blob: 4f47cb0b565163c3fbc39c92f9bbc8c0f97ef835 [file] [log] [blame]
/*
* ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
*
* Copyright (c) 2002 Martin Langer <martin-langer@gmx.de>
*
* Thanks to : Anders Torger <torger@ludd.luth.se>,
* Henk Hesselink <henk@anda.nl>
* for writing the digi96-driver
* and RME for all informations.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* ToDo: full duplex (32, 32/8, 32Pro)
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/asoundef.h>
#define SNDRV_GET_ID
#include <sound/initval.h>
static int snd_index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *snd_id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int snd_enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
MODULE_PARM(snd_index, "1-" __MODULE_STRING(SNDRV_CARDS) "i");
MODULE_PARM_DESC(snd_index, "Index value for RME Digi32 soundcard.");
MODULE_PARM_SYNTAX(snd_index, SNDRV_INDEX_DESC);
MODULE_PARM(snd_id, "1-" __MODULE_STRING(SNDRV_CARDS) "s");
MODULE_PARM_DESC(snd_id, "ID string for RME Digi32 soundcard.");
MODULE_PARM_SYNTAX(snd_id, SNDRV_ID_DESC);
MODULE_PARM(snd_enable, "1-" __MODULE_STRING(SNDRV_CARDS) "i");
MODULE_PARM_DESC(snd_enable, "Enable RME Digi32 soundcard.");
MODULE_PARM_SYNTAX(snd_enable, SNDRV_ENABLE_DESC);
MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>");
MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
MODULE_LICENSE("GPL");
MODULE_CLASSES("{sound}");
MODULE_DEVICES("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}");
/* Defines for RME Digi32 series */
#define RME32_SPDIF_NCHANNELS 2
/* Playback and capture buffer size */
#define RME32_BUFFER_SIZE 0x20000
/* IO area size */
#define RME32_IO_SIZE 0x30000
/* IO area offsets */
#define RME32_IO_DATA_BUFFER 0x0
#define RME32_IO_CONTROL_REGISTER 0x20000
#define RME32_IO_GET_POS 0x20000
#define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
#define RME32_IO_RESET_POS 0x20100
/* Write control register bits */
#define RME32_WCR_START (1 << 0)
#define RME32_WCR_MONO (1 << 1) /* 0: stereo, 1: mono
Setting the whole card to mono
don't seems to be very useful.
A software-solution can handle
full-duplex with one direction in
stereo and the other way in mono.
So, the hardware should work all
the time in stereo! */
#define RME32_WCR_MODE24 (1 << 2)
#define RME32_WCR_SEL (1 << 3)
#define RME32_WCR_FREQ_0 (1 << 4)
#define RME32_WCR_FREQ_1 (1 << 5)
#define RME32_WCR_INP_0 (1 << 6)
#define RME32_WCR_INP_1 (1 << 7)
#define RME32_WCR_RESET (1 << 8)
#define RME32_WCR_MUTE (1 << 9)
#define RME32_WCR_PRO (1 << 10)
#define RME32_WCR_DS_BM (1 << 11) /* only PRO/Adat-Version */
#define RME32_WCR_ADAT (1 << 12) /* only Adat-Version */
#define RME32_WCR_AUTOSYNC (1 << 13)
#define RME32_WCR_PD (1 << 14) /* only PRO-Version */
#define RME32_WCR_EMP (1 << 15) /* only PRO-Version */
#define RME32_WCR_BITPOS_FREQ_0 4
#define RME32_WCR_BITPOS_FREQ_1 5
#define RME32_WCR_BITPOS_INP_0 6
#define RME32_WCR_BITPOS_INP_1 7
/* Read control register bits */
#define RME32_RCR_AUDIO_ADDR_MASK 0x10001
#define RME32_RCR_LOCK (1 << 23)
#define RME32_RCR_ERF (1 << 26)
#define RME32_RCR_FREQ_0 (1 << 27)
#define RME32_RCR_FREQ_1 (1 << 28)
#define RME32_RCR_FREQ_2 (1 << 29)
#define RME32_RCR_KMODE (1 << 30)
#define RME32_RCR_IRQ (1 << 31)
#define RME32_RCR_BITPOS_F0 27
#define RME32_RCR_BITPOS_F1 28
#define RME32_RCR_BITPOS_F2 29
/* Input types */
#define RME32_INPUT_OPTICAL 0
#define RME32_INPUT_COAXIAL 1
#define RME32_INPUT_INTERNAL 2
#define RME32_INPUT_XLR 3
/* Clock modes */
#define RME32_CLOCKMODE_SLAVE 0
#define RME32_CLOCKMODE_MASTER_32 1
#define RME32_CLOCKMODE_MASTER_44 2
#define RME32_CLOCKMODE_MASTER_48 3
/* Block sizes in bytes */
#define RME32_BLOCK_SIZE 8192
/* Hardware revisions */
#define RME32_32_REVISION 192
#define RME32_328_REVISION_OLD 100
#define RME32_328_REVISION_NEW 101
#define RME32_PRO_REVISION_WITH_8412 192
#define RME32_PRO_REVISION_WITH_8414 150
/* PCI vendor/device ID's */
#ifndef PCI_VENDOR_ID_XILINX_RME
# define PCI_VENDOR_ID_XILINX_RME 0xea60
#endif
#ifndef PCI_DEVICE_ID_DIGI32
# define PCI_DEVICE_ID_DIGI32 0x9896
#endif
#ifndef PCI_DEVICE_ID_DIGI32_8
# define PCI_DEVICE_ID_DIGI32_8 0x9898
#endif
#ifndef PCI_DEVICE_ID_DIGI32_PRO
# define PCI_DEVICE_ID_DIGI32_PRO 0x9897
#endif
typedef struct snd_rme32 {
spinlock_t lock;
int irq;
unsigned long port;
struct resource *res_port;
unsigned long iobase;
u32 wcreg; /* cached write control register value */
u32 wcreg_spdif; /* S/PDIF setup */
u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
u32 rcreg; /* cached read control register value */
u8 rev; /* card revision number */
snd_pcm_substream_t *playback_substream;
snd_pcm_substream_t *capture_substream;
int playback_frlog; /* log2 of framesize */
int capture_frlog;
size_t playback_periodsize; /* in bytes, zero if not used */
size_t capture_periodsize; /* in bytes, zero if not used */
snd_pcm_uframes_t playback_last_appl_ptr;
size_t playback_ptr;
size_t capture_ptr;
snd_card_t *card;
snd_pcm_t *spdif_pcm;
snd_pcm_t *adat_pcm;
struct pci_dev *pci;
snd_info_entry_t *proc_entry;
snd_kcontrol_t *spdif_ctl;
} rme32_t;
static struct pci_device_id snd_rme32_ids[] __devinitdata = {
{PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_DIGI32,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
{PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_DIGI32_8,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
{PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_DIGI32_PRO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
{0,}
};
MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
#define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
#define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
static int snd_rme32_playback_prepare(snd_pcm_substream_t * substream);
static int snd_rme32_capture_prepare(snd_pcm_substream_t * substream);
static int
snd_rme32_playback_trigger(snd_pcm_substream_t * substream, int cmd);
static int
snd_rme32_capture_trigger(snd_pcm_substream_t * substream, int cmd);
static snd_pcm_uframes_t
snd_rme32_playback_pointer(snd_pcm_substream_t * substream);
static snd_pcm_uframes_t
snd_rme32_capture_pointer(snd_pcm_substream_t * substream);
static void snd_rme32_proc_init(rme32_t * rme32);
static void snd_rme32_proc_done(rme32_t * rme32);
static int snd_rme32_create_switches(snd_card_t * card, rme32_t * rme32);
static inline unsigned int snd_rme32_playback_ptr(rme32_t * rme32)
{
return (readl(rme32->iobase + RME32_IO_GET_POS)
& RME32_RCR_AUDIO_ADDR_MASK) >> rme32->playback_frlog;
}
static inline unsigned int snd_rme32_capture_ptr(rme32_t * rme32)
{
return (readl(rme32->iobase + RME32_IO_GET_POS)
& RME32_RCR_AUDIO_ADDR_MASK) >> rme32->capture_frlog;
}
static int snd_rme32_playback_silence(snd_pcm_substream_t * substream, int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
snd_pcm_uframes_t count)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
count <<= rme32->playback_frlog;
pos <<= rme32->playback_frlog;
memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
return 0;
}
static int snd_rme32_playback_copy(snd_pcm_substream_t * substream, int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
void *src, snd_pcm_uframes_t count)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
count <<= rme32->playback_frlog;
pos <<= rme32->playback_frlog;
if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
src, count))
return -EFAULT;
return 0;
}
static int snd_rme32_capture_copy(snd_pcm_substream_t * substream, int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
void *dst, snd_pcm_uframes_t count)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
count <<= rme32->capture_frlog;
pos <<= rme32->capture_frlog;
if (copy_to_user_fromio(dst,
rme32->iobase + RME32_IO_DATA_BUFFER + pos,
count))
return -EFAULT;
return 0;
}
/*
* Digital output capabilites (S/PDIF)
*/
static snd_pcm_hardware_t snd_rme32_playback_spdif_info = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE),
formats: (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE),
rates: (SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
rate_min: 32000,
rate_max: 48000,
channels_min: 2,
channels_max: 2,
buffer_bytes_max: RME32_BUFFER_SIZE,
period_bytes_min: RME32_BLOCK_SIZE,
period_bytes_max: RME32_BLOCK_SIZE,
periods_min: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
periods_max: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
fifo_size: 0,
};
/*
* Digital input capabilites (S/PDIF)
*/
static snd_pcm_hardware_t snd_rme32_capture_spdif_info = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE),
formats: (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE),
rates: (SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000),
rate_min: 32000,
rate_max: 48000,
channels_min: 2,
channels_max: 2,
buffer_bytes_max: RME32_BUFFER_SIZE,
period_bytes_min: RME32_BLOCK_SIZE,
period_bytes_max: RME32_BLOCK_SIZE,
periods_min: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
periods_max: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
fifo_size: 0,
};
/*
* Digital output capabilites (ADAT)
*/
static snd_pcm_hardware_t snd_rme32_playback_adat_info =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE),
formats: SNDRV_PCM_FMTBIT_S16_LE,
rates: (SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
rate_min: 44100,
rate_max: 48000,
channels_min: 8,
channels_max: 8,
buffer_bytes_max: RME32_BUFFER_SIZE,
period_bytes_min: RME32_BLOCK_SIZE,
period_bytes_max: RME32_BLOCK_SIZE,
periods_min: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
periods_max: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
fifo_size: 0,
};
/*
* Digital input capabilites (ADAT)
*/
static snd_pcm_hardware_t snd_rme32_capture_adat_info =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE),
formats: SNDRV_PCM_FMTBIT_S16_LE,
rates: (SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
rate_min: 44100,
rate_max: 48000,
channels_min: 8,
channels_max: 8,
buffer_bytes_max: RME32_BUFFER_SIZE,
period_bytes_min: RME32_BLOCK_SIZE,
period_bytes_max: RME32_BLOCK_SIZE,
periods_min: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
periods_max: RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
fifo_size: 0,
};
static void snd_rme32_reset_dac(rme32_t *rme32)
{
writel(rme32->wcreg | RME32_WCR_PD,
rme32->iobase + RME32_IO_CONTROL_REGISTER);
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
static int snd_rme32_playback_getrate(rme32_t * rme32)
{
int rate;
rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
switch (rate) {
case 1:
rate = 32000;
break;
case 2:
rate = 44100;
break;
case 3:
rate = 48000;
break;
default:
return -1;
}
return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
}
static int snd_rme32_capture_getrate(rme32_t * rme32, int *is_adat)
{
int n;
*is_adat = 0;
if (rme32->rcreg & RME32_RCR_LOCK) {
/* ADAT rate */
*is_adat = 1;
}
if (rme32->rcreg & RME32_RCR_ERF) {
return -1;
}
/* S/PDIF rate */
n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
if (RME32_PRO_WITH_8414(rme32))
switch (n) { /* supporting the CS8414 */
case 0:
case 1:
case 2:
return -1;
case 3:
return 96000;
case 4:
return 88200;
case 5:
return 48000;
case 6:
return 44100;
case 7:
return 32000;
default:
return -1;
break;
}
else
switch (n) { /* supporting the CS8412 */
case 0:
return -1;
case 1:
return 48000;
case 2:
return 44100;
case 3:
return 32000;
case 4:
return 48000;
case 5:
return 44100;
case 6:
return 44056;
case 7:
return 32000;
default:
break;
}
return -1;
}
static int snd_rme32_playback_setrate(rme32_t * rme32, int rate)
{
int ds;
ds = rme32->wcreg & RME32_WCR_DS_BM;
switch (rate) {
case 32000:
rme32->wcreg &= ~RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case 44100:
rme32->wcreg &= ~RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
~RME32_WCR_FREQ_0;
break;
case 48000:
rme32->wcreg &= ~RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
case 64000:
if (rme32->pci->device != PCI_DEVICE_ID_DIGI32_PRO)
return -EINVAL;
rme32->wcreg |= RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case 88200:
if (rme32->pci->device != PCI_DEVICE_ID_DIGI32_PRO)
return -EINVAL;
rme32->wcreg |= RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
~RME32_WCR_FREQ_0;
break;
case 96000:
if (rme32->pci->device != PCI_DEVICE_ID_DIGI32_PRO)
return -EINVAL;
rme32->wcreg |= RME32_WCR_DS_BM;
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
default:
return -EINVAL;
}
if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
(ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
{
/* change to/from double-speed: reset the DAC (if available) */
snd_rme32_reset_dac(rme32);
} else {
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
return 0;
}
static int snd_rme32_setclockmode(rme32_t * rme32, int mode)
{
switch (mode) {
case RME32_CLOCKMODE_SLAVE:
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case RME32_CLOCKMODE_MASTER_32:
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
~RME32_WCR_FREQ_1;
break;
case RME32_CLOCKMODE_MASTER_44:
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
case RME32_CLOCKMODE_MASTER_48:
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
RME32_WCR_FREQ_1;
break;
default:
return -EINVAL;
}
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
return 0;
}
static int snd_rme32_getclockmode(rme32_t * rme32)
{
return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
}
static int snd_rme32_setinputtype(rme32_t * rme32, int type)
{
switch (type) {
case RME32_INPUT_OPTICAL:
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
~RME32_WCR_INP_1;
break;
case RME32_INPUT_COAXIAL:
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
~RME32_WCR_INP_1;
break;
case RME32_INPUT_INTERNAL:
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
RME32_WCR_INP_1;
break;
case RME32_INPUT_XLR:
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
RME32_WCR_INP_1;
break;
default:
return -EINVAL;
}
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
return 0;
}
static int snd_rme32_getinputtype(rme32_t * rme32)
{
return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
(((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
}
static void
snd_rme32_setframelog(rme32_t * rme32, int n_channels, int is_playback)
{
int frlog;
if (n_channels == 2) {
frlog = 1;
} else {
/* assume 8 channels */
frlog = 3;
}
if (is_playback) {
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
rme32->playback_frlog = frlog;
} else {
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
rme32->capture_frlog = frlog;
}
}
static int snd_rme32_setformat(rme32_t * rme32, int format)
{
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
rme32->wcreg &= ~RME32_WCR_MODE24;
break;
case SNDRV_PCM_FORMAT_S32_LE:
rme32->wcreg |= RME32_WCR_MODE24;
break;
default:
return -EINVAL;
}
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
return 0;
}
static int
snd_rme32_playback_hw_params(snd_pcm_substream_t * substream,
snd_pcm_hw_params_t * params)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
int err;
if ((err = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(params))) < 0)
return err;
spin_lock_irq(&rme32->lock);
if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
spin_unlock_irq(&rme32->lock);
return err;
}
if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
spin_unlock_irq(&rme32->lock);
return err;
}
snd_rme32_setframelog(rme32, params_channels(params), 1);
if (rme32->capture_periodsize != 0) {
if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
spin_unlock_irq(&rme32->lock);
return -EBUSY;
}
}
rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
/* S/PDIF setup */
if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
writel(rme32->wcreg |=
rme32->wcreg_spdif_stream,
rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
spin_unlock_irq(&rme32->lock);
return 0;
}
static int snd_rme32_playback_hw_free(snd_pcm_substream_t * substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static int
snd_rme32_capture_hw_params(snd_pcm_substream_t * substream,
snd_pcm_hw_params_t * params)
{
unsigned long flags;
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
int err, isadat;
if ((err = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(params))) < 0)
return err;
spin_lock_irqsave(&rme32->lock, flags);
/* enable AutoSync for record-preparing */
rme32->wcreg |= RME32_WCR_AUTOSYNC;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
spin_unlock_irqrestore(&rme32->lock, flags);
return err;
}
if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
spin_unlock_irqrestore(&rme32->lock, flags);
return err;
}
if (params_rate(params) != snd_rme32_capture_getrate(rme32, &isadat)) {
spin_unlock_irqrestore(&rme32->lock, flags);
return -EBUSY;
}
/* AutoSync off for recording */
rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
snd_rme32_setframelog(rme32, params_channels(params), 0);
if (rme32->playback_periodsize != 0) {
if (params_period_size(params) << rme32->capture_frlog !=
rme32->playback_periodsize) {
spin_unlock_irqrestore(&rme32->lock, flags);
return -EBUSY;
}
}
rme32->capture_periodsize =
params_period_size(params) << rme32->capture_frlog;
spin_unlock_irqrestore(&rme32->lock, flags);
return 0;
}
static int snd_rme32_capture_hw_free(snd_pcm_substream_t * substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static void snd_rme32_playback_start(rme32_t * rme32, int from_pause)
{
if (!from_pause) {
writel(0, rme32->iobase + RME32_IO_RESET_POS);
rme32->playback_last_appl_ptr = 0;
rme32->playback_ptr = 0;
}
rme32->wcreg |= RME32_WCR_START;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
static void snd_rme32_capture_start(rme32_t * rme32, int from_pause)
{
if (!from_pause) {
writel(0, rme32->iobase + RME32_IO_RESET_POS);
}
rme32->wcreg |= RME32_WCR_START;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
static void snd_rme32_playback_stop(rme32_t * rme32)
{
/*
* Check if there is an unconfirmed IRQ, if so confirm it, or else
* the hardware will not stop generating interrupts
*/
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (rme32->rcreg & RME32_RCR_IRQ) {
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
}
rme32->wcreg &= ~RME32_WCR_START;
rme32->wcreg |= RME32_WCR_MUTE;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
static void snd_rme32_capture_stop(rme32_t * rme32)
{
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (rme32->rcreg & RME32_RCR_IRQ) {
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
}
rme32->wcreg &= ~RME32_WCR_START;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}
static void
snd_rme32_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
rme32_t *rme32 = (rme32_t *) dev_id;
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (!(rme32->rcreg & RME32_RCR_IRQ)) {
return;
} else {
if (rme32->capture_substream) {
snd_pcm_period_elapsed(rme32->capture_substream);
}
if (rme32->playback_substream) {
snd_pcm_period_elapsed(rme32->playback_substream);
}
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
}
}
static unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
#define PERIOD_BYTES sizeof(period_bytes) / sizeof(period_bytes[0])
static snd_pcm_hw_constraint_list_t hw_constraints_period_bytes = {
.count = PERIOD_BYTES,
.list = period_bytes,
.mask = 0
};
static int snd_rme32_playback_spdif_open(snd_pcm_substream_t * substream)
{
unsigned long flags;
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
snd_pcm_set_sync(substream);
spin_lock_irqsave(&rme32->lock, flags);
rme32->wcreg &= ~RME32_WCR_ADAT;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
rme32->playback_substream = substream;
rme32->playback_last_appl_ptr = 0;
rme32->playback_ptr = 0;
spin_unlock_irqrestore(&rme32->lock, flags);
runtime->hw = snd_rme32_playback_spdif_info;
if (rme32->pci->device == PCI_DEVICE_ID_DIGI32_PRO) {
runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
}
snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
RME32_BUFFER_SIZE, RME32_BUFFER_SIZE);
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
&hw_constraints_period_bytes);
rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
rme32->spdif_ctl->access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
return 0;
}
static int snd_rme32_capture_spdif_open(snd_pcm_substream_t * substream)
{
unsigned long flags;
int isadat;
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (snd_rme32_capture_getrate(rme32, &isadat) < 0) {
/* no input */
return -EIO;
}
if (isadat) {
/* ADAT input */
return -EBUSY;
}
snd_pcm_set_sync(substream);
spin_lock_irqsave(&rme32->lock, flags);
rme32->capture_substream = substream;
rme32->capture_ptr = 0;
spin_unlock_irqrestore(&rme32->lock, flags);
runtime->hw = snd_rme32_capture_spdif_info;
if (RME32_PRO_WITH_8414(rme32)) {
runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
}
snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
RME32_BUFFER_SIZE, RME32_BUFFER_SIZE);
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
&hw_constraints_period_bytes);
return 0;
}
static int
snd_rme32_playback_adat_open(snd_pcm_substream_t *substream)
{
unsigned long flags;
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
snd_pcm_set_sync(substream);
spin_lock_irqsave(&rme32->lock, flags);
rme32->wcreg |= RME32_WCR_ADAT;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
rme32->playback_substream = substream;
rme32->playback_last_appl_ptr = 0;
rme32->playback_ptr = 0;
spin_unlock_irqrestore(&rme32->lock, flags);
runtime->hw = snd_rme32_playback_adat_info;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
RME32_BUFFER_SIZE, RME32_BUFFER_SIZE);
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
&hw_constraints_period_bytes);
return 0;
}
static int
snd_rme32_capture_adat_open(snd_pcm_substream_t *substream)
{
unsigned long flags;
int isadat;
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
if (snd_rme32_capture_getrate(rme32, &isadat) < 0) {
/* no input */
return -EIO;
}
if (!isadat) {
/* S/PDIF input */
return -EBUSY;
}
snd_pcm_set_sync(substream);
spin_lock_irqsave(&rme32->lock, flags);
rme32->capture_substream = substream;
rme32->capture_ptr = 0;
spin_unlock_irqrestore(&rme32->lock, flags);
runtime->hw = snd_rme32_capture_adat_info;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
RME32_BUFFER_SIZE, RME32_BUFFER_SIZE);
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
&hw_constraints_period_bytes);
return 0;
}
static int snd_rme32_playback_close(snd_pcm_substream_t * substream)
{
unsigned long flags;
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
int spdif = 0;
spin_lock_irqsave(&rme32->lock, flags);
rme32->playback_substream = NULL;
rme32->playback_periodsize = 0;
spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
spin_unlock_irqrestore(&rme32->lock, flags);
if (spdif) {
rme32->spdif_ctl->access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO,
&rme32->spdif_ctl->id);
}
return 0;
}
static int snd_rme32_capture_close(snd_pcm_substream_t * substream)
{
unsigned long flags;
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
spin_lock_irqsave(&rme32->lock, flags);
rme32->capture_substream = NULL;
rme32->capture_periodsize = 0;
spin_unlock_irqrestore(&rme32->lock, flags);
return 0;
}
static int snd_rme32_playback_prepare(snd_pcm_substream_t * substream)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
unsigned long flags;
spin_lock_irqsave(&rme32->lock, flags);
if (RME32_ISWORKING(rme32)) {
snd_rme32_playback_stop(rme32);
}
writel(0, rme32->iobase + RME32_IO_RESET_POS);
rme32->wcreg &= ~RME32_WCR_MUTE;
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
spin_unlock_irqrestore(&rme32->lock, flags);
return 0;
}
static int snd_rme32_capture_prepare(snd_pcm_substream_t * substream)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
unsigned long flags;
spin_lock_irqsave(&rme32->lock, flags);
if (RME32_ISWORKING(rme32)) {
snd_rme32_capture_stop(rme32);
}
writel(0, rme32->iobase + RME32_IO_RESET_POS);
spin_unlock_irqrestore(&rme32->lock, flags);
return 0;
}
static int
snd_rme32_playback_trigger(snd_pcm_substream_t * substream, int cmd)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!RME32_ISWORKING(rme32)) {
if (substream != rme32->playback_substream) {
return -EBUSY;
}
snd_rme32_playback_start(rme32, 0);
}
break;
case SNDRV_PCM_TRIGGER_STOP:
if (RME32_ISWORKING(rme32)) {
if (substream != rme32->playback_substream) {
return -EBUSY;
}
snd_rme32_playback_stop(rme32);
}
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (RME32_ISWORKING(rme32)) {
snd_rme32_playback_stop(rme32);
}
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (!RME32_ISWORKING(rme32)) {
snd_rme32_playback_start(rme32, 1);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int
snd_rme32_capture_trigger(snd_pcm_substream_t * substream, int cmd)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!RME32_ISWORKING(rme32)) {
if (substream != rme32->capture_substream) {
return -EBUSY;
}
snd_rme32_capture_start(rme32, 0);
}
break;
case SNDRV_PCM_TRIGGER_STOP:
if (RME32_ISWORKING(rme32)) {
if (substream != rme32->capture_substream) {
return -EBUSY;
}
snd_rme32_capture_stop(rme32);
}
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (RME32_ISWORKING(rme32)) {
snd_rme32_capture_stop(rme32);
}
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (!RME32_ISWORKING(rme32)) {
snd_rme32_capture_start(rme32, 1);
}
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t
snd_rme32_playback_pointer(snd_pcm_substream_t * substream)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
snd_pcm_sframes_t diff;
size_t bytes;
if (runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
diff = runtime->control->appl_ptr -
rme32->playback_last_appl_ptr;
rme32->playback_last_appl_ptr = runtime->control->appl_ptr;
if (diff != 0 && diff < -(snd_pcm_sframes_t) (runtime->boundary >> 1)) {
diff += runtime->boundary;
}
bytes = diff << rme32->playback_frlog;
if (bytes > RME32_BUFFER_SIZE - rme32->playback_ptr) {
memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rme32->playback_ptr,
runtime->dma_area + rme32->playback_ptr,
RME32_BUFFER_SIZE - rme32->playback_ptr);
bytes -= RME32_BUFFER_SIZE - rme32->playback_ptr;
if (bytes > RME32_BUFFER_SIZE) {
bytes = RME32_BUFFER_SIZE;
}
memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER,
runtime->dma_area, bytes);
rme32->playback_ptr = bytes;
} else if (bytes != 0) {
memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rme32->playback_ptr,
runtime->dma_area + rme32->playback_ptr, bytes);
rme32->playback_ptr += bytes;
}
}
return snd_rme32_playback_ptr(rme32);
}
static snd_pcm_uframes_t
snd_rme32_capture_pointer(snd_pcm_substream_t * substream)
{
rme32_t *rme32 = _snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
snd_pcm_uframes_t frameptr;
size_t ptr;
frameptr = snd_rme32_capture_ptr(rme32);
if (runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
ptr = frameptr << rme32->capture_frlog;
if (ptr > rme32->capture_ptr) {
memcpy_fromio(runtime->dma_area + rme32->capture_ptr,
rme32->iobase + RME32_IO_DATA_BUFFER +
rme32->capture_ptr,
ptr - rme32->capture_ptr);
rme32->capture_ptr += ptr - rme32->capture_ptr;
} else if (ptr < rme32->capture_ptr) {
memcpy_fromio(runtime->dma_area + rme32->capture_ptr,
rme32->iobase + RME32_IO_DATA_BUFFER +
rme32->capture_ptr,
RME32_BUFFER_SIZE - rme32->capture_ptr);
memcpy_fromio(runtime->dma_area,
rme32->iobase + RME32_IO_DATA_BUFFER,
ptr);
rme32->capture_ptr = ptr;
}
}
return frameptr;
}
static snd_pcm_ops_t snd_rme32_playback_spdif_ops = {
.open = snd_rme32_playback_spdif_open,
.close = snd_rme32_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme32_playback_hw_params,
.hw_free = snd_rme32_playback_hw_free,
.prepare = snd_rme32_playback_prepare,
.trigger = snd_rme32_playback_trigger,
.pointer = snd_rme32_playback_pointer,
.copy = snd_rme32_playback_copy,
.silence = snd_rme32_playback_silence,
};
static snd_pcm_ops_t snd_rme32_capture_spdif_ops = {
.open = snd_rme32_capture_spdif_open,
.close = snd_rme32_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme32_capture_hw_params,
.hw_free = snd_rme32_capture_hw_free,
.prepare = snd_rme32_capture_prepare,
.trigger = snd_rme32_capture_trigger,
.pointer = snd_rme32_capture_pointer,
.copy = snd_rme32_capture_copy,
};
static snd_pcm_ops_t snd_rme32_playback_adat_ops = {
.open = snd_rme32_playback_adat_open,
.close = snd_rme32_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme32_playback_hw_params,
.hw_free = snd_rme32_playback_hw_free,
.prepare = snd_rme32_playback_prepare,
.trigger = snd_rme32_playback_trigger,
.pointer = snd_rme32_playback_pointer,
.copy = snd_rme32_playback_copy,
.silence = snd_rme32_playback_silence,
};
static snd_pcm_ops_t snd_rme32_capture_adat_ops = {
.open = snd_rme32_capture_adat_open,
.close = snd_rme32_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme32_capture_hw_params,
.hw_free = snd_rme32_capture_hw_free,
.prepare = snd_rme32_capture_prepare,
.trigger = snd_rme32_capture_trigger,
.pointer = snd_rme32_capture_pointer,
.copy = snd_rme32_capture_copy,
};
static void snd_rme32_free(void *private_data)
{
rme32_t *rme32 = (rme32_t *) private_data;
if (rme32 == NULL) {
return;
}
if (rme32->irq >= 0) {
snd_rme32_playback_stop(rme32);
snd_rme32_capture_stop(rme32);
snd_rme32_proc_done(rme32);
free_irq(rme32->irq, (void *) rme32);
rme32->irq = -1;
}
if (rme32->iobase) {
iounmap((void *) rme32->iobase);
rme32->iobase = 0;
}
if (rme32->res_port != NULL) {
release_resource(rme32->res_port);
rme32->res_port = NULL;
}
}
static void snd_rme32_free_spdif_pcm(snd_pcm_t * pcm)
{
rme32_t *rme32 = (rme32_t *) pcm->private_data;
rme32->spdif_pcm = NULL;
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static void
snd_rme32_free_adat_pcm(snd_pcm_t *pcm)
{
rme32_t *rme32 = (rme32_t *) pcm->private_data;
rme32->adat_pcm = NULL;
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static int __devinit snd_rme32_create(rme32_t * rme32)
{
struct pci_dev *pci = rme32->pci;
int err;
rme32->irq = -1;
if ((err = pci_enable_device(pci)) < 0)
return err;
rme32->port = pci_resource_start(rme32->pci, 0);
if ((rme32->res_port = request_mem_region(rme32->port, RME32_IO_SIZE, "RME32")) == NULL) {
snd_printk("unable to grab memory region 0x%lx-0x%lx\n",
rme32->port, rme32->port + RME32_IO_SIZE - 1);
return -EBUSY;
}
if (request_irq(pci->irq, snd_rme32_interrupt, SA_INTERRUPT | SA_SHIRQ, "RME32", (void *) rme32)) {
snd_printk("unable to grab IRQ %d\n", pci->irq);
return -EBUSY;
}
rme32->irq = pci->irq;
spin_lock_init(&rme32->lock);
if ((rme32->iobase = (unsigned long) ioremap_nocache(rme32->port, RME32_IO_SIZE)) == 0) {
snd_printk("unable to remap memory region 0x%lx-0x%lx\n",
rme32->port, rme32->port + RME32_IO_SIZE - 1);
return -ENOMEM;
}
/* read the card's revision number */
pci_read_config_byte(pci, 8, &rme32->rev);
/* set up ALSA pcm device for S/PDIF */
if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) {
return err;
}
rme32->spdif_pcm->private_data = rme32;
rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_rme32_playback_spdif_ops);
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_rme32_capture_spdif_ops);
rme32->spdif_pcm->info_flags = 0;
snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm,
RME32_BUFFER_SIZE,
RME32_BUFFER_SIZE,
GFP_KERNEL);
/* set up ALSA pcm device for ADAT */
if ((pci->device == PCI_DEVICE_ID_DIGI32) ||
(pci->device == PCI_DEVICE_ID_DIGI32_PRO)) {
/* ADAT is not available on DIGI32 and DIGI32 Pro */
rme32->adat_pcm = NULL;
}
else {
if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1, 1, &rme32->adat_pcm)) < 0)
{
return err;
}
rme32->adat_pcm->private_data = rme32;
rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_rme32_playback_adat_ops);
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_rme32_capture_adat_ops);
rme32->adat_pcm->info_flags = 0;
snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm,
RME32_BUFFER_SIZE,
RME32_BUFFER_SIZE,
GFP_KERNEL);
}
rme32->playback_periodsize = 0;
rme32->capture_periodsize = 0;
/* make sure playback/capture is stopped, if by some reason active */
snd_rme32_playback_stop(rme32);
snd_rme32_capture_stop(rme32);
/* reset DAC */
snd_rme32_reset_dac(rme32);
/* reset buffer pointer */
writel(0, rme32->iobase + RME32_IO_RESET_POS);
/* set default values in registers */
rme32->wcreg = RME32_WCR_SEL | /* normal playback */
RME32_WCR_INP_0 | /* input select */
RME32_WCR_MUTE; /* muting on */
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
/* init switch interface */
if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) {
return err;
}
/* init proc interface */
snd_rme32_proc_init(rme32);
rme32->capture_substream = NULL;
rme32->playback_substream = NULL;
return 0;
}
/*
* proc interface
*/
static void
snd_rme32_proc_read(snd_info_entry_t * entry, snd_info_buffer_t * buffer)
{
int n;
rme32_t *rme32 = (rme32_t *) entry->private_data;
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
snd_iprintf(buffer, rme32->card->longname);
snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
snd_iprintf(buffer, "\nGeneral settings\n");
if (RME32_PRO_WITH_8414(rme32)) {
snd_iprintf(buffer, " receiver: CS8414\n");
} else {
snd_iprintf(buffer, " receiver: CS8412\n");
}
if (rme32->wcreg & RME32_WCR_MODE24) {
snd_iprintf(buffer, " format: 24 bit");
} else {
snd_iprintf(buffer, " format: 16 bit");
}
if (rme32->wcreg & RME32_WCR_MONO) {
snd_iprintf(buffer, ", Mono\n");
} else {
snd_iprintf(buffer, ", Stereo\n");
}
snd_iprintf(buffer, "\nInput settings\n");
switch (snd_rme32_getinputtype(rme32)) {
case RME32_INPUT_OPTICAL:
snd_iprintf(buffer, " input: optical");
break;
case RME32_INPUT_COAXIAL:
snd_iprintf(buffer, " input: coaxial");
break;
case RME32_INPUT_INTERNAL:
snd_iprintf(buffer, " input: internal");
break;
case RME32_INPUT_XLR:
snd_iprintf(buffer, " input: XLR");
break;
}
if (snd_rme32_capture_getrate(rme32, &n) < 0) {
snd_iprintf(buffer, "\n sample rate: no valid signal\n");
} else {
if (n) {
snd_iprintf(buffer, " (8 channels)\n");
} else {
snd_iprintf(buffer, " (2 channels)\n");
}
snd_iprintf(buffer, " sample rate: %d Hz\n",
snd_rme32_capture_getrate(rme32, &n));
}
snd_iprintf(buffer, "\nOutput settings\n");
if (rme32->wcreg & RME32_WCR_SEL) {
snd_iprintf(buffer, " output signal: normal playback");
} else {
snd_iprintf(buffer, " output signal: same as input");
}
if (rme32->wcreg & RME32_WCR_MUTE) {
snd_iprintf(buffer, " (muted)\n");
} else {
snd_iprintf(buffer, "\n");
}
/* master output frequency */
if (!
((!(rme32->wcreg & RME32_WCR_FREQ_0))
&& (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
snd_iprintf(buffer, " sample rate: %d Hz\n",
snd_rme32_playback_getrate(rme32));
}
if (rme32->wcreg & RME32_RCR_KMODE) {
snd_iprintf(buffer, " clock mode: slave\n");
} else {
snd_iprintf(buffer, " clock mode: master\n");
}
if (rme32->wcreg & RME32_WCR_PRO) {
snd_iprintf(buffer, " format: AES/EBU (professional)\n");
} else {
snd_iprintf(buffer, " format: IEC958 (consumer)\n");
}
if (rme32->wcreg & RME32_WCR_EMP) {
snd_iprintf(buffer, " emphasis: on\n");
} else {
snd_iprintf(buffer, " emphasis: off\n");
}
}
static void __devinit snd_rme32_proc_init(rme32_t * rme32)
{
snd_info_entry_t *entry;
if ((entry = snd_info_create_card_entry(rme32->card, "rme32", rme32->card->proc_root)) != NULL) {
entry->content = SNDRV_INFO_CONTENT_TEXT;
entry->private_data = rme32;
entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
entry->c.text.read_size = 256;
entry->c.text.read = snd_rme32_proc_read;
if (snd_info_register(entry) < 0) {
snd_info_free_entry(entry);
entry = NULL;
}
}
rme32->proc_entry = entry;
}
static void snd_rme32_proc_done(rme32_t * rme32)
{
if (rme32->proc_entry) {
snd_info_unregister(rme32->proc_entry);
rme32->proc_entry = NULL;
}
}
/*
* control interface
*/
static int
snd_rme32_info_loopback_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int
snd_rme32_get_loopback_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
spin_lock_irqsave(&rme32->lock, flags);
ucontrol->value.integer.value[0] =
rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
spin_unlock_irqrestore(&rme32->lock, flags);
return 0;
}
static int
snd_rme32_put_loopback_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
unsigned int val;
int change;
val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
spin_lock_irqsave(&rme32->lock, flags);
val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
change = val != rme32->wcreg;
writel(rme32->wcreg =
val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
spin_unlock_irqrestore(&rme32->lock, flags);
return change;
}
static int
snd_rme32_info_inputtype_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_info_t * uinfo)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
static char *texts[4] = { "Optical", "Coaxial", "Internal", "XLR" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
switch (rme32->pci->device) {
case PCI_DEVICE_ID_DIGI32:
case PCI_DEVICE_ID_DIGI32_8:
uinfo->value.enumerated.items = 3;
break;
case PCI_DEVICE_ID_DIGI32_PRO:
uinfo->value.enumerated.items = 4;
break;
default:
snd_BUG();
break;
}
if (uinfo->value.enumerated.item >
uinfo->value.enumerated.items - 1) {
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
}
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int
snd_rme32_get_inputtype_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
int items = 3;
spin_lock_irqsave(&rme32->lock, flags);
ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
switch (rme32->pci->device) {
case PCI_DEVICE_ID_DIGI32:
case PCI_DEVICE_ID_DIGI32_8:
items = 3;
break;
case PCI_DEVICE_ID_DIGI32_PRO:
items = 4;
break;
default:
snd_BUG();
break;
}
if (ucontrol->value.enumerated.item[0] >= items) {
ucontrol->value.enumerated.item[0] = items - 1;
}
spin_unlock_irqrestore(&rme32->lock, flags);
return 0;
}
static int
snd_rme32_put_inputtype_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
unsigned int val;
int change, items = 3;
switch (rme32->pci->device) {
case PCI_DEVICE_ID_DIGI32:
case PCI_DEVICE_ID_DIGI32_8:
items = 3;
break;
case PCI_DEVICE_ID_DIGI32_PRO:
items = 4;
break;
default:
snd_BUG();
break;
}
val = ucontrol->value.enumerated.item[0] % items;
spin_lock_irqsave(&rme32->lock, flags);
change = val != snd_rme32_getinputtype(rme32);
snd_rme32_setinputtype(rme32, val);
spin_unlock_irqrestore(&rme32->lock, flags);
return change;
}
static int
snd_rme32_info_clockmode_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_info_t * uinfo)
{
static char *texts[4] = { "Slave", "Master (32.0 kHz)", "Master (44.1 kHz)", "Master (48.0 kHz)" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 4;
if (uinfo->value.enumerated.item > 3) {
uinfo->value.enumerated.item = 3;
}
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int
snd_rme32_get_clockmode_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
spin_lock_irqsave(&rme32->lock, flags);
ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
spin_unlock_irqrestore(&rme32->lock, flags);
return 0;
}
static int
snd_rme32_put_clockmode_control(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
unsigned int val;
int change;
val = ucontrol->value.enumerated.item[0] % 3;
spin_lock_irqsave(&rme32->lock, flags);
change = val != snd_rme32_getclockmode(rme32);
snd_rme32_setclockmode(rme32, val);
spin_unlock_irqrestore(&rme32->lock, flags);
return change;
}
static u32 snd_rme32_convert_from_aes(snd_aes_iec958_t * aes)
{
u32 val = 0;
val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
if (val & RME32_WCR_PRO)
val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
else
val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
return val;
}
static void snd_rme32_convert_to_aes(snd_aes_iec958_t * aes, u32 val)
{
aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
if (val & RME32_WCR_PRO)
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
else
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
}
static int snd_rme32_control_spdif_info(snd_kcontrol_t * kcontrol,
snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme32_control_spdif_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
rme32->wcreg_spdif);
return 0;
}
static int snd_rme32_control_spdif_put(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t * ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
int change;
u32 val;
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
spin_lock_irqsave(&rme32->lock, flags);
change = val != rme32->wcreg_spdif;
rme32->wcreg_spdif = val;
spin_unlock_irqrestore(&rme32->lock, flags);
return change;
}
static int snd_rme32_control_spdif_stream_info(snd_kcontrol_t * kcontrol,
snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme32_control_spdif_stream_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t *
ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
rme32->wcreg_spdif_stream);
return 0;
}
static int snd_rme32_control_spdif_stream_put(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t *
ucontrol)
{
rme32_t *rme32 = _snd_kcontrol_chip(kcontrol);
unsigned long flags;
int change;
u32 val;
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
spin_lock_irqsave(&rme32->lock, flags);
change = val != rme32->wcreg_spdif_stream;
rme32->wcreg_spdif_stream = val;
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
writel(rme32->wcreg |= val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
spin_unlock_irqrestore(&rme32->lock, flags);
return change;
}
static int snd_rme32_control_spdif_mask_info(snd_kcontrol_t * kcontrol,
snd_ctl_elem_info_t * uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme32_control_spdif_mask_get(snd_kcontrol_t * kcontrol,
snd_ctl_elem_value_t *
ucontrol)
{
ucontrol->value.iec958.status[0] = kcontrol->private_value;
return 0;
}
static snd_kcontrol_new_t snd_rme32_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = snd_rme32_control_spdif_info,
.get = snd_rme32_control_spdif_get,
.put = snd_rme32_control_spdif_put
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
.info = snd_rme32_control_spdif_stream_info,
.get = snd_rme32_control_spdif_stream_get,
.put = snd_rme32_control_spdif_stream_put
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
.info = snd_rme32_control_spdif_mask_info,
.get = snd_rme32_control_spdif_mask_get,
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
.info = snd_rme32_control_spdif_mask_info,
.get = snd_rme32_control_spdif_mask_get,
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Input Connector",
.info = snd_rme32_info_inputtype_control,
.get = snd_rme32_get_inputtype_control,
.put = snd_rme32_put_inputtype_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Loopback Input",
.info = snd_rme32_info_loopback_control,
.get = snd_rme32_get_loopback_control,
.put = snd_rme32_put_loopback_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Clock Mode",
.info = snd_rme32_info_clockmode_control,
.get = snd_rme32_get_clockmode_control,
.put = snd_rme32_put_clockmode_control
}
};
static int snd_rme32_create_switches(snd_card_t * card, rme32_t * rme32)
{
int idx, err;
snd_kcontrol_t *kctl;
for (idx = 0; idx < 7; idx++) {
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0)
return err;
if (idx == 1) /* IEC958 (S/PDIF) Stream */
rme32->spdif_ctl = kctl;
}
return 0;
}
/*
* Card initialisation
*/
static void snd_rme32_card_free(snd_card_t * card)
{
snd_rme32_free(card->private_data);
}
static int __devinit
snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *id)
{
static int dev = 0;
rme32_t *rme32;
snd_card_t *card;
int err;
for (; dev < SNDRV_CARDS; dev++) {
if (!snd_enable[dev]) {
dev++;
return -ENOENT;
}
break;
}
if (dev >= SNDRV_CARDS) {
return -ENODEV;
}
if ((card = snd_card_new(snd_index[dev], snd_id[dev], THIS_MODULE,
sizeof(rme32_t))) == NULL)
return -ENOMEM;
card->private_free = snd_rme32_card_free;
rme32 = (rme32_t *) card->private_data;
rme32->card = card;
rme32->pci = pci;
if ((err = snd_rme32_create(rme32)) < 0) {
snd_card_free(card);
return err;
}
strcpy(card->driver, "Digi32");
switch (rme32->pci->device) {
case PCI_DEVICE_ID_DIGI32:
strcpy(card->shortname, "RME Digi32");
break;
case PCI_DEVICE_ID_DIGI32_8:
strcpy(card->shortname, "RME Digi32/8");
break;
case PCI_DEVICE_ID_DIGI32_PRO:
strcpy(card->shortname, "RME Digi32 PRO");
break;
}
sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
card->shortname, rme32->rev, rme32->port, rme32->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void __devexit snd_rme32_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
static struct pci_driver driver = {
.name = "RME Digi32",
.id_table = snd_rme32_ids,
.probe = snd_rme32_probe,
.remove = __devexit_p(snd_rme32_remove),
};
static int __init alsa_card_rme32_init(void)
{
int err;
if ((err = pci_module_init(&driver)) < 0) {
#ifdef MODULE
snd_printk("No RME Digi32 cards found\n");
#endif
return err;
}
return 0;
}
static void __exit alsa_card_rme32_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_rme32_init)
module_exit(alsa_card_rme32_exit)
#ifndef MODULE
static int __init alsa_card_rme32_setup(char *str)
{
static unsigned __initdata nr_dev = 0;
if (nr_dev >= SNDRV_CARDS)
return 0;
(void) (get_option(&str, &snd_enable[nr_dev]) == 2 &&
get_option(&str, &snd_index[nr_dev]) == 2 &&
get_id(&str, &snd_id[nr_dev]) == 2);
nr_dev++;
return 1;
}
__setup("snd-rme32=", alsa_card_rme32_setup);
#endif /* ifndef MODULE */