/* */
/****************************************************************************/
static int
ips_isintr_copperhead(ips_ha_t *ha) {
uint8_t Isr;
METHOD_TRACE("ips_isintr_copperhead", 2);
Isr = inb(ha->io_addr + IPS_REG_HISR);
if (Isr == 0xFF)
/* ?!?! Nothing really there */
return (0);
if (Isr & IPS_BIT_SCE)
return (1);
else if (Isr & (IPS_BIT_SQO | IPS_BIT_GHI)) {
/* status queue overflow or GHI */
/* just clear the interrupt */
outb(Isr, ha->io_addr + IPS_REG_HISR);
}
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_isintr_copperhead_memio */
/* */
/* Routine Description: */
/* */
/* Test to see if an interrupt is for us */
/* */
/****************************************************************************/
static int
ips_isintr_copperhead_memio(ips_ha_t *ha) {
uint8_t Isr;
METHOD_TRACE("ips_isintr_memio", 2);
Isr = readb(ha->mem_ptr + IPS_REG_HISR);
if (Isr == 0xFF)
/* ?!?! Nothing really there */
return (0);
if (Isr & IPS_BIT_SCE)
return (1);
else if (Isr & (IPS_BIT_SQO | IPS_BIT_GHI)) {
/* status queue overflow or GHI */
/* just clear the interrupt */
writeb(Isr, ha->mem_ptr + IPS_REG_HISR);
}
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_isintr_morpheus */
/* */
/* Routine Description: */
/* */
/* Test to see if an interrupt is for us */
/* */
/****************************************************************************/
static int
ips_isintr_morpheus(ips_ha_t *ha) {
uint32_t Isr;
METHOD_TRACE("ips_isintr_morpheus", 2);
Isr = readl(ha->mem_ptr + IPS_REG_I2O_HIR);
if (Isr & IPS_BIT_I2O_OPQI)
return (1);
else
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_wait */
/* */
/* Routine Description: */
/* */
/* Wait for a command to complete */
/* */
/****************************************************************************/
static int
ips_wait(ips_ha_t *ha, int time, int intr) {
int ret;
int done;
METHOD_TRACE("ips_wait", 1);
ret = IPS_FAILURE;
done = FALSE;
time *= IPS_ONE_SEC; /* convert seconds */
while ((time > 0) && (!done)) {
if (intr == IPS_INTR_ON) {
if (ha->waitflag == FALSE) {
ret = IPS_SUCCESS;
done = TRUE;
break;
}
} else if (intr == IPS_INTR_IORL) {
if (ha->waitflag == FALSE) {
/*
* controller generated an interrupt to
* acknowledge completion of the command
* and ips_intr() has serviced the interrupt.
*/
ret = IPS_SUCCESS;
done = TRUE;
break;
}
/*
* NOTE: we already have the io_request_lock so
* even if we get an interrupt it won't get serviced
* until after we finish.
*/
while (test_and_set_bit(IPS_IN_INTR, &ha->flags))
udelay(1000);
(*ha->func.intr)(ha);
clear_bit(IPS_IN_INTR, &ha->flags);
}
/* This looks like a very evil loop, but it only does this during start-up */
udelay(1000);
time--;
}
return (ret);
}
/****************************************************************************/
/* */
/* Routine Name: ips_write_driver_status */
/* */
/* Routine Description: */
/* */
/* Write OS/Driver version to Page 5 of the nvram on the controller */
/* */
/****************************************************************************/
static int
ips_write_driver_status(ips_ha_t *ha, int intr) {
METHOD_TRACE("ips_write_driver_status", 1);
if (!ips_readwrite_page5(ha, FALSE, intr)) {
printk(KERN_WARNING "(%s%d) unable to read NVRAM page 5.\n",
ips_name, ha->host_num);
return (0);
}
/* check to make sure the page has a valid */
/* signature */
if (le32_to_cpu(ha->nvram->signature) != IPS_NVRAM_P5_SIG) {
DEBUG_VAR(1, "(%s%d) NVRAM page 5 has an invalid signature: %X.",
ips_name, ha->host_num, ha->nvram->signature);
return (1);
}
DEBUG_VAR(2, "(%s%d) Ad Type: %d, Ad Slot: %d, BIOS: %c%c%c%c %c%c%c%c.",
ips_name, ha->host_num, le16_to_cpu(ha->nvram->adapter_type),
ha->nvram->adapter_slot,
ha->nvram->bios_high[0], ha->nvram->bios_high[1],
ha->nvram->bios_high[2], ha->nvram->bios_high[3],
ha->nvram->bios_low[0], ha->nvram->bios_low[1],
ha->nvram->bios_low[2], ha->nvram->bios_low[3]);
ips_get_bios_version(ha, intr);
/* change values (as needed) */
ha->nvram->operating_system = IPS_OS_LINUX;
ha->nvram->adapter_type = ha->ad_type;
strncpy((char *) ha->nvram->driver_high, IPS_VERSION_HIGH, 4);
strncpy((char *) ha->nvram->driver_low, IPS_VERSION_LOW, 4);
strncpy((char *) ha->nvram->bios_high, ha->bios_version, 4);
strncpy((char *) ha->nvram->bios_low, ha->bios_version + 4, 4);
ips_version_check(ha, intr); /* Check BIOS/FW/Driver Versions */
/* now update the page */
if (!ips_readwrite_page5(ha, TRUE, intr)) {
printk(KERN_WARNING "(%s%d) unable to write NVRAM page 5.\n",
ips_name, ha->host_num);
return (0);
}
/* IF NVRAM Page 5 is OK, Use it for Slot Number Info Because Linux Doesn't Do Slots */
ha->slot_num = ha->nvram->adapter_slot;
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_read_adapter_status */
/* */
/* Routine Description: */
/* */
/* Do an Inquiry command to the adapter */
/* */
/****************************************************************************/
static int
ips_read_adapter_status(ips_ha_t *ha, int intr) {
ips_scb_t *scb;
int ret;
METHOD_TRACE("ips_read_adapter_status", 1);
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_ENQUIRY;
scb->cmd.basic_io.op_code = IPS_CMD_ENQUIRY;
scb->cmd.basic_io.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.basic_io.sg_count = 0;
scb->cmd.basic_io.lba = 0;
scb->cmd.basic_io.sector_count = 0;
scb->cmd.basic_io.log_drv = 0;
scb->cmd.basic_io.reserved = 0;
scb->data_len = sizeof(*ha->enq);
scb->data_busaddr = pci_map_single(ha->pcidev, ha->enq, scb->data_len,
IPS_DMA_DIR(scb));
scb->cmd.basic_io.sg_addr = scb->data_busaddr;
scb->flags |= IPS_SCB_MAP_SINGLE;
/* send command */
if (((ret = ips_send_wait(ha, scb, ips_cmd_timeout, intr)) == IPS_FAILURE) ||
(ret == IPS_SUCCESS_IMM) ||
((scb->basic_status & IPS_GSC_STATUS_MASK) > 1))
return (0);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_read_subsystem_parameters */
/* */
/* Routine Description: */
/* */
/* Read subsystem parameters from the adapter */
/* */
/****************************************************************************/
static int
ips_read_subsystem_parameters(ips_ha_t *ha, int intr) {
ips_scb_t *scb;
int ret;
METHOD_TRACE("ips_read_subsystem_parameters", 1);
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_GET_SUBSYS;
scb->cmd.basic_io.op_code = IPS_CMD_GET_SUBSYS;
scb->cmd.basic_io.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.basic_io.sg_count = 0;
scb->cmd.basic_io.lba = 0;
scb->cmd.basic_io.sector_count = 0;
scb->cmd.basic_io.log_drv = 0;
scb->cmd.basic_io.reserved = 0;
scb->data_len = sizeof(*ha->subsys);
scb->data_busaddr = pci_map_single(ha->pcidev, ha->subsys,
scb->data_len, IPS_DMA_DIR(scb));
scb->cmd.basic_io.sg_addr = scb->data_busaddr;
scb->flags |= IPS_SCB_MAP_SINGLE;
/* send command */
if (((ret = ips_send_wait(ha, scb, ips_cmd_timeout, intr)) == IPS_FAILURE) ||
(ret == IPS_SUCCESS_IMM) ||
((scb->basic_status & IPS_GSC_STATUS_MASK) > 1))
return (0);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_read_config */
/* */
/* Routine Description: */
/* */
/* Read the configuration on the adapter */
/* */
/****************************************************************************/
static int
ips_read_config(ips_ha_t *ha, int intr) {
ips_scb_t *scb;
int i;
int ret;
METHOD_TRACE("ips_read_config", 1);
/* set defaults for initiator IDs */
for (i = 0; i < 4; i++)
ha->conf->init_id[i] = 7;
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_READ_CONF;
scb->cmd.basic_io.op_code = IPS_CMD_READ_CONF;
scb->cmd.basic_io.command_id = IPS_COMMAND_ID(ha, scb);
scb->data_len = sizeof(*ha->conf);
scb->data_busaddr = pci_map_single(ha->pcidev, ha->conf,
scb->data_len, IPS_DMA_DIR(scb));
scb->cmd.basic_io.sg_addr = scb->data_busaddr;
scb->flags |= IPS_SCB_MAP_SINGLE;
/* send command */
if (((ret = ips_send_wait(ha, scb, ips_cmd_timeout, intr)) == IPS_FAILURE) ||
(ret == IPS_SUCCESS_IMM) ||
((scb->basic_status & IPS_GSC_STATUS_MASK) > 1)) {
memset(ha->conf, 0, sizeof(IPS_CONF));
/* reset initiator IDs */
for (i = 0; i < 4; i++)
ha->conf->init_id[i] = 7;
/* Allow Completed with Errors, so JCRM can access the Adapter to fix the problems */
if ((scb->basic_status & IPS_GSC_STATUS_MASK) == IPS_CMD_CMPLT_WERROR)
return (1);
return (0);
}
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_readwrite_page5 */
/* */
/* Routine Description: */
/* */
/* Read nvram page 5 from the adapter */
/* */
/****************************************************************************/
static int
ips_readwrite_page5(ips_ha_t *ha, int write, int intr) {
ips_scb_t *scb;
int ret;
METHOD_TRACE("ips_readwrite_page5", 1);
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_RW_NVRAM_PAGE;
scb->cmd.nvram.op_code = IPS_CMD_RW_NVRAM_PAGE;
scb->cmd.nvram.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.nvram.page = 5;
scb->cmd.nvram.write = write;
scb->cmd.nvram.reserved = 0;
scb->cmd.nvram.reserved2 = 0;
scb->data_len = sizeof(*ha->nvram);
scb->data_busaddr = pci_map_single(ha->pcidev, ha->nvram,
scb->data_len, IPS_DMA_DIR(scb));
scb->cmd.nvram.buffer_addr = scb->data_busaddr;
scb->flags |= IPS_SCB_MAP_SINGLE;
/* issue the command */
if (((ret = ips_send_wait(ha, scb, ips_cmd_timeout, intr)) == IPS_FAILURE) ||
(ret == IPS_SUCCESS_IMM) ||
((scb->basic_status & IPS_GSC_STATUS_MASK) > 1)) {
memset(ha->nvram, 0, sizeof(IPS_NVRAM_P5));
return (0);
}
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_clear_adapter */
/* */
/* Routine Description: */
/* */
/* Clear the stripe lock tables */
/* */
/****************************************************************************/
static int
ips_clear_adapter(ips_ha_t *ha, int intr) {
ips_scb_t *scb;
int ret;
METHOD_TRACE("ips_clear_adapter", 1);
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_reset_timeout;
scb->cdb[0] = IPS_CMD_CONFIG_SYNC;
scb->cmd.config_sync.op_code = IPS_CMD_CONFIG_SYNC;
scb->cmd.config_sync.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.config_sync.channel = 0;
scb->cmd.config_sync.source_target = IPS_POCL;
scb->cmd.config_sync.reserved = 0;
scb->cmd.config_sync.reserved2 = 0;
scb->cmd.config_sync.reserved3 = 0;
/* issue command */
if (((ret = ips_send_wait(ha, scb, ips_reset_timeout, intr)) == IPS_FAILURE) ||
(ret == IPS_SUCCESS_IMM) ||
((scb->basic_status & IPS_GSC_STATUS_MASK) > 1))
return (0);
/* send unlock stripe command */
ips_init_scb(ha, scb);
scb->cdb[0] = IPS_CMD_ERROR_TABLE;
scb->timeout = ips_reset_timeout;
scb->cmd.unlock_stripe.op_code = IPS_CMD_ERROR_TABLE;
scb->cmd.unlock_stripe.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.unlock_stripe.log_drv = 0;
scb->cmd.unlock_stripe.control = IPS_CSL;
scb->cmd.unlock_stripe.reserved = 0;
scb->cmd.unlock_stripe.reserved2 = 0;
scb->cmd.unlock_stripe.reserved3 = 0;
/* issue command */
if (((ret = ips_send_wait(ha, scb, ips_cmd_timeout, intr)) == IPS_FAILURE) ||
(ret == IPS_SUCCESS_IMM) ||
((scb->basic_status & IPS_GSC_STATUS_MASK) > 1))
return (0);
return (1);
}
/****************************************************************************/
/* */
/* Routine Name: ips_ffdc_reset */
/* */
/* Routine Description: */
/* */
/* FFDC: write reset info */
/* */
/****************************************************************************/
static void
ips_ffdc_reset(ips_ha_t *ha, int intr) {
ips_scb_t *scb;
METHOD_TRACE("ips_ffdc_reset", 1);
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_FFDC;
scb->cmd.ffdc.op_code = IPS_CMD_FFDC;
scb->cmd.ffdc.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.ffdc.reset_count = ha->reset_count;
scb->cmd.ffdc.reset_type = 0x80;
/* convert time to what the card wants */
ips_fix_ffdc_time(ha, scb, ha->last_ffdc);
/* issue command */
ips_send_wait(ha, scb, ips_cmd_timeout, intr);
}
/****************************************************************************/
/* */
/* Routine Name: ips_ffdc_time */
/* */
/* Routine Description: */
/* */
/* FFDC: write time info */
/* */
/****************************************************************************/
static void
ips_ffdc_time(ips_ha_t *ha) {
ips_scb_t *scb;
METHOD_TRACE("ips_ffdc_time", 1);
DEBUG_VAR(1, "(%s%d) Sending time update.",
ips_name, ha->host_num);
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_FFDC;
scb->cmd.ffdc.op_code = IPS_CMD_FFDC;
scb->cmd.ffdc.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.ffdc.reset_count = 0;
scb->cmd.ffdc.reset_type = 0x80;
/* convert time to what the card wants */
ips_fix_ffdc_time(ha, scb, ha->last_ffdc);
/* issue command */
ips_send_wait(ha, scb, ips_cmd_timeout, IPS_FFDC);
}
/****************************************************************************/
/* */
/* Routine Name: ips_fix_ffdc_time */
/* */
/* Routine Description: */
/* Adjust time_t to what the card wants */
/* */
/****************************************************************************/
static void
ips_fix_ffdc_time(ips_ha_t *ha, ips_scb_t *scb, time_t current_time) {
long days;
long rem;
int i;
int year;
int yleap;
int year_lengths[2] = { IPS_DAYS_NORMAL_YEAR, IPS_DAYS_LEAP_YEAR };
int month_lengths[12][2] = { {31, 31},
{28, 29},
{31, 31},
{30, 30},
{31, 31},
{30, 30},
{31, 31},
{31, 31},
{30, 30},
{31, 31},
{30, 30},
{31, 31} };
METHOD_TRACE("ips_fix_ffdc_time", 1);
days = current_time / IPS_SECS_DAY;
rem = current_time % IPS_SECS_DAY;
scb->cmd.ffdc.hour = (rem / IPS_SECS_HOUR);
rem = rem % IPS_SECS_HOUR;
scb->cmd.ffdc.minute = (rem / IPS_SECS_MIN);
scb->cmd.ffdc.second = (rem % IPS_SECS_MIN);
year = IPS_EPOCH_YEAR;
while (days < 0 || days >= year_lengths[yleap = IPS_IS_LEAP_YEAR(year)]) {
int newy;
newy = year + (days / IPS_DAYS_NORMAL_YEAR);
if (days < 0)
--newy;
days -= (newy - year) * IPS_DAYS_NORMAL_YEAR +
IPS_NUM_LEAP_YEARS_THROUGH(newy - 1) -
IPS_NUM_LEAP_YEARS_THROUGH(year - 1);
year = newy;
}
scb->cmd.ffdc.yearH = year / 100;
scb->cmd.ffdc.yearL = year % 100;
for (i = 0; days >= month_lengths[i][yleap]; ++i)
days -= month_lengths[i][yleap];
scb->cmd.ffdc.month = i + 1;
scb->cmd.ffdc.day = days + 1;
}
/****************************************************************************
* BIOS Flash Routines *
****************************************************************************/
/****************************************************************************/
/* */
/* Routine Name: ips_erase_bios */
/* */
/* Routine Description: */
/* Erase the BIOS on the adapter */
/* */
/****************************************************************************/
static int
ips_erase_bios(ips_ha_t *ha) {
int timeout;
uint8_t status=0;
METHOD_TRACE("ips_erase_bios", 1);
status = 0;
/* Clear the status register */
outl(0, ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
outb(0x50, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* Erase Setup */
outb(0x20, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* Erase Confirm */
outb(0xD0, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* Erase Status */
outb(0x70, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
timeout = 80000; /* 80 seconds */
while (timeout > 0) {
if (ha->revision_id == IPS_REVID_TROMBONE64) {
outl(0, ha->io_addr + IPS_REG_FLAP);
udelay(25); /* 25 us */
}
status = inb(ha->io_addr + IPS_REG_FLDP);
if (status & 0x80)
break;
MDELAY(1);
timeout--;
}
/* check for timeout */
if (timeout <= 0) {
/* timeout */
/* try to suspend the erase */
outb(0xB0, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* wait for 10 seconds */
timeout = 10000;
while (timeout > 0) {
if (ha->revision_id == IPS_REVID_TROMBONE64) {
outl(0, ha->io_addr + IPS_REG_FLAP);
udelay(25); /* 25 us */
}
status = inb(ha->io_addr + IPS_REG_FLDP);
if (status & 0xC0)
break;
MDELAY(1);
timeout--;
}
return (1);
}
/* check for valid VPP */
if (status & 0x08)
/* VPP failure */
return (1);
/* check for succesful flash */
if (status & 0x30)
/* sequence error */
return (1);
/* Otherwise, we were successful */
/* clear status */
outb(0x50, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* enable reads */
outb(0xFF, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_erase_bios_memio */
/* */
/* Routine Description: */
/* Erase the BIOS on the adapter */
/* */
/****************************************************************************/
static int
ips_erase_bios_memio(ips_ha_t *ha) {
int timeout;
uint8_t status;
METHOD_TRACE("ips_erase_bios_memio", 1);
status = 0;
/* Clear the status register */
writel(0, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
writeb(0x50, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* Erase Setup */
writeb(0x20, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* Erase Confirm */
writeb(0xD0, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* Erase Status */
writeb(0x70, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
timeout = 80000; /* 80 seconds */
while (timeout > 0) {
if (ha->revision_id == IPS_REVID_TROMBONE64) {
writel(0, ha->mem_ptr + IPS_REG_FLAP);
udelay(25); /* 25 us */
}
status = readb(ha->mem_ptr + IPS_REG_FLDP);
if (status & 0x80)
break;
MDELAY(1);
timeout--;
}
/* check for timeout */
if (timeout <= 0) {
/* timeout */
/* try to suspend the erase */
writeb(0xB0, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* wait for 10 seconds */
timeout = 10000;
while (timeout > 0) {
if (ha->revision_id == IPS_REVID_TROMBONE64) {
writel(0, ha->mem_ptr + IPS_REG_FLAP);
udelay(25); /* 25 us */
}
status = readb(ha->mem_ptr + IPS_REG_FLDP);
if (status & 0xC0)
break;
MDELAY(1);
timeout--;
}
return (1);
}
/* check for valid VPP */
if (status & 0x08)
/* VPP failure */
return (1);
/* check for succesful flash */
if (status & 0x30)
/* sequence error */
return (1);
/* Otherwise, we were successful */
/* clear status */
writeb(0x50, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* enable reads */
writeb(0xFF, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_program_bios */
/* */
/* Routine Description: */
/* Program the BIOS on the adapter */
/* */
/****************************************************************************/
static int
ips_program_bios(ips_ha_t *ha, char *buffer, uint32_t buffersize, uint32_t offset) {
int i;
int timeout;
uint8_t status=0;
METHOD_TRACE("ips_program_bios", 1);
status = 0;
for (i = 0; i < buffersize; i++) {
/* write a byte */
outl(cpu_to_le32(i + offset), ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
outb(0x40, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
outb(buffer[i], ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* wait up to one second */
timeout = 1000;
while (timeout > 0) {
if (ha->revision_id == IPS_REVID_TROMBONE64) {
outl(0, ha->io_addr + IPS_REG_FLAP);
udelay(25); /* 25 us */
}
status = inb(ha->io_addr + IPS_REG_FLDP);
if (status & 0x80)
break;
MDELAY(1);
timeout--;
}
if (timeout == 0) {
/* timeout error */
outl(0, ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
outb(0xFF, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (1);
}
/* check the status */
if (status & 0x18) {
/* programming error */
outl(0, ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
outb(0xFF, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (1);
}
} /* end for */
/* Enable reading */
outl(0, ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
outb(0xFF, ha->io_addr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_program_bios_memio */
/* */
/* Routine Description: */
/* Program the BIOS on the adapter */
/* */
/****************************************************************************/
static int
ips_program_bios_memio(ips_ha_t *ha, char *buffer, uint32_t buffersize, uint32_t offset) {
int i;
int timeout;
uint8_t status=0;
METHOD_TRACE("ips_program_bios_memio", 1);
status = 0;
for (i = 0; i < buffersize; i++) {
/* write a byte */
writel(i + offset, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
writeb(0x40, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
writeb(buffer[i], ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
/* wait up to one second */
timeout = 1000;
while (timeout > 0) {
if (ha->revision_id == IPS_REVID_TROMBONE64) {
writel(0, ha->mem_ptr + IPS_REG_FLAP);
udelay(25); /* 25 us */
}
status = readb(ha->mem_ptr + IPS_REG_FLDP);
if (status & 0x80)
break;
MDELAY(1);
timeout--;
}
if (timeout == 0) {
/* timeout error */
writel(0, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
writeb(0xFF, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (1);
}
/* check the status */
if (status & 0x18) {
/* programming error */
writel(0, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
writeb(0xFF, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (1);
}
} /* end for */
/* Enable reading */
writel(0, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
writeb(0xFF, ha->mem_ptr + IPS_REG_FLDP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_verify_bios */
/* */
/* Routine Description: */
/* Verify the BIOS on the adapter */
/* */
/****************************************************************************/
static int
ips_verify_bios(ips_ha_t *ha, char *buffer, uint32_t buffersize, uint32_t offset) {
uint8_t checksum;
int i;
METHOD_TRACE("ips_verify_bios", 1);
/* test 1st byte */
outl(0, ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (inb(ha->io_addr + IPS_REG_FLDP) != 0x55)
return (1);
outl(cpu_to_le32(1), ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (inb(ha->io_addr + IPS_REG_FLDP) != 0xAA)
return (1);
checksum = 0xff;
for (i = 2; i < buffersize; i++) {
outl(cpu_to_le32(i + offset), ha->io_addr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
checksum = (uint8_t) checksum + inb(ha->io_addr + IPS_REG_FLDP);
}
if (checksum != 0)
/* failure */
return (1);
else
/* success */
return (0);
}
/****************************************************************************/
/* */
/* Routine Name: ips_verify_bios_memio */
/* */
/* Routine Description: */
/* Verify the BIOS on the adapter */
/* */
/****************************************************************************/
static int
ips_verify_bios_memio(ips_ha_t *ha, char *buffer, uint32_t buffersize, uint32_t offset) {
uint8_t checksum;
int i;
METHOD_TRACE("ips_verify_bios_memio", 1);
/* test 1st byte */
writel(0, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (readb(ha->mem_ptr + IPS_REG_FLDP) != 0x55)
return (1);
writel(1, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
if (readb(ha->mem_ptr + IPS_REG_FLDP) != 0xAA)
return (1);
checksum = 0xff;
for (i = 2; i < buffersize; i++) {
writel(i + offset, ha->mem_ptr + IPS_REG_FLAP);
if (ha->revision_id == IPS_REVID_TROMBONE64)
udelay(25); /* 25 us */
checksum = (uint8_t) checksum + readb(ha->mem_ptr + IPS_REG_FLDP);
}
if (checksum != 0)
/* failure */
return (1);
else
/* success */
return (0);
}
/*---------------------------------------------------------------------------*/
/* Routine Name: ips_version_check */
/* */
/* Dependencies: */
/* Assumes that ips_read_adapter_status() is called first filling in */
/* the data for SubSystem Parameters. */
/* Called from ips_write_driver_status() so it also assumes NVRAM Page 5 */
/* Data is availaible. */
/* */
/*---------------------------------------------------------------------------*/
static void ips_version_check(ips_ha_t *ha, int intr) {
IPS_VERSION_DATA VersionInfo;
uint8_t FirmwareVersion[ IPS_COMPAT_ID_LENGTH + 1 ];
uint8_t BiosVersion[ IPS_COMPAT_ID_LENGTH + 1];
int MatchError;
int rc;
METHOD_TRACE("ips_version_check", 1);
memset(FirmwareVersion, 0, IPS_COMPAT_ID_LENGTH + 1);
memset(BiosVersion, 0, IPS_COMPAT_ID_LENGTH + 1);
/* Get the Compatible BIOS Version from NVRAM Page 5 */
memcpy(BiosVersion, ha->nvram->BiosCompatibilityID, IPS_COMPAT_ID_LENGTH);
rc = IPS_FAILURE;
if (ha->subsys->param[4] & IPS_GET_VERSION_SUPPORT) /* If Versioning is Supported */
{
/* Get the Version Info with a Get Version Command */
rc = ips_get_version_info(ha, &VersionInfo, intr);
if (rc == IPS_SUCCESS)
memcpy(FirmwareVersion, VersionInfo.compatibilityId, IPS_COMPAT_ID_LENGTH);
}
if (rc != IPS_SUCCESS) /* If Data Not Obtainable from a GetVersion Command */
{
/* Get the Firmware Version from Enquiry Data */
memcpy(FirmwareVersion, ha->enq->CodeBlkVersion, IPS_COMPAT_ID_LENGTH);
}
/* printk(KERN_WARNING "Adapter's BIOS Version = %s\n", BiosVersion); */
/* printk(KERN_WARNING "BIOS Compatible Version = %s\n", IPS_COMPAT_BIOS); */
/* printk(KERN_WARNING "Adapter's Firmware Version = %s\n", FirmwareVersion); */
/* printk(KERN_WARNING "Firmware Compatible Version = %s \n", Compatable[ ha->nvram->adapter_type ]); */
MatchError = 0;
if (strncmp(FirmwareVersion, Compatable[ ha->nvram->adapter_type ], IPS_COMPAT_ID_LENGTH) != 0)
{
if (ips_cd_boot == 0)
printk(KERN_WARNING "Warning: Adapter %d Firmware Compatible Version is %s, but should be %s\n",
ha->host_num, FirmwareVersion, Compatable[ ha->nvram->adapter_type ]);
MatchError = 1;
}
if (strncmp(BiosVersion, IPS_COMPAT_BIOS, IPS_COMPAT_ID_LENGTH) != 0)
{
if (ips_cd_boot == 0)
printk(KERN_WARNING "Warning: Adapter %d BIOS Compatible Version is %s, but should be %s\n",
ha->host_num, BiosVersion, IPS_COMPAT_BIOS);
MatchError = 1;
}
ha->nvram->versioning = 1; /* Indicate the Driver Supports Versioning */
if (MatchError)
{
ha->nvram->version_mismatch = 1;
if (ips_cd_boot == 0)
printk(KERN_WARNING "Warning ! ! ! ServeRAID Version Mismatch\n");
}
else
{
ha->nvram->version_mismatch = 0;
}
return;
}
/*---------------------------------------------------------------------------*/
/* Routine Name: ips_get_version_info */
/* */
/* Routine Description: */
/* Issue an internal GETVERSION ServeRAID Command */
/* */
/* Return Value: */
/* 0 if Successful, else non-zero */
/*---------------------------------------------------------------------------*/
static int ips_get_version_info(ips_ha_t *ha, IPS_VERSION_DATA *Buffer, int intr ) {
ips_scb_t *scb;
int rc;
METHOD_TRACE("ips_get_version_info", 1);
memset(Buffer, 0, sizeof(IPS_VERSION_DATA));
scb = &ha->scbs[ha->max_cmds-1];
ips_init_scb(ha, scb);
scb->timeout = ips_cmd_timeout;
scb->cdb[0] = IPS_CMD_GET_VERSION_INFO;
scb->cmd.version_info.op_code = IPS_CMD_GET_VERSION_INFO;
scb->cmd.version_info.command_id = IPS_COMMAND_ID(ha, scb);
scb->cmd.version_info.reserved = 0;
scb->cmd.version_info.count = sizeof( IPS_VERSION_DATA);
scb->cmd.version_info.reserved2 = 0;
scb->data_len = sizeof(*Buffer);
scb->data_busaddr = pci_map_single(ha->pcidev, Buffer,
scb->data_len, IPS_DMA_DIR(scb));
scb->cmd.version_info.buffer_addr = scb->data_busaddr;
scb->flags |= IPS_SCB_MAP_SINGLE;
/* issue command */
rc = ips_send_wait(ha, scb, ips_cmd_timeout, intr);
return( rc );
}
#if defined (MODULE) || (LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0))
static Scsi_Host_Template driver_template = IPS;
#include "scsi_module.c"
#endif
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,0)
/*---------------------------------------------------------------------------*/
/* Routine Name: ips_remove_device */
/* */
/* Routine Description: */
/* Remove one Adapter ( Hot Plugging ) */
/*---------------------------------------------------------------------------*/
static void __devexit ips_remove_device(struct pci_dev *pci_dev)
{
int i;
struct Scsi_Host *sh;
ips_ha_t *ha;
for (i = 0; i < IPS_MAX_ADAPTERS; i++) {
ha = ips_ha[i];
if (ha) {
if ( (pci_dev->bus->number == ha->pcidev->bus->number) &&
(pci_dev->devfn == ha->pcidev->devfn)) {
sh = ips_sh[i];
ips_release(sh);
}
}
}
}
/*---------------------------------------------------------------------------*/
/* Routine Name: ips_insert_device */
/* */
/* Routine Description: */
/* Add One Adapter ( Hot Plug ) */
/* */
/* Return Value: */
/* 0 if Successful, else non-zero */
/*---------------------------------------------------------------------------*/
static int __devinit ips_insert_device(struct pci_dev *pci_dev, const struct pci_device_id *ent)
{
int index;
int rc;
METHOD_TRACE("ips_insert_device", 1);
if (pci_enable_device(pci_dev))
return -1;
rc = ips_init_phase1(pci_dev, &index);
if (rc == SUCCESS)
rc = ips_init_phase2(index);
if (rc == SUCCESS)
ips_num_controllers++;
ips_next_controller = ips_num_controllers;
return rc;
}
/*---------------------------------------------------------------------------*/
/* Routine Name: ips_init_phase1 */
/* */
/* Routine Description: */
/* Adapter Initialization */
/* */
/* Return Value: */
/* 0 if Successful, else non-zero */
/*---------------------------------------------------------------------------*/
static int ips_init_phase1( struct pci_dev *pci_dev, int *indexPtr )
{
struct Scsi_Host *sh;
ips_ha_t *ha;
uint32_t io_addr;
uint32_t mem_addr;
uint32_t io_len;
uint32_t mem_len;
uint8_t revision_id;
uint8_t bus;
uint8_t func;
uint8_t irq;
uint16_t subdevice_id;
int j;
int index;
uint32_t count;
dma_addr_t dma_address;
char *ioremap_ptr;
char *mem_ptr;
METHOD_TRACE("ips_init_phase1", 1);
index = IPS_MAX_ADAPTERS;
for (j = 0; j < IPS_MAX_ADAPTERS; j++) {
if (ips_ha[j] ==0) {
index = j;
break;
}
}
if (index >= IPS_MAX_ADAPTERS)
return -1;
/* stuff that we get in dev */
irq = pci_dev->irq;
bus = pci_dev->bus->number;
func = pci_dev->devfn;
/* Init MEM/IO addresses to 0 */
mem_addr = 0;
io_addr = 0;
mem_len = 0;
io_len = 0;
for (j = 0; j < 2; j++) {
if (!pci_resource_start(pci_dev, j))
break;
if (pci_resource_flags(pci_dev, j) & IORESOURCE_IO) {
io_addr = pci_resource_start(pci_dev, j);
io_len = pci_resource_len(pci_dev, j);
} else {
mem_addr = pci_resource_start(pci_dev, j);
mem_len = pci_resource_len(pci_dev, j);
}
}
/* setup memory mapped area (if applicable) */
if (mem_addr) {
uint32_t base;
uint32_t offs;
if (check_mem_region(mem_addr, mem_len)) {
printk(KERN_WARNING "Couldn't allocate IO Memory space %x len %d.\n", mem_addr, mem_len);
return -1;
}
request_mem_region(mem_addr, mem_len, "ips");
base = mem_addr & PAGE_MASK;
offs = mem_addr - base;
ioremap_ptr = ioremap(base, PAGE_SIZE);
mem_ptr = ioremap_ptr + offs;
} else {
ioremap_ptr = NULL;
mem_ptr = NULL;
}
/* setup I/O mapped area (if applicable) */
if (io_addr) {
if (check_region(io_addr, io_len)) {
printk(KERN_WARNING "Couldn't allocate IO space %x len %d.\n", io_addr, io_len);
return -1;
}
request_region(io_addr, io_len, "ips");
}
/* get the revision ID */
if (pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id)) {
printk(KERN_WARNING "Can't get revision id.\n" );
return -1;
}
subdevice_id = pci_dev->subsystem_device;
/* found a controller */
sh = scsi_register(&driver_template, sizeof(ips_ha_t));
#if LINUX_VERSION_CODE > LinuxVersionCode(2,5,0)
pci_set_dma_mask(pci_dev, (u64)0xffffffff);
scsi_set_pci_device(sh, pci_dev);
#endif
if (sh == NULL) {
printk(KERN_WARNING "Unable to register controller with SCSI subsystem\n" );
return -1;
}
ha = IPS_HA(sh);
memset(ha, 0, sizeof(ips_ha_t));
/* Initialize spin lock */
spin_lock_init(&ha->scb_lock);
spin_lock_init(&ha->copp_lock);
spin_lock_init(&ha->ips_lock);
spin_lock_init(&ha->copp_waitlist.lock);
spin_lock_init(&ha->scb_waitlist.lock);
spin_lock_init(&ha->scb_activelist.lock);
ips_sh[index] = sh;
ips_ha[index] = ha;
ha->active = 1;
ha->enq = kmalloc(sizeof(IPS_ENQ), GFP_KERNEL);
if (!ha->enq) {
printk(KERN_WARNING "Unable to allocate host inquiry structure\n" );
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
ha->adapt = pci_alloc_consistent(ha->pcidev, sizeof(IPS_ADAPTER) +
sizeof(IPS_IO_CMD), &dma_address);
if (!ha->adapt) {
printk(KERN_WARNING "Unable to allocate host adapt & dummy structures\n");
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
ha->adapt->hw_status_start = dma_address;
ha->dummy = (void *)(ha->adapt + 1);
ha->conf = kmalloc(sizeof(IPS_CONF), GFP_KERNEL);
if (!ha->conf) {
printk(KERN_WARNING "Unable to allocate host conf structure\n" );
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
ha->nvram = kmalloc(sizeof(IPS_NVRAM_P5), GFP_KERNEL);
if (!ha->nvram) {
printk(KERN_WARNING "Unable to allocate host NVRAM structure\n" );
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
ha->subsys = kmalloc(sizeof(IPS_SUBSYS), GFP_KERNEL);
if (!ha->subsys) {
printk(KERN_WARNING "Unable to allocate host subsystem structure\n" );
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
for (count = PAGE_SIZE, ha->ioctl_order = 0;
count < ips_ioctlsize;
ha->ioctl_order++, count <<= 1);
ha->ioctl_data = (char *) __get_free_pages(GFP_KERNEL, ha->ioctl_order);
ha->ioctl_datasize = count;
if (!ha->ioctl_data) {
printk(KERN_WARNING "Unable to allocate IOCTL data\n" );
ha->ioctl_data = NULL;
ha->ioctl_order = 0;
ha->ioctl_datasize = 0;
}
/* Store away needed values for later use */
sh->io_port = io_addr;
sh->n_io_port = io_addr ? 255 : 0;
sh->unique_id = (io_addr) ? io_addr : mem_addr;
sh->irq = irq;
sh->select_queue_depths = ips_select_queue_depth;
sh->sg_tablesize = sh->hostt->sg_tablesize;
sh->can_queue = sh->hostt->can_queue;
sh->cmd_per_lun = sh->hostt->cmd_per_lun;
sh->unchecked_isa_dma = sh->hostt->unchecked_isa_dma;
sh->use_clustering = sh->hostt->use_clustering;
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,7)
sh->max_sectors = 128;
#endif
/* Store info in HA structure */
ha->irq = irq;
ha->io_addr = io_addr;
ha->io_len = io_len;
ha->mem_addr = mem_addr;
ha->mem_len = mem_len;
ha->mem_ptr = mem_ptr;
ha->ioremap_ptr = ioremap_ptr;
ha->host_num = ( uint32_t) index;
ha->revision_id = revision_id;
ha->slot_num = PCI_SLOT(pci_dev->devfn);
ha->device_id = pci_dev->device;
ha->subdevice_id = subdevice_id;
ha->pcidev = pci_dev;
/*
* Setup Functions
*/
if (IPS_IS_MORPHEUS(ha)) {
/* morpheus */
ha->func.isintr = ips_isintr_morpheus;
ha->func.isinit = ips_isinit_morpheus;
ha->func.issue = ips_issue_i2o_memio;
ha->func.init = ips_init_morpheus;
ha->func.statupd = ips_statupd_morpheus;
ha->func.reset = ips_reset_morpheus;
ha->func.intr = ips_intr_morpheus;
ha->func.enableint = ips_enable_int_morpheus;
} else if (IPS_USE_MEMIO(ha)) {
/* copperhead w/MEMIO */
ha->func.isintr = ips_isintr_copperhead_memio;
ha->func.isinit = ips_isinit_copperhead_memio;
ha->func.init = ips_init_copperhead_memio;
ha->func.statupd = ips_statupd_copperhead_memio;
ha->func.statinit = ips_statinit_memio;
ha->func.reset = ips_reset_copperhead_memio;
ha->func.intr = ips_intr_copperhead;
ha->func.erasebios = ips_erase_bios_memio;
ha->func.programbios = ips_program_bios_memio;
ha->func.verifybios = ips_verify_bios_memio;
ha->func.enableint = ips_enable_int_copperhead_memio;
if (IPS_USE_I2O_DELIVER(ha))
ha->func.issue = ips_issue_i2o_memio;
else
ha->func.issue = ips_issue_copperhead_memio;
} else {
/* copperhead */
ha->func.isintr = ips_isintr_copperhead;
ha->func.isinit = ips_isinit_copperhead;
ha->func.init = ips_init_copperhead;
ha->func.statupd = ips_statupd_copperhead;
ha->func.statinit = ips_statinit;
ha->func.reset = ips_reset_copperhead;
ha->func.intr = ips_intr_copperhead;
ha->func.erasebios = ips_erase_bios;
ha->func.programbios = ips_program_bios;
ha->func.verifybios = ips_verify_bios;
ha->func.enableint = ips_enable_int_copperhead;
if (IPS_USE_I2O_DELIVER(ha))
ha->func.issue = ips_issue_i2o;
else
ha->func.issue = ips_issue_copperhead;
}
/*
* Initialize the card if it isn't already
*/
if (!(*ha->func.isinit)(ha)) {
if (!(*ha->func.init)(ha)) {
/*
* Initialization failed
*/
printk(KERN_WARNING "Unable to initialize controller\n" );
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
}
/* Install the interrupt handler */
if (request_irq(irq, do_ipsintr, SA_SHIRQ, ips_name, ha)) {
printk(KERN_WARNING "Unable to install interrupt handler\n" );
ha->active = 0;
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
/*
* Allocate a temporary SCB for initialization
*/
ha->max_cmds = 1;
if (!ips_allocatescbs(ha)) {
printk(KERN_WARNING "Unable to allocate a CCB\n" );
ha->active = 0;
free_irq(ha->irq, ha);
ips_free(ha);
scsi_unregister(sh);
ips_ha[index] = 0;
ips_sh[index] = 0;
return -1;
}
*indexPtr = index;
return SUCCESS;
}
#endif
/*---------------------------------------------------------------------------*/
/* Routine Name: ips_init_phase2 */
/* */
/* Routine Description: */
/* Adapter Initialization Phase 2 */
/* */
/* Return Value: */
/* 0 if Successful, else non-zero */
/*---------------------------------------------------------------------------*/
static int ips_init_phase2( int index )
{
struct Scsi_Host *sh;
ips_ha_t *ha;
ha = ips_ha[index];
sh = ips_sh[index];
METHOD_TRACE("ips_init_phase2", 1);
if (!ha->active) {
scsi_unregister(sh);
ips_ha[index] = NULL;
ips_sh[index] = NULL;
return -1;;
}
if (!ips_hainit(ha)) {
printk(KERN_WARNING "Unable to initialize controller\n" );
ha->active = 0;
ips_free(ha);
free_irq(ha->irq, ha);
scsi_unregister(sh);
ips_ha[index] = NULL;
ips_sh[index] = NULL;
return -1;
}
/* Free the temporary SCB */
ips_deallocatescbs(ha, 1);
/* allocate CCBs */
if (!ips_allocatescbs(ha)) {
printk(KERN_WARNING "Unable to allocate CCBs\n" );
ha->active = 0;
ips_free(ha);
free_irq(ha->irq, ha);
scsi_unregister(sh);
ips_ha[index] = NULL;
ips_sh[index] = NULL;
return -1;
}
/* finish setting values */
sh->max_id = ha->ntargets;
sh->max_lun = ha->nlun;
sh->max_channel = ha->nbus - 1;
sh->can_queue = ha->max_cmds-1;
return SUCCESS;
}
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,9)
MODULE_LICENSE("GPL");
#endif
/*
* Overrides for Emacs so that we almost follow Linus's tabbing style.
* Emacs will notice this stuff at the end of the file and automatically
* adjust the settings for this buffer only. This must remain at the end
* of the file.
* ---------------------------------------------------------------------------
* Local variables:
* c-indent-level: 2
* c-brace-imaginary-offset: 0
* c-brace-offset: -2
* c-argdecl-indent: 2
* c-label-offset: -2
* c-continued-statement-offset: 2
* c-continued-brace-offset: 0
* indent-tabs-mode: nil
* tab-width: 8
* End:
*/