blob: 088e84a1b4dff888b057a580e85cb15c88a87c08 [file] [log] [blame]
#ifndef _ASM_IA64_SYSTEM_H
#define _ASM_IA64_SYSTEM_H
/*
* System defines. Note that this is included both from .c and .S
* files, so it does only defines, not any C code. This is based
* on information published in the Processor Abstraction Layer
* and the System Abstraction Layer manual.
*
* Copyright (C) 1998-2002 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
*/
#include <linux/config.h>
#include <asm/kregs.h>
#include <asm/page.h>
#define KERNEL_START (PAGE_OFFSET + 68*1024*1024)
#define GATE_ADDR (0xa000000000000000 + PAGE_SIZE)
#define PERCPU_ADDR (0xa000000000000000 + 2*PAGE_SIZE)
#ifndef __ASSEMBLY__
#include <linux/kernel.h>
#include <linux/types.h>
struct pci_vector_struct {
__u16 bus; /* PCI Bus number */
__u32 pci_id; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */
__u8 pin; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */
__u32 irq; /* IRQ assigned */
};
extern struct ia64_boot_param {
__u64 command_line; /* physical address of command line arguments */
__u64 efi_systab; /* physical address of EFI system table */
__u64 efi_memmap; /* physical address of EFI memory map */
__u64 efi_memmap_size; /* size of EFI memory map */
__u64 efi_memdesc_size; /* size of an EFI memory map descriptor */
__u32 efi_memdesc_version; /* memory descriptor version */
struct {
__u16 num_cols; /* number of columns on console output device */
__u16 num_rows; /* number of rows on console output device */
__u16 orig_x; /* cursor's x position */
__u16 orig_y; /* cursor's y position */
} console_info;
__u64 fpswa; /* physical address of the fpswa interface */
__u64 initrd_start;
__u64 initrd_size;
} *ia64_boot_param;
static inline void
ia64_insn_group_barrier (void)
{
__asm__ __volatile__ (";;" ::: "memory");
}
/*
* Macros to force memory ordering. In these descriptions, "previous"
* and "subsequent" refer to program order; "visible" means that all
* architecturally visible effects of a memory access have occurred
* (at a minimum, this means the memory has been read or written).
*
* wmb(): Guarantees that all preceding stores to memory-
* like regions are visible before any subsequent
* stores and that all following stores will be
* visible only after all previous stores.
* rmb(): Like wmb(), but for reads.
* mb(): wmb()/rmb() combo, i.e., all previous memory
* accesses are visible before all subsequent
* accesses and vice versa. This is also known as
* a "fence."
*
* Note: "mb()" and its variants cannot be used as a fence to order
* accesses to memory mapped I/O registers. For that, mf.a needs to
* be used. However, we don't want to always use mf.a because (a)
* it's (presumably) much slower than mf and (b) mf.a is supported for
* sequential memory pages only.
*/
#define mb() __asm__ __volatile__ ("mf" ::: "memory")
#define rmb() mb()
#define wmb() mb()
#ifdef CONFIG_SMP
# define smp_mb() mb()
# define smp_rmb() rmb()
# define smp_wmb() wmb()
#else
# define smp_mb() barrier()
# define smp_rmb() barrier()
# define smp_wmb() barrier()
#endif
/*
* XXX check on these---I suspect what Linus really wants here is
* acquire vs release semantics but we can't discuss this stuff with
* Linus just yet. Grrr...
*/
#define set_mb(var, value) do { (var) = (value); mb(); } while (0)
#define set_wmb(var, value) do { (var) = (value); mb(); } while (0)
/*
* The group barrier in front of the rsm & ssm are necessary to ensure
* that none of the previous instructions in the same group are
* affected by the rsm/ssm.
*/
/* For spinlocks etc */
#ifdef CONFIG_IA64_DEBUG_IRQ
extern unsigned long last_cli_ip;
# define local_irq_save(x) \
do { \
unsigned long ip, psr; \
\
__asm__ __volatile__ ("mov %0=psr;; rsm psr.i;;" : "=r" (psr) :: "memory"); \
if (psr & (1UL << 14)) { \
__asm__ ("mov %0=ip" : "=r"(ip)); \
last_cli_ip = ip; \
} \
(x) = psr; \
} while (0)
# define local_irq_disable() \
do { \
unsigned long ip, psr; \
\
__asm__ __volatile__ ("mov %0=psr;; rsm psr.i;;" : "=r" (psr) :: "memory"); \
if (psr & (1UL << 14)) { \
__asm__ ("mov %0=ip" : "=r"(ip)); \
last_cli_ip = ip; \
} \
} while (0)
# define local_irq_restore(x) \
do { \
unsigned long ip, old_psr, psr = (x); \
\
__asm__ __volatile__ ("mov %0=psr;" \
"cmp.ne p6,p7=%1,r0;;" \
"(p6) ssm psr.i;" \
"(p7) rsm psr.i;;" \
"srlz.d" \
: "=&r" (old_psr) : "r"((psr) & IA64_PSR_I) \
: "p6", "p7", "memory"); \
if ((old_psr & IA64_PSR_I) && !(psr & IA64_PSR_I)) { \
__asm__ ("mov %0=ip" : "=r"(ip)); \
last_cli_ip = ip; \
} \
} while (0)
#else /* !CONFIG_IA64_DEBUG_IRQ */
/* clearing of psr.i is implicitly serialized (visible by next insn) */
# define local_irq_save(x) __asm__ __volatile__ ("mov %0=psr;; rsm psr.i;;" \
: "=r" (x) :: "memory")
# define local_irq_disable() __asm__ __volatile__ (";; rsm psr.i;;" ::: "memory")
/* (potentially) setting psr.i requires data serialization: */
# define local_irq_restore(x) __asm__ __volatile__ ("cmp.ne p6,p7=%0,r0;;" \
"(p6) ssm psr.i;" \
"(p7) rsm psr.i;;" \
"srlz.d" \
:: "r"((x) & IA64_PSR_I) \
: "p6", "p7", "memory")
#endif /* !CONFIG_IA64_DEBUG_IRQ */
#define local_irq_enable() __asm__ __volatile__ (";; ssm psr.i;; srlz.d" ::: "memory")
#define __cli() local_irq_disable ()
#define __save_flags(flags) __asm__ __volatile__ ("mov %0=psr" : "=r" (flags) :: "memory")
#define __save_and_cli(flags) local_irq_save(flags)
#define save_and_cli(flags) __save_and_cli(flags)
#define __sti() local_irq_enable ()
#define __restore_flags(flags) local_irq_restore(flags)
#ifdef CONFIG_SMP
extern void __global_cli (void);
extern void __global_sti (void);
extern unsigned long __global_save_flags (void);
extern void __global_restore_flags (unsigned long);
# define cli() __global_cli()
# define sti() __global_sti()
# define save_flags(flags) ((flags) = __global_save_flags())
# define restore_flags(flags) __global_restore_flags(flags)
#else /* !CONFIG_SMP */
# define cli() __cli()
# define sti() __sti()
# define save_flags(flags) __save_flags(flags)
# define restore_flags(flags) __restore_flags(flags)
#endif /* !CONFIG_SMP */
/*
* Force an unresolved reference if someone tries to use
* ia64_fetch_and_add() with a bad value.
*/
extern unsigned long __bad_size_for_ia64_fetch_and_add (void);
extern unsigned long __bad_increment_for_ia64_fetch_and_add (void);
#define IA64_FETCHADD(tmp,v,n,sz) \
({ \
switch (sz) { \
case 4: \
__asm__ __volatile__ ("fetchadd4.rel %0=[%1],%2" \
: "=r"(tmp) : "r"(v), "i"(n) : "memory"); \
break; \
\
case 8: \
__asm__ __volatile__ ("fetchadd8.rel %0=[%1],%2" \
: "=r"(tmp) : "r"(v), "i"(n) : "memory"); \
break; \
\
default: \
__bad_size_for_ia64_fetch_and_add(); \
} \
})
#define ia64_fetch_and_add(i,v) \
({ \
__u64 _tmp; \
volatile __typeof__(*(v)) *_v = (v); \
switch (i) { \
case -16: IA64_FETCHADD(_tmp, _v, -16, sizeof(*(v))); break; \
case -8: IA64_FETCHADD(_tmp, _v, -8, sizeof(*(v))); break; \
case -4: IA64_FETCHADD(_tmp, _v, -4, sizeof(*(v))); break; \
case -1: IA64_FETCHADD(_tmp, _v, -1, sizeof(*(v))); break; \
case 1: IA64_FETCHADD(_tmp, _v, 1, sizeof(*(v))); break; \
case 4: IA64_FETCHADD(_tmp, _v, 4, sizeof(*(v))); break; \
case 8: IA64_FETCHADD(_tmp, _v, 8, sizeof(*(v))); break; \
case 16: IA64_FETCHADD(_tmp, _v, 16, sizeof(*(v))); break; \
default: \
_tmp = __bad_increment_for_ia64_fetch_and_add(); \
break; \
} \
(__typeof__(*(v))) (_tmp + (i)); /* return new value */ \
})
/*
* This function doesn't exist, so you'll get a linker error if
* something tries to do an invalid xchg().
*/
extern void __xchg_called_with_bad_pointer (void);
static __inline__ unsigned long
__xchg (unsigned long x, volatile void *ptr, int size)
{
unsigned long result;
switch (size) {
case 1:
__asm__ __volatile ("xchg1 %0=[%1],%2" : "=r" (result)
: "r" (ptr), "r" (x) : "memory");
return result;
case 2:
__asm__ __volatile ("xchg2 %0=[%1],%2" : "=r" (result)
: "r" (ptr), "r" (x) : "memory");
return result;
case 4:
__asm__ __volatile ("xchg4 %0=[%1],%2" : "=r" (result)
: "r" (ptr), "r" (x) : "memory");
return result;
case 8:
__asm__ __volatile ("xchg8 %0=[%1],%2" : "=r" (result)
: "r" (ptr), "r" (x) : "memory");
return result;
}
__xchg_called_with_bad_pointer();
return x;
}
#define xchg(ptr,x) \
((__typeof__(*(ptr))) __xchg ((unsigned long) (x), (ptr), sizeof(*(ptr))))
/*
* Atomic compare and exchange. Compare OLD with MEM, if identical,
* store NEW in MEM. Return the initial value in MEM. Success is
* indicated by comparing RETURN with OLD.
*/
#define __HAVE_ARCH_CMPXCHG 1
/*
* This function doesn't exist, so you'll get a linker error
* if something tries to do an invalid cmpxchg().
*/
extern long __cmpxchg_called_with_bad_pointer(void);
#define ia64_cmpxchg(sem,ptr,old,new,size) \
({ \
__typeof__(ptr) _p_ = (ptr); \
__typeof__(new) _n_ = (new); \
__u64 _o_, _r_; \
\
switch (size) { \
case 1: _o_ = (__u8 ) (long) (old); break; \
case 2: _o_ = (__u16) (long) (old); break; \
case 4: _o_ = (__u32) (long) (old); break; \
case 8: _o_ = (__u64) (long) (old); break; \
default: break; \
} \
__asm__ __volatile__ ("mov ar.ccv=%0;;" :: "rO"(_o_)); \
switch (size) { \
case 1: \
__asm__ __volatile__ ("cmpxchg1."sem" %0=[%1],%2,ar.ccv" \
: "=r"(_r_) : "r"(_p_), "r"(_n_) : "memory"); \
break; \
\
case 2: \
__asm__ __volatile__ ("cmpxchg2."sem" %0=[%1],%2,ar.ccv" \
: "=r"(_r_) : "r"(_p_), "r"(_n_) : "memory"); \
break; \
\
case 4: \
__asm__ __volatile__ ("cmpxchg4."sem" %0=[%1],%2,ar.ccv" \
: "=r"(_r_) : "r"(_p_), "r"(_n_) : "memory"); \
break; \
\
case 8: \
__asm__ __volatile__ ("cmpxchg8."sem" %0=[%1],%2,ar.ccv" \
: "=r"(_r_) : "r"(_p_), "r"(_n_) : "memory"); \
break; \
\
default: \
_r_ = __cmpxchg_called_with_bad_pointer(); \
break; \
} \
(__typeof__(old)) _r_; \
})
#define cmpxchg_acq(ptr,o,n) ia64_cmpxchg("acq", (ptr), (o), (n), sizeof(*(ptr)))
#define cmpxchg_rel(ptr,o,n) ia64_cmpxchg("rel", (ptr), (o), (n), sizeof(*(ptr)))
/* for compatibility with other platforms: */
#define cmpxchg(ptr,o,n) cmpxchg_acq(ptr,o,n)
#ifdef CONFIG_IA64_DEBUG_CMPXCHG
# define CMPXCHG_BUGCHECK_DECL int _cmpxchg_bugcheck_count = 128;
# define CMPXCHG_BUGCHECK(v) \
do { \
if (_cmpxchg_bugcheck_count-- <= 0) { \
void *ip; \
extern int printk(const char *fmt, ...); \
asm ("mov %0=ip" : "=r"(ip)); \
printk("CMPXCHG_BUGCHECK: stuck at %p on word %p\n", ip, (v)); \
break; \
} \
} while (0)
#else /* !CONFIG_IA64_DEBUG_CMPXCHG */
# define CMPXCHG_BUGCHECK_DECL
# define CMPXCHG_BUGCHECK(v)
#endif /* !CONFIG_IA64_DEBUG_CMPXCHG */
#ifdef __KERNEL__
#define prepare_to_switch() do { } while(0)
#ifdef CONFIG_IA32_SUPPORT
# define IS_IA32_PROCESS(regs) (ia64_psr(regs)->is != 0)
#else
# define IS_IA32_PROCESS(regs) 0
struct task_struct;
static inline void ia32_save_state(struct task_struct *t __attribute__((unused))){}
static inline void ia32_load_state(struct task_struct *t __attribute__((unused))){}
#endif
/*
* Context switch from one thread to another. If the two threads have
* different address spaces, schedule() has already taken care of
* switching to the new address space by calling switch_mm().
*
* Disabling access to the fph partition and the debug-register
* context switch MUST be done before calling ia64_switch_to() since a
* newly created thread returns directly to
* ia64_ret_from_syscall_clear_r8.
*/
extern void ia64_switch_to (void *next_task);
struct task_struct;
extern void ia64_save_extra (struct task_struct *task);
extern void ia64_load_extra (struct task_struct *task);
#if defined(CONFIG_SMP) && defined(CONFIG_PERFMON)
# define PERFMON_IS_SYSWIDE() (local_cpu_data->pfm_syst_wide != 0)
#else
# define PERFMON_IS_SYSWIDE() (0)
#endif
#define __switch_to(prev,next) do { \
if (((prev)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID)) \
|| IS_IA32_PROCESS(ia64_task_regs(prev)) || PERFMON_IS_SYSWIDE()) \
ia64_save_extra(prev); \
if (((next)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID)) \
|| IS_IA32_PROCESS(ia64_task_regs(next)) || PERFMON_IS_SYSWIDE()) \
ia64_load_extra(next); \
ia64_switch_to((next)); \
} while (0)
#ifdef CONFIG_SMP
/* Return true if this CPU can call the console drivers in printk() */
#define arch_consoles_callable() (cpu_online_map & (1UL << smp_processor_id()))
/*
* In the SMP case, we save the fph state when context-switching
* away from a thread that modified fph. This way, when the thread
* gets scheduled on another CPU, the CPU can pick up the state from
* task->thread.fph, avoiding the complication of having to fetch
* the latest fph state from another CPU.
*/
# define switch_to(prev,next) do { \
if (ia64_psr(ia64_task_regs(prev))->mfh) { \
ia64_psr(ia64_task_regs(prev))->mfh = 0; \
(prev)->thread.flags |= IA64_THREAD_FPH_VALID; \
__ia64_save_fpu((prev)->thread.fph); \
} \
ia64_psr(ia64_task_regs(prev))->dfh = 1; \
__switch_to(prev,next); \
} while (0)
#else
# define switch_to(prev,next) do { \
ia64_psr(ia64_task_regs(next))->dfh = (ia64_get_fpu_owner() != (next)); \
__switch_to(prev,next); \
} while (0)
#endif
#endif /* __KERNEL__ */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_IA64_SYSTEM_H */