blob: deff2d62ac05ec8a4281c34cbdc720e7cd7d77c4 [file] [log] [blame]
/*
* kernel/sched.c
*
* Kernel scheduler and related syscalls
*
* Copyright (C) 1991-2002 Linus Torvalds
*
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
* 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
* hybrid priority-list and round-robin design with
* an array-switch method of distributing timeslices
* and per-CPU runqueues. Additional code by Davide
* Libenzi, Robert Love, and Rusty Russell.
*/
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/kernel_stat.h>
/*
* Convert user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
* and back.
*/
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [ 0 ... 39 ] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
/*
* These are the 'tuning knobs' of the scheduler:
*
* Minimum timeslice is 10 msecs, default timeslice is 150 msecs,
* maximum timeslice is 300 msecs. Timeslices get refilled after
* they expire.
*/
#define MIN_TIMESLICE ( 10 * HZ / 1000)
#define MAX_TIMESLICE (300 * HZ / 1000)
#define CHILD_PENALTY 95
#define PARENT_PENALTY 100
#define EXIT_WEIGHT 3
#define PRIO_BONUS_RATIO 25
#define INTERACTIVE_DELTA 2
#define MAX_SLEEP_AVG (2*HZ)
#define STARVATION_LIMIT (2*HZ)
/*
* If a task is 'interactive' then we reinsert it in the active
* array after it has expired its current timeslice. (it will not
* continue to run immediately, it will still roundrobin with
* other interactive tasks.)
*
* This part scales the interactivity limit depending on niceness.
*
* We scale it linearly, offset by the INTERACTIVE_DELTA delta.
* Here are a few examples of different nice levels:
*
* TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
* TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
* TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
* TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
* TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
*
* (the X axis represents the possible -5 ... 0 ... +5 dynamic
* priority range a task can explore, a value of '1' means the
* task is rated interactive.)
*
* Ie. nice +19 tasks can never get 'interactive' enough to be
* reinserted into the active array. And only heavily CPU-hog nice -20
* tasks will be expired. Default nice 0 tasks are somewhere between,
* it takes some effort for them to get interactive, but it's not
* too hard.
*/
#define SCALE(v1,v1_max,v2_max) \
(v1) * (v2_max) / (v1_max)
#define DELTA(p) \
(SCALE(TASK_NICE(p), 40, MAX_USER_PRIO*PRIO_BONUS_RATIO/100) + \
INTERACTIVE_DELTA)
#define TASK_INTERACTIVE(p) \
((p)->prio <= (p)->static_prio - DELTA(p))
/*
* TASK_TIMESLICE scales user-nice values [ -20 ... 19 ]
* to time slice values.
*
* The higher a process's priority, the bigger timeslices
* it gets during one round of execution. But even the lowest
* priority process gets MIN_TIMESLICE worth of execution time.
*/
#define TASK_TIMESLICE(p) (MIN_TIMESLICE + \
((MAX_TIMESLICE - MIN_TIMESLICE) * (MAX_PRIO-1-(p)->static_prio)/39))
/*
* These are the runqueue data structures:
*/
#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
typedef struct runqueue runqueue_t;
struct prio_array {
int nr_active;
unsigned long bitmap[BITMAP_SIZE];
list_t queue[MAX_PRIO];
};
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the process migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct runqueue {
spinlock_t lock;
spinlock_t frozen;
unsigned long nr_running, nr_switches, expired_timestamp;
signed long nr_uninterruptible;
task_t *curr, *idle;
prio_array_t *active, *expired, arrays[2];
int prev_nr_running[NR_CPUS];
task_t *migration_thread;
list_t migration_queue;
} ____cacheline_aligned;
static struct runqueue runqueues[NR_CPUS] __cacheline_aligned;
#define cpu_rq(cpu) (runqueues + (cpu))
#define this_rq() cpu_rq(smp_processor_id())
#define task_rq(p) cpu_rq((p)->thread_info->cpu)
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define rt_task(p) ((p)->prio < MAX_RT_PRIO)
static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
{
struct runqueue *rq;
repeat_lock_task:
preempt_disable();
rq = task_rq(p);
spin_lock_irqsave(&rq->lock, *flags);
if (unlikely(rq != task_rq(p))) {
spin_unlock_irqrestore(&rq->lock, *flags);
preempt_enable();
goto repeat_lock_task;
}
return rq;
}
static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
{
spin_unlock_irqrestore(&rq->lock, *flags);
preempt_enable();
}
/*
* Adding/removing a task to/from a priority array:
*/
static inline void dequeue_task(struct task_struct *p, prio_array_t *array)
{
array->nr_active--;
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
__clear_bit(p->prio, array->bitmap);
}
static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
{
list_add_tail(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
array->nr_active++;
p->array = array;
}
static inline int effective_prio(task_t *p)
{
int bonus, prio;
/*
* Here we scale the actual sleep average [0 .... MAX_SLEEP_AVG]
* into the -5 ... 0 ... +5 bonus/penalty range.
*
* We use 25% of the full 0...39 priority range so that:
*
* 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
* 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
*
* Both properties are important to certain workloads.
*/
bonus = MAX_USER_PRIO*PRIO_BONUS_RATIO*p->sleep_avg/MAX_SLEEP_AVG/100 -
MAX_USER_PRIO*PRIO_BONUS_RATIO/100/2;
prio = p->static_prio - bonus;
if (prio < MAX_RT_PRIO)
prio = MAX_RT_PRIO;
if (prio > MAX_PRIO-1)
prio = MAX_PRIO-1;
return prio;
}
static inline void activate_task(task_t *p, runqueue_t *rq)
{
unsigned long sleep_time = jiffies - p->sleep_timestamp;
prio_array_t *array = rq->active;
if (!rt_task(p) && sleep_time) {
/*
* This code gives a bonus to interactive tasks. We update
* an 'average sleep time' value here, based on
* sleep_timestamp. The more time a task spends sleeping,
* the higher the average gets - and the higher the priority
* boost gets as well.
*/
p->sleep_avg += sleep_time;
if (p->sleep_avg > MAX_SLEEP_AVG)
p->sleep_avg = MAX_SLEEP_AVG;
p->prio = effective_prio(p);
}
enqueue_task(p, array);
rq->nr_running++;
}
static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
{
rq->nr_running--;
if (p->state == TASK_UNINTERRUPTIBLE)
rq->nr_uninterruptible++;
dequeue_task(p, p->array);
p->array = NULL;
}
static inline void resched_task(task_t *p)
{
#ifdef CONFIG_SMP
int need_resched, nrpolling;
preempt_disable();
/* minimise the chance of sending an interrupt to poll_idle() */
nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
if (!need_resched && !nrpolling && (p->thread_info->cpu != smp_processor_id()))
smp_send_reschedule(p->thread_info->cpu);
preempt_enable();
#else
set_tsk_need_resched(p);
#endif
}
#ifdef CONFIG_SMP
/*
* Wait for a process to unschedule. This is used by the exit() and
* ptrace() code.
*/
void wait_task_inactive(task_t * p)
{
unsigned long flags;
runqueue_t *rq;
repeat:
preempt_disable();
rq = task_rq(p);
while (unlikely(rq->curr == p)) {
cpu_relax();
barrier();
}
rq = task_rq_lock(p, &flags);
if (unlikely(rq->curr == p)) {
task_rq_unlock(rq, &flags);
preempt_enable();
goto repeat;
}
task_rq_unlock(rq, &flags);
preempt_enable();
}
/*
* Kick the remote CPU if the task is running currently,
* this code is used by the signal code to signal tasks
* which are in user-mode as quickly as possible.
*
* (Note that we do this lockless - if the task does anything
* while the message is in flight then it will notice the
* sigpending condition anyway.)
*/
void kick_if_running(task_t * p)
{
if (p == task_rq(p)->curr)
resched_task(p);
}
#endif
/*
* Wake up a process. Put it on the run-queue if it's not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you're allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/
static int try_to_wake_up(task_t * p)
{
unsigned long flags;
int success = 0;
long old_state;
runqueue_t *rq;
rq = task_rq_lock(p, &flags);
old_state = p->state;
p->state = TASK_RUNNING;
if (!p->array) {
if (old_state == TASK_UNINTERRUPTIBLE)
rq->nr_uninterruptible--;
activate_task(p, rq);
if (p->prio < rq->curr->prio)
resched_task(rq->curr);
success = 1;
}
task_rq_unlock(rq, &flags);
return success;
}
int wake_up_process(task_t * p)
{
return try_to_wake_up(p);
}
void wake_up_forked_process(task_t * p)
{
runqueue_t *rq;
preempt_disable();
rq = this_rq();
spin_lock_irq(&rq->lock);
p->state = TASK_RUNNING;
if (!rt_task(p)) {
/*
* We decrease the sleep average of forking parents
* and children as well, to keep max-interactive tasks
* from forking tasks that are max-interactive.
*/
current->sleep_avg = current->sleep_avg * PARENT_PENALTY / 100;
p->sleep_avg = p->sleep_avg * CHILD_PENALTY / 100;
p->prio = effective_prio(p);
}
p->thread_info->cpu = smp_processor_id();
activate_task(p, rq);
spin_unlock_irq(&rq->lock);
preempt_enable();
}
/*
* Potentially available exiting-child timeslices are
* retrieved here - this way the parent does not get
* penalized for creating too many processes.
*
* (this cannot be used to 'generate' timeslices
* artificially, because any timeslice recovered here
* was given away by the parent in the first place.)
*/
void sched_exit(task_t * p)
{
__cli();
current->time_slice += p->time_slice;
if (unlikely(current->time_slice > MAX_TIMESLICE))
current->time_slice = MAX_TIMESLICE;
__sti();
/*
* If the child was a (relative-) CPU hog then decrease
* the sleep_avg of the parent as well.
*/
if (p->sleep_avg < current->sleep_avg)
current->sleep_avg = (current->sleep_avg * EXIT_WEIGHT +
p->sleep_avg) / (EXIT_WEIGHT + 1);
}
#if CONFIG_SMP || CONFIG_PREEMPT
asmlinkage void schedule_tail(void)
{
spin_unlock_irq(&this_rq()->frozen);
}
#endif
static inline void context_switch(task_t *prev, task_t *next)
{
struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
prepare_to_switch();
if (unlikely(!mm)) {
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, smp_processor_id());
} else
switch_mm(oldmm, mm, next, smp_processor_id());
if (unlikely(!prev->mm)) {
prev->active_mm = NULL;
mmdrop(oldmm);
}
/* Here we just switch the register state and the stack. */
switch_to(prev, next);
}
unsigned long nr_running(void)
{
unsigned long i, sum = 0;
for (i = 0; i < smp_num_cpus; i++)
sum += cpu_rq(cpu_logical_map(i))->nr_running;
return sum;
}
unsigned long nr_uninterruptible(void)
{
unsigned long i, sum = 0;
for (i = 0; i < smp_num_cpus; i++)
sum += cpu_rq(cpu_logical_map(i))->nr_uninterruptible;
return sum;
}
unsigned long nr_context_switches(void)
{
unsigned long i, sum = 0;
for (i = 0; i < smp_num_cpus; i++)
sum += cpu_rq(cpu_logical_map(i))->nr_switches;
return sum;
}
#if CONFIG_SMP
/*
* Lock the busiest runqueue as well, this_rq is locked already.
* Recalculate nr_running if we have to drop the runqueue lock.
*/
static inline unsigned int double_lock_balance(runqueue_t *this_rq,
runqueue_t *busiest, int this_cpu, int idle, unsigned int nr_running)
{
if (unlikely(!spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
spin_unlock(&this_rq->lock);
spin_lock(&busiest->lock);
spin_lock(&this_rq->lock);
/* Need to recalculate nr_running */
if (idle || (this_rq->nr_running > this_rq->prev_nr_running[this_cpu]))
nr_running = this_rq->nr_running;
else
nr_running = this_rq->prev_nr_running[this_cpu];
} else
spin_lock(&busiest->lock);
}
return nr_running;
}
/*
* Current runqueue is empty, or rebalance tick: if there is an
* inbalance (current runqueue is too short) then pull from
* busiest runqueue(s).
*
* We call this with the current runqueue locked,
* irqs disabled.
*/
static void load_balance(runqueue_t *this_rq, int idle)
{
int imbalance, nr_running, load, max_load,
idx, i, this_cpu = smp_processor_id();
task_t *next = this_rq->idle, *tmp;
runqueue_t *busiest, *rq_src;
prio_array_t *array;
list_t *head, *curr;
/*
* We search all runqueues to find the most busy one.
* We do this lockless to reduce cache-bouncing overhead,
* we re-check the 'best' source CPU later on again, with
* the lock held.
*
* We fend off statistical fluctuations in runqueue lengths by
* saving the runqueue length during the previous load-balancing
* operation and using the smaller one the current and saved lengths.
* If a runqueue is long enough for a longer amount of time then
* we recognize it and pull tasks from it.
*
* The 'current runqueue length' is a statistical maximum variable,
* for that one we take the longer one - to avoid fluctuations in
* the other direction. So for a load-balance to happen it needs
* stable long runqueue on the target CPU and stable short runqueue
* on the local runqueue.
*
* We make an exception if this CPU is about to become idle - in
* that case we are less picky about moving a task across CPUs and
* take what can be taken.
*/
if (idle || (this_rq->nr_running > this_rq->prev_nr_running[this_cpu]))
nr_running = this_rq->nr_running;
else
nr_running = this_rq->prev_nr_running[this_cpu];
busiest = NULL;
max_load = 1;
for (i = 0; i < smp_num_cpus; i++) {
int logical = cpu_logical_map(i);
rq_src = cpu_rq(logical);
if (idle || (rq_src->nr_running < this_rq->prev_nr_running[logical]))
load = rq_src->nr_running;
else
load = this_rq->prev_nr_running[logical];
this_rq->prev_nr_running[logical] = rq_src->nr_running;
if ((load > max_load) && (rq_src != this_rq)) {
busiest = rq_src;
max_load = load;
}
}
if (likely(!busiest))
return;
imbalance = (max_load - nr_running) / 2;
/* It needs an at least ~25% imbalance to trigger balancing. */
if (!idle && (imbalance < (max_load + 3)/4))
return;
nr_running = double_lock_balance(this_rq, busiest, this_cpu, idle, nr_running);
/*
* Make sure nothing changed since we checked the
* runqueue length.
*/
if (busiest->nr_running <= nr_running + 1)
goto out_unlock;
/*
* We first consider expired tasks. Those will likely not be
* executed in the near future, and they are most likely to
* be cache-cold, thus switching CPUs has the least effect
* on them.
*/
if (busiest->expired->nr_active)
array = busiest->expired;
else
array = busiest->active;
new_array:
/* Start searching at priority 0: */
idx = 0;
skip_bitmap:
if (!idx)
idx = sched_find_first_bit(array->bitmap);
else
idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
if (idx == MAX_PRIO) {
if (array == busiest->expired) {
array = busiest->active;
goto new_array;
}
goto out_unlock;
}
head = array->queue + idx;
curr = head->prev;
skip_queue:
tmp = list_entry(curr, task_t, run_list);
/*
* We do not migrate tasks that are:
* 1) running (obviously), or
* 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) are cache-hot on their current CPU.
*/
#define CAN_MIGRATE_TASK(p,rq,this_cpu) \
((jiffies - (p)->sleep_timestamp > cache_decay_ticks) && \
((p) != (rq)->curr) && \
((p)->cpus_allowed & (1UL << (this_cpu))))
if (!CAN_MIGRATE_TASK(tmp, busiest, this_cpu)) {
curr = curr->next;
if (curr != head)
goto skip_queue;
idx++;
goto skip_bitmap;
}
next = tmp;
/*
* take the task out of the other runqueue and
* put it into this one:
*/
dequeue_task(next, array);
busiest->nr_running--;
next->thread_info->cpu = this_cpu;
this_rq->nr_running++;
enqueue_task(next, this_rq->active);
if (next->prio < current->prio)
set_need_resched();
if (!idle && --imbalance) {
if (array == busiest->expired) {
array = busiest->active;
goto new_array;
}
}
out_unlock:
spin_unlock(&busiest->lock);
}
/*
* One of the idle_cpu_tick() or the busy_cpu_tick() function will
* gets called every timer tick, on every CPU. Our balancing action
* frequency and balancing agressivity depends on whether the CPU is
* idle or not.
*
* busy-rebalance every 250 msecs. idle-rebalance every 1 msec. (or on
* systems with HZ=100, every 10 msecs.)
*/
#define BUSY_REBALANCE_TICK (HZ/4 ?: 1)
#define IDLE_REBALANCE_TICK (HZ/1000 ?: 1)
static inline void idle_tick(void)
{
if (jiffies % IDLE_REBALANCE_TICK)
return;
spin_lock(&this_rq()->lock);
load_balance(this_rq(), 1);
spin_unlock(&this_rq()->lock);
}
#endif
/*
* We place interactive tasks back into the active array, if possible.
*
* To guarantee that this does not starve expired tasks we ignore the
* interactivity of a task if the first expired task had to wait more
* than a 'reasonable' amount of time. This deadline timeout is
* load-dependent, as the frequency of array switched decreases with
* increasing number of running tasks:
*/
#define EXPIRED_STARVING(rq) \
((rq)->expired_timestamp && \
(jiffies - (rq)->expired_timestamp >= \
STARVATION_LIMIT * ((rq)->nr_running) + 1))
/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*/
void scheduler_tick(int user_tick, int system)
{
int cpu = smp_processor_id();
runqueue_t *rq = this_rq();
task_t *p = current;
if (p == rq->idle) {
if (local_bh_count(cpu) || local_irq_count(cpu) > 1)
kstat.per_cpu_system[cpu] += system;
#if CONFIG_SMP
idle_tick();
#endif
return;
}
if (TASK_NICE(p) > 0)
kstat.per_cpu_nice[cpu] += user_tick;
else
kstat.per_cpu_user[cpu] += user_tick;
kstat.per_cpu_system[cpu] += system;
/* Task might have expired already, but not scheduled off yet */
if (p->array != rq->active) {
set_tsk_need_resched(p);
return;
}
spin_lock(&rq->lock);
if (unlikely(rt_task(p))) {
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if ((p->policy == SCHED_RR) && !--p->time_slice) {
p->time_slice = TASK_TIMESLICE(p);
set_tsk_need_resched(p);
/* put it at the end of the queue: */
dequeue_task(p, rq->active);
enqueue_task(p, rq->active);
}
goto out;
}
/*
* The task was running during this tick - update the
* time slice counter and the sleep average. Note: we
* do not update a process's priority until it either
* goes to sleep or uses up its timeslice. This makes
* it possible for interactive tasks to use up their
* timeslices at their highest priority levels.
*/
if (p->sleep_avg)
p->sleep_avg--;
if (!--p->time_slice) {
dequeue_task(p, rq->active);
set_tsk_need_resched(p);
p->prio = effective_prio(p);
p->time_slice = TASK_TIMESLICE(p);
if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
if (!rq->expired_timestamp)
rq->expired_timestamp = jiffies;
enqueue_task(p, rq->expired);
} else
enqueue_task(p, rq->active);
}
out:
#if CONFIG_SMP
if (!(jiffies % BUSY_REBALANCE_TICK))
load_balance(rq, 0);
#endif
spin_unlock(&rq->lock);
}
void scheduling_functions_start_here(void) { }
/*
* 'schedule()' is the main scheduler function.
*/
asmlinkage void schedule(void)
{
task_t *prev, *next;
runqueue_t *rq;
prio_array_t *array;
list_t *queue;
int idx;
if (unlikely(in_interrupt()))
BUG();
#if CONFIG_DEBUG_HIGHMEM
check_highmem_ptes();
#endif
need_resched:
preempt_disable();
prev = current;
rq = this_rq();
release_kernel_lock(prev, smp_processor_id());
prev->sleep_timestamp = jiffies;
spin_lock_irq(&rq->lock);
/*
* if entering off a kernel preemption go straight
* to picking the next task.
*/
if (unlikely(preempt_get_count() & PREEMPT_ACTIVE))
goto pick_next_task;
switch (prev->state) {
case TASK_INTERRUPTIBLE:
if (unlikely(signal_pending(prev))) {
prev->state = TASK_RUNNING;
break;
}
default:
deactivate_task(prev, rq);
case TASK_RUNNING:
;
}
pick_next_task:
if (unlikely(!rq->nr_running)) {
#if CONFIG_SMP
load_balance(rq, 1);
if (rq->nr_running)
goto pick_next_task;
#endif
next = rq->idle;
rq->expired_timestamp = 0;
goto switch_tasks;
}
array = rq->active;
if (unlikely(!array->nr_active)) {
/*
* Switch the active and expired arrays.
*/
rq->active = rq->expired;
rq->expired = array;
array = rq->active;
rq->expired_timestamp = 0;
}
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, task_t, run_list);
switch_tasks:
prefetch(next);
clear_tsk_need_resched(prev);
if (likely(prev != next)) {
rq->nr_switches++;
rq->curr = next;
spin_lock(&rq->frozen);
spin_unlock(&rq->lock);
context_switch(prev, next);
/*
* The runqueue pointer might be from another CPU
* if the new task was last running on a different
* CPU - thus re-load it.
*/
mb();
rq = this_rq();
spin_unlock_irq(&rq->frozen);
} else {
spin_unlock_irq(&rq->lock);
}
reacquire_kernel_lock(current);
preempt_enable_no_resched();
if (test_thread_flag(TIF_NEED_RESCHED))
goto need_resched;
return;
}
#ifdef CONFIG_PREEMPT
/*
* this is is the entry point to schedule() from in-kernel preemption
* off of preempt_enable. Kernel preemptions off return from interrupt
* occur there and call schedule directly.
*/
asmlinkage void preempt_schedule(void)
{
struct thread_info *ti = current_thread_info();
if (unlikely(ti->preempt_count))
return;
ti->preempt_count = PREEMPT_ACTIVE;
schedule();
ti->preempt_count = 0;
}
#endif /* CONFIG_PREEMPT */
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static inline void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
struct list_head *tmp;
unsigned int state;
wait_queue_t *curr;
task_t *p;
list_for_each(tmp, &q->task_list) {
curr = list_entry(tmp, wait_queue_t, task_list);
p = curr->task;
state = p->state;
if ((state & mode) && try_to_wake_up(p) &&
((curr->flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive))
break;
}
}
void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
unsigned long flags;
if (unlikely(!q))
return;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive);
spin_unlock_irqrestore(&q->lock, flags);
}
void complete(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
void wait_for_completion(struct completion *x)
{
spin_lock_irq(&x->wait.lock);
if (!x->done) {
DECLARE_WAITQUEUE(wait, current);
wait.flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue_tail(&x->wait, &wait);
do {
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&x->wait.lock);
schedule();
spin_lock_irq(&x->wait.lock);
} while (!x->done);
__remove_wait_queue(&x->wait, &wait);
}
x->done--;
spin_unlock_irq(&x->wait.lock);
}
#define SLEEP_ON_VAR \
unsigned long flags; \
wait_queue_t wait; \
init_waitqueue_entry(&wait, current);
#define SLEEP_ON_HEAD \
spin_lock_irqsave(&q->lock,flags); \
__add_wait_queue(q, &wait); \
spin_unlock(&q->lock);
#define SLEEP_ON_TAIL \
spin_lock_irq(&q->lock); \
__remove_wait_queue(q, &wait); \
spin_unlock_irqrestore(&q->lock, flags);
void interruptible_sleep_on(wait_queue_head_t *q)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void sleep_on(wait_queue_head_t *q)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void scheduling_functions_end_here(void) { }
void set_user_nice(task_t *p, long nice)
{
unsigned long flags;
prio_array_t *array;
runqueue_t *rq;
if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
return;
/*
* We have to be careful, if called from sys_setpriority(),
* the task might be in the middle of scheduling on another CPU.
*/
rq = task_rq_lock(p, &flags);
if (rt_task(p)) {
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
array = p->array;
if (array)
dequeue_task(p, array);
p->static_prio = NICE_TO_PRIO(nice);
p->prio = NICE_TO_PRIO(nice);
if (array) {
enqueue_task(p, array);
/*
* If the task is running and lowered its priority,
* or increased its priority then reschedule its CPU:
*/
if ((NICE_TO_PRIO(nice) < p->static_prio) || (p == rq->curr))
resched_task(rq->curr);
}
out_unlock:
task_rq_unlock(rq, &flags);
}
#ifndef __alpha__
/*
* This has been replaced by sys_setpriority. Maybe it should be
* moved into the arch dependent tree for those ports that require
* it for backward compatibility?
*/
asmlinkage long sys_nice(int increment)
{
long nice;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
if (increment < 0) {
if (!capable(CAP_SYS_NICE))
return -EPERM;
if (increment < -40)
increment = -40;
}
if (increment > 40)
increment = 40;
nice = PRIO_TO_NICE(current->static_prio) + increment;
if (nice < -20)
nice = -20;
if (nice > 19)
nice = 19;
set_user_nice(current, nice);
return 0;
}
#endif
/*
* This is the priority value as seen by users in /proc
*
* RT tasks are offset by -200. Normal tasks are centered
* around 0, value goes from -16 to +15.
*/
int task_prio(task_t *p)
{
return p->prio - MAX_USER_RT_PRIO;
}
int task_nice(task_t *p)
{
return TASK_NICE(p);
}
int idle_cpu(int cpu)
{
return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}
static inline task_t *find_process_by_pid(pid_t pid)
{
return pid ? find_task_by_pid(pid) : current;
}
static int setscheduler(pid_t pid, int policy, struct sched_param *param)
{
struct sched_param lp;
prio_array_t *array;
unsigned long flags;
runqueue_t *rq;
int retval;
task_t *p;
retval = -EINVAL;
if (!param || pid < 0)
goto out_nounlock;
retval = -EFAULT;
if (copy_from_user(&lp, param, sizeof(struct sched_param)))
goto out_nounlock;
/*
* We play safe to avoid deadlocks.
*/
read_lock_irq(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock_tasklist;
/*
* To be able to change p->policy safely, the apropriate
* runqueue lock must be held.
*/
rq = task_rq_lock(p, &flags);
if (policy < 0)
policy = p->policy;
else {
retval = -EINVAL;
if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_OTHER)
goto out_unlock;
}
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are
* 1..MAX_USER_RT_PRIO, valid priority for SCHED_OTHER is 0.
*/
retval = -EINVAL;
if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
goto out_unlock;
if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
goto out_unlock;
retval = -EPERM;
if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
array = p->array;
if (array)
deactivate_task(p, task_rq(p));
retval = 0;
p->policy = policy;
p->rt_priority = lp.sched_priority;
if (policy != SCHED_OTHER)
p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
else
p->prio = p->static_prio;
if (array)
activate_task(p, task_rq(p));
out_unlock:
task_rq_unlock(rq, &flags);
out_unlock_tasklist:
read_unlock_irq(&tasklist_lock);
out_nounlock:
return retval;
}
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
return setscheduler(pid, policy, param);
}
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
{
return setscheduler(pid, -1, param);
}
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
task_t *p;
int retval;
retval = -EINVAL;
if (pid < 0)
goto out_nounlock;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (p)
retval = p->policy;
read_unlock(&tasklist_lock);
out_nounlock:
return retval;
}
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
{
task_t *p;
struct sched_param lp;
int retval;
retval = -EINVAL;
if (!param || pid < 0)
goto out_nounlock;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
lp.sched_priority = p->rt_priority;
read_unlock(&tasklist_lock);
/*
* This one might sleep, we cannot do it with a spinlock held ...
*/
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
out_nounlock:
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
/**
* sys_sched_setaffinity - set the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to the new cpu mask
*/
asmlinkage int sys_sched_setaffinity(pid_t pid, unsigned int len,
unsigned long *user_mask_ptr)
{
unsigned long new_mask;
task_t *p;
int retval;
if (len < sizeof(new_mask))
return -EINVAL;
if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask)))
return -EFAULT;
new_mask &= cpu_online_map;
if (!new_mask)
return -EINVAL;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (!p) {
read_unlock(&tasklist_lock);
return -ESRCH;
}
/*
* It is not safe to call set_cpus_allowed with the
* tasklist_lock held. We will bump the task_struct's
* usage count and then drop tasklist_lock.
*/
get_task_struct(p);
read_unlock(&tasklist_lock);
retval = -EPERM;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
retval = 0;
set_cpus_allowed(p, new_mask);
out_unlock:
put_task_struct(p);
return retval;
}
/**
* sys_sched_getaffinity - get the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to hold the current cpu mask
*/
asmlinkage int sys_sched_getaffinity(pid_t pid, unsigned int len,
unsigned long *user_mask_ptr)
{
unsigned long mask;
unsigned int real_len;
task_t *p;
int retval;
real_len = sizeof(mask);
if (len < real_len)
return -EINVAL;
read_lock(&tasklist_lock);
retval = -ESRCH;
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = 0;
mask = p->cpus_allowed & cpu_online_map;
out_unlock:
read_unlock(&tasklist_lock);
if (retval)
return retval;
if (copy_to_user(user_mask_ptr, &mask, real_len))
return -EFAULT;
return real_len;
}
asmlinkage long sys_sched_yield(void)
{
runqueue_t *rq;
prio_array_t *array;
preempt_disable();
rq = this_rq();
/*
* Decrease the yielding task's priority by one, to avoid
* livelocks. This priority loss is temporary, it's recovered
* once the current timeslice expires.
*
* If priority is already MAX_PRIO-1 then we still
* roundrobin the task within the runlist.
*/
spin_lock_irq(&rq->lock);
array = current->array;
/*
* If the task has reached maximum priority (or is a RT task)
* then just requeue the task to the end of the runqueue:
*/
if (likely(current->prio == MAX_PRIO-1 || rt_task(current))) {
list_del(&current->run_list);
list_add_tail(&current->run_list, array->queue + current->prio);
} else {
list_del(&current->run_list);
if (list_empty(array->queue + current->prio))
__clear_bit(current->prio, array->bitmap);
current->prio++;
list_add_tail(&current->run_list, array->queue + current->prio);
__set_bit(current->prio, array->bitmap);
}
spin_unlock(&rq->lock);
preempt_enable_no_resched();
schedule();
return 0;
}
asmlinkage long sys_sched_get_priority_max(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = MAX_USER_RT_PRIO-1;
break;
case SCHED_OTHER:
ret = 0;
break;
}
return ret;
}
asmlinkage long sys_sched_get_priority_min(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_OTHER:
ret = 0;
}
return ret;
}
asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
struct timespec t;
task_t *p;
int retval = -EINVAL;
if (pid < 0)
goto out_nounlock;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (p)
jiffies_to_timespec(p->policy & SCHED_FIFO ?
0 : TASK_TIMESLICE(p), &t);
read_unlock(&tasklist_lock);
if (p)
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
return retval;
}
static void show_task(task_t * p)
{
unsigned long free = 0;
task_t *relative;
int state;
static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
printk("%-13.13s ", p->comm);
state = p->state ? __ffs(p->state) + 1 : 0;
if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
printk(stat_nam[state]);
else
printk(" ");
#if (BITS_PER_LONG == 32)
if (p == current)
printk(" current ");
else
printk(" %08lX ", thread_saved_pc(p));
#else
if (p == current)
printk(" current task ");
else
printk(" %016lx ", thread_saved_pc(p));
#endif
{
unsigned long * n = (unsigned long *) (p+1);
while (!*n)
n++;
free = (unsigned long) n - (unsigned long)(p+1);
}
printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
if ((relative = eldest_child(p)))
printk("%5d ", relative->pid);
else
printk(" ");
if ((relative = younger_sibling(p)))
printk("%7d", relative->pid);
else
printk(" ");
if ((relative = older_sibling(p)))
printk(" %5d", relative->pid);
else
printk(" ");
if (!p->mm)
printk(" (L-TLB)\n");
else
printk(" (NOTLB)\n");
{
extern void show_trace_task(task_t *tsk);
show_trace_task(p);
}
}
char * render_sigset_t(sigset_t *set, char *buffer)
{
int i = _NSIG, x;
do {
i -= 4, x = 0;
if (sigismember(set, i+1)) x |= 1;
if (sigismember(set, i+2)) x |= 2;
if (sigismember(set, i+3)) x |= 4;
if (sigismember(set, i+4)) x |= 8;
*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
} while (i >= 4);
*buffer = 0;
return buffer;
}
void show_state(void)
{
task_t *p;
#if (BITS_PER_LONG == 32)
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#else
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#endif
read_lock(&tasklist_lock);
for_each_task(p) {
/*
* reset the NMI-timeout, listing all files on a slow
* console might take alot of time:
*/
touch_nmi_watchdog();
show_task(p);
}
read_unlock(&tasklist_lock);
}
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
{
if (rq1 == rq2)
spin_lock(&rq1->lock);
else {
if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);
} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);
}
}
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static inline void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
{
spin_unlock(&rq1->lock);
if (rq1 != rq2)
spin_unlock(&rq2->lock);
}
void __init init_idle(task_t *idle, int cpu)
{
runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(idle->thread_info->cpu);
unsigned long flags;
__save_flags(flags);
__cli();
double_rq_lock(idle_rq, rq);
idle_rq->curr = idle_rq->idle = idle;
deactivate_task(idle, rq);
idle->array = NULL;
idle->prio = MAX_PRIO;
idle->state = TASK_RUNNING;
idle->thread_info->cpu = cpu;
double_rq_unlock(idle_rq, rq);
set_tsk_need_resched(idle);
__restore_flags(flags);
/* Set the preempt count _outside_ the spinlocks! */
idle->thread_info->preempt_count = (idle->lock_depth >= 0);
}
extern void init_timervecs(void);
extern void timer_bh(void);
extern void tqueue_bh(void);
extern void immediate_bh(void);
void __init sched_init(void)
{
runqueue_t *rq;
int i, j, k;
for (i = 0; i < NR_CPUS; i++) {
prio_array_t *array;
rq = cpu_rq(i);
rq->active = rq->arrays;
rq->expired = rq->arrays + 1;
spin_lock_init(&rq->lock);
spin_lock_init(&rq->frozen);
INIT_LIST_HEAD(&rq->migration_queue);
for (j = 0; j < 2; j++) {
array = rq->arrays + j;
for (k = 0; k < MAX_PRIO; k++) {
INIT_LIST_HEAD(array->queue + k);
__clear_bit(k, array->bitmap);
}
// delimiter for bitsearch
__set_bit(MAX_PRIO, array->bitmap);
}
}
/*
* We have to do a little magic to get the first
* process right in SMP mode.
*/
rq = this_rq();
rq->curr = current;
rq->idle = current;
wake_up_process(current);
init_timervecs();
init_bh(TIMER_BH, timer_bh);
init_bh(TQUEUE_BH, tqueue_bh);
init_bh(IMMEDIATE_BH, immediate_bh);
/*
* The boot idle thread does lazy MMU switching as well:
*/
atomic_inc(&init_mm.mm_count);
enter_lazy_tlb(&init_mm, current, smp_processor_id());
}
#if CONFIG_SMP
/*
* This is how migration works:
*
* 1) we queue a migration_req_t structure in the source CPU's
* runqueue and wake up that CPU's migration thread.
* 2) we down() the locked semaphore => thread blocks.
* 3) migration thread wakes up (implicitly it forces the migrated
* thread off the CPU)
* 4) it gets the migration request and checks whether the migrated
* task is still in the wrong runqueue.
* 5) if it's in the wrong runqueue then the migration thread removes
* it and puts it into the right queue.
* 6) migration thread up()s the semaphore.
* 7) we wake up and the migration is done.
*/
typedef struct {
list_t list;
task_t *task;
struct semaphore sem;
} migration_req_t;
/*
* Change a given task's CPU affinity. Migrate the process to a
* proper CPU and schedule it away if the CPU it's executing on
* is removed from the allowed bitmask.
*
* NOTE: the caller must have a valid reference to the task, the
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
void set_cpus_allowed(task_t *p, unsigned long new_mask)
{
unsigned long flags;
migration_req_t req;
runqueue_t *rq;
new_mask &= cpu_online_map;
if (!new_mask)
BUG();
preempt_disable();
rq = task_rq_lock(p, &flags);
p->cpus_allowed = new_mask;
/*
* Can the task run on the task's current CPU? If not then
* migrate the process off to a proper CPU.
*/
if (new_mask & (1UL << p->thread_info->cpu)) {
task_rq_unlock(rq, &flags);
goto out;
}
init_MUTEX_LOCKED(&req.sem);
req.task = p;
list_add(&req.list, &rq->migration_queue);
task_rq_unlock(rq, &flags);
wake_up_process(rq->migration_thread);
down(&req.sem);
out:
preempt_enable();
}
static int migration_thread(void * bind_cpu)
{
int cpu = cpu_logical_map((int) (long) bind_cpu);
struct sched_param param = { sched_priority: MAX_RT_PRIO-1 };
runqueue_t *rq;
int ret;
daemonize();
sigfillset(&current->blocked);
set_fs(KERNEL_DS);
/*
* The first migration thread is started on CPU #0. This one can migrate
* the other migration threads to their destination CPUs.
*/
if (cpu != 0) {
while (!cpu_rq(cpu_logical_map(0))->migration_thread)
yield();
set_cpus_allowed(current, 1UL << cpu);
}
printk("migration_task %d on cpu=%d\n",cpu,smp_processor_id());
ret = setscheduler(0, SCHED_FIFO, &param);
rq = this_rq();
rq->migration_thread = current;
sprintf(current->comm, "migration_CPU%d", smp_processor_id());
for (;;) {
runqueue_t *rq_src, *rq_dest;
struct list_head *head;
int cpu_src, cpu_dest;
migration_req_t *req;
unsigned long flags;
task_t *p;
spin_lock_irqsave(&rq->lock, flags);
head = &rq->migration_queue;
current->state = TASK_INTERRUPTIBLE;
if (list_empty(head)) {
spin_unlock_irqrestore(&rq->lock, flags);
schedule();
continue;
}
req = list_entry(head->next, migration_req_t, list);
list_del_init(head->next);
spin_unlock_irqrestore(&rq->lock, flags);
p = req->task;
cpu_dest = __ffs(p->cpus_allowed);
rq_dest = cpu_rq(cpu_dest);
repeat:
cpu_src = p->thread_info->cpu;
rq_src = cpu_rq(cpu_src);
local_irq_save(flags);
double_rq_lock(rq_src, rq_dest);
if (p->thread_info->cpu != cpu_src) {
double_rq_unlock(rq_src, rq_dest);
local_irq_restore(flags);
goto repeat;
}
if (rq_src == rq) {
p->thread_info->cpu = cpu_dest;
if (p->array) {
deactivate_task(p, rq_src);
activate_task(p, rq_dest);
}
}
double_rq_unlock(rq_src, rq_dest);
local_irq_restore(flags);
up(&req->sem);
}
}
void __init migration_init(void)
{
int cpu;
current->cpus_allowed = 1UL << cpu_logical_map(0);
for (cpu = 0; cpu < smp_num_cpus; cpu++) {
if (kernel_thread(migration_thread, (void *) (long) cpu,
CLONE_FS | CLONE_FILES | CLONE_SIGNAL) < 0)
BUG();
}
current->cpus_allowed = -1L;
for (cpu = 0; cpu < smp_num_cpus; cpu++)
while (!cpu_rq(cpu_logical_map(cpu))->migration_thread)
schedule_timeout(2);
}
#endif